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Abstract

The semantic fluency task has been used to understand the ef-
fects of semantic relationships on human memory search. A
variety of computational models have been proposed that ex-
plain human behavioral data, yet it remains unclear how mil-
lions of spiking neurons work in unison to realize the cogni-
tive processes involved in memory search. In this paper, we
present a biologically constrained neural network model that
performs the task in a fashion similar to humans. The model
reproduces experimentally observed response timing effects,
as well as similarity trends within and across semantic cate-
gories derived from responses. Three different sources of the
association data have been tested by embedding associations
in neural connections, with free association norms providing
the best match.
Keywords: semantic memory; associations; semantic search;
spiking neural network; neural engineering framework

Introduction
The semantic memory system plays an important role in a
variety of cognitive functions. It is essential for language
comprehension and understanding, and has been referred to
as a mental thesaurus, storing knowledge about words, their
meaning and relationships among them (Tulving, 1983).

The advent of neuroimaging techniques and observations
from brain lesion studies have allowed more specific localiza-
tion of the brain regions and networks responsible for seman-
tic representation and processing (Huth, de Heer, Griffiths,
Theunissen, & Gallant, 2016; Quiroga, 2012). In particu-
lar, the medial temporal lobe and portions of anterior lobes
have been identified as essential to the function of seman-
tic memory. Purely computational semantic network models
have successfully explained behavioral data (Collins & Quil-
lian, 1969; Collins & Loftus, 1975) and have been purported
to reveal principles guiding language formation and organi-
zation (Steyvers & Tenenbaum, 2005). Yet, they have been
severely limited in their ability to account for the neural re-
alization of such processes. Our understanding of how net-
works of millions of neurons perform the computations that
underly semantic processing is still extremely limited.

We propose a network of simulated spiking neurons that is
able to perform the semantic fluency task in a manner simi-
lar to humans. While providing a good match with behavioral
data, the model also proposes specific neural mechanisms that
may be involved in semantic processes. The components of
the model are discussed in terms of functionally and neuro-
logically plausible counterparts found in the human brain.

Search in the Semantic Space
The semantic fluency task has been used to understand how
humans search memory when asked to retrieve items se-

mantically related to a given cue (Thurstone, 1938; Bous-
field & Sedgewick, 1944). In a typical trial, a person is in-
structed to generate members of a category within a given
time limit. One common version of the task requires an in-
dividual to list all animals they can think of within a fixed
timespan of one or more minutes. Response analysis shows
they tend to be grouped into clusters corresponding to sub-
categories (Troyer, Moscovitch, & Winocur, 1997), such as
pets or farm animals. For example, responses might start with
the animals an individual is most familiar with, such as cat,
dog, rabbit and then continue with a list of farm animals such
as cow, chicken and turkey.

To explain the clustering trend observed in the responses,
Hills, Jones, and Todd (2012) suggested that individuals
generate responses according to the optimal foraging pol-
icy (Charnov, 1976). Animals use such a strategy when
searching for food in natural environments: after resources
in one area have been depleted, animals continue their search
for food in a new patch. In the context of the semantic fluency
task, an individual listing animals in a specific sub-category
would stop listing animals from that category after being un-
able to generate new items at a certain rate. Search behav-
ior suggestive of optimal foraging has been reproduced with
several different representations and algorithms, including a
random walk on a semantic network constructed from free
association norms (Abbott, Austerweil, & Griffiths, 2015).
Jones, Hills, and Todd (2015) attribute the simplicity of this
particular algorithm to the association norms being a direct
result of an experimental design that is very similar to the se-
mantic fluency task. They argue that the fundamental mem-
ory retrieval processes and representations are obscured by
the data underlying the model and the behaviors that are be-
ing explained. However, association data from sources other
than association norms, like data learned from natural lan-
guage, have successfully been used to reproduce human re-
sponse patterns with random walks (Nematzadeh, Miscevic,
& Stevenson, 2016).

Here, we take a first step towards explaining how the mem-
ory retrieval processes and representations described above
can be realized by a biologically constrained neural network.
The proposed model performs the search based on associative
weights encoded within connections between neurons, re-
sembling aspects of a random walk while still conforming to
constraints of neural computation. The noise resulting from
spiking neurons and the diversity in neuron parameter values
lead to the response variability. We show that the search pat-
terns observed in the model responses are consistent with the
optimal foraging theory and match human behavioral data.
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Figure 1: A: Architecture of the neural network model performing the semantic fluency task. Each box represents a population
of spiking neurons. B: Neuronal spiking activity in the model recorded from the population cue. Some neurons are actively
spiking when representing words dog, cat and donkey (highlighted area 1), while others only spike when representing words
dog and cat (highlighted area 2). The similarity between these spikes and the ideal spike pattern for each word is shown above.

Biologically Constrained Representation
Brain imaging studies provide evidence in support of seman-
tic representations distributed across networks of neurons in
various brain regions (Huth et al., 2016; Rissman & Wagner,
2012). While many neurons jointly contribute to representa-
tions, single neurons can still exhibit preference for certain
input stimuli. For example, neurons in the medial temporal
lobe show selective responses for higher-level semantic con-
cepts such as places or people (Quiroga, 2012).

Consistent with the notion of a distributed representation,
we employ vector-based representations that can be imple-
mented in a network of spiking neurons by means of the
Neural Engineering Framework (NEF; Eliasmith & Ander-
son, 2003). In the NEF, connection weights between neurons
can be analytically computed such that the neural network
approximates a desired function.

Given an n-dimensional vector representing a preferred
stimulus eee and some time-varying input xxx, the activity of a
single neuron ai can be expressed as

ai = Gi

[
αieee>i xxx+ Jbias

i

]
(1)

where G represents a spiking neuron model, in this case
the Leaky Integrate-and-Fire (LIF) model. The parameter α

scales the input and converts the unit of the variable (xxx) to
units of current, and Jbias represents background currents.

As a result, if a neuron is driven by an input xxx that is similar
to its preferred direction eee, the dot product eee>xxx is larger (eee>

is a transposed vector eee). For a LIF neuron, this translates to a
higher input current that drives the neuron to produce a more
rapid series of spikes that is transmitted to another neuron.
In biological systems, spikes are transmitted across synaptic
connections and transformed to post-synaptic current at the
site of a receiving neuron. It is important to note that the
inputs to the neuron do not have to be characterized as scalar
values, as Equation 1 holds for vector inputs.

We can recover the value represented by populations of

neurons by filtering spike trains with a filter h(t) and scaling
with decoding weights dddi:

x̂xx = ∑
i

ai ∗ [dddih] . (2)

The linear filter h(t) = τ−1
syn exp(−t/τsyn) models the post-

synaptic current. The symbol ∗ denotes convolution, an op-
eration that places such filter at every position where a spike
occurs, and sums the result. The decoding weights dddi can be
analytically computed by a least-squares minimization of the
error term E =‖xxx− x̂xx‖.

To perform a computation, these decoding weights are cou-
pled with the encoding weights eee of the receiving neurons.
This gives observable connection weights between two neural
populations. Specifically, the connections between neurons
in the pre-synaptic population ai and the post-synaptic pop-
ulation b j are computed as w ji = α jeee>j dddi. The group of re-
ceiving neurons can also represent a transformed value f (xxx),
where f can be a non-linear function. The same optimiza-
tion method can be used in this case to compute alternative
decoding weights ddd f

i to estimate the function.

Representing Words and Associations
In our model, the vectors xxx in Equation 1 are 256-dimensional
unit vectors that represent animal words. The vectors are gen-
erated randomly such that similarity between any two vec-
tors is generally less than 0.1. This ensures almost orthogo-
nal vectors, with some overlap in representation, meaning the
same neurons will be involved in the representation of differ-
ent words. An example of this representational overlap can
be seen in the spike raster plot in Figure 1B, where some neu-
rons fire for all words and some only for a subset. The NEF
methods allow us to decode the spiking activity in terms of
the words being represented by the neurons with Equation 2
as shown in the upper part of Figure 1B.

Associative relationships between words are represented as
linear transformations implemented in the connections be-
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Table 1: Utility calculations for different goals and the corresponding actions.

Goal Utility calculation Action

1. Start goal · start Set cue to animal, set goal to think
2. Think goal · think+ response magnitude−1 Copy response to cue, add response to responses, set goal to think
3. Default 0.4 Set cue to animal, set goal to think

tween two groups of neurons. Word vectors are collected
row-wise into a single matrix VVV , and associations between
pairs of words are encoded into a matrix AAA such that Ai j is the
association strength from word i to word j. We can then ex-
press a new matrix ÃAA = VVV>AAA>VVV to implement a transforma-
tion that multiplies the vector represented by the first group
of neurons by the matrix ÃAA and transmits the result to the sec-
ond group. This operation results in a weighted linear com-
bination of vectors that represents words associated with the
word represented in the first group of neurons. This method
of representing associations is embedded in a large recurrent
network to perform the semantic fluency task.

Association Matrices To construct three different associ-
ation matrices AAA, we use three different sources of associa-
tive data: Free Association Norms (FAN; Nelson, McEvoy,
& Schreiber, 2004), BEAGLE (Jones & Mewhort, 2007) and
Google Ngrams (Michel et al., 2011).

The FAN data set has been derived empirically in a free
association experiment, where individuals were asked to gen-
erate the first word which comes to their mind for given a cue.
The data was normed over all participants to yield asymmet-
ric association strengths for over 5,000 words. The Ngram
data set contains co-occurrences of sequences of n words ex-
tracted from the Google Books Ngram Viewer dataset (Ver-
sion 2 from July 2012, Michel et al., 2011). This dataset pro-
vides occurrence frequencies of n-grams across over 5 million
books published up to 2008. We use occurrences of bi-grams
to construct an asymmetric association matrix. The BEAGLE
dataset has been trained on a 400M-word Wikipedia corpus,
yielding unique vector representations for each word. In this
data set, similarity between pairs of vectors is computed as
cosine similarity, providing a symmetric measure of associa-
tion strength. We use pre-computed similarities between pairs
of animal word-vectors as in Hills et al. (2012).

We take human responses as a reference for the set of an-
imal words and consider only words that are present in all
datasets, amounting to 157 animals. The FAN data set con-
tains the smallest vocabulary and is the most restrictive set.

Proposed Neural Network Model
Using the NEF implemented in the Nengo simulation envi-
ronment (Bekolay et al., 2014), we constructed a model con-
sisting of approximately 62,000 LIF neurons organized in
functional subgroups performing the semantic fluency task.1

1The model and data analysis source code are available at
https://github.com/ctn-archive/kajic-cogsci2017.

The architecture in Figure 1A shows how networks of neu-
rons are organized and connected to perform the task. The
model can be divided into two components: the semantic sys-
tem and the action selection system. In terms of their biologi-
cal correlates, the semantic system can be mapped to areas of
the medial temporal cortex, and the action selection system to
the basal ganglia and the thalamus. The action selection sys-
tem maintains two possible phases: initializing the task and
performing the task.

The initialization phase is active only at the beginning of
a simulation, where external input is used to drive the goal2

population of neurons to represent the vector start. The sec-
ond phase consists of performing the task itself, and occurs
once a cue is provided.

After the task has been initialized, the action selection sys-
tem (consisting of the basal ganglia BG and thalamus THAL
populations) switches to the process of generating word re-
sponses within the semantic system. The recurrent action se-
lection system maintains word generation by simultaneously
evaluating utilities of actions and selecting the action with
the highest utility value. Table 1 shows the mapping between
utility calculations and actions utilized by the action selection
system. Since the external input initially sets the goal to start,
the action selection system will select the first action due to
its high utility value. This action will feed the vector animal
as input to the population cue, and set the representation in
the goal population to think. This action can be interpreted
as the instruction “start listing animals”.

Next, the semantic system begins to generate associations
of the word animal within the association network. The con-
nection between cue and the association network implements
the transformation ÃAA, as described in the previous section.

The association network then represents a vector which is
a linear combination of word-vectors associated with animal.
For example, there might be a representation corresponding
to the vector: 0.5*cat + 0.4*dog + 0.1*fish. Coefficients
represent association strengths between each individual word
and the word animal, as derived from the association matrix
AAA. A winner-take-all (WTA) mechanism within the network
selects the vector with the largest coefficient, and projects it to
the response population. In this example, the response popu-

2We use italics to refer to the name of a population of neurons
or the vector that is represented by that population, which is to be
inferred from the context. The bold font is used to refer to labels
assigned to vectors representing a word. For example, cue · animal
refers to the dot product between the vector represented by the pop-
ulation of neurons labeled “cue” and the vector corresponding to the
word “animal”.
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lation would now represent the vector cat.
When a response has been generated, the action selection

system selects the second action (see Table 1) due to its high
utility value. This action projects the word represented in re-
sponse (e.g., cat) to cue, simultaneously adding it to the rep-
resentations stored in response memory. The goal continues
to be think.

This process within the semantic system continues, with
the action selection system selecting the second action most
of the time. To prevent the same responses from re-appearing
immediately, response memory is implemented as a neural
integrator population. It projects inhibitory connections to
association network in order to suppress representations of
words previously generated as responses.

The last action with a fixed utility value of 0.4 is selected
if utilities of all previous actions have evaluated to a lower
value. This occurs when the system is unable to come up with
a new response (e.g., the WTA mechanism takes too long to
decide between two words). While rare, when this situation
occurs, the action selection system sets cue to represent the
input animal and the goal is set to think.

Network Parameters
Most parameters in the model have been left at their default
values provided by the simulation software Nengo (Bekolay
et al., 2014). Table 2 lists the major parameters in the model.
Some parameter values (e.g., maximal firing rates) are se-
lected randomly. Each time the model is run, a new set of
such parameters are chosen. Such diversity in parameter set-
tings is a first approximation of differences in cognitive pro-
cessing that may occur across cortical regions of different in-
dividuals.

Results
We ran 141 simulations of the model for each of the three
association matrices (Beagle, Ngram, and FAN) and com-
pared them to human data. The number of simulations corre-
sponds to the number of participants in the study by Hills et
al. (2012). The simulations were run until the average num-
ber of responses produced matched the average number of
responses given by human subjects within three minutes.

For each simulation run, we recorded word responses as
decoded vector representations in the response population,
and inter-item response times (IRT) as times between the on-
set of the current response and the previous response. Here
we consider only relative timings (i.e., the time differences
between responses), as mapping to absolute timing (i.e., ex-
act duration of the experiment) would require consideration
of the time it takes for other processes to occur, such as vi-
sual perception and motor responses, which are not part of
this model.

The model responses were evaluated using the same scripts
developed for the analysis of the human data, provided in
Hills et al. (2012). Each response is assigned an animal cate-
gory, and the clusters are identified as sequences of responses

within the same category. An animal that could be assigned
to two clusters is assigned to both.3

The first analysis compares the pairwise similarity of a
word and the words preceding it within a cluster (Figure 2A).
The similarity is computed as a dot product between two
BEAGLE vectors corresponding to the two words in a word
pair (Hills et al., 2012). The experimental results in Figure 2A
show that the word most similar to the recent word in the
patch is the one preceding it, supporting the theory of locality
in a memory structure. For the model, this trend is observed
with the Ngram and the FAN association matrices, and less
so with the BEAGLE association matrix, for which the simi-
larity appears to have a flat trend independent of the position
in the cluster.

The second analysis compares the pairwise similarity of
subsequent items relative to the position of an item in the
cluster (Figure 2B). Human data shows that the lowest pair-
wise similarity occurs at the cluster transition points, indi-
cated by ‘1’ on the x-axis in the figure. That point shows
the similarities between the first word in a cluster and the last
word in the preceding cluster. For humans, the mean simi-
larity µ at the cluster switch is µ = 0.92 with standard devi-
ation σµ = 0.01. The model using FAN data shows compa-
rable results (µ = 0.93,σµ = 0.01). For the Ngram and the
BEAGLE association matrices this effect is weakly observ-
able (µ = 1.00,σµ = 0.01 and µ = 1.01,σµ = 0.01, respec-
tively), as the word similarity at the transition point remains
above the subject’s average.

The third analysis concerns the position of a word item
within a cluster and the speed of generating a word. The
ratio between the average IRT for an item and the partici-
pant’s mean IRT over the entire task is shown in Figure 2C.
Human participants take the most time to produce the first
word in a new cluster (reported t(140) = 13.14, p < .001)
and least time to produce the second word in a new clus-
ter (reported t(140) = 11.92, p < .001). This observation is
the hallmark prediction of the optimal foraging strategy, sug-
gesting that cluster switches occur when the current IRT in-
creases over the mean IRT value. Figure 2C also shows that
the model using the FAN association matrix exhibits the same
effects as observed with human responses. It takes signifi-
cantly more time to generate the first words in a new cluster
(t(140) = 4.78, p < .001), compared to the second words in
the cluster (t(140) = 4.78, p < .001).

Discussion
We have proposed a spiking neural network model that per-
forms the semantic fluency task and shows a good match with
human behavioral data. In particular, we embed association
data in connections between neurons within a large recurrent
network and investigate which source of association informa-
tion provides the closest match to human performance. Our
focus is on identifying plausible, causal neural mechanisms

3See Troyer et al. (1997) for more detailed description of the
categorization procedure.
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Table 2: List of model parameters

Name Value (unit) Explanation

d 256 Dimensionality of word vectors
assoc th 0.3 (or 0.25) Default WTA input threshold (Ngram, BEAGLE threshold)

ccs 3 Cue to association network connection strength
cfs 0.2 Cue feedback connection strength
cinh −5 Response memory to association network inhibitory connection strength
τsyn 0.1 ms Synaptic time constant between association network and response
τsyn 0.005 ms Synaptic time constant (default)

max rate 200–400 Hz Range for maximal neural firing rates (default)
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Figure 2: Comparison between model responses for FAN, Ngram and BEAGLE association matrices (blue) and human re-
sponses (yellow, reproduced from Hills et al., 2012). A: Pairwise similarity between a word and the words preceding it within
the same categorical cluster. B: Pairwise similarity between subsequent words. For example, the bars above ‘1’ indicate the
relative pairwise similarities between the first item in a cluster, and the last item in the previous cluster. C: Inter-item response
times (IRT) between subsequent words. Standard errors of the mean are shown with error bars in all plots.

for performing such tasks. To that end, we have identified
computational requirements in terms of processes and rele-
vant neural parameters, and here we discuss how they affect
the model’s behavior.

The model produces responses in a way that is consistent
with predictions made by optimal foraging theory proposed
to be used by humans (Hills et al., 2012). It is more likely
to switch animal categories when the average similarity of
subsequent responses drops below, or gets close to, the over-
all mean similarity. This effect was observed with all three
association matrices, but is most pronounced with the FAN

matrix.
However, the analysis of timing effects allowed us to

clearly distinguish between the three matrices. The model us-
ing FAN exhibited the same timing effects as observed with
human responses. This timing effect was not observed with
other association matrices (see Figure 2C). The similarity be-
tween cognitive processes involved in free association task
and in the semantic fluency task (Jones et al., 2015) is a likely
candidate to explain the effectiveness of free norms in match-
ing the experimental data. However, this result could also
be seen as support for the plausibility of the proposed neu-
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ral mechanisms, as they are able to generate behaviors in
accordance with these underlying associations. We expect
that a better understanding of cognitive processes involved
in free associations could aid understanding of the processes
underlying semantic fluency. Our model may prove useful
in exploring a variety of possible ways that such associations
are neurally realized, as the direct embedding in connection
weights as done here is only one possibility.

When building biologically constrained neural models,
timing is a highly constrained property of a model. Here, the
timing of responses is sensitive to both neural time constants
and our characterization of concept representation. This is
in contrast to previous models that directly use semantic net-
works, where timing is a separate and independent parameter.
For instance, we identified that a longer synaptic time con-
stant was needed between the association network and the re-
sponse populations to stabilize the representation. This leads
to the prediction that this network will be rich with NMDA re-
ceptors in the biological system. These receptors have signif-
icantly longer time constants than the more common AMPA
receptors. Also, NMDA receptors can be found in the hip-
pocampus, a brain structure located in the medial temporal
lobe, whose function has been implicated in semantic and
episodic memory.

Our characterization of neural concept representation also
has an effect on the timing responses. Specifically, we have
observed that the dimensionality of employed vector repre-
sentations needed to be sufficiently large to achieve experi-
mentally observed timing effects. While we find that d = 256
suffices for this purpose, a systematic search of dimension-
ality effects on the performance is needed to see how it af-
fects the behavior. We have tested this model with lower val-
ues (e.g., d = 64) and it produced results in support of local
search strategy, yet it failed to provide a good match with the
timing data. In other work, we have suggested that d ≈ 500
is necessary for representing human-scale conceptual struc-
tures (Eliasmith, 2013), which is consistent with this newer
observation.
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