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In nuclear fusion reactors, tritium dynamics plays a dominant role. An unprecedented

amount of tritium is consumed in Deuterium−Tritium (D−T) nuclear fusion reactors, ∼0.5

kg per day for 3 GW fusion power. However, tritium is radioactive, has short half-life (∼12.33

years), and is present in nature in negligible concentration. Because of tritium scarcity, fu-

ture fusion power reactors must be self-sufficient, i.e. the reactor must have a closed fuel

cycle where tritium is produced in greater amounts than it is consumed. Furthermore, nu-

clear fusion reactors must accumulate and provide tritium start-up inventory for the next

generation of fusion power plants, since natural reserves of tritium are very limited. More-

over, because of its radioactive nature, tritium presents a serious hazard to the personnel

and has implications to safety and nuclear licensing.

Accurate predictive models of the nuclear fusion fuel cycle are required to effectively

design the fuel cycle components, understand tritium dynamics in the fusion fuel cycle, and

determine the technology and physics requirements to attain tritium self-sufficiency. More-

over, accurate predictions of tritium inventories and flow rates within fusion components,

and estimations of tritium releases to the environment are necessary for nuclear licensing.

In this dissertation, two numerical models are developed to perform tritium transport as-

sessment within fusion systems. First, a high fidelity numerical model is developed to sim-

ulate time-dependent tritium transport within the reactor outer fuel cycle (OFC). Detailed

ii



(high resolution) component-level models, where constitutive transport equations are imple-

mented in COMSOL Multiphysics and solved for various fusion sub-systems, are integrated

into system-level with the use of MATLAB/Simulink S-Functions to reproduce typical OFC

tritium streams. The model is applied to the KOrean Helium Cooled Ceramic Reflector Test

Blanket System (KO-HCCR TBS) which will be tested in the International Thermonuclear

Experimental Reactor (ITER). However, the developed model offers some flexibility and can

be applied to other Test Blanket Module (TBM) designs. Second, the overall fusion fuel cycle

is modeled analytically by a system of time-dependent zero-dimensional ordinary differential

equations with the tritium mean residence time method. This technique yields results useful

for understanding the overall fuel cycle dynamics and the importance of certain components

and parameters. The analysis of tritium inventories and flow rates is extended to determine

the physics and technology requirements to attain tritium self-sufficiency. In particular, the

state-of-the-art plasma physics and technology parameters (e.g. tritium burn fraction, fuel-

ing efficiency, processing times, etc.) and up-to-date fuel cycle design are considered in the

analysis. The tritium self-sufficiency assessment and tritium start-up inventory evaluation

are performed to investigate: (i) the effect of the reactor operating scenario and availability

factor, e.g. to account for random failures and ordinary maintenance, (ii) the scenarios for

commercialization, e.g. risk associated with tritium reserve inventory reduction, (iii) the

penetration of fusion energy into power market, e.g. effect of the doubling time, and (iv)

the effect of reactor power on tritium start-up inventory, e.g. for plasma-based test facilities,

DEMOnstration reactors (DEMO), and power reactors. The results highlight the physics

and technology R&D requirements to attain fuel self-sufficiency in fusion reactors.
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CHAPTER 1

Introduction

Fusion nuclear power is considered the ultimate source of energy for mankind. D−T nuclear

fusion consists in fusing nuclei of deuterium (D) and tritium (T) through the nuclear reaction

1.1 to gain a net amount of kinetic energy of 17.6 MeV per reaction (3.5 MeV carried by

an α particle or 4
2He, and 14.1 MeV carried by a neutron n). The kinetic energy is then

converted into heat which is extracted by a flowing coolant and used for electric production,

e.g. through Rankine cycle.

D + T −→ α (3.5 MeV) + n (14.1 MeV) (1.1)

where 1 MeV = 1.602× 10−13 J.

An unprecedented amount of tritium is burned in a fusion power plant. For instance, a

1000 MWe (∼ 3000 MWt) power plant burns ∼ 170 kg/yr. The amount of tritium required to

fuel a D−T fusion reactor is not comparable with the tritium which can be produced in fission

reactors. It is estimated that ∼ 0.5 - 1 kg per year of tritium can be produced in Light Water

Reactors (LWRs), when special designs for T production are implemented in the reactor

system. Moreover, tritium production in LWRs is extremely expensive: $84M− $130M per

kg1. Tritium is an unintended by-product produced by the D(n, γ)T reaction in Heavy

Water Reactors (HWRs), e.g. CANada Deuterium Uranium (CANDU) reactors; however,

production is limited to 130 g/yr [1]. Thus, external, non-fusion, supply of tritium cannot be

the solution to provide the required tritium inventory to start new generation fusion reactors

and maintain the reactor in operation throughout its life-time.

1per Department of Energy (DOE) Inspector General.
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In fact, available tritium reserves are very limited (∼27 kg peak in 2027 due to tritium

accumulation in 40 years of CANDU reactor operations) and will be mostly consumed dur-

ing the experimental campaign of the International Thermonuclear Experimental Reactor

(ITER), which is under construction in Cadarache, France, and is projected to start D−T

operation in 2036. If we consider that tritium decays with a half-life of 12.33 years, we

can conclude that current T resources are irrelevant to serving as tritium initial start-up

for DEMOnstration reactors (DEMO), which will be constructed in 20−30 years from now

when tritium resources will be likely only a few kilograms. Thus, assuming we have a suffi-

cient supply of tritium to start a nuclear fusion reactor, then the plant must have a closed

fuel cycle, i.e. must be able to self-produce, recover, and process a sufficient amount of

tritium within the reactor fuel cycle, and finally deliver it to the plasma to maintain steady

operation. Therefore, fusion reactors must achieve fuel self-sufficiency. Not only should a

fusion reactor self-sustain itself, i.e. produce at least the same amount of tritium that it

consumes, but also it shall breed an extra amount of fuel, in a relatively short time, to com-

pensate for potential tritium losses or radioactive decay, and to generate start-up inventories

for future reactors. In particular, lithium is used to breed an adequate amount of tritium.

Liquid lithium, eutectic lead-lithium, molten lithium salts, and solid lithium ceramics are

proposed as candidate materials for tritium breeding in fusion breeding blankets [2]. For

solid breeders, the ceramics are in the form of pebbles to allow tritium diffusion through

the bed inter-porosity. In these lithium contained materials, tritium is bred through the

reactions 1.2 and 1.3. Current lithium supply consumed in the breeding process described

in Eqs. 1.2 and 1.3 is estimated to last for the next ∼ 20,000 years [3], by which time it

is hoped that we will have learned how to achieve the less efficient, but tritium free, D-D

fusion. After the release from pebbles, tritium is carried to the fuel cycle processing systems

by a sweeping Helium purge gas. Thus, tritium is recovered and accumulated as fuel in the

storage and fueling system.

6
3Li+ n −→ α + T + 4.8MeV (1.2)
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7
3Li+ n −→ α + T + n′ − 2.5MeV (1.3)

A schematic of a typical magnetic confined fusion reactor, i.e. the tokamak - or toroidal

chamber in magnetic coils, with the aforementioned reactions of interest is shown in Fig.

1.1.

Figure 1.1: Typical tokamak reactor schematic with nuclear reactions of interest in plasma
and blanket systems. Edited from [4].

At present, there are many uncertainties in assessing the required start-up inventory

and self-sufficiency condition due to the complex dependence on plasma physics, fusion

technology and design, nuclear data and modeling capabilities. A key aspect to assess the

fuel self-sufficiency and start-up inventory and, therefore, define the tritium space phase of

fusion reactors, is to determine tritium inventories and flow rates throughout the overall fuel

cycle. Thus, accurate modeling of fusion plants fuel cycle is required.

Furthermore, tritium is a potential hazard: it is light, volatile, chemically reactive, and

radioactive (particularly dangerous when inhaled and/or ingested due to beta minus de-
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cay2). Tritium handling is, in fact, a very delicate task: major safety concerns and design

implications arise in nuclear fusion reactors due to the tremendous volume of tritium gener-

ation and consumption. The existing tritium concentration gradient between fusion reactor

components and external environment (outside the nuclear facility where the quantity of

tritium dissolved in the environment is negligible) is the driving force for tritium to dif-

fuse through structural material, e.g. bulk diffusion, and, eventually, permeate to reactor

buildings (and potentially to the environment). Furthermore, tritium diffusion is strongly

enhanced by the high temperatures characterizing the Plasma Facing Components (PFCs)

and blanket Breeding Zone (BZ) of fusion power plants, where tritium is implanted from

plasma and generated through n-Li reactions respectively. As a consequence, tritium can

easily diffuse through structural materials, permeate to coolant channels of PFCs and BZ,

and potentially permeate to the various rooms of the reactor building. The most important

safety concerns regarding tritium transport within fusion systems are: (i) the estimation of

tritium flow rates from component to component, (ii) the assessment of tritium inventory

in fusion compartments, (iii) the prediction of tritium permeation to coolant systems, (iv)

the chemical composition and concentration of tritium molecules in coolant and purge gas

flow, (v) the tritium release to reactor buildings and environment. Moreover, determining

the influence of these parameters on the requirements to attain fuel self-sufficiency, which

is absolutely required, and accurately evaluating and minimizing the start-up inventory for

fusion reactors of the first generation and beyond is of fundamental importance.

In light of the above, accurate predictions of time-dependent tritium transport, inventory,

flow rates, permeation rates to environment, and the identification of parameters affecting

tritium fuel cycle dynamics, reactor fuel self-sufficiency, and required initial start-up inven-

tory, are fundamental in order to design, build, and operate fusion systems. Thus, extensive

modeling effort and experimental campaigns must be conducted to develop accurate predic-

tive capabilities which can simulate tritium evolution in realistic reactor-like conditions. This

implies the identification of adequate mathematical formulations for tritium transport, com-

2In the beta minus decay a neutron is converted to a proton and an electron, or β− particle, and an
electron anti-neutrino, ν̄e, are produced.
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prehensive multi-physics modeling of complex fusion components (in detail and on reactor

system-level), and extrapolation to start-up and self-sufficiency issues.

In this document an introduction to nuclear fusion systems and the scope of this research

is given in Chapter 1. In Chapter 2 fuel cycle dynamic models available in literature for

calculating time dependent tritium inventories and flow rates in fuel cycle components are

described. Moreover, a summary of the main computer codes available to predict tritium

evolution in fusion reactors and the mathematical formulation used to describe tritium trans-

port within fusion system are extensively discussed. In Chapter 3, we present a new dynamic

model to obtain accurate predictions of tritium transport in fusion outer fuel cycle3. This

detailed model predicts tritium behavior in each component of the outer fuel cycle by solving

constitutive transport equations with the use of COMSOL Multiphysics. Single components

are then integrated to system-level, with the use of the MATLAB/Simulink software, to

reproduce component-to-component tritium streams. The model is used to evaluate the per-

meation rates from coolant to the Port Interspace, Port Cell, and Vertical Shaft rooms of

the ITER in the case of the Helium Cooled Ceramic Reflector Test Blanket System (HCCR

TBS). Moreover, the effect of several parameters on the performance of the HCCR TBS is

extensively discussed and analyzed in Chapter 4. In Chapter 5, the outer fuel cycle model is

used to determine its impact on the initial tritium start-up inventory. Particular attention is

paid to analyzing the performance of different tritium extraction system designs. In Chapter

6 an analytical model is developed to calculate inventories and flow rates of the components

of the overall fusion fuel cycles (inner and outer fuel cycle) by using the mean residence time

method. This analytical model offers lower fidelity compared to the detailed model devel-

oped for the outer fuel cycle in Chapter 3, but offers valuable insight regarding the overall

performance of the fuel cycle and is useful to determining the R&D goals to attain tritium

self-sufficiency and minimize the require tritium start-up inventory. To maintain appropriate

accuracy, we use state-of-the-art plasma physics and technology parameters in the analysis.

A summary of the main accomplishments of this research and future modeling work is given

in Chapter 7.

3Inner and Outer fuel cycles are described in detail in Subsections 1.1.1 and 1.1.2
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1.1 Nuclear Fusion Fuel Cycle

In Fig. 1.2 a schematic of the typical DEMO fuel cycle [2], which is subdivided into the Inner

Fuel Cycle (IFC) and Outer Fuel Cycle (OFC), is shown. These sub-systems include many

different components which are defined by different physics and perform different functions.

Figure 1.2: Schematic of the typical DEMO fuel cycle [2]. Components of the Outer Fuel
Cycle (in red), i.e. PFC, blanket modules, coolant and blanket gas prossesing systems;
components of the Inner Fuel Cycle (in black with green arrows), i.e. Vacuum Pumping, Fuel
Cleanup, Isotope Separation and Water Detritiation Systems, Tritium Waste Management,
tritium Storage and Management, Fueling system.

In the plasma, where hydrogen isotopes are magnetically confined by the electro-magnetic

field generated through a series of toroidal and poloidal coils, and a central solenoid, the D−T

reaction takes place. The tritium confinement time in plasma limited to ∼ 1 s, thus only a

small fraction of the total tritium injected into the plasma chamber is able to fuse with deu-

terium during a specific confinement time, whilst the remaining fraction is exhausted through

the divertor pump to the processing line of the inner fuel cycle. Then, after impurity removal,

clean-up, and isotope separation, tritium is accumulated in the storage compartment.

As seen in the reaction 1.1, for every tritium nucleus burned, a neutron and an alpha
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particle are produced. Alpha particles are positively charged and, therefore, confined in the

plasma, where the their kinetic energy is converted into heat and contributes to maintaining

the plasma at the required fusion temperature. On the contrary, the neutron, which is not

confined by the magnetic field, reaches the plasma facing components (PFCs), i.e. first wall

(FW) and divertor, and the blanket modules in the outer fuel cycle. Neutrons react with

lithium in the breeding zones to generate tritium through the reactions 1.2 and 1.3. In

particular, the tritium breeding ratio (TBR) is defined as the ratio of generation rate, Ṅ+,

to the tritium burning rate Ṅ− as shown in Eq. 1.4:

TBR =
Ṅ+

Ṅ−
(1.4)

After generation in the blankets of the outer fuel Li-containing materials, tritium is extracted

and processed in the tritium extraction system. Recovered tritium is then provided to the

line of the inner fuel cycle.

The main components of the fusion fuel cycle are described in detail in Section 1.1.1

and 1.1.2. For the outer fuel cycle components, our description relates to solid breeder

blankets concepts and extraction system for tritium removal from helium purge gas, which

are modeled and analyzed in this work, although other concepts/technologies exists, e.g.

liquid metal, molten lithium salts blankets, etc.

1.1.1 Inner Fuel Cycle

Due to the relatively low fueling efficiency and tritium fractional burn-up in fusion plasma,

most part of tritium injected to the plasma is exhausted through the pumping duct to the

processing line of the IFC. Impurities, such as Ne, Xe, Ar, which are added to plasma for

control, while C and Fe particles which are present in the plasma due to plasma-matter

interaction, are separated from D and T in the fuel clean-up system; different isotopes are

separated with the use of the isotope separation system and accumulated in the storage and

management compartment. Finally, deuterium and tritium are fed to the plasma chamber of

the tokamak through the fueling system. A water detritiation system is generally connected
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to the isotope separation system to treat contaminated water (tritium easily substitute hy-

drogen to generate tritiated water). In this section we describe the main technologies used

in the IFC to re-process tritium. A more detailed description of these systems is available

in [5].

1.1.1.1 Vacuum Pumping System

The vacuum pump performs extraction of fuel exhausts and impurities and transfers the

gas mixture to the IFC systems for tritium re-processing. Main technology candidates for

magnetic fusion devices are:

1. Cryosorption pump

Sorption on cryogenic panels at 4 K is performed. It has the advantage of avoiding

rotatory parts, which would interfere with the high magnetic field and reduce pumping

efficiency. However, adsorption and regeneration phase is required, i.e. this systems

work in batch-wise mode. This increases temporary tritium hold up in the pump,

thus tritium is available for re-processing in downstream components after regenera-

tion process. Depending on adsorption/regeneration dynamics, the tritium processing

time and, therefore, the associated inventory in the component could increase. Thus

higher tritium start-up inventory may be required to compensate for delay in exhausts

recovery.

2. Turbo molecular pump

High speed rotors are implemented to compress plasma exhausts and send the gases

downstream. Due to the high magnetic fields present in the proximity of the plasma,

ceramic rotors are being considered to reduce possible inefficiencies due to eddy currents

generations. However, to obtain continuous operation and adequate capacity, very large

rotors are necessary.

3. Roughing pump

It is a supplementary system to the turbo molecular pump. Oil free pumps are prefer-

able in order to avoid oil contamination due to T permeation and exchange with H

8



atoms.

1.1.1.2 Fuel Clean-up System

The plasma exhausts include D and T, water vapor, oxygen, carbon, and hydrocarbons

generated via plasma-wall interactions, and various gases which are added to the plasma for

control purpose, e.g. Ar, Ne. Hydrogen isotopes, present in molecular form Q2 (e.g. H2,

D2, T2, HD HT, DT) or oxidized form Q2O (e.g. H2O, D2O, T2O, DTO, HTO), must be

separated from the gas mixture before they are further processed in the Isotope Separation

System, which requires high purity H gas. Thus, a Pd-Ag alloy is installed for H dissolution

and permeation at high temperature (∼ 700 K), while the other gases in the mixture do

not dissolve nor permeate. Normally, the diffuser operates at ambient pressure to reduce T

permeation, which is enhanced by the high temperature of the process. Tritium residuals are

likely still present in the gas downstream of the diffuser, thus, further processing is performed

with the use of a catalytic reactor packed with a platinum catalyst, which performs methane

cracking (reaction 1.5) and water shift (reaction 1.6):

CH4 
 C + 2H2 (1.5)

H2O + CO 
 CO2 + 2H2 (1.6)

Finally, a palladium membrane is implemented to promote isotope exchange reaction between

tritium impurities and H2 as shown in reaction 1.7.

HTO + CH3T + 2H2 
 CH4 +H2O + 2HT (1.7)

Currently, in order to reduce carbon dust generated by methane cracking, an alternative

technique based on ceramic electrolysis cell via membrane of yttrium-stabilized zirconium is

being investigated and seems promising.
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1.1.1.3 Isotope Separation System

After impurity removal from the exhaust gases in the fuel clean-up system the mixture has

reached high purity in hydrogen isotope content, and the Q2 stream is processed by the

Isotope Separation System where cryogenic separation is performed to separate different H

isotopes. Even if other separation techniques exist, e.g. gas chromatography, and thermal

diffusion method, the cryogenic distillation method appears to be the preferable technology

for fusion systems since it allows the treatment of huge amounts of flow rate with maintaining

high separation factors.

In detail, a cascade of columns (∼3-5 m height, ∼ 0.05-0.1 m diameter for ITER) are

adopted to treat streams coming from the clean-up systems (H2,D2,T2,HD,HT,DT) and

from the water detritiation system (H2,HD,HT). Each column has a boiler at the bottom,

a packed bed of adsorbent materials, e.g. Dixon Ring, in the center, and a condenser at the

top to generate a Q2 counter-current flow of liquid and gas phase. Because of the difference

in the boiling point of hydrogen isotopes (∼20 K for H2 and ∼25 K for T2), higher boiling

point isotopes, e.g. T2, tend to accumulate at the bottom of the columns, in the boiler,

whilst lower boiling point isotopes, e.g. H2, are enriched at the top section, in the condenser.

Note that distillation column are well known and established technologies, however, ex-

tensive R&D is required when this technique is applied to realistic fusion technology scale.

Main issues regarding the development of cryogenic systems are: (i) maintain low tempera-

tures, (ii) the need of achieving high separation factors, and (iii) the necessity of minimizing

the processing time to reduce local tritium inventory in the system.

1.1.1.4 Water Detritiation System

A considerable amount of tritiated water, e.g. HTO, and T2O, is generated in the blanket

systems and during tritium processing. Chemical exchange columns with organic catalyst

are used for water purification and tritium removal through the exchange reaction:

HTO +H2 
 HT +H2O (1.8)
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Other exchange reactions are possible, e.g. water vapor - hydrogen sulfide, and hydrogen

- ammonia, but are unfavorable because of the production of chemicals HTS and NH2T

respectively.

1.1.1.5 Storage and Management System

A storage and delivery system (SMS) is required in any D−T nuclear fusion facility in

order to accumulate and store tritium produced in the blankets and reprocessed in the inner

fuel cycle. Furthermore, tritium inventories dissolved in fusion components are recovered

through hot out-gassing process during reactor maintenance and, thus must be stored in

apposite systems.

In general, tritium is stored in metal beds as hydride metals, e.g. with uranium, titanium,

and zirconium, which dissociate and release hydrogen (or tritium) at high temperature, while

they recombine and adsorb hydrogen at lower temperature for the same dissociation pressure.

The most effective hydride currently used for tritium storage is uranium. However, for safety

reasons related to the nuclear nature of uranium, nuclear regulation requirements, and the

fact that fusion energy should be completely independent of and unrelated to typical nuclear

fission fuels, other non-nuclear alloys are currently being developed, e.g. ZrCo, and seem

promising.

1.1.1.6 Fueling System

Three main systems exist to perform plasma fueling: (i) neutral beam injection (NBI), (ii)

pellet injection, and (iii) gas puffing. In a NBI, fuel particles are ionized, accelerated to

energy > 1 MeV, neutralized, and injected into the plasma core. This method is also used

for plasma heating via nuclei collisions and kinetic energy transfer. The pellet injection

technology consists of a system of cylinders and pistons cooled by cryogenic helium where

the fuel freezes, solidifies, and is shaped to the appropriate size (∼ mm). Then pellets are

accelerated to speed of ∼ km/s through centrifuge of gas gun technology. Potentially, a third

acceleration technique, i.e. the rail gun, could accelerate particles to higher speed. The gas
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puffing injection uses high speed electromagnetic valves installed into several different ports

to provide homogeneous fueling to he plasma.

In the ITER all techniques will be tested while final DEMO strategy is under investiga-

tion, because of the higher DEMO power which translates into higher fuel flow rates and

requires highest achievable fueling efficiency.

1.1.2 Outer Fuel Cycle

The Outer Fuel Cycle includes first wall, divertor, blanket modules, tritium extraction system

and coolant purification systems. Tritium is directly produced from n-Li reactions 1.2 and

1.3 in the blanket modules, and recovered by using a sweeping purge gas through the porous

ceramic structure of solid breeders (or by liquid metals in other blanket concepts). Part of the

tritium produced in the BZ of blankets permeates to coolant loops; moreover, another source

of permeation is given by high fluxes of particles that are implanted in into PFC from the

plasma. In fact, in spite of the magnetic confinement of D and T in the plasma, high fluxes

of particles, neutral and charged, are expected to reach the Scrape-Off Layer (SOL) region,

where the magnetic field topology allows plasma-PFC interaction and consequent particle

implantation in PFCs. Coolant and purge gas are treated within the Coolant Purification

System (CPS) and Tritium Extraction System (TES) to recover tritium which will be further

processed in the Isotope Separation system unit.

1.1.2.1 Plasma Facing Components: First Wall and Divertor

Plasma facing components (PFCs), such as the first wall (FW) and divertor, are any com-

ponents which directly face the plasma. The most common structural material used for

PFCs is a Reduced Activation Ferritic Martensitic steel (RAFM) with a tungsten coating

layer on plasma side. The main functions of the PFCs are to (i) extract the heat generated

through nuclear heating and bremsstrahlung radiation, (ii) serve as structural component to

separate the plasma region from the blankets and the other outer vessel components, (iii)

provide a first barrier for the radiation coming from plasma, and (iv) thermalize the 14.1
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MeV virgin neutrons generated in the fusion reactors to lower energies to increase the 6Li(n,

α)T reaction rate. The divertor allows on-line removal of impurities and waste, e.g. helium

ash, and tritium/deuterium nuclei which lose confinement and enter the SOL region.

1.1.2.2 Breeding blankets characteristics and functions

Breeding blankets with integrated first wall are one of the most critical components of nuclear

fusion reactors. Blankets play a key role in fusion technology by performing: (i) tritium

breeding, (ii) power multiplication and extraction, and (iii) radiation shielding.

D−T fusion fuel cycle is considered closed, assuming the reactor generates at least the

same amount of tritium (see reactions 1.2 and 1.3) which is consumed in the fusion reactions.

Ideally, for each tritium consumed in the reaction 1.1, i.e. for each neutron produced,

a tritium atom can be breed from 6Li of reaction 1.2. However, due to parasitic neutron

absorption in structural material, neutron and tritium losses, a neutron multiplier is generally

required to increase neutron flux intensity in the blanket and, therefore, increase tritium

production. Best candidates for neutron multiplication, reaction (n, 2n), are beryllium and

lead; particularly, multiplication reactions are

9
4Be+ n −→ 2α + 2n− 1.8MeV (1.9)

208
82 Pb+ n −→207

82 Pb+ 2n− 7MeV (1.10)

It is noticeable that both reactions have an energy threshold, i.e. multiplication is possible

only for interaction with fast neutrons (∼ MeV). Furthermore, energy multiplication for

Pb is lower that Be, because off a much higher energy threshold. Reaction 7
3Li(n, n’, α)T

generates a T atom and a thermal neutron that can potentially interact again with lithium

6; for this reason, and to reduce the cost of enriched fuel, 6Li enrichment in ceramics varies

from 40% to 90% depending on the blanket design.

While interacting with lithium to breed tritium, the neutron kinetic energy is converted
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into heat and deposited within the blankets. Moreover, exothermic reactions, e.g. reaction

1.2, and photon heat deposition in structural material, where the photons are generated

through neutron interaction with structural materials such as inelastic scattering and ra-

diative capture reactions4, contribute to multiplying energy within the system. This power

must be extracted at high temperature for energy conversion. Finally the FW/Blankets

represent the first radiation shield of the Vacuum Vessel and they are a physical boundary

for the plasma.

The breeding blankets reside in an hostile nuclear and multiple-field environment. Nuclear

radiation damage is caused by a remarkably hard neutron spectrum (∼ 8 order of magnitude

higher than fission LWRs or HWRs and ∼ 6 order of magnitude higher of Generation IV

fast fission reactors). Blankets are characterized by the presence of sharp volumetric nuclear

heat, temperature, and species concentration gradients and are subject to high magnetic

field and temperature which cause considerable thermo-mechanical stresses.

As an example, we show in Fig. 1.3 the Korean Helium Cooled Ceramic Reflector (HCCR)

concept [6], which will be one of the ITER Test Blanket Module (TBM) within the Test

Blanket System (TBS). It is based on the ceramic pebble bed concept: the breeding ceramic

Figure 1.3: KO-HCCR ceramic breeder blankets, first wall, breeder and multiplier zones.

4Radiative captures reactions (n, γ) are characterized by the absorption of one neutron in the target atom
and the generation of a gamma ray.
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material, e.g. Li2TiO3 or Li4SiO4, and neutron multiplier, e.g. Be or Be12Ti, in the form

of pebble beds, are organized in alternating layers (sandwich configuration). A layer of

graphite is positioned in the back of the module to reflect the neutrons towards the breeding

region, thus, increase tritium breeding and reduce neutron radiation. Helium at low pressure

(∼atm) flows through the interconnected porosity of ceramic breeder and neutron multiplier

the pebble beds as purge gas to extract tritium. A 0.1% vol of H2 is typically added to the He

purge gas to enhance tritium release from pebbles, in the form of HT or, rarely, T2. Helium at

high pressure (∼MPa) is used as coolant in the channels of the Advanced Reduced Activation

Alloy (ARAA) blanket structure. The breeder operates within a temperature window of 550

- 950 oC to enhance tritium diffusion and increase the power plant thermal efficiency; in

particular, tritium residence time strongly depends on temperature and determines tritium

inventories in blankets. The HCCR TBM will be used for current Dissertation modeling and

development within the ITER TBS as well as Korean DEMO design.

1.1.2.3 Tritium Extraction System and Coolant Purification System

Tritium contained in He purge gas and He coolant is recovered by the tritium extraction

system (TES) and coolant purification system (CPS). Tritium is mainly present in the Q2

from, e.g. HT and T2; however, a small amount tritium in water vapor form Q2O, e.g. HTO

and T2O, is found because of the presence of oxygen in the lithium ceramics or if water is

chosen as coolant. In both cases the main technologies adopted for tritium recovery from

purge gas and coolant are (i) cryosorption, and (ii) permeation reactors.

The cryosorption process is performed in columns of porous synthesized zeolite beds.

Tritium molecules carried by the He purge gas in the form of HT and T2 are selectively

adsorbed by the zeolite which is kept at cryogenic temperature by liquid nitrogen. When

the bed has reached saturation of H and T content, the regeneration process performed at

higher temperature enhances tritium and hydrogen desorption and recovery. Note that the

efficiency of adsorption process depends on the content of H2 in the purge gas; whether

high H2 concentration enhances tritium release from ceramics, it also complicates tritium
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recovery in downstream systems. Similar techniques are used to treat HTO and T2O; room

temperature molecular sieve beds are used in this case. This technique is the known and

available since it was use in other industries, e.g. oil and gas, as well as in fusion experimental

facilities, e.g. JET, and are the principal choice for many TBS in ITER. However, the batch-

wise mode of operation implies an increased tritium hold-up and has implications to safety.

Thus, “on-line” continuous operation technologies, which minimize tritium inventory, are

under investigation for future DEMOnstration power reactors. The permeation reactor with

palladium diffuser used in the fuel clean-up unit of the inner fuel cycle is a candidate for

on-line tritium extraction. However, its applicability to blanket system is object of debate

since the tritium partial pressure in the helium purge and coolant gas are considerably lower

than that in the plasma exhausts. Thus, this process may have low efficiency and should be

further developed.

1.2 Objective and Scope

To predict the behavior, improve the design, and optimize the performance of tritium fuel

cycle, a detailed description of the fuel cycle components is required. In this work, several

components the outer fuel cycle (e.g. first wall, breeding zones, connecting pipes, etc.) are

modeled in detail in COMSOL Multiphysics [7]. In particular, a rigorous mathematical

model based on time dependent mass species, fluid momentum, and energy conservation

constitutive equations is implemented. The models reproduce complex geometries of fusion

components and prototypical fusion conditions (e.g. gradients, transients due to pulsed

operation, etc.) to evaluate tritium transport in fusion components. Furthermore, a system-

level model which connects the detailed component models in order to reproduce the tritium

streams in the outer fuel cycle is developed in the MATLAB/Simulink environment [8]. In

this work, we apply this model to the HCCR TBS in order to estimate tritium inventory in

components and releases to ITER buildings. However, the same methodology can be applied

to other test blanket systems, e.g. liquid-metal, and molten salt blanket concepts.

The system-level dynamic model developed for HCCR TBS is useful to provide detailed
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analyses which are necessary to improve the design of specific components. However, for a

more comprehensive analysis of the overall fuel cycle (including inner and outer fuel cycles),

which aims to describe the overall fusion R&D requirements (e.g. in regards to attaining

tritium self-sufficiency), a high level of detail is not necessary and would impact on the

computational performance; thus, in this case, a different approach is preferable. In this

research, a dynamic model of the overall fuel cycle is developed by using the tritium mean

residence time [2, 9, 10]. In particular, the model accounts for several features that were not

included in previous models, e.g. tritium processing time, tritium fueling efficiency and burn

fraction, reactor availability factor, power level, etc. The analysis of tritium inventories and

flow rates in the fuel cycle is extended to determine the R&D requirements to attain tritium

self-sufficiency in fusion reactors and evaluate the required tritium start-up inventory.
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CHAPTER 2

Literature Review

A great deal of work on tritium fuel cycle dynamic modeling is reported in literature. In

a pioneering study published in 1986 by Abdou et al., the authors developed an innovative

methodology known as mean residence time method to compute inventories and flow rates

in fusion system [1]. In this model, each component of the tritium fuel cycle is described

by an ordinary differential equations, and the formulation is based on the assumption that

tritium resides in each component for a characteristic residence time before it is released.

In this research, findings were extrapolated to determine the conditions to achieve fuel self-

sufficiency, which the authors defined as TBRa ≥ TBRr, where a stands for achievable

and r required. The achievable and required TBR have different meanings, definitions, and

depend on different parameters. On the one hand, the TBRa is defined as the ratio of tritium

production rate in blankets to the tritium burning rate in plasma, Ṅ+/Ṅ−, and depends

on fusion blanket design, technology, materials (lithium form and neutron multipliers), and

physics. There are uncertainties associated with the system definition, nuclear data and

numerical approximations, e.g. complex geometry effects and lack of nuclear cross sectional

data for high energy neutrons (∼ 10 MeV), that affect TBRa estimations. On the other hand,

the TBRr is the result of the entire fuel cycle dynamics and, therefore, depends on overall

reactor system design, technology and plasma physics, e.g. fueling efficiency ηf , tritium burn

fraction fb, processing time(s), etc. The TBRr is required to exceed unity by a margin in

order to (i) compensate for tritium losses by radioactive decay, (ii) supply tritium inventory

for start-up of other reactors, and (iii) provide a “reserve” storage inventory necessary for

continued reactor operation in case of failure in tritium processing line. The methodology

developed in [1] was very successful and used in several studies to model the tritium fuel
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cycle of various fusion reactors and analyze tritium self-sufficiency [2, 3]. The same authors

of [1] further improved the methodology and expanded the analyses in several researches [4

- 6].

Starting from the ’90s, thorough mathematical models describing tritium transport in ma-

terial bulk and dissociation/recombination behavior at gas/structure interface were derived

and validated by experimental campaigns [7 - 10]. A great effort in developing predictive

models to better understand tritium transport in sub-components of fuel cycle was launched

in the last thirty years. On the one hand, several tritium mapping codes were developed to

evaluate tritium time evolution on system-level. These models simulate the dynamics of the

entire fuel cycle by solving constitutive heat and mass transfer equations, which provides

higher level of detail compared to the mean resident time approach derived in [1]; how-

ever, geometries are limited to a 1-dimensional description. Examples of these codes are the

TMAP4/TMAP7 [11] developed at the Idaho National Laboratory (INL) and the FUS-TPC

code [12] generated at the Karlsruhe Institute of Technology (KIT). On the other hand, de-

tailed modeling and analyses of 2-D and 3-D fuel cycle components, e.g. blanket, first wall,

tritium extraction system, etc., was performed separately, outside the system-level, with the

use of PDEs commercial solvers based on the Finite Element Method (FEM) and/or Finite

Volume Method (FVM). Examples of these models are available in [13 - 16] for the HCCR

TBM. Most of these models use multi-physics approach, where constitutive equations are

coupled in order to account for realistic fusion conditions (e.g. sharp gradients in temper-

ature and tritium concentrations in structural material of components) and more detailed

and complex geometry definition.

In the following sections the mathematical formulation of some of the tritium transport

predicting tools described is given. This literature review highlight some of the advantages

and deficiencies of the various available numerical techniques.
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2.1 Dynamic Modeling of Fusion Fuel Cycle

The first paper describing the dynamic of the nuclear fusion fuel cycle was published in

1986 by Abdou et al. [1] and represents the primary reference in the field. It is a com-

prehensive paper that introduces the mean residence time method, derives a mathematical

model describing the fuel cycle, evaluates tritium inventories and flow rates in fusion compo-

nents, and explore the conditions required for achieving tritium self-sufficiency. In this work,

the entire fuel cycle dynamics was modeled using a system of first-order linear differential

equations, which made use of the average tritium residence time in various sub-systems to

simulate tritium dynamics and compute tritium inventories in components. In particular,

the differential equations derived for the fusion components have the form:

dIi
dt

=
∑
j 6=i

(
Ij
τj

)
i

− (1 + εi)

(
Ii
τi

)
− λIi + Si (2.1)

where i indicates the component of interest, j the components connected to component i, I

the tritium inventory, τi the tritium mean residence time, (Ij/τj)i the tritium flow rate from

component j to component i, (Ii/τi) and i 6= j, the tritium flow rate out of component i, Si

a tritium source term, and ε and λ the non-radioactive and radioactive losses respectively.

The model was derived for all components defining the whole fuel cycle shown in Fig. 2.1.

Furthermore, in the model the authors defined the doubling time, td, as the time which

is required for the fuel storage compartment inventory, I5, to reach a value equaling the sum

of the initial inventory, I05 , and the minimum or reserve inventory, Im5 , that is:

I5(td) = I05 + Im5 (2.2)

where the reserve inventory is defined as the product of the tritium injection rate and the

reserve time, tr, i.e. the number of days required to supply fuel to the plasma while the

plasma exhaust processing system is not available, and the initial inventory, I05 , is the sum

of this reserve inventory and the equilibrium inventories in all reactor components. Another
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Figure 2.1: Schematic of the fuel cycle for a D−T fusion reactor used in [1].

definition of td commonly used in literature and addressed in the same paper is:

I5(td) = 2I05 (2.3)

This study showed that fuel self-sufficiency assessment is a very complex problem because

of the variety of plasma physics and fusion reactor technology parameters involved in the

calculation, e.g. tritium burn fraction in plasma, tritium residence time, tritium reserve

time, tritium doubling time, etc. In the last 30 years, several other researchers applied the
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methodology developed in [1] to model the fuel cycle of specific fusion reactors, e.g. the

China Fusion Engineering Test Reactor (CFETR) [2, 3]. In [4] Kuan and Abdou proposed a

new approach to evaluate self-sufficiency condition and derived a more detailed formulation

for the tritium start-up inventory. In particular, they integrated the analytical model of

[1] with numerical results and experimental data regarding sub-components of the tritium

processing systems, e.g. Impurity Separation System (ISS), and confirmed the results of [1].

Other results were also published in [5, 6].

The described models represent useful tools to describe the overall fuel cycle dynamics

and offer valuable insights to defining the necessary fusion fuel cycle R&D. However, as fusion

technology evolves, new features must be included in the models and the effect of different

designs and parameters must be evaluated in the analyses. For instance, most part of the

aforementioned models assume steady state reactor operation and ignore downtime due to

random failure of scheduled maintenance, i.e. they assume an overall reactor availability

factor of 100%. Thus, they neglect those times for which there is no tritium production in

the fusion reactor, but tritium decays due to radioactivity. This implies that requirements on

TBR could be very demanding in case of low plant availability. This if of particular concern

in light of the results presented in a comprehensive paper [17], by Abdou et al. In particular,

it was found that the availability factor of fusion reactors is expected to be particularly low in

near term experimental fusion facilities fusion reactors, e.g. <30%. The analysis was based

on data extrapolation from aerospace and fission industry. To conclude, there is a need of

developing models that can account for state-of-the-art parameters, up-to-date fuel cycle

design, and realistic reactor operational scenarios, e.g. downtime due to random failures and

ordinary maintenance of various components, and their effect on the fuel cycle performance

evaluated.

2.2 Tritium Transport Modeling in Fusion Systems

Tritium transport in the bulk of a solid structural material is governed by the diffusion

of molecules (ceramics) or atoms (metals) in the lattice. Ricapito et al. [18] proposed a
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comprehensive mass concentration conservation equation describing tritium dynamics in the

bulk of a material with atom trapping in lattice damages:

∂cs
∂t

+
∑
k

∂cks
∂t

= −∇ · Js + Ss − λscs − λs
∑
k

cks +
∑
m

(
csm +

∑
k

cs,km

)
λsm (2.4)

where cs = concentration of species s, cks = concentration of species s in k trap, Js = diffusive

flux, Ss = local source rate (T generation in breeders or ion implantation in PFC), λs =

species s decay constant, λsm = decay constant of species m decaying into species s, csm =

concentration of atoms of species m that decay into species s, cs,km = concentration of atoms

of species m in k trap that decay into species s. The diffusive term, ∇ · Js, includes the

so-called Soret effect, i.e. particle flux due to thermal gradient which is, in fusion systems, of

the same order of the flux due to species concentration gradient, defined by the Fick’s law.

The divergence of the flux can be written as:

∇ · Js = ∇ ·
[
−Ds

(
∇cs + cs

Q∗

kbT 2
∇T
)]

(2.5)

and Ds is the diffusion coefficient of species s in the material, Q∗ the heat of transport,

kb the Boltzmann constant, and T the temperature. The transport equation for mass can

be solved to determine time-dependent concentration of hydrogen isotopes in the material.

However, appropriate boundary conditions must be defined, that is, accurate representation

of gas/surface interaction, i.e. gas molecules dissociation to atom form and absorption

into structural material and atoms desorption, and recombination to molecular form at the

gas/surface interface, must be provided. For this matter, Pick and Sonnenberg presented in

[19] a detailed kinetic model for molecular/atomic hydrogen-metal interactions. Particularly,

with referring to Fig. 2.2 showing the gas (or vacuum in this case) and metal interface, several

hydrogen fluxes were defined:

• incident flux, f1;

• out of surface to gas flux, f2;
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• from surface into the bulk flux, f3;

• from the bulk to the surface flux, f4;

• into the bulk flux due to concentration gradient, f5.

these are, in turn, function of several parameters:

• H2 molecules flux impinging on the surface, Γ = Γ(p), and p pressure;

• sticking probability, s, i.e. the probability that hydrogen molecules impinging on

the surface will dissociate and resulting hydrogen atoms will stick to the surface in

chemisorption sites;

• Surface coverage, θ, i.e. the atomic fraction of hydrogen atoms to surface atoms;

• α, β, δ rate constants.

Particularly, α, β, δ, s depend on potential activation energies, e.g. dissociation EC , ab-

sorption into bulk EA, bulk to surface EB, desorption for H atom ED, bulk diffusion

Ediff , with Boltzmann exponential law α = α0exp(−2EA/kT ), β = β0exp(−2EB/kT ),

δ = δ0exp(−2ED/kT ), s = s0exp(−2EC/kT ), and α0, β0, δ0, s0 are constants. Equations for

surface and bulk concentration can be obtained by balancing these fluxes. In particular, the

authors of [19] found that, at equilibrium, the concentration of species s at the gas/surface

interface can be expressed by the Sieverts’ Law:

cs = Ksp
1/2
m (2.6)

where Ks is the Sieverts’ constant, and pm the partial pressure of the gas molecule m at the

interface with the metal surface. Thus, for this specific case, the atom flux at the gas/metal

interface shows a square root dependency with the pressure (Js ∝ p
1/2
m ). This case is known

in literature as diffusion-limited regime, since atom diffusion process through bulk is the

limiting factor, whilst surface phenomena take place on shorter time scales.
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Figure 2.2: Schematic hydrogen fluxes at interface vacuum/surface - metal presented in [19]

In other situations, the surface effects can be dominant, e.g. in case of oxidation or

contamination at the surface. For this case, i.e. the surface-limited regime, the atomic flux

at the gas/structure interface has linear dependency with the partial pressure of the molecule

in the dissolved in the gas (Js ∝ pm), as shown in several experimental results [7 - 10]. The

atomic flux at the surface is expressed as:

Js =
k∑

m=1

amsKdmpm −
k∑

m=1

ams

∑
i

∑
j

Kri,jcicj (2.7)

where Js = atom flux of atomic species s into the surface, ams = number of atoms of species

s in molecule of species m, Kdm = dissociation coefficient for molecular species m at the

surface, Kri,j = recombination coefficient for molecular species m which consists of atomic

species i and j (e.g. si + sj = mij), pm = partial pressure of molecular species m, c =

concentration of atoms i and j which generate the molecule m. Not that the dissociation

and recombination coefficients can be written as Kdm = 2σkdm , and Kri,j = 2σkri,j , to include
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the surface roughness factor σ, i.e. the ratio of the real area to the geometrical area of the

surface.

Eq. 2.7 accounts for the co-presence of various different molecules m dissolved in the

gas, e.g. H2, HT, T2. Note that, when thermodynamic equilibrium is reached, bulk diffusion

equals surface diffusion, Jbulk = Js = 0, and from Eq. 2.7 it is possible to relate the atom

concentration at the surface to the gas pressure; for instance in the case of atomic tritium

(i = j = T) and gas molecular tritium gas (m = T2) in a metal/gas system, we find again

that concentration at the interface can be expressed in terms of Sieverts’ law, cT = Ks
√
pT 2,

and Ks =

√
KdT2

KrT,T
is the Sieverts’ constant, which accurately describes the transport regime

when chemisorption sites are saturated and surface effects do not play a significant role, or

in case of low partial pressure. In particular, Serra and Perujo studied the effect of oxidation

on MANET steel [8]. They found that bare MANET follows a diffusion-limited permeation

regime whilst oxidized MANET is surface-limited. Besides, oxidation reduces permeation

flux of ∼ 1 − 3 orders of magnitude over the same range of partial pressures. A schematic

summarizing surface-limited and diffusion-limited regimes for the case of mono-species (e.g.

molecule of species m containing i = j atoms, for example m =H2 and i = j =H) is proposed

in Fig. 2.3.

Figure 2.3: Summary of formulation of surface-limited and diffusion-limited boundary con-
ditions for transport of a single isotope through bulk of strucutural material.

The formulation of diffusion-limited regime discussed thus far is limited to the case of

transport of a single isotope. In case of co-existence of different molecules m dissolved in
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the gas, e.g. H2, D2, T2, HD, HT, etc., which is the case of fusion systems, a more sophisti-

cated formulation is necessary in order to account for the contributions of all isotopes which

“compete” among each other to permeate through the structural material. The modified

Hickman’s theory [20] relates the concentration of atomic species at the metal interface to

the partial pressures of molecules dissolved in the gas by extending the mono-isotope Siev-

erts’ law. For example, if hydrogen and deuterium molecules are dissolved in the gas, the

thermodynamic equilibrium H2 + D2 
 HD is established, and H and D concentrations at

the gas/surface interface at steady-state conditions can be approximated as:

cH = KsH2

pH2

p
1/2
tot

+
1

2
KsHD

pHD

p
1/2
tot

(2.8)

cD = KsD2

pD2

p
1/2
tot

+
1

2
KsHD

pHD

p
1/2
tot

(2.9)

where ptot = pH2 + pD2 + pHD. In fusion applications pD2 � pHD � pH2 ' ptot thus Eqs. 2.8

and 2.9 simplify to:

cH ' KsH2
p
1/2
H2

(2.10)

cD '
1

2
KsHD

pHD

p
1/2
H2

(2.11)

Eq. 2.11 can be written for tritium in the case of a system where the thermodynamic

equilibrium is H2 +T2 
 HT . A schematic of the more general case of boundary conditions

to apply to a system where H2, D2, T2, HD, and HT molecules are dissolved in the gas is

summarized in Fig. 2.4 for the surface-limited case and in 2.5 for the diffusion-limited case.

A more detailed mathematical formulation of the co-permeation of multiple H isotopes

and numerical validation with experimental results was proposed in [21]. The authors found

that Eq. 2.11 can be written as cD ' KsHD

pHD

(KeqpH2
)1/2

, where Keq is the equilibrium constant

of H2 + D2 
 HD. Note that Keq is a function of temperature and is ∼ 4 for typical

temperatures of fusion systems and thus Eq. 2.9 and Eq. 2.11 are approximately equivalent

lead to he same isotope concentration at gas/material interface.
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Figure 2.4: Surface-limited boundary conditions for transport of a H, D, and T isotopes
through bulk of strucutural material.

Figure 2.5: Diffusion-limited boundary conditions for transport of a H, D, and T isotopes
through bulk of strucutural material.

Several experiments [21 - 30] were performed in order to determining hydrogen isotopes

transport properties, e.g. diffusivity, solubility or Sieverts’ constant, trapping parameters,

dissociation and recombination constant rates, etc. A review of main properties for common

fusion reactor materials (F82H, MANET II, BATMAN, Be, Al, Cu, W ) is presented in [31].

All properties are strongly temperature dependent.
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2.3 Available System-level Codes for Tritium Transport

System-level codes were developed with the main goal of estimating Q2 (where Q = H, D, T)

partial pressures build-up in coolant and purge gas gas of blanket systems, tritium inventories

in fuel cycle components, and permeation rates to environment for safety purpose. The

main codes for tritium analysis were developed in the US, The Tritium Migration Analysis

Program (TMAP4/TMAP7) [11], at Idaho National Laboratory (INL) and in EU, FUS-

TPC, at Karlsruhe Institute of Technology (KIT) [12]. These tools are described in details

in the following subsections.

2.3.1 Tritium Migration Analysis Program

TMAP4 was implemented in the early ’90s to simulate dynamics of gas movement through

structures, between structures and adjoining gas volumes, and among gas volumes. TMAP4

was initially developed to assess tritium permeation rates during normal and accident con-

ditions of fusion reactors but is currently used for a much wider variety of analysis. It

has the capability of solving one-dimensional diffusion problems such as atoms movement

through surfaces and bulk materials, as well as thermal response of structures (or segments).

Moreover, it includes a zero-dimensional description of flows and chemical reactions be-

tween and within a control volume (or enclosures). In detail, TMAP4 evaluates the time

dependent movement of solute species across structure surfaces, which is described by dis-

sociation/recombination of gas molecules or atoms described in Eq. 2.7 or with the use of

Sieverts’ or Henry’s laws. Bulk concentrations are obtained by solving Eq. 2.4, with optional

atoms trapping in lattice defects, and considering the Soret effect and Fick’s law, Eq 2.5.

Thermal analysis of structures is critical due to the strong dependence of diffusion properties

on temperature. The model relies on specified temperature, imposed heat flux or adiabatic

boundary conditions to solve energy conservation:

ρCp
∂T

∂t
+∇ · (−k∇T ) = Sh (2.12)
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where ρ the material density, Cp the specific heat, T the temperature, k the thermal conduc-

tivity, and Sh the local volumetric heating rate. At the surface/gas interface atomic species

from the material bulk permeates the gas enclosure and the conversion between molecular

species is governed by chemical reactions that in, TMAP4, are specified by the definition of

reaction rates, Rc. Finally, partial pressures of gases in enclosures are calculated by solving

the species conservation equation that accounts for convective flow between enclosures; the

basic conservation equation for enclosures with molecular species having a concentration cm,

where an additional convection term, ∇ · cmum, is added, is:

∂cm
∂t

+∇ · (cmu + Jm) = Schemm (2.13)

where um the velocity of molecular species m, Jm the diffusive flux of molecular species m,

and Schemm the volumetric source of molecular species m due to chemical reactions. TMAP4,

however, does not solve such equation directly but considers uniform concentrations, inte-

grates Eq. 2.13 in the volume of the enclosure, applies Gauss’ theorem to the convective

term and obtains:

Vi
∂cmi

∂t
= −cmi

∑
j

Qij +
∑
j

cmj
Qji −

∑
k

AkJmk
+ ViSchemm (2.14)

where Vi the volume of the enclosure i, cmi
the concentration of molecular species m in

enclosure i, j the index over all enclosures, Qij the volumetric flow rate from enclosure i to

enclosures j, Ak the surface area of structure k, i.e. the physical boundary of the enclosure

i, and Jmk
the net flux of molecular species m going into structure k surface boundary. All

described equations and further details are given in [11].

An example of a simplified model for the HCCR TBS created at the Idaho National

Laboratory (INL) within the collaboration INL - UCLA - NFRI (National Fusion Research

Institute, South Korea) is shown in Fig. 2.6 (legend of segments and enclosures available in

Fig. 2.7). TMAP4 is widely used for system-level analyses of tritium transport in fusion

systems. The code has undergone a thorough validation process and it was long used in the
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Figure 2.6: Schematic of simplified TMAP4 system-level model for HCCR TBS.

Figure 2.7: Legend of strucutres and enclosures used in the simplified TMAP4 system-level
model for HCCR TBS.

last 25 years. It has the great advantage of requiring a small computational time to run

(∼ hours). However, many details characterizing fusion components conditions are missing.

For instance, the tritium source in blankets can only be modeled as a constant inflow in

the breeder zone enclosures, i.e. tritium production rate (TPR) gradients are ignored and,

therefore, the temperature gradients characteristic of breeder and multiplier zones cannot

be accurately reproduced. Moreover, a detailed description of the gas flow, e.g. coolant
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and purge gas) is not available as volumetric average approach is used. Moreover, due to

the separation of enclosures (describing gas dynamics) and segments (describing structural

material dynamics), zones characterized by the coexistence of both states, e.g. breeder and

multiplier pebble beds with purge gas flow, cannot be modeled in detail. Finally, the one-

or zero- dimensional nature of the code simplifies noticeably the complex geometries of first

wall, breeding zones, and other fusion components.
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2.3.2 The FUS-TPC code

FUS-TPC [12] is a simplified fusion-devoted version of the fast-fission code SFR-TPC [32],

which was primarily developed in order to evaluate tritium inventories and permeation losses

from Sodium-Cooled Fast Reactors (SFRs). The FUS-TPC code, instead, predicts the hy-

drogen isotope concentrations and partial pressures build-up in coolant and purge gas of the

Helium Cooled Pebble Bed (HCPB) blanket for EU DEMO [33]. The code is written in

MATLAB and solves time-dependent zero-dimensional mass balance equations for various

chemical forms of tritium molecules, e.g. T2, HT and HTO. A simplified schematic repre-

senting tritium sources, sinks, and permeation fluxes for the HCPB in the EU DEMO design

is shown in Fig. 2.8. Fig. 2.9 shows the system of equation implemented in the code while

Table 2.1 gives a list of variables of interest. A more detailed description of the mathematical

model, material properties, input parameters, and assumptions is available in [12]. As seen in

the system of equations, in FUS-TPC uniform concentrations and average temperatures are

considered. Hence, concentration and temperature gradients, which determine mass transfer

and blanket/fusion system dynamics, are neglected.

Table 2.1: List of the main variables describing the FUS-TPC code [12].

Flux Description

ĠHTO [mol/s] Total tritium generation rate inside the breeder

Ġbr
v [mol/cm3 - s] Local tritium generation rate inside breeder pebble beds

ĠBe
v [mol/cm3 - s] Total tritium generation rate inside Beryllium pebble beds

ΦFW
imp [mol/s] Flux of Triton from the plasma through the FW cooling channels

ΦCP
perm [mol/s] HT permeated flux through CP channels

ΦSG
perm [mol/s] HT permeated flux through SG tubes

Φi
TES [mol/s] Flux of tritium form i (i = HT, HTO) extracted by TES

Φi
CPS [mol/s] Flux of tritium form i (i = HT, HTO) extracted by CPS

Φc
leak,i [mol/s] Losses of tritium form i (i = HT, HTO) with coolant leakages

∆̇p
HTO [mol/s] HTO Isotope exchange rate inside the BU from the purge gas side

∆̇c
HT [mol/s] HT Isotope exchange rate inside the BU from coolant side
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Figure 2.8: Simplified schematic of main components definining the Outer Fuel Cycle of EU
DEMO, i.e. FW, breeding zones, CPS, TES, heat exchangers [12].

Ref. 12 is the most comprehensive report regarding the FUS-TPC code; it includes a

description of HCPB DEMO, the system of equations implemented, results, and discussion

resulting inventories, pressure build-up in coolant loop and purge gas, and losses to envi-

ronment. Other results derived with the use of the FUS-TPC code are available in [34, 35].

FUS-TPC is a useful tool for overall tritium analysis predictions but it has limitations, e.g.

simplified zero-dimensional concentration equations and averaged values of flow rates and

temperatures. FUS-TPC does not account for thermal response of structures.

35



Figure 2.9: Equations implemented in the FUS-TPC model for HCPB EU DEMO system
[12].

2.4 Detailed Component Modeling Efforts

In parallel with system-level codes development, many groups in the fusion community

started to model single components of the fuel cycle (outside the system-level) in order

to reproduce prototypical fusion conditions, and obtain a more detailed description to op-

timize design and performance. These mathematical models use a multi-physics approach

and aim to reproduce the complex geometries of fusion components with a high degree of

detail, thus these models are often referred to as “detailed components”.

Various neutronics models were developed to determine the volumetric nuclear heating

gradient and tritium production rate within the blanket with integrated first wall [36, 37],

which serve as input parameters for detailed heat and mass transfer analysis. Robust PDE

solvers, e.g. COMSOL Multiphysics, ANSYS, OpenFoam, etc., were used to implement the

governing equations and perform the analyses. Particularly, several detailed 2-D and 3-D

models of fusion components were developed for the HCCR TBM [13 - 16]. The analyses

offered a high degree of detail by including complex geometries of fusion components and
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prototypical conditions of fusion systems (e.g. gradients of concentrations, temperatures,

etc.) and a multi-physics approach which solves the governing equations of mass, momen-

tum, and heat transfer simultaneously. For example, it was found that accurate evaluation

of temperature distribution in breeder zones of fusion blankets is a key parameter to accu-

rately evaluate tritium transport dynamics, given the dependency of transport properties

on temperature. Furthermore, accurate representation of coolant and purge gas flow in re-

quired to accurately determine the tritium partial pressure of dissolved Q2 molecule in the

gas, and associated concentration of Q atoms in the bulk material of structural components.

As an example, we show in Fig. 2.10 and 2.11 temperature and purge gas velocity profiles

of breeder (Li2TiO3), multiplier (Be) zones and graphite reflector of HCCR TBM calculated

with detailed model [14].

Figure 2.10: Temperature distribution in the HCCR berylium, breeder and reflector zones
for different times [14].

Figure 2.11: Velocity profiles of purge gas in the HCCR berylium, breeder and reflector zones
for different times [14].
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The level of detail achieved by these models is superior to the simplified 0-D or 1-D

methodology developed in system-level models such as TMAP4 and FUS-TPC codes. How-

ever, a system level-description is required in order to evaluate the performance of the overall

system, i.e. the entire fuel cycle. Thus, in order to enhance the predictive tools available

for tritium transport in fusion systems, a new approach which is able to incorporate high

fidelity detailed models into system-level is required. The first modeling effort to include

detailed models of fusion components into system-level simulations was presented in [38].

This papers describes the methodology used to perform the coupling on detailed compo-

nents models developed in COMSOL Multiphysics [39, 40] to system-level with the use of

MATLAB S-Functions [41] in the MATLAB/Simulink environment [42]. The paper presents

a simplified model for the HCCR TBM including first wall, breeder zone, connecting pipes

and purification unit, and performs a preliminary analysis of tritium permeation rates to

ITER buildings. However, the analysis is limited by the computational time required to run

the code; the authors pointed out that the chosen system-level time step, dtSL, drastically

affects the required computational time necessary to run the code. For this preliminary anal-

ysis the author used a time step of 25 seconds on system-level. For this time-step, ten days

of computation are necessary to obtain one day of simulated HCCR TBM dynamics. Fur-

thermore, a converging of the system-level time step was not achieved: the authors showed

that a simulation with dtSL= 20 s causes a ∼5% change in pressure build-up values of Q2

isotopes in coolant and concluded that further development was necessary in order to obtain

a reliable predictive tool and perform more comprehensive analyses. This paper represents

the first attempt towards developing a numerical model that can provide a higher degree

of detail and accuracy by integrating detailed component models to system-level. However,

the results are considered preliminary and are useful to describe some of the challenges re-

garding the first stage of code development. In this Dissertation, the model presented in

[38] is further developed to improve the computational efficiency, obtain convergence of the

time-step, and perform a comprehensive analysis regarding tritium permeation rates to the

rooms of the ITER reactor and inventory build-up in the test blanket system components.

The model is also used to suggest R&D of the HCCR TBS.
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2.5 Literature Review Conclusions

A great deal of work on tritium self-sufficiency analysis is available in literature. However,

most of these models were developed in the ’80s and ’90s and present outdated designs

of fuel cycle and respective parameters defining their performance. Hence, new models

which describe up-to-date fuel cycle design, state-of-the-art fusion parameters, e.g. tritium

processing time(s), residence time(s), fueling efficiency, burn fraction, etc., and can include

various reactor operational scenarios, e.g. pulsed operation, random failures, maintenance,

shut down, etc., are required. Besides, a great interest in evaluating the required tritium

start-up inventory for plasma based experimental facilities (e.g. FNSF1), DEMO(s), and

future power reactor is of great interest due to the limited availability of tritium resources.

The required start-up inventory for a 3 GW fusion reactor calculated in [1] is >20 kg, which

is of concern given the limited resources of tritium. A recent study [43] published in 2019

presented a detailed analysis of the start-up inventory required for the specific design and

parameters of the EU-DEMO. In this Dissertation a more general analyses is performed in

order to define the R&D requirements to attain fuel self-sufficiency and evaluate the tritium

start-up inventory in fusion reactors.

Available predictive tools for tritium transport at system-level offer high computational

performance and are useful for preliminary estimation of tritium transport in fusion systems

but the mathematical description of the components of the fuel cycle is limited to a 0-D or

1-D approach and details is missing. Detailed modeling of fusion components and integration

into system-level offers a higher degree of detail and improves predictions of tritium transport

within fusion system. A new methodology which includes detailed models into system-level

was presented in [38] and is further developed in this document.

1Fusion Nuclear Science Facility (FNSF) is an experimental facility commissioned by the US as an in-
termediate step between ITER and DEMO reactors. The main goal is to provide the nuclear environment
needed to develop fusion materials and components technology.
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CHAPTER 3

Modeling of Tritium Transport in the Helium Coolant

Ceramic Reflector Test Blanket System and Analysis

In this work, an advanced numerical model is developed in order to predict time dependent

tritium transport in the outer fuel cycle. In particular, the Helium Cooled Ceramic Reflector

Test Blanket System (TBS) is chosen for the analysis. However, the methodology is general

and can be applied to a variety of Test Blanket Modules (TBM), e.g. Dual Coolant Lead

Lithium (DCLL), Water Cooled Lithium Lead (WCLL), etc. Particularly, the detailed com-

ponent models of the HCCR TBS, e.g. FW, BZ, pipes, HCS/CPS, TES, etc., are developed

in COMSOL Multiphysics and integrated into system-level model to reproduce the HCCR

TBS coolant and purge gas streams, as shown in Fig. 3.1. This predictive tool is used

to analyze tritium inventory build-up in TBS components and estimate tritium permeation

rates to the buildings of the ITER. The model reproduces prototypical fusion conditions,

complex geometries, and realistic plasma scenarios (e.g. pulsed operation).

In this Chapter we describe the mathematical formulation implemented in COMSOL

Multiphysics [1] to generate models of first wall, breeding zone and connecting pipes of the

HCCR TBS. Thus, we describe the methodology used to integrate detailed components to

system-level with the use of the MATLAB/Simulink [2] and COMSOL Livelink [3] platform

through S-Function blocks [4]. Finally, we perform tritium transport analysis for the HCCR

TBS of the ITER. Other applications of this numerical predictive tool are presented in

Chapters 4 and 5.
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Figure 3.1: Schematic of the ITER Test Blanket System including Test Blanket Module
(TBM), Pipe Forest (PF), Helium Coolant System (HCS), Coolant Purification System
(CPS), Tritium Extraction System (TES).

3.1 Mathematical Formulation of Detailed Components of the

HCCR TBS

In this section we describe the mathematical formulation and governing equations imple-

mented in COMSOL Multiphysics Ver. 5.3a for each model of the HCCR TBS. The param-

eters and transport properties used in the analysis are listed.

3.1.1 First wall

High tritium (and deuterium) particle fluxes are expected to reach the first wall surface as

particles are exhausted through the scrape-off layer (SOL) of the plasma. Thus, particles

implantation into the first wall structural material occurs, implanted atoms diffuse through

the bulk material, and permeate to the helium coolant channels. Furthermore, sharp tem-

perature gradients are expected in the structural material of the first wall, due to volumetric

nuclear heating and thermal radiation fluxes (e.g. bremsstrahlung radiation) on the surface
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of the FW facing the plasma. Since tritium transport properties (e.g. tritium solubility

in ferritic steel, dissociation and recombination rates, etc.) are strongly temperature de-

pendent, a multi-physics approach, where heat and mass transport constitutive equations

are coupled, is necessary to reproduce prototypical fusion conditions. In particular, the

developed COMSOL model simulates the transport of hydrogen species and heat transfer

within the Advanced Reduced Activation Alloy (ARAA) structure of the HCCR FW in the

toroidal-radial plane. In particular the FW is 3 cm long in the radial direction and 25.3 cm

long in the toroidal direction. However, by means of symmetry, we model only one of the

eleven helium coolant channels, i.e. 2.3 cm toroidally, to reduce the computational domain

and consequent computational time. The coolant channel is located at 6 mm from the first

wall surface facing the plasma and is 1 cm long in the radial direction and 1.4 cm in the

toroidal direction. Each channel is 77 cm wide in the poloidal direction (not simulated in the

model). Further details on FW geometry are available in [5]. The mathematical formulation

follows the methodology presented in [6, 7]. The governing equation for hydrogen atoms

concentration dissolved in the first wall structural material cFSs , where FS implies ferritic

steel (and is a convenient superscript compared to the longer ARAA), s = H, D, T , has

the general form:
∂cFSs
∂t

+∇ · (−DFS
s ∇cFSs ) = SFSs (3.1)

where DFS
s is the diffusion coefficient of species s in FS, and Ss includes the Soret effect and

ion implantation from plasma:

SFSs = −∇ ·
(
−DFS

s

cFSs Q∗

kb(T FS)2
∇T FS

)
+ (1− r)I0wdp̃(t) (3.2)

and T FS the temperature of the ferritic steel, Q∗ the heat of transport, kb the Boltzmann

constant, I0 the atomic particle flux (50% D - 50% T) from plasma into the FW, r the

reflection coefficient, wd the normalized implantation particle distribution, and p̃(t) the nor-

malized pulse function of ITER operational scenario as shown in Fig. 3.2. The implantation

profile, wd, is calculated with the use of the SRIM/TRIM Monte Carlo code [8] for the case of

ARAA in Subsection 3.2.2. In this work we neglect the effect of possible defects in structural
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material. Dissociation/recombination boundary conditions are implemented on plasma side

Figure 3.2: ITER pulse operational scenario: 50 s ramp-up, 350 s burn, 100 s ramp-down,
1300 s dwell time.

as described in Eq. 2.7. Thus, the atom recombination flux for D and T to plasma is:

JFSH = −2krH2
(cFSH )2 − 2krHD

cFSH cFSD − 2krHT
cFSH cFST (3.3)

JFSD = −2krD2
(cFSD )2 − 2krDT

cFSD cFST − 2krHD
cFSD cFSH (3.4)

JFST = −2krT2 (cFST )2 − 2krDT
cFSD cFST − 2krHT

cFST cFSH (3.5)

Whether it would be preferable to use different expressions for the recombination constant

rate of different Q2 molecules, in absence of more detailed experimental data we use the

hydrogen recombination rate constant obtained in Ref. [9, 10] and presented in Table 3.1

for any Q2 molecule, e.g. H2, HT, etc. Thus Eqs. 3.3 - 3.5 simplify to:

JFSH = −2krc
FS
H (cFSH + cFSD + cFST ) (3.6)
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JFSD = −2krc
FS
D (cFSH + cFSD + cFST ) (3.7)

JFST = −2krc
FS
T (cFSH + cFSD + cFST ) (3.8)

Note that H is not implanted in the FW but can dissolve in ferritic steel due to absorption

on coolant side, where concentration of H isotopes at the gas/structure interface satisfy the

Sieverts’ law and the co-permeation effect is considered (see Fig. 2.5). Concentrations of H,

D and T at gas/structure interface are:

cFSH = Ks,H2

pCLH2

(pCLtot )1/2
+

1

2
Ks,HD

pCLHD
(pCLtot )1/2

+
1

2
Ks,HT

pCLHT
(pCLtot )1/2

(3.9)

cFSD = Ks,D2

pCLD2

(pCLtot )1/2
+

1

2
Ks,HD

pCLHD
(pCLtot )1/2

(3.10)

cFST = Ks,T2

pCLT2
(pCLtot )1/2

+
1

2
Ks,HT

pCLHT
(pCLtot )1/2

(3.11)

where the total pressure is the sum of Q2 partial pressures in He coolant (CL): pCLtot =

pCLH2
+ pCLD2

+ pCLT2 + pCLHD + pCLDT + pCLHT . However, note that in fusion applications pT2 << pHT

and pD2 << pHD, thus pT2 and pD2 are neglected in this model. Moreover the same solubility

is used for H2, HD, and HT. Thus:

cFSH = Ks

pCLH2

(pCLtot )1/2
+

1

2
Ks

pCLHD
(pCLtot )1/2

+
1

2
Ks

pCLHT
(pCLtot )1/2

(3.12)

cFSD =
1

2
Ks

pCLHD
(pCLtot )1/2

(3.13)

cFST =
1

2
Ks

pCLHT
(pCLtot )1/2

(3.14)
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No particle flux is imposed on the other boundaries and concentrations of H, D, and T in

are initially set to zero (clean FW).

The conservation of diluted species in FW structure (Eq. 3.1) is coupled with energy

conservation equation:

ρFSCFS
p

∂T FS

∂t
+∇ · (−kFS∇T FS) = (q

′′′
)FS p̃(t) (3.15)

where ρFS, CFS
p , and kFS are the density, heat capacity at constant pressure, and thermal

conductivity of ARAA, and the volumetric heat generation (q
′′′

)FS deposited during the

plasma pulse, p̃(t), is 4.2 MW/m3 (calculated through detailed HCCR TBM neutronics

analysis [11]) while boundary conditions are inward heat flux on plasma side (0.4 MW/m2

during the plasma pulse), and convective heat flux on coolant side (hFSc ∼ 3750 W
m2−K is a

reference value suggested in [4]). Thermal insulation is imposed on the other boundaries.

The initial temperature in the ferritic steel is 573 K. The schematic of Fig. 3.3 summarizes

the simulated scenario.

Figure 3.3: Schematic representing one helium coolant channel of HCCR FW with mass and
heat fluxes, and volumetric heating of interest.
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3.1.2 Breeding Zone

The breeding zone domain of one sub-module of the HCCR TBM includes three Be multi-

plier zones and three Li2TiO3 ceramic breeder zones separated by seven ARAA structural

plates, each containing thirty four cooling channels, as represented in Fig. 3.4 where radial

dimensions of different zones and poloidal height of the breeding zone are specified. A more

detailed description is available in [12].

Figure 3.4: Schematic of the breeding zone of the HCCR TBM in the poloidal-radial plane
with dimensions espressed in cm.

Tritium is bred in lithium ceramics (e.g. Li2TiO3) and released in the purge gas after a

characteristic residence time τres. The purge gas is helium at atmospheric pressure with a

0.1% vol of H2 which is added to the to enhance tritium release from pebbles and facilitate

recombination of T with H to from HT molecules. Due to the presence of oxygen in the

ceramics), tritiated water (HTO) molecules are formed in the purge gas. This interacts with

H2 to produce HT and H2O. A similar discussion holds for the beryllium multiplier and purge

gas zones, though tritium production rate in beryllium is several orders of magnitude smaller

than the generation rate in the breeding zones and oxygen concentrations are negligible. A

fraction of the tritium produced in Li2TiO3 and Be pebbles dissolves in the ARAA structural
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plates, diffuses through the lattice, and permeates to coolant.

The numerical model implemented in the COMSOL Multiphysics includes transport of

diluted species, porous media flow of purge gas through pebble beds, heat transfer in solids

and porous media, and is described in detail in the following subsections.

3.1.2.1 Tritium transport in breeder, multiplier, purge gas, structural material,

and reflector

The mathematical formulation of tritium transport in the breeding zone follows the method-

ology proposed by [6, 13−14]. In particular, the model evaluates:

• tritium concentration in ceramic breeder and beryllium multiplier pebbles (cBT and cMT );

• Concentrations of H2, HT, HTO, and H2O molecules in breeder purge gas (cBPm , where

m = H2, HT, HTO, H2O);

• Concentrations of H2 and HT molecules in beryllium multiplier purge gas (cMP
m , where

m = H2, HT );

• hydrogen and tritium concentration in ARAA plates and graphite reflector (cARAAs and

cGs , where s = H, T ).

Furthermore, heat transfer and purge gas flow through porous media (ceramics, beryllium,

and graphite pebble beds) are simultaneously resolved to reproduce accurate temperature

and velocity profiles. The equations implemented in the COMSOL Multiphysics Ver. 5.3a

are described for the various zones of the TBM module in the following paragraphs.

Concentration of tritium in ceramic breeder and beryllium multiplier pebbles

∂cBT
∂t

= ĠB
v p̃(t)−

cBT
τres

(3.16)

∂cMT
∂t

= ĠM
v p̃(t)(1− fr) (3.17)
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where ĠB
v and ĠM

v are the volumetric tritium production rate in the ceramic breeder and

multiplier respectively. In the breeder tritium release is governed by a characteristic tritium

residence time τres while for the multiplier we assume that a fraction fr of the tritium

generated is instantaneously released, as discussed in [13].

Concentration of H2, HT, HTO, and H2O molecules in breeder purge gas

∂cBPm
∂t

+∇ · (−DBP
m ∇cBPm + uBP cBPm ) = RBP

m (3.18)

where m = H2, HT,HTO,H2O, the term ∇ · (uBP cBPm ) can be expanded as uBP · ∇cBPm +

cBPm ∇ · uBP , which includes the advection term (uBP · ∇) and the divergence of the velocity

field (∇ · uBP ) to account for compressible behavior, and m = H2, HT, HTO, H2O. The

term RBP
m is a reaction rate that accounts for HT and HTO formation in the purge gas.

In particular, we assume that tritium is released to the He purge gas in the HT and HTO

molecular form with a 50% HT - 50% HTO ratio. Thus, per each mole of tritium atoms

released, half a mole of molecules HT and HTO are formed, and half a mole of hydrogen

molecules is consumed. Here we assume oxygen is release when two lithium nuclei are

consumed. Hence, the reaction rate per unit of purge gas volume is:

RBP
H2

= −1

2

cBT
τres

V B

V BP
(3.19)

RBP
HT =

1

2

cBT
τres

V B

V BP
(3.20)

RBP
HTO =

1

2

cBT
τres

V B

V BP
(3.21)

RBP
H2O

= 0 (3.22)

where cBT /τres is the release rate from Li2TiO3, c
B
T is calculated in Eq. 3.16 and expressed
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in moles of tritium atoms per unit of breeder volume, V B is the breeder volume, and VBP

the volume of purge gas. Hence, HTO is reduced to HT due to the chemical reaction with

H2 which generates H2O: HT + H2O 
 HTO + H2. The equilibrium constant rate can be

expressed as:

Keq =
[HTO][H2]

[HT ][H2O]
(3.23)

and was experimentally found to be a function of temperature [15]:

logKeq = 0.292 logTBP +
336.5

TBP
− 1.055 (3.24)

and TBP is the temperature of the purge gas. COMSOL Multiphysics provides a built-in

reaction solution function which evaluates the molecule concentrations in a dynamic fashion

based on the formulation of the equilibrium constant given in Eq. 3.24.

Diffusion-limited boundary conditions are implemented at the purge gas and cooling

plates interface, as described in Eqs. 2.8 and 2.11 applied to H and T:

cFSH = KsH2

pBPH2

pBPtot
1/2

+
1

2
KsHT

pBPHT

pBPtot
1/2

(3.25)

cFST =
1

2
KsHT

pBPHT

pBPtot
1/2

(3.26)

where cFSH and cFST are hydrogen and tritium concentrations dissolved in the ARAA ferritic

steel at the purge gas and cooling plates interface (solution of Eq. 3.32), pBPH2
and pBPHT are

the partial pressures of H2 and HT respectively (pBPtot = pBPH2
+ pBPHT is the total pressure in

the purge gas), and relate to the concentrations cBPH2
and cBPHT through the ideal gas law:

pBPH2
= cBPH2

RTBP (3.27)

pBPHT = cBPHTRT
BP (3.28)

A stiff-spring condition ensures flux continuity gas/metal interface. No flux boundary con-
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dition is imposed for HTO and H2O, since these molecules do not permeate to at the cooling

plates. The concentrations at the purge gas channel inlet are derived through the ideal gas

law as in 3.27 and 3.28 while outflow boundary condition (−n ·DBP
m ∇cBPm = 0) is imposed

at the channel outlet. The initial concentration of H2 is calculated by using Eq. 3.27 for a

partial pressure of 100 Pa of H2 while HT, HTO, and H2O are not initially present in the

gas.

Concentration of H2 and HT in beryllium multiplier purge gas

∂cMP
m

∂t
+∇ · (−DMP

m ∇cMP
m + uMP cMP

m ) = RMP
m (3.29)

and m = H2, HT . Eq. 3.29 has the same form of Eq. 3.18, thus a similar discussion holds.

Here, we assume that the tritium produced in the beryllium multiplier is released in the

molecular form HT; hence, for each mole of tritium atoms released a mole of HT molecules

is formed and half a mole of H2 molecules is consumed contained in the purge gas:

RBM
H2

= −1

2
ĠM
v frp̃(t)

V M

V MP
(3.30)

RBM
HT = ĠM

v frp̃(t)
V M

V MP
(3.31)

where ĠM
v frp̃(t) is the release rate from Be pebbles, V M is the multiplier volume, and VMP

the volume of purge gas in the multiplier region. The presence of oxygen impurities due to

Be nuclear transmutation is assumed to be negligible, thus formation of HTO and H2O is

not evaluated. The boundary conditions applied at the purge gas and cooling plates are the

same as in Eqs. 3.25−3.28 where instead of the superscript BP (breeder purge) we use MP

(multiplier purge). Similarly, the same inflow and outflow boundary conditions chosen for

the breeder purge are used for the multiplier purge. There is no initial concentration of HT

and H2 in the multiplier purge gas.
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Concentration of hydrogen and tritium in ARAA plates and graphite reflector

∂cFSs
∂t

+∇ · (−DFS
s ∇cFSs ) = 0 (3.32)

∂cGs
∂t

+∇ · (−DG
s ∇cGs ) = 0 (3.33)

where s = H,T . The boundary conditions of Eq. 3.32 are the same as equations 3.25 - 3.26

on breeder purge side, and equations 3.12 - 3.14 on coolant side. Instead, for Eq. 3.33 we use

flux continuity at the cooling plate and graphite reflector interface, i.e. −n ·DG
s ∇cGs = JFSs

where JFSs is the desorption/recombination flux from the cooling plate:

JFSH = 2σkdH2
(cFSH )

2
+ 2σkdHT

cFSH cFST (3.34)

JFST = 2σkdT2 (cFST )
2

+ 2σkdHT
cFSH cFST (3.35)

No flux boundary conditions are applied on the other boundaries of the graphite domain and

the initial H and T concentrations in the graphite are zero.

3.1.2.2 Flow of purge gas through porous media

The purge gas flow through the pebble bed, is modeled by the Brinkman equations [16], i.e.

an extended version of the Darcy’s law which accounts for dissipation of kinetic energy by

viscous shear, in a similar fashion to Navier-Stokes, and applies to fast-moving fluids through

porous media. These equations are based on the volume averaging technique introduced by

Whitaker [17]. The COMSOL physical model chosen for the fluid description is compressible

flow (Ma<0.3). The fluid density is defined empirically as a function of temperature while

the Brinkman equations are solved to obtain the velocity field ui and pressure pi in the
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breeder and multiplier zones:

ρi

εjp

(
∂ui

∂t
+ (ui · ∇)

ui

εjp

)
= ∇ ·

[
−piI +

µi

εjp

(
∇ui + (∇ui)T

)
− 2

3

µi

εjp
(∇ · ui)I

]
− µi

κj
ui (3.36)

∂(εjpρ
i)

∂t
+∇ · (ρiui) = 0 (3.37)

where ρi and µi are the density and dynamic viscosity of helium purge gases (i = BP,MP ),

while εjp and κj are the porosity and permeability of the pebble beds in the breeding and

multiplier zones respectively, i.e. j = BZ for i = BP and j = MZ for i = MP . No slip

boundary condition is imposed at the walls, average inlet velocity is chosen as inlet condition,

while backflow is suppressed at the channel outlet. The fluid is initially at rest.

3.1.2.3 Heat transfer in solids and porous media

Porous media: lithium metatitanate and beryllium pebble beds

In this work, the heat transfer analysis in breeding and multiplier zones is performed by

using the COMSOL Heat transfer in porous media module, which treats the porous bed with

helium purge gas as an homogeneous medium where characteristic properties are averaged

based on the porosity (εp) and volume fraction (1−εp) of the pebble beds in the breeder zone

(BZ) and multiplier zone (MZ). Thus the energy equation for the breeder and multiplier

pebble beds can be written as:

(ρCp)
j
eff

∂T j

∂t
+ ρiCi

pu
i · ∇T j +∇ · (−kjeff∇T

j) = (q
′′′

)j p̃(t) (3.38)

and:

(ρCp)
BZ
eff = εBZp ρBPCBP

p + (1− εBZp )ρBCB
p (3.39)

(ρCp)
MZ
eff = εMZ

p ρMPCMP
p + (1− εMZ

p )ρMCM
p (3.40)
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where j = BZ for i = BP and j = MZ for i = MP , BZ the breeder zone, BP the

breeder purge, B the breeder, MZ the multiplier zone, MP the multiplier purge, and M

the multiplier. For the effective thermal conductivity (kjeff ) we use the empirical correlation

[18] shown in Table 3.1. Heat flux continuity is implemented at the interface between the

solids (ARAA) and porous media (i.e. Li2TiO3 or Be pebble beds), and between ARAA and

graphite. Temperature boundary condition is imposed at the channel inlet while outflow

boundary conditions is applied at the outlet of the channel. The BZ and MZ are initially at

temperature of 573 K.

Solids: ARAA cooling plates and graphite

The heat transfer equations describing the cooling plates and the graphite reflector are:

ρFSCFS
p

∂T FS

∂t
+∇ · (−kFS∇T FS) = (q

′′′
)FS p̃(t) (3.41)

ρGCG
p

∂TG

∂t
+∇ · (−kG∇TG) = (q

′′′
)Gp̃(t) (3.42)

where the meaning of the various terms has been previously discussed for Eq. 3.15, which

has identical form. In this model conjugate heat transfer and thermo-fluid modeling of

the purge gas and coolant is not considered. Instead, a convective heat transfer boundary

condition, where the heat transfer coefficient is calculated analytically, is applied at the

coolant/structure (CS) interface (hCSc = 3750 W
m2−K ) since this method was proven to be

effective [14] in representing prototypical BZ condition and a more detailed analysis is not

of interest. Boundary conditions have been discussed in the previous section and the initial

temperature is 573 K.

3.1.3 Connecting Pipes

The COMSOL module Transport of Diluted Species is used to model hydrogen isotopes

transport in connecting pipes of the HCS and TES in ITER’s rooms Port Interspace (PI),

Port Cell (PC), and Vertical Shaft (VS). A 2-D axisymmetric model is used to describe the
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mass transfer in the gas (He coolant and purge gas) and bulk structural material (SS316L).

A schematic describing a section of the computational domain, geometrical parameters, and

typical fluxes in shown in Fig. 3.5. The transport governing equation of hydrogen species

Figure 3.5: Schematic of gas and stainless steel domains of the pipe model implemented in
COMSOL Multiphysics with concentrations of molecules m = H2, HD, HT dissolved in
gas i = CL, PG, atom species s = H, D, T dissolved in structural material, and various
permeation fluxes.

in the He gases, i.e. coolant gas (CL) and purge gas (PG), and stainless steel (SS) regions

are:
∂cim
∂t

+∇ · (−Di
m∇cim) + ui · ∇cim = 0 (3.43)

∂cSSs
∂t

+∇ · (−DSS
s ∇cSSs ) = 0 (3.44)

where the molecules dissolved in the gas domain are m = H2, HD, HT for i = CL and

m = H2, HT, HTO, H2O for i = PG, and the atoms dissolved in the stainless steel are

s = H, D, T . Boundary conditions at the coolant gas/metal interface are typical diffusion
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limited equations:

cSSH = KsH2

pCLH2

pCLtot
1/2

+
1

2
KsHD

pCLHD

pCLtot
1/2

+
1

2
KsHT

pCLHT

pCLtot
1/2

(3.45)

cSSD =
1

2
KsHD

pCLHD

pCLtot
1/2

(3.46)

cSST =
1

2
KsHT

pCLHT

pCLtot
1/2

(3.47)

and similarly, for the purge gas we have:

cSSH = KsH2

pPGH2

pPGtot
1/2

+
1

2
KsHT

pPGHT

pPGtot
1/2

(3.48)

cSST =
1

2
KsHT

pPGHT

pPGtot
1/2

(3.49)

where cSSH , cSSD , and cSST are hydrogen, deuterium, and tritium concentrations dissolved in

SS316L at the purge gas and cooling plates interface (solution of Eq. 3.44), pCLH2
, pCLHD, and

pCLHT are the partial pressures of H2, HD, and HT in the coolant gas respectively (pCLtot =

pCLH2
+pCLHD +pCLHT is the total pressure in the coolant), pPGH2

, and pPGHT are the partial pressures

of H2, and HT in the purge gas respectively (pPGtot = pPGH2
+ pPGHT is the total pressure in the

purge gas), and relate to the concentrations cim through the ideal gas law: pim = cimRT
i.

A stiff-spring condition ensures flux continuity at gas/solid interface. For the gas region,

the inlet boundary conditions are inflow with constant molecules m concentration constraint

(cim = pim/RT
i) and the outlet boundary condition is outflow −n · Di

m∇cim = 0. For the

stainless steel region, the same Eqs. 3.45 - 3.47 apply to the gas/solid interface, while

constant concentration cSSs = 0 is applied to the solid boundary in contact with the external

environment, where we assume 1H, 2H, and 3H are present in negligible fractions.

Heat transfer is simultaneously resolved in the gas and stainless steel regions by using
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the COMSOL Multiphysics modules Heat Transfer in Fluids and Heat Transfer in Solids :

ρiCi
p

∂T i

∂t
+ ρiCi

pu
i · ∇T i +∇ · (−ki∇T i) = 0 (3.50)

ρSSCSS
p

∂T SS

∂t
+∇ · (−kSS∇T SS) = 0 (3.51)

where i = CL,PG, and SS is stainless steel SS316L. The pipes are externally thermally

insulated while a characteristic heat transfer coefficient is applied at the gas/steel interface,

h
CL/SS
c = 2900 W m−2 K−1 and h

PG/SS
c = 25 W m−2 K−1. Inlet temperature condition is the

coolant or purge gas temperature, while outflow is imposed at the pipe outlet, −n·(−ki∇T i).

In this models we do not solve the momentum equation to determine the flow velocity

distribution. Instead, we implement a fully developed velocity distribution with: (i) the

“one-seventh power low”, i.e. an accurate description of turbulent flow in helium coolant

circular pipes (ReCG ∼ 105), and (ii) a parabolic distribution for the laminar helium purge

gas flow (RePG ∼ 102):

uCL

UCG
avg

=

(
1− r

rin

)1/7

(3.52)

uPG

UPG
max

=

(
1− r

rin

)2

(3.53)

where UCL
avg = 7

8
UCL
max, and r the radial coordinate varying from 0 to rin, i.e. from the axis of

symmetry and the inner radius of the pipe as shown in Fig. 3.5.

3.1.4 Other Components

Other components of the TBS, e.g. the Coolant Purification System and the Room Temper-

ature Molecular Sieve, are not modeled in detail. Instead, an analytical formulation based

on characteristic extraction process efficiency is implemented in the Simulink S-Functions as

described in Subsection 3.3.1.

61



3.1.5 Transport properties and parameters used in the analysis

The correlations of transport parameters and properties used in the analysis are shown in

Table 3.1, further detail can be found in [9, 10, 18, 19, 20]. In the absence of specific corre-

lation for ARAA, we use data available for Eurofer and F82H which have similar chemical

composition to ARAA.

Table 3.1: Transport properties used in the analysis.

Property Material Correlation Units

Diffusivity Eurofer 4.57× 10−7exp(−22300/R/T ) m2 s−1

Solubility Eurofer 2.25× 10−2exp(−15100/R/T ) mol m−3 Pa−1/2

Q∗ Eurofer −0.77[eV ] + 5.5× 10−4[eV/K]T eV

Rec. Const. F82H 2.89× 10−5exp(0.48/kb/T ) m4 mol−1 s−1

(clean plasma)

Rec. Const. F82H 7.83× 10−7exp(0.68/kb/T ) m4 mol−1 s−1

(dirty plasma)

Density Eurofer 7732− 1.92× 10−1T − 3.64× 10−4T 2 + 2.56× 10−7T 3 kg m−3

Spec. Heat Eurofer 444.86 + 0.43T − 4.13× 10−4T 2 + 9.25× 10−7T 3 J kg−1 K−1

Conductivity Eurofer 25.77 + 1.34× 10−2T − 7.46× 10−6T 2 − 1.24× 10−8T 3 W m−1 K−1

Diffusivity SS316L 7.66× 10−8exp(−42500/R/T ) m2 s−1

Solubility SS316L 1.47exp(−20600/R/T ) mol m−3 Pa−1/2

Density Li2TiO3 1927 kg m−3

Spec. Heat Li2TiO3 1062 + 0.9205T − 3.11× 10−4T 2 + 1.56× 10−12T 3 J kg−1 K−1

Conductivity Li2TiO3 1.0763 + 1.1354× 10−4T W m−1 K−1

T Res. Time Li2TiO3 1.28× 10−5exp(9729/T ) hr

Density Be 1147 kg m−3

Spec. Heat Be 1741 + 3.34T − 3.11× 10−3T 2 + 1.27× 10−6T 3 J kg−1 K−1

Conductivity Be 2.5 W m−1 K−1

Density Graphite 1770 kg m−3

Spec. Heat Graphite 1500 J kg−1 K−1

Conductivity Graphite 80 W m−1 K−1

where T is in K, the gas constant R = 8.314J kg−1 mol−1, and the Boltzmann constant

kb = 8.617 × 10−5eV K−1. Unless otherwise specified, the analyses performed in Chapters

3−5 use the parameters of Table 3.1. Diffusivity coefficients for D and T in bulk structural
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materials such as ARAA or SS316L are calculated as the hydrogen diffusivity multiplied by

the square root of the ratio of H and T (or D) atomic masses, e.g. DT = DH

√
mH

mT
and

DD = DH

√
mH

mD
, as derived in [21].

3.1.6 Validation of the mathematical formulation of tritium co-permeation

The validation of the co-permeation mathematical model used in this work (see Eq. 3.11) is

performed by comparing the tritium permeation rates simulated in COMSOL Multiphysics

and the results of a recent Tritium Gas Absorption Permeation (TGAP) experimental cam-

paign performed at the Idaho National Laboratory (INL) [22]. In the experiment, tritium

permeation rates for Korean ARAA circular samples were calculated over a wide range of

HT partial pressures, i.e., from 10−5 to 101 Pa, and for H-T thermodynamics equilibrium

conditions. Our calculation shows perfect agreement between experimental results and pre-

dicted values over the entire range of HT pressure, as shown in Fig. 4.6. We found linear

dependency of tritium permeation rate with HT partial pressure and square root dependency

with T2 partial pressure (plotted in the range 10−5 to 101 Pa).
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Figure 3.6: Comparison of tritium permeation rates predicted with COMSOL Multiphysics
and INL’s experimental results [22]. Permeation rates are plotted as a function of Q2 partial
pressure, where Q2 = HT, T2.
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3.2 Neutronics Analysis of the HCCR TBM and Assessment of

Particle Implantation into the First Wall

In this section we perform neutronics analysis of the HCCR TBM with the use of the MCNP

code to calculate volumetric nuclear heating and tritium production rate in breeding mate-

rials of the blanket. Furthermore, we evaluate the first wall implantation particle flux profile

for ion energy range 200 - 400 eV with the use of the SRIM/TRIM code. These parameters

serve as input values to the HCCR TBS dynamic model described in Section 3.1, thus they

need to be evaluated before performing the assessment of tritium inventory and release to

ITER’s rooms.

3.2.1 Neutronics assessment of HCCR breeding blanket with integrated first

wall

Blankets play a key role in fusion technology by performing power extraction, tritium breed-

ing and shielding. A peculiar characteristic of the fusion environment is the presence of steep

nuclear heating gradients and tritium production rate due to the exothermic nuclear reaction

6Li(n, α)T and the high intensity neutron flux in the proximity of the first wall and beryllium

zones, where neutron multiplication takes place as 9Be(n, 2n)2α. Moreover, the steep bulk

nuclear heating gradient generates sharp temperature gradients affecting tritium transport

and generating thermal-mechanical stresses that can compromise performance and integrity

of components. Accurate evaluation of nuclear heating and tritium production rates is nec-

essary to provide input to FEM models and perform thermal and mass transport analysis.

This study analyzes the Korean HCCR ceramic breeder blanket TBM [23] that will be

tested in the International Thermonuclear Experimental Reactor. Neutronics simulations

are performed with the use of MCNP6 1.0 [24] neutron transport code with ENDFB/VII.0

cross section library. For convenience, blankets are simulated in a simplified ITER-like

wedge reactor model (Fig. 3.7) with reflective boundary conditions in the azimuthal and z

directions and a peak neutron wall loading (NWL) of 0.78 MW/m2, which is representative

of the ITER equatorial port where the HCCR is placed. The wedge’s height is equal to the
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height of the blankets, the wideness is defined by blankets width while radial dimensions and

materials are sum up in Table 3.2.

Figure 3.7: MCNP ITER-like reactor wedge model.

The HCCR is 1670 mm height, 462 mm width and 520 mm thick. It is subdivided into

four sub-modules as shown in Fig. 3.8. The components of each sub-module are: First

Wall (FW), Side Wall (SW), Breeding Zone (BZ), Multiplier Zone (MZ), Graphite Reflector

(GR). The back of each sub-module is connected to a commune Back Manifold (BM).

Figure 3.8: KO HCCR TBM and its sub-modules. The numbers in the figure indicate each
HCCR sub-module. (Edited by [25])

The breeder is Li2TiO3 and the purge gas is helium. The neutron multiplier is pure

beryllium in form of pebbles. The structural material for FW and SW is Advanced Reduced
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Table 3.2: ITER-like model material compositions and dimensions.

Component Radial Thickness [cm] Material % vol

Magnet 87.5 SS316 47%

Epoxy 13.3%

Cu 12%

Nb3Sn 3%

He Liquid 17.2%

Bronze 7.5%

Gap 16 Void -

Shield 33.5 SS316 75%

H2O 25%

Gap 3 Void -

Shield 33.5 SS316 75%

H2O 25%

FW 2 Cu 70%

H2O 20%

SS316 10%

FW coating 1 Be 100%

SOL 14 Void -

Plasma 400 Void -

SOL 24.8 Void -

BLANKET+FW:

HCCR 52

Shield 33.5 SS316 75%

H2O 25%

Activation Alloy (ARAA) with helium cooling ducts. The FW is modeled by three layers of

different materials: FW front channel (100% F82H), cooling channel (83% He, 17% F82H),

back plate (100% F82H).
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3.2.1.1 HCCR nuclear volumetric heating assessment

Neutronics simulations have been performed for the HCCR breeding blanket. The reference

design has 70% enrichment in 6Li and uses lithium meta-titanate pebbles with 0.64 packing

fraction. A considerable part of the neutron current passing through the FW is at lower

energy than 14.58 MeV because of neutron back-scattering in the inboard region of the

reactor. The total nuclear heating in the TBM is 0.661 MW. Nuclear heating gradient in

sub-module 1 (Fig. 3.8) is shown in Fig. 3.9. It is found that the most of the nuclear heating

is due to neutrons energy deposition while photons contribution is negligible. 2-D plots of

nuclear heating are shown in Fig. 3.10.
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Figure 3.9: Radial nuclear heating deposition for HCCR sub-module 1. Graphite reflector
is not shown.
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Figure 3.10: Nuclear heating deposition for HCCR sub-module 1.

3.2.1.2 HCCR tritium production rate assessment

The local TBR in the whole blanket (four sub-modules) is 0.86 for a total tritium production

rate of 1.147×10−6 g/s, i.e. 99.1 mg/day. The TPR profiles are shown in Fig. 3.11. Tritium

production is enhanced in proximity of the cooling plates, due to the effect of the neutron

multiplication in beryllium, which resides in the adjacent zones.
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Figure 3.11: Tritium production rate in breeding material for HCCR sub-module 1.

3.2.2 Assessment of first wall implantation particle flux profile with ion flux

energy range 200 eV, 400 eV, 600 eV

The FW is subject to a high deuterium-tritium ion flux from plasma which diffuses from the

ferritic steel structure and, ultimately, permeates to the helium coolant loop. For ITER, the

D−T flux is expected to be of the order of 1021 atoms/m2-s and corresponds to ∼ 25 times

of HCCR TBM calculated tritium generation rate. The ion energy spectrum is expected to

be between 200 to 600 eV [26]. Accuracy in defining the deuterium-tritium source in Plasma

Facing Components, e.g. FW and divertor, is of fundamental importance to determine the

correct D, and T permeation rate to coolant, particularly because tritium permeation to

coolant from FW is the dominant process, while tritium permeation to coolant from the BZ

is reduced by the presence of a 0.1% vol of H2 in the purge gas. Analysis regarding the energy

spectrum of the ion particle implanted into the FW is performed with the use of the Monte

Carlo code Stopping and Range of Ions in Matter (SRIM) [8] for D and T ions at energies E

= 200, 400, 600 eV colliding with a 300 Angstrom target of Advanced Reduced Activation

Alloy (ARAA), whose composition is shown in Table 3.3. The resulting ion distributions and
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estimated reflection coefficients for different ion energies are shown in Fig. 3.12 and Table

3.4.

Table 3.3: Chemical composition of ARAA.

Element Unit ARAA

C wt% 0.08 - 0.12

Si wt% 0.05 - 0.15

Mn wt% 0.30 - 0.60

Cr wt% 8.70 - 9.30

W wt% 1.00 - 1.40

V wt% 0.05 - 0.30

Ta wt% 0.005 - 0.09

N wt% 0.005 - 0.015

B wt% < 0.002

Ti wt% 0.005 - 0.020

Zr wt% 0.005 - 0.020

S ppm < 50

P ppm < 50

O ppm < 100

H ppm < 10

Cu ppm < 100

Ni ppm < 100

Mo ppm < 50

Nb ppm < 50

Al ppm < 100

Co ppm < 100

As + Sn + Sb ppm < 50

It can be seen from the normalized fluxed distribution that to higher energies corresponds

deeper penetration into the target. Moreover, no particles are expected to penetrate further

than 30 nm, not even for particle energy of 600 eV. Given the magnitude of the region
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Figure 3.12: SRIM ion distribution for different energies.

Table 3.4: Reflection factor r for D, T at different energies.

Ion E = 200 eV E = 400 eV E = 600 eV

D 0.335 0.303 0.282

T 0.334 0.305 0.286

of D, T implantation, small changes are expected to be noticed in terms of permeation to

coolant rate for different energy range. The implantation profile is modeled in COMSOL as

a Weibull probability density function:

w(x|a, b) =
a

b

(x
b

)a−1
exp

[
−
(x
b

)a]
(3.54)

where a > 0 and b > 0 are the shape and scale factors respectively. Values of shape and

scale factors were found with the use of the MATLAB function wblfit. As an example, we

show in Fig. 3.13 the SRIM normalized ion distribution and relative Weibull distribution

for tritium at 400 eV.

Fig. 3.14 shows the calculated tritium permeation rate to coolant. The impact of the

energy level of the implanted fluxes on tritium transport and permeation rate to coolant is
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Figure 3.13: SRIM ion distribution for 400 eV incoming flux.

almost insignificant since ion deposition occurs only at a region < 30 nm. In the absence of

detailed energy spectrum data, 400 eV as average value is used for ion implantation energy.

More accurate characterization of ion implantation profile and subsequent inventory and

permeation rate to coolant will be performed upon energy spectrum data is availability.
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Figure 3.14: Tritium permeation rate to coolant per unit of length for ion implantation
energies of 200, 400, 600 eV.
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3.3 HCCR TBS System-level Dynamic Modeling

In this section, a detailed description of the of the mathematical formulation derived in order

to estimate of the Q2 and Q2O partial pressures in the coolant gas and purge gas is provided.

A system-level model representing tritium streams in the HCCR TBS is necessary to evaluate

tritium content in He coolant and purge gas, which depends on the tritium permeation rate

from FW and BZ (tritium sources) to He gas, and on the performance of purification and

extraction systems (tritium sinks), i.e. CPS and TES. Accurate evaluation of Q2 molecule

concentrations (or partial pressures) in coolant and purge gas is particularly important to

determine the tritium inventory build-up in connecting pipes and the tritium permeation

rate to the environment. These operations are performed through MATLAB functions,

i.e. System Functions (or S-Functions). The mathematical formulation implemented in the

MATLAB S-Functions to compute Q2 and Q2O partial pressure in gas streams is given in

detail in Subsection 3.3.1.

S-Functions are a computer language description of a Simulink block written in MATLAB

(or C/C++), that can perform a variety of tasks. Especially, S-Functions are very powerful

tools for data transfer between components of the system: within the integrated system-

level approach, each S-Function provides the virtual representation of a detailed component

by generating a link between the COMSOL detailed models and the Simulink system-level

description. A generic S-Function is shown in Fig. 3.15. It is divided into three sub-

functions: (i) mdlInitializeSizes receives the input u and returns the size, initial conditions,

and sample times; (ii) mdlUpdate returns the updated states x; (iii) mdlOutputs returns the

block outputs y = f(t, x, u).

Within one system-level time step dtsys, the S-Function calls the COMSOL application,

i.e. a detailed model of the HCCR TBS, and runs it for a time interval [ti, ti+1], where

dtsys = ti+1 − ti. During this run, COMSOL uses appropriate detailed component model

time step (dtDC) in order to meet the time convergence criteria of the finite element problem

and uses the states x(ti), e.g. H, D, and T concentrations, temperature profiles, etc., as

initial conditions while the boundary conditions are defined in the inputs u(ti), e.g. these
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are the partial pressures of Q2 and Q2O in the coolant and purge gas. Finally, the output

y = f(t, x, u) is generated and transferred to the next component, which will interpret this

as an input for the next time step [ti+1, ti+2]. With the use of S-Functions it is possible

Figure 3.15: Schematic of a generic S-Function.

to model a circuit which accurately reproduces tritium flow rates on system level and, at

the same time, maintain a high degree of accuracy in each component, which is accurately

resolved by COMSOL solver. This approach is superior to previous system-level codes, e.g.

TMAP4/TMAP7 or FUS-TPC, where the high fidelity of detailed component is missing in

favor of a system-level description.

The generated HCCR TBS system-level model is shown in Fig. 3.16. In particular, the

He coolant removes heat generated in the FW and BZ sub-modules and reaches the heat

exchanger (HX) through the connecting pipes (hot leg) located in PI, PC, and VS rooms. A

fraction αCPS of the total He flow rate is by-passed to the coolant purification system (CPS)

where tritium removal from gas is performed, with an efficiency ηCPS. Finally, the purified

He coolant stream returns to the FW and BZ sub-modules through connecting pipes (cold

leg) of PI, PC, and VS rooms. In parallel, the He purge gas, which includes a 0.1% addition

of H2 to enhance tritium extraction from pebbles, is processed by the tritium extraction

system (TES) which comprehends the Cryogenic Molecular Sieve Bed (CMSB), and the

Room Temperature Molecular Sieve (RTMS).

The objective of the system-level model is to accurately capture the TBS dynamics, with

particular interest regarding the Q2 and Q2O concentrations in the coolant and purge gas,

which determine the boundary conditions at the gas/structure interface of FW, BZ, and

pipes. In particular the following operations are performed:
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Figure 3.16: Schematic of the HCCR TBS modeled in the Simulink: each block is described
by a specific S-Function.

• calculation of 1H, 2H, and 3H permeation rates from BZ and FW to coolant gas;

• evaluation of Q2 and Q2O partial pressures in coolant and purge gas;

• definition of boundary condition to be used in the COMSOL calculation;

• COMSOL run;

• data post-processing, e.g. evaluation of permeation rates to buildings, inventories of

fuel cycle components, etc.;

• storing of results and outputs.
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3.3.1 Mathematical formulation implemented in the S-Functions developed for

the HCCR TBS

Concentrations of HT (and other Q2 molecules) in the coolant gas are due to tritium (and

other Q atoms) permeation to coolant from the breeding zones, where tritium in bred in the

ceramics and ∼100−300 Pa of H2 are present in the purge gas, and from the first wall, where

tritium and deuterium are implanted in the structural material because of the high particle

fluxes at the first wall surface from the plasma. In order to determine the partial pressures

of Q2 molecules in the coolant, it is necessary to evaluate the Q permeation rates from FW

and BZ. The S-Functions of both FW and BZ calculate the total permeation rate of species

s into coolant, J i→CLs (mol s−1), from component i, where i = FW,BZ, by integrating the

atomic flux of species s, Ns (mol m−2 s−1), over the surface area of the coolant channels,

ACL (m2):

J i→CLs =

∫
ACL

NsdA (3.55)

where Ns = −Ds∇cs, s = H, D, T, and i = BZ, FW. The concentrations of HD and HT

molecules in the coolant at the BZ and FW outlet are obtained by summing the ratio of the

calculated permeation rates, Js, to the volumetric helium coolant flow rate, QCL (m3s−1),

to the concentrations of HD and HT in the coolant at the BZ and FW inlet:

ci,CLm,out = ci,CLm,in +
J i→CLs

QCL
(3.56)

where m = HD, and HT. Hence, since each D and T atoms consumes respectively one H

atom, the H2 concentration in the coolant is:

ci,CLH2,out
= ci,CLH2,in

+
1

2

J i→CLH − J i→CLD − J i→CLT

QCL
(3.57)

and m = H2, HD, and HT.

In the HCCR TBS, tritium (and other Q atoms) removal form coolant gas is performed

in the coolant purification system (CPS), which we modeled analytically in the CPS S-

Function by assuming that a fraction (αCPS) of the total coolant flow rate is processed with
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an efficiency ηCPS. Thus, the concentration at the CPS outlet is:

cCPSm,out = cCPSm,in (1− αCPSηCPS) (3.58)

Concentration can then be converted into pressures by means of ideal gas law. The purge

gas dynamics is simulated in COMSOL; thus, in this case, the S-Functions are only used

to output the Q2 and Q2O concentrations at specific locations. However, an analytical

description of the tritium extraction system (TES) is used to model CMSB, in a similar

fashion to Eq. 3.58:

cCMSB
m,out = cCMSB

m,in (1− ηCMSB) (3.59)

where m = H2, HT, ηCMSB is the extraction efficiency of the CMSB. For the RTMS:

cRTMS
m,out = cRTMS

m,in (1− ηRTMS) (3.60)

where m = H2O, HTO, ηRTMS is the extraction efficiency of the CMSB.

As the purge gas and coolant gas flow through the pipe forest, Q atoms permeates into

the pipe structural material and are released to the buildings. The tritium permeation rates

to building are calculated by integrating the tritium flux over the outer surface of the pipes:

J i→roomss =

∫
AP

NsdA (3.61)

where Ns = −Ds∇cs, s = H, D, T, and i = PI, PC, and VS pipes for both CPS and TES

lines (PI, PC, and VS are the Port Interspace, Port Cell, and Vertical Shaft of the ITER

rooms, respectively).

3.3.2 Optimization of the Simulink setup

3.3.2.1 Reduction of S-Function calls and use of combined COMSOL models

The computational efficiency of the dynamic tritium transport model for HCCR TBS is

limited by the presence of several S-Functions which, at each time step, generate a COMSOL
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object and run it. The presence of n S-Functions generate and run n COMSOL objects with

n components (e.g. First Wall, Breeding Zones, pipes, etc.). To minimize the number of

S-Function calls, which have a detrimental effect of computational time, multi-component

COMSOL models were generated by including different components (e.g. PI and PC pipes)

in a single COMSOL file. Hence, with a single S-Function call, more components can run

simultaneously in the same COMSOL file. For instance, if every COMSOL file contains

2 components, S-Function calls are cut in half: n/2 S-Functions generate and run n/2

COMSOL objects with n components. In particular, we reduced the overall number of S-

Functions from 12 (one per each COMSOL model) to 7 (by using multi-component COMSOL

models for FW and pipes combined) and obtained an overall reduction of the computational

time of ∼ 20%.

3.3.2.2 Investigation of COMSOL minimum time-step and multi-core cluster

option

An effort was launched to optimize the computational performance of the COMSOL solver.

As far as COMSOL is concerned, a new simulation is run at each system level time-step

(defined in the Simulink model). Therefore, to achieve convergence the numerical solver of

COMSOL imposes the default minimum time-step (Solver Configuration→ Time Stepping).

We found that this default time step is, in most cases, too strict therefore making the

simulation computational time longer than needed. In other words, the converging of the

time step can be found for larger time-steps which reduce the computational time required

to run the model. A parametric study on the maximum COMSOL stepsizes that ensures

numerical convergence was performed for each component and different stepsizes, depending

on the component nature and physics simulated, were implemented in different models.

For instance, the most expensive COMSOL model in terms of computational time was the

breeding zone; the minimum time step was increased from 10−4 to 10−1 and the use of the

Fully Coupled solver was chosen. This procedure reduced the computational time required

to run the breeding zone model by more than a half, resulting in an overall reduction the

system-level computational time of ∼ 20%.
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In parallel, the model was tested on the UCLA Hoffman2 cluster for a one-month trial

period using different cluster nodes with 12, 16, 24 cores at a speed of 2.20 GHz. Even for

the best case (24 cores), the required computational time was similar (slightly reduced) to

the one found for a computer with 12 cores and 2.67 GHz. This is due to the nature of time-

dependent problems that are “completely serial”, because of the dependence of subsequent

parts of the solution on previously computed values, (even if the COMSOL solver is “partially

parallel” when solving the matrix for each time-step). Thus, the cluster option does not offer

better performances and therefore will not be considered.
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3.4 Benchmark Activity of the HCCR TBS Simulink/COMSOL

Dynamic Model

3.4.1 Study on the converging of the system-level time step

A converging of the system-level time step study was performed for the HCCR TBS model

in order to define the smaller time step which ensures convergence of results (i.e. time step

independence) and, simultaneously, reduces the computational time needed to run the full

model. The HT pressure evolution with time is shown in Fig. 3.17 for system level time step

of 2, 4, and 10 s. For this simulation we used the design values of the CPS and TES lines,

i.e. ηCPS = 95%, αCPS = 1%, QCL = 1.14 kg/s, ηCMSB = 95%, ηRTMS = 95%, QPG = 1

g/s. We found that the time step choice affects transient behavior while same equilibrium

pressure is found for all time steps, as in typical sink/source problems.

Figure 3.17: Average values (per ITER pulse) of HT partial pressure time evolution for
system-level time step of 2, 4, and 10 s.

We did not run any simulation with a time step smaller than 2 s, since the computational

time would increase to unacceptable values (e.g. one month of computational time or more

to run up to quasi-equilibrium state - i.e. about 8 ITER pulses of 1800 s each) we believe

that a 2 s time step is adequate in term of convergence of the time step. In fact, there is
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small difference between the pressures obtained for time step of 2 s and 4 s during the initial

transient. Moreover, the coolant pressures are in quasi-equilibrium after ∼8 ITER pulses,

i.e. ∼14.4×103 s, while tritium permeation from pipes to rooms starts after more than two

days of pulsed operation (the permeation is delayed due to dwell time where temperatures

are low and tritium is mainly re-emitted within the pipes to the He coolant). Thus, small

inaccuracy in the coolant pressure transient during the first 8 pulses has a negligible effect

on tritium permeation from pipes to rooms, which occurs after more than 100 pulses. The

computational time needed to run the model until the system is in quasi-equilibrium for time

step of 2, 4, and 10 s is shown in Fig. 3.18.

Figure 3.18: Computational time required to obtain quasi-equilibrium values of coolant
partial pressure for various system-level time steps.

3.4.2 Verification of mass conservation in the HCS of the the HCCR TBS dy-

namic model

This verification study is based on the fact that, if an equilibrium state is obtained in the

coolant partial pressures, then, because of mass conservation, the tritium permeation rate

from FW and BZ to coolant must be equal to the the tritium flow rate extracted by the

CPS units. We performed a mass conservation verification study to ensure that tritium

permeated into the coolant from FW and BZ is entirely removed by the CPS at equilibrium.

The design parameters of the CPS and TES lines are used in the analysis, i.e. ηCPS = 95%,

αCPS = 1%, QCL = 1.14 kg/s, ηCMSB = 95%, ηRTMS = 95%, QPG = 1 g/s. Results of the
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calculation are shown in Fig. 3.19 (the simulation is performed on a time step of 10 s). It is

Figure 3.19: Average values (per ITER pulse) of tritium permeation rate to coolant from
FW and CPS recovery flow rate evolution with time.

seen that, when equilibrium is reached, the tritium recovered by the CPS unit matches the

tritium permeated into coolant from FW and BZ. To conclude, we have confirmed that the

systems dynamics is correctly implemented, and mass is conserved.

3.4.3 Validation of the HCCR TBS dynamic model

3.4.3.1 Comparison between tritium release to ITER’s room obtained with

the HCCR TBS dynamic model and pre-existing models developed by

NFRI

A first effort to evaluate tritium permeation to ITER rooms for the HCCR TBS was started

by the National Fusion Research Institute (NFRI) team in 2017 [27]. In this section we

validate the HCCR dynamic model described in Sections 3.1, 3.2, and 3.3 by running the

model under the same conditions of [27] and comparing the obtained results of tritium

release to the ITER’s rooms. In particular, the calculation follows the following conservative

assumptions:
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• steady-state approach for tritium production (25.9 mg/day for each HCCR submodule

- total of 4 submodules);

• bulk-diffusion for transport mechanism through structural materials and diffusion-

limited regime;

• only tritium is considered (co-permeation of H and D is neglected);

• average temperature for hot and cold legs of HCS pipes: hot leg at 450 ◦C and cold

leg 300 ◦C.

Note that neglecting H and D species in the coolant gas implies that tritium exists in the

form of T2, and the diffusion-limited regime defines tritium concentration at the metal and

gas interface as CT = KST

√
pT2 , where KST

is the Sieverts’ constant (or solubility) of tritium

dissolved in the bulk of SS316L (or ferritic steel ARAA). In the analysis we assume KST
=

KSH
to be consistent with the calculation of [27]. The analysis is performed for the design

parameters presented in Table 3.5 and uses the properties listed in Table 3.6.

Table 3.5: Design parameters of HCS and CPS.

Sub-system HCS CPS

Fluid Helium Coolant Helium Coolant

Pressure 8 MPa 8 MPa

Flow rate 1.14 kg/s 1% of HCS flow rate

Tritium processing efficiency - 95%

Table 3.6: Properties used in the validation calculation.

Property Correlation Units

Diffusivity Eurofer 4.57× 10−7exp(−22300/R/T ) m2 s−1

Solubility Eurofer 2.25× 10−2exp(−15100/R/T ) mol m−3 Pa−1/2

Diffusivity SS316L 7.66× 10−8exp(−42500/R/T ) m2 s−1

Solubility SS316L 1.47exp(−20600/R/T ) mol m−3 Pa−1/2
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Tritium release to ITER rooms by permeation is calculated for the tritium dissolved in

the coolant of the HCS at equilibrium, i.e. for a pressure of 0.0104 Pa. The calculated tritium

release rate to ITER rooms is shown in Table 3.7 in detail for the hot and cold legs of the

HCS. The total release rate (sum of hot and cold leg contributes) is summarized in Table 3.8,

together with the results of the calculation presented in [27], and the relative error between

the two calculations. The permeation rates obtained by using the HCCR TBS dynamic

model are in good agreement with the results presented in [27], when the same assumptions

are considered. The relative error between the two calculations is below 0.5% in all ITER

HCS locations with the only exception of room 14-L4-21 (relative error of 1.68%).
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Table 3.7: Equilibrium tritium release to ITER’s rooms calculated with the dynamic model
of HCCR TBS assuming constant temperatures of 300 ◦C for cold leg and 450 ◦C for hot leg
and tritium partial pressure of 0.01 Pa.

Location in HCS Pipe length (m) T release (mg/day)

Cold Leg

PI 10.51 1.81E-03

11-L1-C18 6.05 1.21E-03

11-L1-V18 5.51 1.10E-03

11-L2-V18 4.58 9.16E-04

11-L3-03E 11.42 2.28E-03

11-L4-04 16.6 3.32E-03

14-L4-21 4.87 9.74E-04

14-L4-20 30.68 6.13E-03

Hot Leg

PI 9.63 2.91E-02

11-L1-C18 6.47 2.26E-02

11-L1-V18 4.6 1.61E-02

11-L2-V18 4.58 1.60E-02

11-L3-03E 10.76 3.76E-02

11-L4-04 19.04 6.65E-02

14-L4-21 1.41 4.93E-03

14-L4-20 29.87 1.04E-01
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Table 3.8: Comparison of total tritium permeation release to ITER’s rooms at equilibrium
from both hot and cold leg calculated with the dynamic model of HCCR TBS and comparison
with results of [27].

Location T release (mg/day) T release (mg/day) Relative

in HCS calculated in [27] dynamic model Error (%)

PI 3.10E-02 3.09E-02 0.35

11-L1-C18 2.39E-02 2.38E-02 0.37

11-L1-V18 1.72E-02 1.72E-02 0.17

11-L2-V18 1.70E-02 1.69E-02 0.50

11-L3-03E 4.00E-02 3.99E-02 0.32

11-L4-04 7.00E-02 6.98E-02 0.24

14-L4-21 6.00E-03 5.90E-03 1.68

14-L4-20 1.11E-01 1.10E-01 0.47
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3.4.3.2 Code-to-code validation of HCCR TBS dynamic models

A simplified HCCR TBS model was developed with the use of the TMAP4 code by INL un-

der the INL-UCLA-NFRI collaboration for Cooperation on R&D for Fusion Nuclear Science

to Expedite the Realization of Magnetic Fusion Energy. A code-to-code comparison is pro-

posed to validate the COMSOL/Simulink numerical model developed in this Dissertation.

The properties and parameters chosen for the calculation are summarized in Tables 3.9 and

3.10. The plasma pulse includes a 50 s ramp-up, 400 s flat-top, 50 s ramp-down, 1800 s dwell

time. The Soret effect and distribution profile of FW implantation flux are neglected in the

simulations.

Table 3.9: Parameters of HCS and CPS used in the simulations for the code-to-code valida-
tion.

Sub-system HCS CPS

Fluid Helium Coolant Helium Coolant

Pressure 8 MPa 8 MPa

Flow rate 1.14 kg/s 3% of HCS flow rate

Tritium processing efficiency - 95%

Table 3.10: Properties used in the simulations for the code-to-code validation [9, 10].

Property Correlation Units

Diffusivity 7.50× 10−8exp(−0.14/kb/T ) m2 s−1

Solubility 3.10× 10−1exp(−0.25/kb/T ) mol m−3 Pa−1/2

Recombination Const. 0.25× 7.83× 10−7exp(−0.68/kb/T ) m4 mol−1 s−1

87



The HT concentration in the helium coolant calculated with the TMAP4 and COM-

SOL/Simulink models is presented in Fig. 3.20. The HT build-up presents the same dynam-

ics and numerical results are in agreement within a <5% relative difference. At equilibrium

the COMSOL/Simulink model computes an HT concentration <1% lower than TMAP4.
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Figure 3.20: Average values (per pulse of 2200 s) of HT concentration in coolant calculated
with TMAP4 and the COMSOL/Simulink HCCR TBS dynamic model developed in this
Dissertation.
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3.5 Analysis of Tritium Transport in the HCCR TBS

For nuclear safety and licensing, the ITER Organization (IO) requires accurate evaluation

of tritium inventory build up in TBS components and permeation rates to buildings. In this

section we use the HCCR TBS dynamic model developed in the COMSOL and Simulink

environment to perform tritium inventory and permeation rate evaluation for the HCCR

TBS. Compared to the previous study on tritium permeation and inventory assessment for

the Korean HCCR TBS [27], the current methodology accounts for ITER pulsed operation,

which consists in a burn-time of 400 s (including 50 s rump-up and rump-down) and a

dwell-time of 1400 s for a total pulse period of 1800 s, and includes the co-permeation effect

by tracking the evolution of H, D, and T atoms in bulk material, and H2, HD, and HT in

helium coolant. Furthermore, accurate evaluations of tritium production rate in blanket and

tritium implantation into first wall structural material derived in Subsections 3.2.1 and 3.2.2,

respectively, are used in the analysis.

In detail, we perform a concentrated analysis of tritium evolution in the HCCR TBS

with the goal of providing further outer fuel cycle tritium R&D guidance from an integrated

point of view. A calculation of tritium permeation rate to ITER’s rooms Port Interspace,

Port Cell, and Vertical Shaft, is performed for the updated design of pipe forest as defined

in Spec. of EN13480 (DN100 Sch., DN80 for HCS). Multi-physics simulations accounting

for ITER pulsed operation (burn and dwell times), realistic temperature estimation, and

co-permeation effect, show that tritium permeation rate to ITER’s rooms is ∼1 order of

magnitude lower than that evaluated with the simplified approach of [27], which neglects

the co-permeation effect, ignores temperature and concentration gradients by using a zero-

dimensional model, and assumes steady operation. The analysis is presented in the following

subsections
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3.5.1 Operating temperature and tritium concentration profiles in the first wall

and breeding zones

The mathematical formulation describing the first wall and breeding zone models presented

in Section 3.1 for the HCCR TBM was derived by Ying et al. in [6, 7, 14]. The same

authors performed numerical validation and extensive analysis of the performance of these

components, thus a thorough discussion of first wall and breeding zone is omitted here.

Instead, this research starts from the work of [6, 7, 14] and extends the modeling effort

and analysis to the system level, i.e. a numerical model which connects the various HCCR

components is generated in order to analyze the entire Test Blanket System. However, before

we proceed with the analysis of tritium permeation rates in the pipe forest of the HCCR

TBS, we show here the characteristic temperature and tritium concentration profiles in the

first wall and breeding zones. These results are consistent with those of [6, 7, 14] (refer to

those studies for a more detailed analysis of first wall and breeding zones).

In Fig. 3.21, we report tritium concentration in the first wall structural material at

different instants of time during the fifth ITER pulse (at times of 7400 s, 7600 s, 8000 s, and

9000 s). As tritium is implanted in the FW, it diffuses towards the coolant channel driven

by concentration and thermal gradients. During the dwell time the tritium concentration

in the structure decreases as tritium permeation to coolant continues at a lower rate in the

absence of a tritium implantation source. The temperature distribution during the plasma

pulse is shown in Fig. 3.22. It is seen that the FW has a maximum temperature of 775 K

on the plasma facing surface, which is below the material limit of 823 K. After the pulse

the temperature decreases to 573 K with a quick transient (∼ 50 s) due to the high thermal

conductivity of ARAA (∼28 W/m/K).
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Figure 3.21: Tritium concentration in FW structure [mol/m3] during the 5th plasma pulse.
Top left: t = 7400 s (200 s from beginning of 5th plasma pulse); top right: t = 7600 s (end
of the burn time of the 5th plasma pulse); bottom left: t = 8000 s (during dwell time of 5th

plasma pulse); bottom right: t = 9000 s (end of 5th plasma pulse).

Figure 3.22: Temperature of structural material in the first wall at the end of burn time of
the 5th plasma pulse.

91



The tritium concentration in various domains of the breeding blanket is shown in Fig.

3.23. The tritium concentration in the breeder zone (top left of Fig. 3.23) is higher near

the coolant plates because of: (i) a higher tritium generation rate in the region close to the

cooling plates (see Fig. 3.11), and (ii) a lower breeder temperature in the proximity of the

coolant plates compared to the middle of the breeder channel (as seen in Fig. 3.25 showing

the temperature profiles in the breeder region), and thus a longer tritium residence time

which reduces local tritium release from breeder to purge gas and increases the inventory in

the breeder pebbles. A similar discussion holds for the multiplier region (top right of Fig.

3.23), but tritium concentrations are at least 2 orders of magnitude lower, due to a lower

tritium generation rate in the multiplier. The HT concentration in the breeder and multiplier

purge gases is shown at the bottom left and bottom right of Fig. 3.23, respectively. We notice

that HT content in the gases increases as the purge gas flows upward in the channels and

collects the tritium released from the pebbles. The left side of Fig. 3.24 presents the tritium

concentration in the cooling plates while the right side of the same figure is the zoom of

the structural material separating the first breeder channel, the first multiplier channel, and

the second breeder channel. Tritium concentration is higher next to the breeder zones and

decreases to zero at the cooling channels surface. We also notice that tritium concentration

in the cooling plates increases along with the flow direction, as the HT concentration in the

purge gas increases.
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Figure 3.23: Tritium concentration in breeder and multiplier pebbles, and HT concentration
in breeder purge gas and multiplier purge gas (mol/m3) at the end of the burning time of
the 5th plasma pulse, t = 7600 s. Top left: tritium concentration in the breeder; top right:
tritium concentration in the multiplier; bottom left: HT concentration in the breeder purge
gas; bottom right: HT concentration in in the multiplier purge gas.
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Figure 3.24: Tritium concentration in ARAAcooling plates (mol/m3) at the end of the
burning time of the 5th plasma pulse, t = 7600 s. Top left: tritium concentration in the
structural material; top right: zoom of the cooling plates delimiting the first and second
breeder channels.

Figure 3.25: Temperature of cooling plates, breeder, and multiplier in the breeding zone at
the end of burning time of the 5th plasma pulse.
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3.5.2 Analysis of tritium release to ITER’s rooms and evaluation of tritium

inventory build-up in the pipe forest of the HCCR TBS

3.5.2.1 Tritium release to ITER’s rooms and pipe inventory for nominal design

parameters of the HCCR TBS

The HCCR TBS tritium transport dynamic model was run to compute pressures of Q2

species in the coolant loop of the HCCR TBS under ITER inductive operation conditions

(400 s burn and 1800 s per cycle) for the suggested design parameters, ηCPS = 95%, αCPS =

1%, QCL = 1.14 kg/s, ηCMSB = 95%, ηRTMS = 95%, QPG = 1 g/s. Calculated H, D, and

T permeation rates from FW and BZ to coolant are shown in Fig. 3.26. In this simulation

we assume a perfectly clean first wall surface on plasma side, and we use the recombination

coefficient derived by Zhou et al. in [9] and reported in Table 3.1. The effect of the presence

of impurities on the first wall surface on tritium permeation rate to coolant is discussed in

Subsection 3.5.2.2. It is seen that, for a clean FW surface on the plasma side, the tritium

permeation rate from FW to the coolant channels reaches a quasi-equilibrium state in a

handful of ITER pulses and is ∼2 orders of magnitude higher than the tritium permeation

rate from the BZ. The lower tritium permeation rate from the BZ is a consequence of the co-

permeation effect: the presence of 0.1% H2 in He purge gas at atmospheric pressure reduces

tritium permeation. Furthermore, the permeation of hydrogen from BZ to the coolant is

significant. The presence of some concentration of H2 in the coolant is beneficial to reduce

tritium permeation rates from connecting pipes to ITER’s rooms, as we will show in detail

in Chapter 4.

Tritium concentration in the coolant builds up as coolant continuously circulates through

the first wall and blanket to extract heat from the structural material. The coolant purifica-

tion system (CPS) removes a fraction of tritium from the coolant as coolant circulates around

the loop. In Fig. 3.27 we present the time evolution of the partial pressures of H2, HD, and

HT dissolved inside the coolant. It is found that the system reaches a quasi-equilibrium

state in ∼6−8 plasma pulses, in agreement with the temporal evolution of permeation rates

expressed in Fig. 3.26.
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Figure 3.26: H, D, and T permeation rates from first wall and breeding zones to coolant
channels.
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Figure 3.27: Q2 partial pressure time-evolution in He coolant.

As the coolant circulates in the loop, part of its tritium content is absorbed in the SS316L

structural material of the connecting pipes, thus tritium inventory in the pipes increases.

Hence, tritium diffuses through the structural material of the pipes until it reaches the outer

surface, and is released to the external environment. In Figs. 3.28 - 3.31 we show the

obtained tritium inventories and permeation rates in the ITER’s Port Interspace (PI), Port

Cell (PC), and Vertical Shaft (VS) for the hot leg and the cold leg of the helium coolant
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system (HCS). The values are averaged over one ITER pulse (1800 s). Table 3.11 summarizes

the dimensions of the pipes used in the analysis. Note that differences in permeation rates

between hot and cold legs of HCS are due to temperature effects. In particular in Fig. 3.32 we

display the temperature behavior of gas and structural material of the PI pipe. Conversely,

the cold leg is kept at constant temperature of 573 K.

Table 3.11: Lengths of the hot and cold legs of pipes in the Port Interspace, Port Cell, and
Vertical Shaft rooms of the ITER.

Length (m) Diameter (m)
Room Hot Leg Cold Leg Inner Outer

PI 11.8 10.5 0.0737 0.0892
PC 12.3 12.3 0.0978 0.1145
VS 71.9 75.3 0.0978 0.1145
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Figure 3.28: Tritium inventory build-up in hot leg of PI, PC, and VS rooms. Values are
averaged over a ITER pulse of 1800 s.

Finally, we present the inventory and permeation values (in red) in detail for every

sub-location of PI, PC, and VS rooms (VS includes: 11-L1-V18, 11-L2-V18, 11-L3-03E,

11-L4-04, 11-L4-21, 11-L4-20, and 14-L4-21) in Figs. 3.33 and 3.34. We also report, as a

comparison, the values of inventory and permeation rates (in blue) found by the NFRI team

using a simplified approach (steady state, no co-permeation, 723 K for hot leg and 573 K
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Figure 3.29: Tritium inventory build-up in cold leg of PI, PC, and VS rooms. Values are
averaged over a ITER pulse of 1800 s.
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Figure 3.30: Tritium permeation rate to environment in hot leg of PI, PC, and VS rooms.
Values are averaged over a ITER pulse of 1800 s.

for cold leg). The use of the HCCR TBS dynamic simulation tool gives ∼19 times lower

tritium inventory (0.444 mg versus 8.6 mg in CPS components) and ∼23 times lower tritium

permeation rate (total permeation rate from HCS CPS: 1.11×10−2 mg/d versus 2.60×10−1

mg/d) which could be released in case of fire. In this study we did not consider the permeation

rates to buildings from the tritium extraction system (TES) pipes. However, as shown in the
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Figure 3.31: Tritium permeation rate to environment in cold leg of PI, PC, and VS rooms.
Values are averaged over a ITER pulse of 1800 s.

Figure 3.32: Detail of tritium and deuterium permeation to buildings, and temperature
evolution in He coolant gas and SS316 structural material of PI hot leg pipe. Two ITER
pulses are shown.

preliminary calculation (blue values in Figs. 3.33 and 3.34) tritium permeation rates from

TES line are predicted to be ∼6-7 orders of magnitude lowers than those from the HCS.

The reason for this discrepancy is attributed to the low temperature on the TES pipes, i.e.

573 K, due to a purge gas flow rate of only 0.1 g/s at 0.1 MPa compared to an HCS coolant
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flow rate of 1.14 kg/s at 8 MPa. Fig. 3.35 summarizes tritium and hydrogen inventory and

permeation (release) to ITER’s rooms.

Figure 3.33: Schematic of TBS with values of equilibrium tritium inventory in the HCS pipes
of the PI, PC, and VS rooms. Red values refer to the results obtained with the dynamic
model for HCCR TBM while blue values are obtained by the NFRI team in [27].
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Figure 3.34: Schematic of TBS with values of equilibrium tritium permeation rates to the
PI, PC, and VS rooms for the HCS line. Red values refer to the results obtained with the
dynamic model for HCCR TBM while blue values are obtained by the NFRI team in [27].
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Figure 3.35: Summary of hydrogen and tritium release to buildings (permeation rates) and
inventory build up in structural material SS316L of PI, PC, and VS connecting pipes and
in He coolant gas at equilibrium.
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3.5.2.2 Effect of first wall surface condition and CPS unit performance on tri-

tium release by permeation to the ITER’s rooms

It is known that the surface conditions of the structural material of fusion components, e.g.

RAFM, stainless steel, etc., have a major effect on the recombination process of desorbed

atoms at the gas/metal interface. For instance, the recombination coefficients reported in

literature for stainless steel vary between several orders of magnitude [28]. Zhou et al. derived

two empirical correlations for the recombination coefficient of hydrogen in ferritic steel F82H

by conducting plasma-driven permeation (PDP) experiments for the case of (i) “clean”

F82H sample surface [9] and (ii) “dirty” F82H sample surface [10] on plasma side. For the

experiment of [9], the clean surface was obtained by performing argon plasma bombardment

on the F82H sample performed for 10 min at -50 V in order to remove contamination due to

air exposure. The obtained recombination coefficients are plotted in function of the reciprocal

temperature in Fig. 3.36.
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Figure 3.36: Hydrogen recombination coefficient for clean and dirty surface of F82H ferritic
steel in function of the reciprocal temperature.

For the typical temperatures of the FW during the plasma pulse (∼800 K), the recombi-

nation coefficient for a clean surface facing the plasma is about two times greater than the

one for a dirty surface on plasma side. Thus, higher tritium inventory in RAFM structure

is found in case of dirty FW surface and, as a consequence, the tritium permeation rate to
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coolant increases, as shown in Fig. 3.37 (left: tritium inventory in one FW sub-module;

right: tritium permeation rate to coolant from one FW sub-module). In this calculation the

particle flux from plasma (I0) is 1021 atoms/m2-s of D and T (assuming 50% D - 50% T)

and the reflective coefficient (r) is 0.3, as we derived in Subsection 3.2.2.
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Figure 3.37: Tritium inventory in one FW sub-module (left) and tritium permeation rate to
coolant from one FW sub-module (right) in case of clean and dirty FW surface on plasma
side.

In Fig. 3.38 we present the evaluated HT (left) and H2 (right) partial pressures in the

coolant for clean and dirty FW surface on plasma side, and nominal design parameters of

the CPS, i.e. tritium processing efficiency ηCPS = 95% and flow rate fraction αCPS = 1%. In

order to examine the CPS performance, we also evaluated the effect of an increased flow rate

fraction (αCPS = 2%); for this case, a reduction in the CPS processing efficiency is assumed

(ηCPS = 80%). The results show that the HT partial pressure in the coolant is higher in the

case of a FW with dirty surface on plasma side for nominal CPS design parameters. For the

same case, the hydrogen partial pressure in the coolant decreases of ∼10% compared to the

case of clean FW surface, as more hydrogen is consumed to form HT (and HD). In spite of a

decrease of the CPS efficiency to 80%, increasing the fractional flow rate to 2% has a major

effect in reducing the HT and H2 pressures in the helium coolant (overall reduction of ∼40%

compared to the nominal parameters of CPS for clean first wall).

The equilibrium tritium releases from the HCS pipe forest to the ITER’s rooms for the

three cases presented in Fig. 3.38 are summarized in Table 3.12; the values are averaged
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Figure 3.38: Time evolution of HT (left) and H2 (right) partial pressures in helium coolant
of the HCS/CPS line of HCCR TBS. Simulations for nominal values of CPS efficiency (ηCPS
= 95%) and flow rate fraction (αCPS = 1%) for clean and dirty FW surface on plasma side,
and for increased CPS flow rate fraction (αCPS = 2%) with lower efficiency (ηCPS = 80%)
for clean FW surface on plasma side.

over the plasma pulse (1800 s). The tritium release for contaminated FW surface is 1.3

times higher than the release for clean FW surface (increase of ∼32%). An increased CPS

fractional flow rate to 2% (with efficiency of CPS decreased to 80%) reduces the tritium

release to the rooms of ∼20% compared to the reference CPS parameters (fractional flow

rate of 1% and efficiency of 95%). Note that as the CPS reduces HT content in coolant, it

also decreases the amount of H2, thus limiting the benefits of the co-permeation effect, i.e. a

reduced tritium permeation in case of the presence of other hydrogen species. In this sense,

adding some hydrogen to the coolant to increase the H2 of a few Pa can be beneficial to

further reduce tritium permeation to the reactor buildings.
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Table 3.12: Equilibrium tritium release to ITER’s rooms calculated with the dynamic model
of HCCR TBS in case of clean and dirty first wall surface and nominal CPS parameters
(αCPS = 1%, ηCPS = 95%), and in case of clean first wall surface, increased CPS fractional
flow rate αCPS = 2%, and reduced CPS efficiency ηCPS = 80%.

Location Pipe length T release T release T release

in HCS (m) (mg/day) (mg/day) (mg/day)

Clean FW Dirty FW Clean FW

αCPS = 1% αCPS = 1% αCPS = 2%

ηCPS = 95% ηCPS = 95% ηCPS = 80%

Cold Leg

PI 10.5 3.22E-04 4.26E-04 2.53E-04

PC 12.3 4.30E-04 5.68E-04 3.38E-04

11-L1-C18 1.34 4.69E-05 6.20E-05 3.69E-05

11-L1-V18 4.09 1.43E-04 1.89E-04 1.12E-04

11-L2-V18 5.09 1.78E-04 2.35E-04 1.40E-04

11-L3-03E 13.3 4.65E-04 6.14E-04 3.65E-04

11-L4-04 21.5 7.49E-04 9.90E-04 5.89E-04

14-L4-20 30.0 1.05E-03 1.39E-03 8.25E-04

Hot Leg

PI 11.8 1.81E-03 2.39E-03 1.42E-03

PC 12.3 1.49E-03 1.97E-03 1.17E-03

11-L1-C18 1.34 1.63E-04 2.15E-04 1.28E-04

11-L1-V18 3.19 3.86E-04 5.10E-04 3.03E-04

11-L2-V18 5.09 6.16E-04 8.14E-04 4.84E-04

11-L3-03E 12.7 1.53E-03 2.02E-03 1.20E-03

11-L4-04 20.4 2.47E-03 3.26E-03 1.94E-03

14-L4-20 29.2 3.54E-03 4.68E-03 2.78E-03

Total 1.54E-02 2.03E-02 1.21E-02
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3.6 Conclusions

The HCCR TBS tritium transport dynamic model was developed to improve the design of

TBS components, assess safety and nuclear licensing, and to perform maintenance assess-

ment. The model integrates pre-existing detailed component models of the HCCR TBM, e.g.

FW and BZ [6, 7, 14], and other newly developed models, e.g. connecting pipes, developed in

COMSOL Multiphysics to system-level, with the use of Simulink S-functions. The system-

level model was validated by comparing partial pressures and permeation rate results with

previous calculations [27] and by performing code-to-code validation, i.e. comparison with

TMAP4. Thus, we used the code to perform assessment of tritium (and hydrogen) inventory

in pipes and permeation rate from pipes to the ITER’s PI, PC, and VS rooms for the HCS

stream. The study shows that permeation from HCS to environment is mainly driven by

the tritium fluxes implanted into the FW from plasma and by the CPS performance. Thus,

accurate estimations of ion fluxes in the Scrape-off Layer of the plasma are key to predict

tritium permeation to coolant and, then, releases to rooms. Most tritium produced in the

BZ is carried to the TES by the purge gas, however a considerable amount of hydrogen

permeates from the BZ to the coolant channels, because of the high concentration of H2 in

the breeder purge gas.

The results show that 2.13×10−3 mg/day, 1.92×10−3 mg/day, and 1.11×10−2 mg/day of

tritium are released in the PI, PC, and VS rooms, respectively, for a pulsed reactor with 50

s ramp-up, 400 s burn time, 50 s ramp-down, 1700 s of dwell time. These values are ∼20

times lower than previous results obtained with a simplified model [27] that did not account

for pulsed operation, co-permeation of hydrogen isotopes, accurate temperature profiles,

realistic spatial distribution (gradients) of ion implantation in FW and tritium production

rate in BZ. Moreover, the effect of the contamination of the FW surface on plasma side was

investigated. It was found that a dirty FW surface reduces the atom recombination flux of

to plasma and causes an increase of tritium inventory in the FW structure and, therefore,

of tritium permeation rate to coolant, when the same particle flux at the FW surface is

considered. As a consequence, the tritium release to ITER’s rooms increases by ∼32%.
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Furthermore, this model can be used to determine the performance requirements of the

CPS and other extraction systems in order to reduce the permeation rates to acceptable

limits. In our case, we considered the effect of an increase in the CPS fractional flow rate to

2% followed by a reduction in the CPS efficiency to 80%. For these parameters, the tritium

release to ITER’s room is decreased by ∼20% compared to the nominal CPS parameters

(αCPS = 1% and ηCPS = 95%). Increasing the CPS flow rate fraction is therefore beneficial

to reducing the tritium release to the environment.
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CHAPTER 4

Recent Advances in Tritium Modeling and its

Implications on Tritium Management for Outer Fuel

Cycle

Recent advances in tritium transport modeling of helium cooled ceramic breeding blankets

systems has shined light into some tritium management issues. A detailed component model

accounting for multi-physics, design, and operational features is necessary to provide accurate

estimations of tritium permeation rates to the building/environment, a safety and licensing

concern for a fusion nuclear reactor. We found that tritium permeation to buildings can

be reduced of ∼20 times when H2 is increased from ∼0.2 Pa to 100 Pa in coolant streams

due to the effect of H and T co-permeation. Similarly, the practice of adding about 0.1%

vol of H2 into the helium purge gas to promote tritium release can also reduce permeation

from breeding zones to coolant systems. However, high H2 partial pressure in helium purge

gas further complicates tritium extraction methodology, and may compromise extraction

efficiency.

4.1 Introduction

The necessity for accurate predictions of tritium permeation rates to buildings and tritium

inventory requested by the ITER Organization (IO) for each Test Blanket System (TBS)

has led to advancements and renewed interest in tritium transport modeling. IO’s require-

ments offer the opportunity to develop an advanced simulation predictive capability, while

evaluating the state-of-the-art of the tritium transport, properties, and management from
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an integrated point of view. Tritium systems are complex and include a variety of compo-

nents, e.g., first wall (FW), divertor, blankets, primary cooling sub-systems with purification

components, connecting pipes, tritium extraction system, etc., which execute different tasks,

operate at different operational condition (e.g. temperatures, pressures, flow rates, etc.),

but are interconnected, and affect each other’s performance and tritium dynamics. Thus,

tritium quantities must be analyzed for the “integrated system” of connected components

in which tritium evolves.

However, the subject itself is complicated by the variety of phenomena, operational con-

ditions, and physics involved. For instance, ITER’s pulsed operations imply dynamics effect

in tritium transport due to temperature transients, FW and divertor are subject to high D-T

charge-exchange neutrals and ions implantation, tritium transport regime may be determined

by diffusion phenomena (“diffusion-limited regime”) or by surface effects (“surface-limited

regime”) depending on material properties, surface oxidation, and structure thickness, H2

addition in coolant and purge gas streams, Co- and Counter- permeation effects, chosen

tritium extraction technique, etc. In order to predict precise tritium behavior, components

of fusion systems must be analyzed in an interconnected manner. In the last half decade the

authors of this paper have developed various high fidelity detailed models of tritium compo-

nents [1-5] to reproduce tritium streams characteristic of the Korean Helium Cooled Ceramic

Reflector (HCCR) TBS [6]. This modeling approach offers an accurate evaluation of tritium

inventory, flow rates, and permeation rates, and leads to a better understanding of design

requirements and improvements. Moreover, results were extrapolated to future DEMO con-

ditions to evaluate the impact of the outer fuel cycle on the initial start-up tritium inventory

[7].

Other examples of detailed and system-level modeling with different mathematical ap-

proach are available in [8-9]. These models treat main components of tritium plant as black

boxes characterized by certain flow rates, surface areas, volumes and temperatures, which re-

quires lower computational power but miss the accuracy that a dimensional detailed analysis

can offer, especially for a delicate task such as tritium transport and permeation.

In this research we analyze performances of tritium systems, evaluate tritium permeation
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rates, identify critical parameters and physics that most impact tritium transport prediction,

and propose tritium management strategies by using the models we developed over time. In

particular, we focus our attention on the interconnected behavior of tritium components

within a system with the goal of identifying how a functional requirement of a component

may result in a contradictory requirement for another component or may further enhance

performances to achieve an optimal tritium management scheme for the outer blanket fuel

cycle system. Moreover, we offer some example of the planned experimental programs de-

veloped at NFRI and KIT to further verify and benchmark simulation platforms.

4.2 Intrinsic Complexities of Tritium Transport and the Need of

an Integrated Multiphysics Computational Model

4.2.1 Pre-analysis of tritium transport regime

It is known that tritium transport regime is diffusion-limited, i.e. tritium diffusion through

bulk is the limiting factor for transport, at high tritium pressure whilst it is surface-limited,

i.e. surface processes such as molecule dissociation, atoms adsorption, recombination, and

desorption at the gas/metal interface are the limiting factor for transport when diffusion pro-

cess is faster, at low tritium pressure [10]. Moreover, the presence of isotopes other than T2,

e.g., H2, D2, HD, HT, etc., which are present in fusion environments, affects tritium perme-

ation due to co- and counter- permeation effects [11]. Given the number of complexities asso-

ciated with tritium transport in fusion components a pre-analysis of temperature-dependent

properties, operational pressures, and geometric parameters is beneficial to identify which

transport regime is more likely to occur and determine appropriate boundary conditions at

the gas/structure interface. The dimensionless permeation number W is a measure of the ex-

pected permeation behavior. Here we use a generalized permeation number [12], to account

for the presence of multi-species (e.g. H2, HT, HD, etc.) in gas and their co-permeation

effect as:

W =
σk1d

φ

√
pTOT (4.1)
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and:

pTOT = pH2 + pHT + pT2 (4.2)

where σ the surface roughness factor, k1 the adsorption constant, d the membrane thickness,

φ the permeability of the material. W >> 1 implies a diffusion-limited regime where atom

concentrations at metal surface are in equilibrium with their gas phases and the permeation

flux for slab geometry is:

JT =
φ

d

pT√
pTOT

(4.3)

pT =
1

2
pHT + pT2 (4.4)

while W � 1 denotes a surface-limited regime where diffusion occurs on a much faster scale

than recombination/adsorption surface processes and permeation flux for slab geometry is:

JT =
1

2
σk1pT (4.5)

The outer fuel cycle system involves components with different hydrogen isotopes and

tritium transport regimes. In Fig. 4.1 we show the generalized W calculated for breeding

zone and helium cooling system (HCS) coolant pipes.

On one hand, the Reduced Activation Ferritic Steel (RAFS) structural material of HCCR

is characterized by an intermediate transport regime. On the other hand, the SS316L of He

coolant connection pipes (DN100 and DN80) has low diffusivity, and fall into the diffusion-

limited regime. Based on these results, we performed permeation evaluation by using: (i)

diffusion-limited boundary conditions on gas/structure interface of coolant pipes and (ii)

surface-limited boundary conditions on gas/metal interface of breeding zones (BZ) to enforce

a linear proportionality between partial pressure and permeation rate (see Equation 4.5),

even though an intermediate regime is likely more characteristic.
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Figure 4.1: Generalized permeation number calculated for the RAFS structural material of
the HCCR TBM (300 Pa H2) and for SS316L structural material of TBS coolant system
connection pipes (DN80 and DN100) (0.2 Pa H2) at various temperatures.

4.2.2 Features and requirements for tritium transport modeling: a complex

multi-physics multi-component simulation platform

The complexity involved in predicting the tritium behavior requires a dynamic, multi-physics

simulation in a multi-material, prototypical geometric configuration. The curves shown in

Fig. 4.2 are the calculated integrated tritium permeation rates over 238 coolant channel

surfaces of a HCCR sub-module as a function of time over one ITER cycle for different

primary/upstream side purge gas compositions and secondary/downstream side He coolant

gas conditions. The solid lines show the permeation evolution for various H2 pressure in

purge gas (circles: 30 Pa; squares: 300 Pa; stars: 3000 Pa. Pressure of 300 Pa is considered

the reference value) when surface processes take place on the purge gas and metal interface

while a clean coolant (zero concentration) is assumed on the coolant/metal interface. The

dotted line represents the reference case on purge side (300 Pa of H2) and includes surface

effects on coolant side for He containing 0.187 Pa of H2, 0.035 Pa of HD, and 0.029 Pa of

HT. These equilibrium pressures are calculated with the HCCR TBS model presented in
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Chapter 3, with purge gas containing 300 Pa of H2 and a FW controlled by diffusion-limited

regime, a clean plasma side, and an implantation flux of 1021 atoms/m2-s (50% D - 50% T).

The dashed lines represent a coolant with the same amount of HD and HT (0.035 Pa and

0.029 Pa respectively) but H2 content is increased to 10 Pa (red line with asterisk markers)

and 100 Pa (light blue line with triangle markers).

Figure 4.2: Tritium permeation rate over all the coolant surfaces of the breeding zones of a
HCCR sub-module. (Insert figure: tritium concentrations in coolant containing structures,
and HT flux across the boundaries).

As we expected, a multitude of parameters and operational conditions concur to deter-

mine the amount of tritium permeation to the coolant. The permeation evolution is strongly

affected by RAFS thermal and concentration gradients driven by the plasma pulse. In partic-

ular, the permeation rate does not increase immediately following the plasma burn since the

newly dissolved tritium is diffusing through the bulk and has not reached the coolant surface

yet. The tritium concentration at the coolant surface decreases for about 200 s, which re-

duces the tritium permeation rate even further, until the newly dissolved tritium reaches the

coolant channel surface and the permeation rate begins to increase. The tritium permeation

rate continues to increase, until the tritium concentration reverses its profile which causes
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tritium to recombine back to the breeder zone, and tritium permeation rate to the coolant

decreases. Between the coolant channels, we see that tritium can diffuse beyond the coolant

channel and leak to the neighboring Beryllium region where tritium concentration is lower.

An increase in H2 content in the purge gas implies a reduction in permeation (∼3 times

lower when H2 is increased from 300 Pa to 3000 Pa). However, variation of the purge gas

pressure and H2 content may affect tritium release from ceramics and tritium extraction

system (TES) performance. When the isotopes in coolant reach equilibrium pressures the

permeation rate is reduced due to tritium adsorption into structure on the coolant side, which

reduces the net tritium flux released at the interface (the net flux is given by the difference

between recombination and adsorption flux). An addition of H2 in coolant (e.g. 100 Pa of H2

to reduce tritium permeation from pipes to rooms as a result of the co-permeation effect) has

the downside of enhancing T release from structure to coolant due to higher concentrations

of H2 on the gas/metal interface which facilitates tritium recombination and desorption.

However, the increase of permeation to coolant is small compared to the reduction in tritium

permeation to rooms as we show in Subsection 4.2.3.

Even with a simpler geometry such as the coolant connection pipes, the tritium per-

meation behavior to the building is complicated by the pulsed operations which result in

thermal transients in both the coolant gas and SS-316L structural material of the pipes and

impose implications on mass transfer. Use of the pulsed average values of temperatures to

estimate transport properties has led to an underestimation of tritium permeation rate of up

to 50%, while using steady state burn temperature led to overestimating a release rate by a

factor of 10 [13]. Thus, accurate coupling of heat transfer with species transport is required

to eliminate unnecessary uncertainties in the estimations.
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4.2.3 Co-permeation effect in presence of multi-isotopes on tritium permeation

rates to ITER buildings

As validated with experimental results [11], tritium permeation under diffusion-limited regime

in the presence of multi-isotopes is inversely proportional to the square root of the total pres-

sure contained in a gas (co-permeation effect) [14]. For the purge gas, higher H2 pressure

reduces permeation from breeding zones to coolant, as shown in Fig. 4.2.

Similarly, for the HCS the presence of H2 in higher concentrations than HT (and HD)

represents a natural barrier limiting permeation to reactor rooms. As shown in Fig. 4.3 the

permeation rates to ITER’s PI (Port Interspace), PC (Port Cell), and VS (Vertical Shaft) for

the reference case (coolant pressures: 0.187 Pa of H2, 0.035 Pa of HD, and 0.029 Pa of HT)

and for H2 pressure increased to 10, and 100 Pa. The analysis shows that higher H2 content

in He coolant has major benefits for reducing tritium losses to buildings. An increase from

the reference value 0.187 Pa to 100 Pa reduces permeation rate by a factor of ∼20.

0 0.5 1 1.5 2 2.5

106

10-14

10-13

10-12

10-11

10-10

10-9

Figure 4.3: Integrated tritium permeation rates (time averaged over ITER 1800 s cycle) to
PI, PC, and VS buildings.

However, in addition to tritium generation in the ceramics, implantation fluxes from

plasma into the FW represents another tritium source for the permeation in the outer part
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of fuel cycle. It was found that 99.99% of implanted tritium into the FW is re-emitted to

plasma while only 0.01% diffuses through structural material and permeates to coolant loop.

Even though a small fraction of the total implanted flux, this quantity represents the main

contribution to tritium build-up in coolant, since permeation rates form BZ were found to be

approximately 2 orders of magnitude lower. When diffusion-limited regime governs tritium

transport, permeation rates from FW to coolant are 9.61×10−9 mol/s and 1.29×10−8 mol/s

respectively for clean and dirty plasma side independently of H2 content in coolant. In fact,

for this case the effective tritium pressure in coolant, pT , at equilibrium is much smaller than

the total pressure, pTOT , regardless of H2 addition (see Eq. 4.3). If we assume a surface-

limited regime we notice that the presence of H2 in coolant slightly enhances tritium release

from FW to coolant due to the counter-permeation effect as seen in Table 4.1. Moreover,

a dirty FW surface on plasma side reduces re-emission to plasma and, thus, increases the

permeation rate on the coolant side. As seen from Fig. 4.2 and Table 4.1, we find that

tritium permeation to coolant increase only of ∼1%. Thus, H2 addition could be considered

as an active way to control and reduce tritium permeation to buildings and environment if

necessary.

Table 4.1: Tritium permeation rates from FW to coolant under surface-limited regime for
various H2 contents in coolant and clean/dirty FW surface facing the plasma.

H2 (Pa) JT (mol/s) - Clean plasma side JT (mol/s) - Dirty plasma side

0.187 7.61×10−9 1.05×10−8

10 7.68×10−9 1.06×10−8

100 8.01×10−9 1.09×10−8

4.2.4 Analysis of hot out-gassing in connection pipes during short-term main-

tenance period

The planned ITER operational scenario expects an 11-day period of continuous pulses fol-

lowed by a 3-day short term maintenance time. Out-gassing procedure could be performed

as a short term maintenance activity to recover tritium contained in pipes and other com-
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ponents, lower inventories, and reduce subsequent permeation to buildings.

An out-gassing calculation is performed for the hot legs of the HCS/CPS including PI,

PC, and VS connection pipes. We assume pure He flows at 623, 723, and 773 K to enhance

tritium release from the inner surface of the pipe. Note that, some concentrations of H2,

HD, and HT will be present in He depending on the inventory release rates from various

components. However, here we only focus on evaluating the tritium released inside the

connection pipes (recovered amount), and outside (losses to buildings), and the time response

characteristics. Figs. 4.4 and 4.5 show the tritium permeation rate to buildings and inventory

characteristics during the first 11 days of pulsed operation followed by 6 days of hot out-

gassing process. On one hand, we note a faster decrease in the inventory as the temperature

Figure 4.4: Tritium permeation rates to buildings from pipes of ITER’s HCS/CPS hot leg
PI, PC, and VS for first 11 days of ITER pulsed operations and 6 days of hot out-gassing.

is increased from 623 to 773 K. On the other hand, higher temperatures cause an increase

in the permeation to buildings during the out-gassing time. This effect is due to the higher

and constant temperatures of the pipes during out-gassing compared to the pulsed scenario

where temperatures oscillates between 573 and 730 K. Despite this increase in tritium loss to

building, major amounts of recovered tritium are found for the 773 K case (∼60% for the PI

pipe and ∼56% for PC/VS pipes). It should also be noted that, though lower temperatures
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Figure 4.5: Tritium inventory for first 11 days of ITER pulsed operations and 6 days of hot
out-gassing in ITER’s HCS/CPS hot leg PI, PC, and VS connecting pipes.

give overall lower tritium recovery, they also reduce permeation to rooms and offer a better

recovery performance, i.e., the ratio of released tritium to He to the total released amount

(sum of tritium released to helium and to buildings) is higher for lower temperatures: 73%,

68%, and 65% for PI, and 77%, 71%, and 66% for PC/VS respectively for 623, 723, and

773 K. The inventories in pipes decrease by ∼92% for PI, and ∼85% for PV/VS at day 3

of the out-gassing, and if out-gassing period is prolonged to six days inventories in pipes are

decreased by ∼2 orders. The analysis suggests that if an out-gassing is to be performed for

removing the tritium inventory in the pipe components, the sudden increase in the tritium

release to the buildings/environments would need to be taken into account in designing the

detritation systems to meet the allowable dose rate in the maintenance period.
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4.3 Experimental Activities to Support the Benchmark Activity

of Tritium Transport Modeling Tools

Accompanying with the development of tritium transport simulation predictive capabilities,

experimental programs had also been launched to verify and enhance our understanding

of tritium behavior in the blanket outer fuel cycle systems and serve as validating tools

for tritium transport numerical modeling. Until now, two sets of validations have been

performed.

The first set of comparison was validation of the co-permeation mathematical model used

in this work [11]. We performed modeling validation by comparing the calculated tritium

permeation rates with the results of a recent Tritium Gas Absorption Permeation (TGAP)

experimental campaign performed at the Idaho National Laboratory (INL) [14]. In the

experiment, tritium permeation rates for KO-RAFM circular samples were calculated over a

wide range of HT partial pressures, i.e., from 10−5 to 101 Pa, and for H-T thermodynamics

equilibrium conditions. Our calculation shows perfect agreement between experimental and

predicted values over the entire range of HT pressure, as shown in Fig. 4.6. We found linear

dependency of tritium permeation rate with HT partial pressure and square root dependency

with T2 partial pressure (plotted in the range 10−5 to 101 Pa). This validation effort expands

the model validity over a wider pressure range than the one considered in [11], which was

limited to HT partial pressure ∼10−2 - 10−1 Pa.

The other validation concerns the hydrogen adsorption characteristic of a large-scale

CMSB installed at the PGLoop at NFRI [15]. The PGLoop CMSB uses 50.7 kg of MS5A as

the adsorbent. Experiments with different swamping ratios, flow rates, and total pressures

in the range of hydrogen partial pressures from 100 Pa to 700 Pa were conducted. The

MS5A adsorption amount at the breakthrough was calculated based on the theory presented

in [16], where the concentrations of the adsorbate in the gas phase and in the adsorbent

are expressed as a function of the axial length from the inlet of the CMSB, z, and time,

t. The comparison shows performance of the experiments is around 90% compared to the

computation, which can be attributed to the scale-up effect.
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Figure 4.6: Comparison of tritium permeation rates predicted with COMSOL Multiphysics
and INL’s experimental [14]. Permeation rates are plotted as a function of Q2 partial pres-
sure, where Q2 = HT, T2.

The planned experimental activities using the PGLoop CMSB module include a hydrogen

adsorption and desorption experiment as well as multicomponent hydrogen isotopes adsorp-

tion experiments. The multicomponent hydrogen isotopes experiment is particularly useful

to verify CMSB capacity of the HT extraction/adsorption with respect to the coexistence

of the hydrogen partial pressures. This data set will guide and optimize CMSB design and

subsequent adsorption/desorption operations.

Considering the quantification of tritium permeation in the breeding blanket systems

is of high importance from the safety point of view and in the definition of the interfaces

between various subsystems, several experimental configurations to serve as validating tools

for tritium transport numerical modeling are being constructed by KIT and CIEMAT. The

aim is to develop experimental set-ups that will include various measuring cells designed to

characterize the permeation parameters that cover both needs of WCLL and HCPB. Two

dedicated experimental rigs are under construction and commissioning at TLK to benchmark

the modeling tool, in which experimental rig relevant to the HCPB is described here. For

the HCPB case tritium will permeate from purge gas to He coolant and from He coolant to

water. The experimental set-up will be operated with He and tritium on one side and He
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with hydrogen/deuterium at various partial pressures on the other side. This will allow to

evaluate the tritium permeation from purge gas to cooling gas. The experimental set-up will

incorporate enough sampling points and required instrumentation to quantify the dynamics

of tritium permeation from one side to another. The measuring cell is designed to allow

easy dismantling in view of the physical characterization of the permeation surface that may

influence dissociation and recombination coefficients. The experiments will be continued

for long term operation with hydrogen and deuterium in order to understand the surface

dynamics and give references concerning the possibilities for eventual chemical treatment of

the surface. The experiments will be carried out at pressures and temperatures that are

relevant for DEMO applications.

KIT will develop the configuration of the measuring cell based on the outcome of the

simulation of tritium permeation performed at CIEMAT. The aim of the modeling activities

at CIEMAT is to define the main characteristics of the measuring cell, e.g., amount of tritium

required, thickness of the permeation plate, etc. and to develop the experimental procedure

needed to measure the parameters that are necessary for the calibration of the modeling

tool. In summary, these experimental activities are expected to enhance our understanding

of tritium behavior in a system and enable us to achieve precise numerical simulations.

4.4 Conclusions

In this Chapter we showed the outer fuel cycle tritium performance parameters with pulsed

operations are in transient states. A time-dependent dynamic multi-physics simulation in a

multi-material, prototypical and geometric configuration is necessary to capture the realistic

effects. A higher amount of H2 in the purge gas stream leads to faster tritium releases from

breeding materials but a less efficient use of tritium extraction system. We then propose

a new perspective using an integrated system point of view to identify and evaluate the

complex relationship between different components of the tritium outer fuel cycle.

In order to achieve an optimal configuration, tritium management should not remain

stagnant. On the contrary, periodical tuning of key operating parameters, e.g., H2 in coolant
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and purge gas, out-gassing temperature, etc., can serve as an active means to dynamically

control and enhance the performance of tritium systems. In view of H2 amount on TES

efficiency, we recommend a systematical study of the impact of H2 (or H2O if a wet purge

gas is considered) on tritium residence time and tritium extraction economy for the candidate

breeder materials.

This Chapter also summarizes the main progress in the tritium transport modeling activ-

ity and main experimental set-ups designed for validation purpose. Experimental activities

are being conducted in KIT, NFRI, and other institutions to enhance our understanding of

tritium behavior in a system and achieve precise numerical simulations.
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CHAPTER 5

Impact of Outer Fuel Cycle Tritium Transport on

Initial start-up Inventory for Next Fusion Devices

5.1 Introduction

Accurate estimation of time-dependent tritium inventories and flow rates in fusion reactor

components is critical to meet nuclear licensing criteria and safety regulations. Moreover,

reserves of natural tritium are very limited and the fuel very precious. For tritium economy

and fusion commercialization a balanced budget is critical.

A great deal of work on tritium fuel cycle dynamic modeling was reported in literature.

Most studies are based on the residence-time approach, i.e. the average time tritium stays

in a component before it is released. In these studies, the overall fusion fuel cycle is modeled

by systems of time-dependent zero-dimensional ordinary differential equations describing

tritium flow rates [1-4]. Kuan and Abdou proposed a new modeling approach by introduc-

ing more physics for each fuel cycle component and accounting for more realistic operation

parameters [5]. However, due to the lack of detailed reactor design and limited computa-

tional capabilities, the model still used a 0-D description for fusion subsystems. With the

development of finite element solvers several research groups started to model fusion fuel

cycle detailed components [6-9], i.e. considering 2−D/3−D complex geometries and solv-

ing constitutive equations. Recently, an effort was launched to incorporate high resolution

detailed models to system-level to reproduce the fuel cycle dynamic. A dynamic tritium

transport model [10], where detailed components modeled with COMSOL Multiphysics [11]

are integrated to system-level through the MATLAB/Simulink computational platform [12],

was presented for the Helium Coolant Ceramic Reflector Tritium Breeding System (HCCR
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TBS). The mathematical formulation was described in detail in Chapter 3.

Analysis and assessment of tritium inventories and flow rates through system level mod-

els can be extended to determining key parameters impacting fusion technology feasibility

and economy such as the Initial Start-up Tritium Inventory (ISTI) and Required Tritium

Breeding Ratio (TBRr), as seen in Ref. 1 - 5. The fuel cycle comprehends several sub-

systems characterized by different functions, requirements, conditions, and physics. We can

divide the overall fuel cycle into (i) Inner Fuel Cycle (IFC), i.e. Plasma Exhaust, Fuel Clean-

up, Isotope Separation and Delivery Systems, and (ii) Outer Fuel Cycle (OFC), i.e. First

Wall/Divertor, Blanket, Coolant and Purge Gas Processing Systems. Current experimental

fusion reactors are characterized by relatively low fueling efficiency (< 50%) and tritium

fractional burn-up (∼ 0.35% calculated for ITER [13]). Therefore, a large part of tritium

contained in the vacuum vessel is exhausted through the pumping duct to the processing

line of the IFC. In particular, ISTI is driven by the tritium fractional burn-up (fb), fueling

efficiency (ηf ), and processing time (tp) of tritium recovery systems: for fb × ηf < 2% and

tp > 6 h, ISTI > 10 kg [4]. In this case the IFC is dominant, since most inventories are

found within the IFC. However, IFC impact on ISTI can be reduced if the product fb × ηf

increases to values higher than 2% and processing times of IFC components are reduced, as

seen in Ref. 4. Recently, Day et al., proposed the so-called Direct Internal Recycling (DIR)

concept [14], which aims to recycle tritium exhausted through the pumping duct directly

to plasma, to further minimize tritium retention in IFC compartments, and found that IFC

inventory drops to ∼ 1 kg (as seen in [15]). In all these cases (fb× ηf > 2% and low process-

ing times or use of the DIR), the OFC becomes dominant for ISTI assessment since most

tritium inventory resides in the OFC.

In detail, this paper aims to evaluate the Outer Fuel Cycle (OFC) impact on ISTI.

The analysis is performed to assess the effect of (i) ceramic breeder tritium residence time

(τres), e.g. extrusion-spheronisation sintering processed Li2TiO3 and melt spray Li4SiO4 -

these are examples of breeders with distinct difference in residence time due to different

fabrication technique, (ii) tritium processing time of tritium extraction systems (τp), e.g.

on-line (continuous) technology such as membrane reactors and PERMCAT [16] and batch-
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wise mode of adsorption/regeneration columns [17], and (iii) material choices of PFCs, e.g.

pure Advanced Reduced Activation Alloy (ARAA) and ARAA with tungsten coating (2 mm

thickness). We define the OFC attributed ISTI as the initial amount of tritium that we need

to prepare to run the reactor in question until tritium produced in its blankets is recovered

and available on-line (assessment of tritium accumulation to start-up following reactors and

required TBR assessment are beyond the scope of this research).

A mathematical formulation for OFC attributed ISTI is derived through control vol-

ume analysis on tritium flow rates interesting the OFC in Section 5.2. These flow rates

are computed with the tritium transport dynamic model presented in Chapter 3. With

this innovative approach, it is possible to evaluate ISTI for specific fuel cycle designs un-

der prototypical fusion environment, which never was addressed with previous 0-D lumped

models.

5.2 Definition of the Problem

5.2.1 Inner and Outer Fuel Cycle contributes to ISTI

The OFC includes two main processing lines: (i) Tritium Extraction System (TES), (ii)

Helium Coolant System (HCS). On the one hand, the HCS main goal is to maintain OFC

within the nominal temperature range by extracting heat generated in PFCs and blanket

systems. Because of Charge Exchange Neutrals (CXN) and ion fluxes at PFCs surface, tri-

tium implantation into PFCs and permeation to coolant occurs. Tritium content in coolant

gas is controlled with the Coolant Purification System (CPS). Therefore, the ISTI must

account for the inventories of HCS/CPS components. On the other hand, the TES processes

tritium produced in blanket systems, which will be accumulated to fuel the plasma. There-

fore, the ISTI problem for TES line results in the determination of the effective tritium

extraction time (τTESeff ), which we define as the time needed for tritium flow rates extracted

from TES (ṁTES
out ) to match the value of tritium burning rate in plasma (Ṅ−), i.e. τTESeff = t:

ṁTES
out = Ṅ−.
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A schematic of a typical OFC scheme, representing main components and tritium flow

rates, is presented in Fig. 5.1 while variables of interest are listed in Table 5.1.

Figure 5.1: Schematic of OFC main components and tritium flow rates.

To quantify the OFC impact on ISTI a control volume analysis for the system of Fig.

5.1 is proposed. The rate of inventory change in the OFC is:

dIOFC
dt

= Ṅ+ + ΦCXN
FW AFW + ΦCXN

Div ADiv − JTESperm − ṁTES
out − rFWΦCXN

FW AFW

−rDivΦCXN
Div ADiv − JCXNFW,r − JCXNDiv,r − JSGperm − JHCSperm − ṁCPS

out

(5.1)

where AFW and ADiv are the surface areas of FW and Divertor. The total amount of tritium

inventory build-up in the OFC, i.e. TES and HCS lines, can be found by integrating Eq.

5.1 in time. By summing and subtracting ṁBZ,HCS to the right hand side of Eq. 5.1 we can

separate the contributions of TES, ITESOFC , and HCS, IHCSOFC , lines as follow:

dITESOFC

dt
= Ṅ+ − ṁTES

out − JTESperm − ṁBZ,HCS (5.2)

dIHCSOFC

dt
= (1− rFW )ΦCXN

FW AFW + (1− rDiv)ΦCXN
Div ADiv

+ṁBZ,HCS − JCXNFW,r − JCXNDiv,r − JSGperm − JHCSperm − ṁCPS
out

(5.3)

Noting that Ṅ+ = TBR × Ṅ− = Ṅ− + (TBR − 1)Ṅ−, integrating Eq. 5.2 with respect to
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Table 5.1: List of variables used to describe OFC tritium flow rates.

Variable Unit Description

Ṅ+ kg/s Tritium production rate

ṁPurge
BZ,out kg/s Purge gas flow rate BZ outlet

ṁPurge
BZ,in kg/s Purge gas flow rate BZ inlet

ṁTES
out kg/s Tritium flow rate extracted from TES

JTESperm kg/s TES Tritium losses to building via permeation

ṁBZ,HCS kg/s Tritium flow rate permeated to coolant from BZ

ΦCXN
FW kg/m2-s CXN flux to FW

ΦCXN
Div kg/m2-s CXN flux to Divertor

rFW - FW reflection coefficient

rDiv - Divertor reflection coefficient

JCXNFW,r kg/s FW CXN re-emission to plasma flux

JCXNDiv,r kg/s Divertor CXN re-emission to plasma flux

ṁHCS
toCPS kg/s Tritium flow rate in coolant to CPS

ṁHCS
fromCPS kg/s Tritium flow rate in coolant from CPS

αCPS - Fraction of total coolant flow rate treated in CPS

ṁCPS
out kg/s Tritium flow rate extracted from CPS

JHCSperm kg/s HCS Tritium losses to building via permeation

JSGperm kg/s HCS Tritium losses to SG via permeation
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time and rearranging, we obtain:

IHCSOFC (t) =

∫ t

0

(Ṅ− − ṁTES
out )dt̃+

∫ t

0

(TBR− 1)Ṅ−dt̃−
∫ t

0

(JTESperm + ṁBZ,HCS)dt̃ (5.4)

The first term on the right hand side of Eq. 5.4 represents the difference between the amount

of tritium burned in the plasma and extracted from the TES. This can be further split in the

intervals [0, τTESeff ], where Ṅ− > ṁTES
out , and tritium must be supplied to the reactor from an

external source, i.e. during TES processing when bred tritium is not available, and [τTESeff , t],

for which ṁTES
out > Ṅ− and tritium accumulation can begin. Therefore, Eq. 5.4 is rewritten

as:

IHCSOFC (t) =

∫ τTES
eff

0

(Ṅ− − ṁTES
out )dt̃+

∫ t

τTES
eff

(Ṅ− − ṁTES
out )dt̃

+

∫ t

0

(TBR− 1)Ṅ−dt̃−
∫ t

0

(JTESperm + ṁBZ,HCS)dt̃

(5.5)

Considering the right hand side of Eq. 5.5, we define the first term as the OFC TES

attributed ISTI, the second term (negative in the balance) represents the amount of tritium

which is extracted from the TES at the net of tritium burning rate in plasma, i.e. the

tritium which can be accumulated to generate fuel reserve and start-up inventory for other

reactors, the third term is the extra amount of tritium produced due to TBR margin, i.e.

Ṅ+ − Ṅ−, and, finally, the last term represents the tritium lost via permeation to coolant

line and buildings. Note that the tritium permeation losses from TES line are not included

in the ISTI definition; in fact, tritium streams flowing in TES line are generated within

the breeding blanket and not directly subtracted from the plasma vacuum chamber. To

conclude, the OFC TES attributed ISTI is:

ISTITESOFC =

∫ τTES
eff

0

(Ṅ− − ṁTES
out )dt̃ (5.6)
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The OFC HCS total inventory is given by integrating Eq. 5.3 with respect to time:

IHCSOFC =

∫ t

0

[(1− rFW )ΦCXN
FW AFW + (1− rDiv)ΦCXN

Div ADiv

+ṁBZ,HCS − JCXNFW,r − JCXNDiv,r − JSGperm − JHCSperm − ṁCPS
out ]dt̃

(5.7)

The initial start-up inventory for OFC HCS line (ISTIHCSOFC ) should include components

inventory (Eq. 5.7) and tritium losses due to permeation to building, i.e. JSGperm and JHCSperm ,

since both contributes are tritium sinks subtracting fuel to plasma, evaluated in the “Short-

Term”, i.e. for t = τTESeff . In fact, after such time, tritium produced in blanket modules is

available and TBR margin compensates for losses. Furthermore, the term ṁBZ,HCS should

not be included in ISTIHCSOFC since this is tritium coming from TES line and not from plasma.

Hence:

ISTIHCSOFC = IHCSOFC (t = τTESeff ) +

∫ τTES
eff

0

(JSGperm − JHCSperm − ṁCPS
BZ,HCS)dt̃ (5.8)

Moreover, to be conservative, we also neglect tritium recovered from CPS, which is expected

to process very small fractions of total coolant flow rate, e.g. αCPS = 0.1%− 1%, and longer

times could be required. Therefore:

ISTIHCSOFC =

∫ τTES
eff

0

[(1− rFW )ΦCXN
FW AFW + (1− rDiv)ΦCXN

Div ADiv

−JCXNFW,r − JCXNDiv,r ]dt̃

(5.9)

Eq. 5.9 corresponds to the total amount of tritium implanted into PFCs which will generate

inventory in PFCs (IPFC) and thus permeation to coolant (JCoolantPFC ). Finally, the OFC

attributed ISTI (ISTIOFC) is the sum of contributions from TES (Eq. 5.6) and HCS (Eq.

5.9): ISTIOFC = ISTITESOFC + ISTIHCSOFC .
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5.2.2 Computational model

The computational model used in this analysis is an updated version of the dynamic COMSOL-

MATLAB/Simulink for OFC tritium transport presented in [10], which was described in

detail in Chapter 3. The model comprises (i) TES line, i.e. Breeding Zone (BZ), extraction

systems, heat exchanger, H2 make-up units, connecting pipes (DN15/40S), and (ii) HCS

line, i.e. FW/Divertor, CPS, connecting pipes (DN80/80S). The physics implemented in the

model includes tritium mass transport, isotope swamping effect, chemical reactions, heat

transfer and compressible purge gas flow through porous media. Details of the mathemat-

ical formulation is available in [6 - 8, 18]. The Simulink setup and COMSOL convergence

was optimized to allow higher computational performance; computational time was reduced

by one half compared to the model presented in [10].

For TES modeling, an analytical formulation is adopted for the On-line (continuous

operation) case; particularly, TES is characterized by an extraction efficiency, ηTES, and

ṁTES
out = ηTESṁ

TES
in . In case of batch-wise operation, detailed modeling of Cryogenic Molec-

ular Sieve Bed (CMSB) was performed; the constitutive equations implemented are presented

in [19]. The sieve bed adopted is Zeolite 5A, particle diameter is 2.0× 10−3, packing of bed

58%, column height and internal diameter are 0.86 m and 0.31 m respectively. Adsorption

is performed at 77 K while regeneration at 100 K to enhance tritium release and reduce

processing time of regeneration phase. Note that CMSB only treats molecular hydrogen

isotopes, i.e. H2, HT, while oxidized molecules, i.e. HTO, are treated in a different unit, e.g.

Room Temperature Molecular Sieve (RTMS) followed by water detritiation process. How-

ever for HCCR blanket, HT represents >95% of tritium content in purge gas at BZ outlet,

which controls the availability of bred tritium for use in fueling.

Note that, ISTIOFC problem interests Short-Term inventories, i.e. inventories character-

istic of the system at time equal to τTESeff , which falls within the range 1 h - 5 days depending

on technology used for tritium extraction. For this time scale, i.e. reactor beginning of

life, the reactor is subject to low irradiation dose (<0.3 dpa), therefore, tritium retention

due to ion- and neutron- induced trapping does not have a significant effect on start-up
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problems (while it affects Long-Term tritium retention). Moreover, due to the low trap-

ping energies, i.e. 0.85 eV [20] tritium retained in intrinsic traps is de-trapped at typical

PFCs temperatures [8] and is not influential for ISTI characterization. For these reasons,

inventory build-up in PFC due to trapping is insignificant and not calculated in this study.

Similarly, radioactive decay losses are negligible on ISTI time scales, and not accounted in

the proposed calculation.

5.3 Initial Start-up Tritium Inventory Assessment and Discussion

5.3.1 Tritium Extraction System line - TES

Tritium flow rates recovered by TES (ṁTES
out ) were evaluated for different tritium breeder res-

idence time, i.e. Li4SiO4 and Li2TiO3 (correlations given in [21]). OFC TES line attributed

ISTI results are extrapolated to typical DEMO or future commercial reactors power of 3

GWfus, i.e. Ṅ− ∼ 0.459 kg/day, and different TBR values, i.e. 1.05 - 1.20. As an example,

Fig. 5.2 shows the flow rates at TES outlet normalized by Ṅ− for On-line (continuous) TES

mode, TBR = 1.10, and TES efficiency of 85% and 95%, and Fig. 5.3 shows the respective

OFC TES attributed ISTI, calculated with Eq. 5.6.

We found that τTESeff is less than ∼0.5 day for lithium orthosilicate while ∼2 days are

required for lithium metatitanate when efficiency is 95%. For lower TES efficiency, 85%,

longer times are required, i.e. ∼1 days for Li4SiO4 and ∼4.5 days for Li2TiO3. Note that in

this case τTESeff ∼ τres since τp ∼ 0. Longer residence time (Li2TiO3) increases the OFC TES

attributed ISTI of one order of magnitude (0.10 kg < ISTI < 0.25 kg) compared to shorter

(Li4SiO4) residence time (0.01 kg < ISTI < 0.025 kg) while TES efficiency reduction from

95% to 85% is less impactful. However, results suggest that if TES efficiency falls below

90% and TBR is ∼1.05 the tritium extracted from TES is slightly smaller than the tritium

burning rate in plasma. Hence, further extraction must be performed downstream TES at

very low partial pressure to ensure break-even between tritium extraction and consumption

in the plasma.

137



Time [days]
0 1 2 3 4 5 6

ṁ
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Figure 5.2: Normalized tritium flow rates at TES outlet for On-line mode and TBR=1.10.
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Figure 5.3: OFC TES attributed ISTI for TES On-line mode.

In case of batch-wise operation, the total processing time of adsorption/regeneration

columns can be calculated as τp = τad+ τreg, where τad adsorption time and τreg regeneration

time. This parameter varies depending on column capacity, dimensions, operating tempera-

ture, and TBR. In our case, for the parameters given in Subsection 5.2.2, we found that the

adsorption time calculated at column saturation, i.e. when tritium concentrations at CMSB
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outlet are equal to 0.1% of concentration at inlet, is ∼134 h (∼5.6 days) for Li4SiO4 and

∼137.2 h (∼5.7 days) for Li2TiO3 (values calculated for TBR=1.10). The time delay between

breeders is due to the different tritium residence time of tritium in ceramics. Regeneration

time is ∼1 day, when performed at 100 K, however only ∼1.5 h are needed to provide flow

rates that overcome tritium burning rate in the plasma, as shown in Fig. 5.4. Due to the

long times required to reach saturation in the column during the adsorption process, the

TBR effect is less noticeable compared to the on-line case, e.g. Li4SiO4 with TBR=1.20

(best case scenario) gives adsorption time 3 h smaller than Li2TiO3 with TBR=1.05 (worst

case scenario).
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Figure 5.4: CMSB inlet/outlet flow rates for Li4SiO4 and Li2TiO3.

We show in Table 5.2 the ISTITESOFC calculated using Eq. 5.6. The range is 2.55 - 2.64

kg depending on breeding material and TBR. As observed, adsorption time is dominant in

defining the effective extraction time, i.e. τTESeff ∼ τad, attenuating the effect of breeder choice

and TBR, which accounts for ∼90 g difference inventory.
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Table 5.2: OFC TES attributed ISTI for TES operated in batch-wise mode.

ISTITESOFC TBR=1.05 TBR=1.10 TBR=1.15 TBR=1.20

Li4SiO4 2.58 2.57 2.56 2.55

Li2TiO3 2.64 2.63 2.62 2.61

5.3.2 Helium Coolant System line - HCS

Tritium inventory build-up in HCS components and permeation to coolant depend on CXN

implantation into PFCs. In general, CXN magnitude varies depending on several parameters,

e.g. physics regime, scrape off layer and edge fueling. The presented results are obtained for

CXN tritium flux at FW calculated for ITER HCCR TBM port 22, i.e. 1021 atoms/m2-s

(50% D - 50% T) at energy of 400 eV. This choice is considered representative of average

implantation into PFCs in the absence of data for specific DEMO design. We considered

different PFC structural materials: (i) pure Advanced Reduced Activation Alloy (ARAA),

and (ii) ARAA with tungsten coating layer (2 mm thickness). CXN implantation spatial

distribution profile in ARAA and W are derived with the SRIM/TRIM code. Reflection co-

efficients of ARAA and W are ∼0.3 and ∼0.45 respectively. We found that tungsten coating

reduces inventory build-up and permeation to coolant of about 1 - 2 orders of magnitude

compared with the case of pure ARAA as seen in Figs. 5.5 and 5.6. The HCS attributed

ISTI calculated with Eq. 5.9 for K-DEMO [23] PFCs design with Ṅ− ∼ 0.459 kg/day and

using representative τTESeff of each extraction technology, material and TBR, is shown in Fig.

5.7 for on-line operation, and in Table 5.3 for the batch-wise case.
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Table 5.3: OFC HCS attributed ISTI for TES operated in batch-wise mode.

ISTIHCSOFC TBR=1.05 TBR=1.10 TBR=1.15 TBR=1.20

ARAA

Li4SiO4 3.21×10-2 3.20×10-2 3.19×10-2 3.17×10-2

Li2TiO3 3.29×10-2 3.27×10-2 3.26×10-2 3.25×10-2

ARAA - W coating

Li4SiO4 6.08×10-4 6.06×10-4 6.04×10-4 6.01×10-4

Li2TiO3 6.23×10-4 6.20×10-4 6.18×10-4 6.16×10-4
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5.4 Conclusions

A control volume analytical method has been derived to incorporate tritium flow rates calcu-

lated from an improved dynamic integrated model for tritium initial start-up tritium inven-

tory analysis. ISTI was evaluated for different breeder material residence times, TES oper-

ational modes, efficiency, and PFC surface materials. The analysis shows that the TES line

is dominant in determining the OFC impact to ISTI. Most important parameters are the

residence time of tritium in the breeders and the processing time of tritium extraction tech-

nologies, which contribute to defining the effective tritium extraction time. OFC attributed

ISTI is minimum when continuous extraction technologies are implemented (∼10−250 g)

while it is considerably higher (∼2.6 kg) when adsorption/regeneration columns are the ex-

traction technique. In this case the processing time (∼5.5 days) has a dominant effect over

breeder residence time (∼hours). If batch-wise operation mode will be further developed

and/or considered for future commercial reactors, R&D should focus on reducing adsorption

time, and therefore total processing time, to a minimum. This implies finding the optimal

column capacity/dimension and adsorption capability. The HCS attributed ISTI is less sig-

nificant, particularly when W coating is implemented (ISTIHCSOFC ∼ 10-5−10-3 kg). However,

for nuclear regulation and safety, the integrated dynamic model developed and improved in

this study provides means to predict, control, and minimize HCS tritium inventories and

permeation rates to the environment.
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CHAPTER 6

Quantitative Physics and Technology Requirements for

Realizing Tritium Self-sufficiency in Fusion Reactors

6.1 Introduction

Tritium dynamics in fusion systems with deuterium-tritium (D−T) fuel cycle plays a key

role. Tritium and deuterium consumption in nuclear fusion systems is unprecedented: a

total of ∼111.6 kg of tritium and deuterium (∼55.8 kg per isotope) is consumed in nuclear

fusion reactions per 1000 MW fusion power per year. Deuterium can be extracted in great

amounts from the Earth’s oceans. Conversely, due to its radioactive nature and relatively

short half-life of 12.33 years, tritium is rarely found in nature in significant concentrations.

Instead, tritium can artificially be produced in nuclear reactors through neutron-lithium

interactions. However, tritium consumption in fusion reactors is huge, but its production

from non-fusion systems is very limited. For instance, tritium production in light water

reactors (LWR) is ∼0.5−1 kg/year, it requires special tritium breeding systems, and it is

expensive. In addition, tritium permeation is of concern and has safety implications. The

CANDU (Canada Deuterium Uranium) reactors produce ∼130 g per year from n−D reaction

and represent the only reliable source of tritium. It has been estimated that the available

tritium inventory will peak to ∼27 kg in 2027, due to CANDU accumulation over forty years

of operation [1, 2, 3]. However, after the ITER D−T experimental campaign planned to

start in 2036 and consuming ∼0.9 kg of tritium per year, only a few kilograms of tritium

(<5 kg) will be available to provide initial start-up inventory for any major D−T fusion

facility. Thus, for fusion feasibility and attractiveness, future generation nuclear fusion D−T

demonstration (DEMO) reactors and beyond, e.g. power reactors, have the imperative of
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achieving tritium self-sufficiency. Hence, a fusion reactor must have a closed fuel cycle where

tritium is bred in appropriate amounts and efficiently extracted to fuel the burning plasma.

Furthermore, tritium production must be suitable to accumulate extra amounts of tritium

which can provide the required inventories for the initial startup of other fusion facilities. In

fact, current reserves are irrelevant in a temporal horizon of 20−30 years, as tritium quickly

decays. Finally, efficient tritium management in fusion systems is absolutely necessary in

light of the the biological hazards of tritium, for safety and nuclear licensing.

Modelling and analyzing tritium transport dynamics in fusion fuel cycle is key to suc-

cessfully develop a feasible and attractive fusion technology. In this paper we derive a math-

ematical model which describes the dynamics of the fusion fuel cycle. The model is used

to evaluate tritium flow rates into and out of fuel cycle components and calculate tritium

inventory build-up in fuel cycle components. Furthermore, we perform a comprehensive

analysis of the fusion fuel cycle in order to define the requirements for achieving tritium

self-sufficiency and guide the fuel cycle R&D. Finally, an assessment of the availability of

external tritium supply for start-up of near and long term fusion facilities and the calculation

of the required start-up tritium inventory for a wide range of parameters, reactor powers,

and operating conditions, is discussed in great detail. Note that some authors [4, 5] have

argued that a tritium start-up inventory is not required at beginning of life (BOL) of fusion

reactors. Instead, they propose to start operations under D−D mode, and breed tritium by

using the soft neutrons released in the D(n, 3
2He)D reaction and the tritium generated in the

plasma via D(p, T)D reaction. However, this strategy presents noticeable difficulties: (i)

fusion in D−D plasmas is more challenging to be achieved and knowledge of D−D plasmas

is limited, and (ii) tritium production per neutron absorption is ∼0.67, which implies long

times could be needed to produce considerable amounts of tritium. Thus, the D−D option

seems unpractical, would pose additional tokamak physics and technological problems, delay

power production by years, and is not economically sensible.
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6.1.1 Literature survey and objectives of the study

A great deal of research on tritium transport modeling, self-sufficiency analysis, and start-up

inventory assessment is available in literature. The first and primary reference in the field

is a comprehensive paper published in 1986 by Abdou et al. [6]. In this paper, the authors

derived an analytical dynamic model to predict time-dependent tritium flow rates and inven-

tories in the components of the fusion fuel cycle, and discussed the physics and technology

requirements to attain tritium self-sufficiency in fusion reactors. Moreover, neutronics anal-

ysis of a wide range of breeding blankets design and materials was performed to estimate the

achievable tritium breeding ratio (TBR). The authors also developed a statistical model to

evaluate and quantify uncertainties regarding numerical modeling techniques, experimental

data, and cross sections. This paper motivated many initiatives in physics, fusion technol-

ogy, tritium processing technology in the US, EU, and Japan over three decades and recently

sparked new research in China, Korea, and India. This dynamic modeling technique and

analysis went through major improvements in the course of the years. In [7] Kuan and

Abdou developed detailed models for all sub-components of the tritium processing systems

(e.g. Impurity Separation, Isotope Separation System, etc.) to derive expressions for the

tritium mean residence time and their analysis confirmed results of [6]. In 2006 Sawan and

Abdou [8] summarized the results of [6] and [7], and added specific evaluation of the achiev-

able TBR in several blanket concepts. In [9] Abdou et al. presented a comprehensive paper

discussing various key technical issues, challenges, and required R&D of blanket and first

wall technology on the pathway to DEMO. In the paper, a short section describes the effect

of variable processing time on the tritium self-sufficiency and start-up inventory. Many other

studies [10−13] adopted the methodology presented in [6−9] to perform dynamic modeling

and analysis of specific fusion reactors (e.g. ITER, CFETR, etc.). Recently, Coleman et al.

[14] performed start-up inventory analysis for the EU-DEMO considering the effect of low

reactor load factors (∼15−45%) and the recently proposed Direct Internal Recycling1 (DIR)

1DIR is a novel tokamak exhaust gas pumping system based on superpermeation principle which works in a
continuous matter to reduce tritium residence time and potentially replace the batch-wise cryogenic pumps,
thus reducing inventory hold-up in inner part of fuel cycle. Further information on the superpermeation
concept and DIR technology can be found in [17].
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technology [15, 16]. The authors of [14] also performed parametric sensitivity studies where

the main design parameters were varied within a certain range in order to find the conditions

that minimize tritium start-up inventory and doubling time. The results presented describe

the effect of DIR, global availability, and other parameters on EU-DEMO start-up inventory

requirement and doubling time for EU-DEMO fusion power of 2037 MW. The authors’ main

findings confirmed the importance of parameters such as tritium burn fraction and fueling

efficiency on start-up inventory, as it was previously shown [9]. However, self-sufficiency

analysis was not performed while the authors assumed a representative TBR value of 1.10

for EU-DEMO and then varied it in the range (1.03−1.08) to determine its effect on fuel

cycle performances.

In this paper we aim to use a similar model to the one developed in [6−9] and extend the

analysis to incorporate other features that were not considered in the pre-existing models and

studies. The objective of this study is to determine the quantitative physics and technology

requirements for realizing tritium self-sufficiency and minimizing tritium start-up inventory

in fusion reactors during different stages of fusion technology development. In particular, in

this research we:

1. derive an up-to-date fusion fuel cycle model describing tritium flow rates and invento-

ries in fusion components with the use of the mean residence time method proposed in

[6−9];

2. include in the model the capability of describing tritium dynamics for different plasma

scenarios, e.g. burn and dwell time, shut-down due to random failures, and for sched-

uled maintenance;

3. evaluate the effect of physics parameters (e.g. tritium burn fraction in plasma, fueling

efficiency, etc.), technology parameters (e.g. tritium processing time), and other key

parameters (e.g. tritium reserve and doubling time, reactor availability factor, power

level, etc.) on tritium self-sufficiency and start-up inventory;

4. evaluate the tritium start-up inventory for various reactors with different designs and
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powers (e.g. ITER, FNSF, CFETR, DEMO, and power reactors);

5. define the R&D goals regarding the physics and technology requirements to attain

self-sufficiency and reduce the required tritium start-up inventory.

6.2 Description of the Fusion Fuel Cycle

The fuel cycle of a fusion reactor includes two sub-cycles: (1) the Inner Fuel Cycle (IFC),

i.e. Plasma Exhaust , Fuel Clean-up, Isotope Separation, Water Detritiation, Storage and

Matter Injection, and Fueling Systems, and (2) the Outer Fuel Cycle (OFC), i.e. First

Wall, Divertor, Breeding Zone, Coolant Processing and Tritium Extraction System. The

schematic of a typical fusion fuel cycle is shown in the block diagram of Fig. 6.1. The next

two subsections will discuss details of the inner and outer fuel cycles, respectively.

Figure 6.1: Schematic of main components of fusion inner and outer fuel cycles showing
main tritium flow rates in fusion systems.
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6.2.1 Inner fuel cycle: tritium storage, fueling, exhaust, fuel clean-up and pro-

cessing systems

A tritium start-up inventory is necessary to start D−T reactor operation. Tritium in the

form hydrides is initially stored in apposite metal beds (e.g. uranium). The storage system

is connected to the fueling system where D and T are prepared to fuel the plasma. Most

common techniques are: (i) injection of frozen pellets at high speed − pellet velocity of

∼1000 m/s is necessary reach the plasma core more efficiently, and (ii) gas puffing. Note

that only a fraction of the injected fuel particles, proportional to the fueling efficiency,

reaches the plasma core where particles are confined for a characteristic confinement time

and nuclear fusion reactions occur. The fraction of the fuel that does not reach the core,

or is not burned in the core, is eventually exhausted through the Scrape-off Layer (SOL)

to the vacuum pump. In the IFC tritium fluxes exhausted from the plasma through the

vacuum pump are processed in order to obtain the adequate level of purity, physical form,

and required D−T ratio to fuel the plasma. In particular, exhausted fluxes from plasma are

pumped to the fuel clean-up compartments where Plasma Enhancement Gases, e.g. Ar, Ne,

N, etc., and helium ashes are separated from hydrogenic species with the use of diffusers, e.g.

Pd-Ag alloy, and catalytic reactors with Pd membrane. After the clean-up process, hydrogen

isotopologues (e.g. H2, D2, T2, HD, HT, and DT) reach the isotope separation system (ISS).

This is a cryogenic distillation column which performs isotope separation exploiting a sensible

difference in the boiling points of H2, and T2, respectively 20 and 25 K. This technology is the

most promising among the candidates (e.g. gas chromatography, thermal diffusion method,

etc.) because it can process large flow rates and maintain high separation factor, but has the

downside of holding tritium for long times (∼hours) thus increasing the tritium inventory

in the component. The ISS is connected to the Water Detritiation System (WDS), which

executes tritium removal from tritiated water through several chemical exchange columns

(e.g. water vapor/HT), and to the storage and fueling systems.
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6.2.2 Outer fuel cycle: tritium extraction systems from blanket, plasma facing

components, and coolant

Two lines characterize the OFC: (i) Tritium Extraction System (TES) and (ii) Coolant Pu-

rification System (CPS). Tritium generated in the breeding zones of blankets is released from

lithium containing materials (ceramics, liquid metals, or molten salt) and carried to the TES

unit where tritium is separated from its carrier, e.g. helium purge gas for ceramic breeders or

eutectic Lithium-Lead for liquid metal concepts. At the same time, high tritium fluxes from

plasma, in the form of Charge eXchange Neutrals (CXN) and ions, are implanted into the

Plasma Facing Components (PFCs), i.e. first wall and divertor. Driven by concentration and

thermal gradients, tritium diffuses through structural material of PFCs and permeates to the

coolant channels. Thus, the coolant is processed in the Coolant Purification System (CPS)

units. Tritium permeation from the coolant loop to the reactor buildings is of particular

concern in fusion systems, thus design optimization of the CPS unit is critical. Finally, the

hydrogenic species recovered by the TES and CPS units reunite and are further processed

in the inner fuel cycle.
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6.3 Dynamic Fuel Cycle Model to Determine Time-dependent

Tritium Flow Rates and Inventories, and Perform Self-sufficiency

Analysis and Start-up Assessment

6.3.1 The tritium self-sufficiency condition

Due to the scarcity of tritium resources, fusion reactors must breed and efficiently extract

tritium in self-sufficient amounts. According to [6−9], the self-sufficiency condition is defined

as:

TBRA ≥ TBRR (6.1)

where the achievable TBR (TBRA) is determined by the breeding design, technology, physics,

and material choices. Neutronics studies [8] have shown that the achievable TBR is in the

range 1−1.15. However, the authors pointed out that there are various uncertainties in the

calculations due to:

1. system definition and design (e.g. breeding configuration, breeder to structure volume

ratio);

2. complexity of modeling accurate tokamak toroidal 3−D geometry with detailed FW/Blankets

and other ports in vacuum vessel (e.g. diagnostics ports);

3. nuclear cross sections multi-group data library (e.g. uncertainties in the measured

cross sections, energy and angle of secondary neutrons).

Recently an effort was launched by the fusion neutronics community to develop more realistic

models capable of representing a 3-D sector of DEMO reactors, e.g. in [18−20] various

blanket concepts designed for the EU-DEMO were simulated with the use of the MCNP

nuclear code. Results have shown achievable TBR in the range 1.10−1.30. However, the

higher values are consequence of a reduced volume of structural material in the blankets

which is not feasible in practice. When realistic design were considered, achievable TBR

<1.15 were obtained.
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The required TBR (TBRR) is defined as TBRR = 1+∆, where ∆ is the margin exceeding

unity which is needed to:

1. compensate for losses by radioactive decay (5.47% per year) during time between pro-

duction and use, and during fusion system shutdown;

2. supply tritium inventory for start-up of other reactors (for a specified doubling time);

3. provide a “reserve” storage inventory necessary for continued reactor operation under

certain conditions (e.g. a failure in a tritium processing line).

The magnitude ∆ depends on the dynamics of the entire fuel cycle which is characterized

by a handful of physics constraints and technology parameters.

Attaining tritium self-sufficiency is absolutely necessary for D−T fusion energy systems

to be feasible, since tritium is no-longer a natural element present in nature and reserves

are extremely limited, and depends on complex interactions of plasma physics and fusion

technology parameters. In order to perform tritium self-sufficiency analysis and start-up

inventory evaluation, accurate models of the fusion fuel cycle are required. The mathematical

model developed in this work is described in the following subsection.

6.3.2 System level simulation modeling of fuel cycle

6.3.2.1 The mean residence time method

In this work, the fuel cycle is modeled by using the mean resident time method proposed

in [6−9]. The overall fusion fuel cycle is described by a system of time-dependent zero-

dimensional ordinary differential equations (ODEs). Each equation describes the tritium

dynamics of a particular component of the fuel cycle. The tritium flow rates in and out of

the component and the component inventory are determined by the tritium residence time

of that specific component, i.e. a measure of how long tritium resides in a certain component

before it is released. Each component i is characterized by a tritium inventory, Ii, a tritium

residence time, τi, a tritium flow rate from component j to component i, (Ij/τj)i and j 6= i,
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and a tritium flow rate out of component i, (Ii/τi). Thus, the the rate of change of tritium

inventory in component i is determined by the tritium flow rates into and out of component

i:
dIi
dt

=
∑
j 6=i

(
Ij
τj

)
i

− (1 + εi)

(
Ii
τi

)
− λIi + Si (6.2)

where Si is a tritium source term in component i (tritium generation is normally only in

blanket modules ), and εi and λ the non-radioactive and radioactive losses respectively. The

numerical dynamic model reproduces the typical fusion fuel cycle, which we present in Fig.

6.2. In particular, each tritium flow rate is summarized in Tables 6.1 and 6.2 for the outer

and inner fuel cycles, respectively.

Figure 6.2: Detailed schematic of fusion inner and outer fuel cycles with tritium flow rates
used to build the dynamic numerical model.
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Table 6.1: Tritium flow rates in the outer fuel cycle of Fig. 6.1.

Component Flow rate Mathematical formulation

1 S1 ΛṄ−

ṁ2−1 (1− η2) I2τ2
ṁ1−2 −(1− f1−5) I1τ1
ṁ1−5 −f1−5 I1τ1
losses −ε1 I1τ1 − λI1

2 ṁ1−2 (1− f1−5) I1τ1
ṁ2−12 −η2 I2τ2
ṁ2−1 −(1− η2) I2τ2
losses −ε2 I2τ2 − λI2

3 ṁp−3 fp−3
Ṅ−

ηffb

ṁ5−3 f5−3(1− f5−6)(1− f5−10) I5τ5
ṁ6−3 f6−3(1− η6) I6τ6
ṁ3−5 − I3

τ3

losses −ε3 I3τ3 − λI3
4 ṁp−4 fp−4

Ṅ−

ηffb

ṁ5−4 (1− f5−3)(1− f5−6)(1− f5−10) I5τ5
ṁ6−4 (1− f6−3)(1− η6) I6τ6
ṁ4−5 − I4

τ4

losses −ε4 I4τ4 − λI4
5 ṁ1−5 f1−5

I1
τ1

ṁ3−5
I3
τ3

ṁ4−5
I4
τ4

ṁ5−3 −f5−3(1− f5−6)(1− f5−10) I5τ5
ṁ5−4 −(1− f5−3)(1− f5−6)(1− f5−10) I5τ5
ṁ5−6 −f5−6(1− f5−10) I5τ5
ṁ5−10 −f5−10 I5τ5
losses −ε5 I5τ5 − λI5

6 ṁ5−6 f5−6(1− f5−10) I5τ5
ṁ6−3 −f6−3(1− η6) I6τ6
ṁ6−4 −(1− f6−3)(1− η6) I6τ6
ṁ6−12 −η6 I6τ6
losses −ε6 I6τ6 − λI6
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Table 6.2: Tritium flow rates in the inner fuel cycle of Fig. 6.1.

Component Flow rate Mathematical formulation

7 ṁp−7 (1− ηffb − fp−3 − fp−4) Ṅ
−

ηffb

ṁ7−8 − I7
τ7

losses −ε7 I7τ7 − λI7
8 ṁ7−8

I7
τ7

ṁ8−9 − I8
τ8

losses −ε8 I8τ8 − λI8
9 ṁ2−9 η2

I2
τ2

ṁ6−9 η6
I6
τ6

ṁ8−9
I8
τ8

ṁ10−9
I10
τ10

ṁ9−10 −f9−10 I9τ9
ṁ9−11 −(1− f9−10) I9τ9
losses −ε9 I9τ9 − λI9

10 ṁ5−10 f5−10
I5
τ5

ṁ9−10 f9−10
I9
τ9

ṁ10−9 − I10
τ10

losses −ε10 I10τ10 − λI10
11 ṁ9−11 (1− f9−10) I9τ9

ṁ11−p − Ṅ−

ηffb

losses −λI11
12 ṁ11−12 − Ṅ−

ηffb

ṁ12−p
Ṅ−

ηffb

In these tables, Λ is the required TBR, fj−i the fraction of the total flow rate out of

component j to component i, ηi is the efficiency of tritium processing system in component

i, e.g. for components such as the TES and CPS units, Ṅ− the tritium burning rate in the

plasma, ηf the fueling efficiency, and fb the tritium burn fraction. Further detail regarding

ηf and fb definition and their effect on self-sufficiency is given in Section 6.4.
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The system of ODEs representing the overall fuel cycle is:

dI1
dt

= ΛṄ− + (1− η2)
I2
τ2
− I1
T1

(6.3)

dI2
dt

= (1− f1−5)
I1
τ1
− I2
T2

(6.4)

dI3
dt

= fp−3
Ṅ−

ηffb
+ f5−3(1− f5−6)(1− f5−10)

I5
τ5

+ f6−3(1− η6)
I6
τ6
− I3
T3

(6.5)

dI4
dt

= fp−4
Ṅ−

ηffb
+ (1− f5−3)(1− f5−6)(1− f5−10)

I5
τ5

+ (1− f6−3)(1− η6)
I6
τ6
− I4
T4

(6.6)

dI5
dt

= f1−5
I1
τ1

+
I3
τ3

+
I4
τ4
− I5
T5

(6.7)

dI6
dt

= f5−6(1− f5−10)
I5
τ5
− I6
T6

(6.8)

dI7
dt

= (1− ηffb − fp−3 − fp−4)
Ṅ−

ηffb
− I7
T7

(6.9)

dI8
dt

=
I7
τ7
− I8
T8

(6.10)

dI9
dt

=
I8
τ8

+
I10
τ10

+ η2
I2
τ2

+ η6
I6
τ6
− I9
T9

(6.11)

dI10
dt

= f9−10
I9
τ9

+ f5−10
I5
τ5
− I10
T10

(6.12)

dI11
dt

= (1− f9−10)
I9
τ9
− Ṅ−

ηffb
− λI11 (6.13)

ṁ12−p =
Ṅ−

ηffb
(6.14)

where 1
Ti

= 1+εi
τi

+ λ, and the initial conditions are:

• Ii(t = 0) = Ii,0 = 0 for i = 1, 2, ..., 10;

• I11(t = 0) = I011 is the initial start-up inventory.

This system of equations was numerically implemented with the use of the MATLAB/Simulink

computing environment. The Simulink ODE solvers offer efficient computational perfor-
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mance, and the scope blocks allow on-line tracking of inventories and flow rates time evo-

lution. Moreover, Simulink’s library includes several predefined signal blocks which can be

used to model the plasma operating scenario which determines the reactor availability fac-

tor, e.g. through the pulse generator block. The model tracks tritium inventory build-up

and tritium flow rates into and out of the fuel cycle components. The performance of each

component is modeled by a handful of characteristic parameters (e.g. residence and process-

ing times, tritium extraction and fueling efficiency, etc.) representative of each technology.

No effort is spent to solve any transport phenomena and/or chemical balance in detail with

typical numerical method used for dimensional modeling. Instead, our modeling technique

can be classified as system-level simulation (SLS), i.e. a simulation where the level of de-

tail is adjusted to the practical simulation of large and complex systems which comprehend

various components that are not completely defined. Thus, the model does not require a

detailed knowledge of each part of the system and can serve as a precious tool to investigate

the performance of the overall system in the early stages of conceptual design. This choice

allows overcoming some challenging issues of fuel cycle modeling:

1. self-sufficiency analysis requires a computational technique which ensures simulations

of reactor performances over a reactor lifetime, i.e. ∼30 years. Thus, the computational

technique must ensure acceptable computational times;

2. several components of fuel cycle system are still in conceptual design phase. There-

fore detailed modeling may not be practical. Modeling of components as black boxes,

with an associated residence time, is more practical and yields results useful to under-

standing the overall system behavior and the importance of certain components and

parameters.

Our model may also be used for sensitivity analyses and gives helpful information back to

the system level designers, e.g. on acceptable residence times, and hence directly influences

technology choices. Note that detailed models of fuel cycle components, where constitutive

governing equations are numerically solved, exist in literature, e.g. for the Helium Coolant

Ceramic Reflector Test Blanket Module (HCCR−TBM) [22−25]. Further advancement of
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outer fuel cycle modeling was shown in [26] and [27], where the authors integrated the

detailed model to system level in order to represent typical tritium streams. Despite the

improvements in the computational technique used for this kind of modeling, high fidelity

models require a significant computational power. Thus, simulations are possible only on

short time scales, e.g. a few days, and are therefore unpractical for extending the analysis over

the reactors lifetime. However, the higher fidelity of these models provides various data, e.g.

processing times, permeation rates, losses to environment, etc., which constitutes precious

input to the system-level model and helps to maintain a high accuracy in the residence time

models.

6.3.2.2 Evaluation of start-up inventory and required TBR

The storage system dynamics was accurately described by Kuan and Abdou in Ref. 7 and

is summarized in Fig. 6.3. The tritium inventory initially contained in the storage system

(I0S) characterizes the start-up inventory. As reactor operation begins, the tritium inventory

in the storage decreases, as tritium is provided to the fueling system and, ultimately, to

the plasma. Thus, after it reaches a minimum, the storage inventory starts to increase as

a result of the extraction and accumulation of tritium coming from the outer fuel cycle

(i.e. the tritium bred in blanket modules and extracted by the tritium extraction systems)

and due to the re-circulation of tritium processed in the inner fuel cycle (i.e. the tritium

contained in the plasma exhaust). In particular, the storage inventory must include a reserve

inventory (Ir) in order to allow continuous reactor operation in case of any malfunctions due

to random failures in a part of any tritium processing line. This reserve inventory is critical

to ensure high level of plant reliability and availability, which has direct implications to the

competitiveness of fusion technology. In this work, we specify the minimum storage inventory

as:

IminS = Ir (6.15)

Ir =
Ṅ−

ηffb
trq (6.16)
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Figure 6.3: Qualitative description of the storage system tritium inventory dynamics.

where tr is the reserve time, i.e. the period of tritium supply kept in reserve storage to

maintain the plasma and the power plant operational in case of any malfunction in a fraction

q of any tritium processing system. This implies that the storage system is able to provide

the necessary tritium injection rate to the plasma Ṅ−/ηffb for a time tr when a fraction q of

the fuel cycle fails. The definition of burn fraction, fueling efficiency, and tritium injection

rate is given in Section 6.4.

After a doubling time (td) the storage system inventory reaches a value equal to twice

the initial inventory:

IS(td) = 2I0S (6.17)

Thus, in a doubling time, the reactor generates a sufficient start-up inventory to start a sec-

ond reactor. Here we assume this second reactor has the same technology and characteristic

parameters of the original first reactor, hence the same start-up inventory is needed. How-

ever, this assumption is conservative since in times of ∼ td (which is several years) technology

may advance, and lower start-up may be sufficient. Note that an alternative definition of

Eq. 6.17 is available in various previous researches [6−9] as IS(td) = I0S + IminS . However,

Eq. 6.17 is slightly more conservative (see TBRR values reported in TABLE II of [6]) and
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we believe more appropriate at this state of knowledge of fusion technology.

The required TBR (TBRR) and tritium start-up inventory (I0S) are mutually dependent

and neither of them is known in the beginning of the calculation. Therefore, the code

calculates the required TBR and tritium start-up inventory through iterations. Given the

weak dependency of start-up inventory on required TBR, convergence with a degree of

accuracy of 0.01% is found for Eq. 6.17 in a few iterations.

6.3.2.3 Reactor availability factor modeling

In order to account for ordinary maintenance period and/or unexpected shutdown due to

random failures, we introduced in the model an overall reactor duty or availability factor

(AF ), which was originally defined in [21], and can be written as:

AF =
MTBF

MTBF +MTTR
=

1

1 + MTTR
MTBF

(6.18)

where MTBF is the mean time between failures (plasma on) and MTTR the mean time to

repair (plasma off). A switch operator which turns the plasma on and off according to the

MTBF and MTTR periods is implemented in the numerical model in order to account for

the availability factor of the plant.

Analyses have shown that, in order to obtain an overall availability factor > 50% for a

DEMO reactor, the blanket/divertor system shall require MTBF > 10 years and MTTR <

1 month, giving a blanket/divertor availability factor of ∼ 87% [21]. Extrapolation from

other technologies, e.g. aerospace and fission industry, shows expected MTBF for fusion

blankets/divertor as short as ∼ hours− days, and MTTR ∼ months denoting a significant

difference between requirements and expectations. The fundamental reasons which lead to

short MTBF , long MTTR, and low expected availability in current fusion confinement sys-

tems reside in the necessary choice of locating the Blanket/FW/Divertor inside the vacuum

vessel2, which is a low fault tolerance domain and requires immediate shutdown in case of

2The decision to insert the blanket inside the vacuum vessel is necessary to protect the vacuum vessel,
which must be robust and cannot be in high radiation, temperature, stress state facing the plasma.
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various failures (e.g. coolant leak). Furthermore, due to limited physical space and other

considerations, no redundancy is possible. Long MTTR is due to the difficulties in accessing

the nuclear components inside the vacuum vessel. Repair and replacement require breaking

the vacuum seal, many connects/disconnects, and many operations in the limited access

space of tokamaks, stellerators, and other “toroidal/closed” configurations. Large surface

area of the first wall results in high failure rate for a given unit failure rate per unit length

of piping, welds, and joints, determining short MTBF .

Low availability factors could have tremendous consequences on tritium economy and

self-sufficiency: during the reactor downtime (i.e. during the MTTR) tritium production in

blankets is interrupted whilst tritium is continuously lost by radioactive decay. Thus, the

TBR requirements could become more demanding in case of low availability factor. In the

fusion development pathway there are three different stages of reactor development:

1. Near tern plasma-based experimental facilities (e.g. FNSF, VNS, CTF, etc.);

2. DEMO reactors (e.g. EU-DEMO, K-DEMO, etc.);

3. Power reactors.

These facilities will have different performance, reliability, and availability. Near-term fa-

cilities are expected to have availability factor <30%, DEMO should reach availability of

∼30−50%, whereas high availability factors (>80%) are needed in future commercial fusion

power plants to ensure competitiveness and establishment of fusion technology as a reliable

energy source. In this study, we perform self-sufficiency analysis to assess the effect of avail-

ability factors on required TBR for the different stages of fusion technology and suggest ideas

to enable compensation for shortfall in tritium breeding of near term devices.
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6.3.3 Parameters and tritium processing times of various subsystems

A literature survey was performed to determine the parameters to use in the analysis which

we summarize in Tables 6.3, 6.4, and 6.5 − refer to the underlined value in case multiple

parameters are shown for the same technology as some discrepancies were found among the

data reported in literature.

Table 6.3: Main parameters for the reference case.

Parameter Value Reference/Explanation

Ṅ− 0.459 kg/day Burning rate for 3 GW fusion plant

fb 0.35% State-of-the-art (ITER) [3]

1.5% Expected for first DEMOs [14]

ηf 50% Barry, DEMO 2016 [3]

70% Coleman et al. [14]

Table 6.4: Inner fuel cycle processing times chosen for the reference case.

Component Processing Time Reference

Vacuum Pump 600 s Day et al. [15]

150 s Coleman et al. [14]

1 day Abdou et al. [6]

0.1 day Abdou et al. [9]

Fuel Clean-up & Isotope Separation System 1.3 h Day et al. [15]

5 h Coleman et al. [14]

0.1 day Abdou et al. [6]

1 - 24 h Abdou et al. [9]

4 h Chosen for analysis

Water Detritiation System 1 h Day et al. [15]

20 h Coleman et al. [14]
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Table 6.5: Outer fuel cycle processing times (and residence times) chosen for the reference
case.

Component Processing Time Reference

Breeding Zone 10 days Abdou et al. [6]

0.1 - 1 day EXOTIC -6, -7, -8 [28]

TES 1 day Abdou et al. [6,9]

Negligible (on-line) Demange et al. [29]

1-5 days (batch-wise) Riva et al. [27]

CPS 100 days Abdou et al. [6,9]

10 days Chosen for analysis

FW 1000 s Riva et al. [27]

Divertor 1000 s Riva et al. [27]

Steam Generator 1000 s Chosen for analysis

Table 6.6: Flow rates fractions and component efficiency assumed for the reference case.

Flow Rate Fraction Value

f1−5 10−2

fp−3 10−4

fp−4 10−4

f5−3 0.6

f5−6 10−2

f5−10 10−4

f6−3 0.6

f9−10 10−1

η2 0.95

η6 0.95
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Note that the CPS processing time is chosen to be 10 days arbitrarily to account for the

slow recovery process expected in coolant systems, given the early stage of this technology,

and to be conservative. Finally, we summarize in Table 6.6 the values of flow rate fractions

(fj−i), which indicate the fraction of the flow rate from component j which flows to com-

ponent i, and tritium processing efficiency (ηi), e.g. for components such as TES and CPS

units. All losses to environment εi are set to 10−4 arbitrarily. We assume there are no direct

losses to environment from the blanket and PFCs, since these components are in the vacuum

vessel, and from the storage and fueling system, since the fuel is stored and processed at low

temperature (ε1 = ε3 = ε4 = ε11 = ε12 = 0).
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6.4 Analysis and Discussion

Tritium inventory dynamics and hence self-sufficiency are complex functions of plasma

physics, technology, fuel cycle design, and operating parameters. The key parameters af-

fecting tritium inventories and required TBR are summarized in Table 6.7.

Table 6.7: Key parameters affecting tritium inventories, and hence, required TBR.

1. Tritium burn fraction in the plasma (fb)

2. Fueling efficiency (ηf )

3. Time(s) required for tritium processing of various tritium-containing streams,

e.g. plasma exhaust, tritium-extraction fluids from the blanket (tp)

4. Availability factor (AF ) of the power plant

5. Reserve Time (tr), i.e. period of tritium supply kept in reserve storage to

keep plasma and plant operational in case of any malfunction in a part (q) of

any tritium processing system

6. Parameters and conditions that lead to significant trapped inventories in reactor

components (e.g. in divertor, FW); and Blanket inventory caused by bred tritium

released at a rate much slower than the T processing time

7. Inefficiencies (fraction of T not usefully recoverable) in various tritium processing

schemes (εi)

8. Doubling time (td) for fusion power plants (time to accumulate surplus tritium

inventory sufficient to start another power plant)

The tritium burn fraction (fb) is a measure of the amount of tritium burned in the

plasma before confinement is lost and particles diffuse through the Scape-off Layer (SOL).

It is defined as the ratio of the tritium burning rate (Ṅ−) to the tritium fueling rate (Ṫf ) as

shown in Eq. 6.19:

fb =
Ṅ−

Ṫf
(6.19)

The tritium fueling rate (Ṫf ) is the fraction of tritium injection rate (Ṫi) that has penetrated

the plasma and reached the core region. In particular, the fueling efficiency is defined as the
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ratio of the tritium fueling rate to the tritium injection rate:

ηf =
Ṫf

Ṫi
(6.20)

Combining Eqs. 6.19 and 6.20 we obtain an expression for the tritium injection rate as:

Ṫi =
Ṫf
ηf

=
Ṅ−

ηffb
(6.21)

Thus, in order to minimize the tritium injection rate, one needs to maximize the tritium

fueling efficiency and burn fraction. Assuming a 50% − 50% D − T mixture, where tritium

and deuterium density is nT = nD = n, an expression for fb can be derived as:

fb =
< σv > nτ ∗

2+ < σv > nτ ∗
(6.22)

where < σv > the product of energy-dependent cross section (σ) for the D-T reaction, (v)

the velocity, and τ ∗ the effective particle confinement time, which is defined as:

τ ∗ ' τ

1−R
(6.23)

where τ the confinement time and R is the recycling coefficient (from the edge). Since the

1980s, reactor studies assumed R = 0.95, with no theoretical or experimental evidence, in

order to obtain very high fb, e.g. 30−40%. Recent experimental results showed that gas

fueling is highly inefficient (R ∼ 0), leading to very low values of burn fraction and fueling

efficiency. Detailed analysis of extrapolation of the state-of-the-art in plasma physics and

fusion technology, represented by ITER with burn fraction of 0.35% and fueling efficiency

<50%, to future DEMO and power plants showed that serious programs of R&D are required.

These critical issues were addressed in several publications over the years. Even though

substantial progress has been made in several areas of plasma physics, technology, and design,

nevertheless there is a number of challenges that have not been resolved yet. In this paper,

we propose a detailed analysis of the fuel cycle performance and aim to stimulate new ideas
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and approaches toward fulfilling the principal requirements of the tritium fuel cycle.

6.4.1 Calculation of tritium inventory in various systems as function of key

physics and technology parameters

The time evolution of tritium inventories in various components of the fuel cycle are presented

in Fig. 6.4. These inventories refer to a reactor producing 3 GW of fusion power and are

calculated for steady-state reactor operation, i.e. in this analysis we do not consider shut-

down periods due to random failures or ordinary maintenance. In particular, we evaluate

the tritium inventories for different values of burn fraction and fueling efficiency product,

i.e. for the ITER state-of-the-art parameters fb =0.35% and ηf optimistically assumed to

be 50% (black lines), ηffb =1% (blue lines), and ηffb =5% (magenta lines).

Figure 6.4: Tritium inventory evolution in various systems. The black lines represent extrap-
olation of ITER state-of-the-art (fb =0.35% and ηf optimistically assumed to be 50%), the
blue lines show ηffb =1%, and the magenta show ηffb =5%. Parameters used in the analy-
sis: ISS processing time = 4 h, Breeding Zone residence time = 1 day, Tritium Extraction
System processing time = 1 day, availability factor = 100%, fusion power = 3 GW, reserve
time = 24 h, fraction failing = 25%, doubling time = 5 years.
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As noted in the figure, the storage inventory decreases from its initial value to a minimum,

as tritium inventory builds up in the other components, and then, it starts to rapidly in-

crease, as inventory build-up in components reaches saturation. In particular, the minimum

inventory in the storage system is found after ∼6−8 days. The isotope separation system

(ISS) is the most demanding component in terms of inventory build-up. The equilibrium

value of tritium inventory in ISS is found after ∼1 day of operation. Note that the ISS

inventory and the storage inventory are very sensitive to the burn fraction and fueling effi-

ciency product, which determine the amount of tritium exhausted to the inner fuel cycle line.

Instead, the breeding zone (BZ) and tritium extraction system (TES) do not directly depend

on the burn fraction and fueling efficiency; however, slight differences in the BZ and TES

inventories are seen for different values of ηffb due to the different required TBR obtained

for each ηffb considered. A reactor that operates with ITER state-of-the-art parameters has

a required TBR of 1.46, which is impossible to achieve in practice, whilst values of ηffb of

1% and 5% require a TBR of 1.08 and 1.02, respectively.

In Subsection 6.4.2 we perform tritium self-sufficiency analysis to explore the performance

of the fuel cycle under a wide range of parameters. The tritium start-up inventory assessment

is presented in Subsection 6.4.3.

6.4.2 Physics and technology parameters window for tritium self-sufficiency

We start our analysis with presenting in Table 6.8 the calculated TBRR for various availabil-

ity factors (AF=10%, 30%, 50%, 90%, calculated by maintain the MTBF fixed at 7 days

and varying the MTTR), and two cases of tritium burn fraction (fb = 0.35% representing the

state-of-the-art value for ITER, and fb = 1.5% which is considered a reasonable assumption

for first DEMO [14]). The parameters used in the analysis are presented in Tables 6.3 − 6.6;

we summarize here the most important ones: the processing time in ISS (τ9 = tp) is 4 h,

the tritium residence time in blanket (τ1) and processing time in TES (τ2) are both 1 day,

the reserve time (tr) is 1 day, the doubling time (td) is 5 years, the fraction of system failing

(q) is 25%, and the reactor power is 3 GW corresponding to a tritium burning rate (Ṅ−) of
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0.459 kg/day.

Table 6.8: Calculated values of required TBR using ITER and DEMO expected burn fraction
values, i.e. fb =0.35% and fb =1.5% respectively, and fueling efficiency assumed to be
50%. Availability factors of 10%, 30%, 50%, and 90% are considered. Parameters used in
the analysis: ISS processing time = 4 h, Breeding Zone residence time = 1 day, Tritium
Extraction System processing time = 1 day, fusion power = 3 GW, reserve time = 24 h,
fraction failing = 25%, doubling time = 5 years.

fb = 0.35% (ITER) fb = 1.5% (DEMO)

AF 10% 30% 50% 90% 10% 30% 50% 90%

TBRR 3.56 2.01 1.70 1.53 1.52 1.21 1.14 1.11

With current state-of-the-art plasma physics and technology requirements, represented by

ITER with fb =0.35% and ηf <50%, self-sufficiency cannot be attained as TBRR > TBRA

as shown in Table 6.8. Moreover, initial start-up tritium inventory would be ∼140 kg for a

3000 MW reactor, when ITER state-of-the-art values are used in the analysis. An increase

in the tritium burn fraction to the value of 1.5% improves the scenario noticeably and offers

a concrete window of possible self-sufficiency: TBRR ≤ 1.15 for AF > 50%. Table 6.8 also

shows a critical dependence of the required TBR on the availability factor: as AF decreases

TBRR increases dramatically.

Further details and analyses are proposed in the following sub-sections where we explore

the effect of various parameters on the required TBR in order to define the phase space of

tritium self-sufficiency. Due to the uncertainties in predicting the achievable TBR, which

is expected to be in the range 1.05−1.15, we attribute different levels of confidence in at-

taining tritium self-sufficiency to different values of required TBR. In particular, we consider

attaining self-sufficiency:

• unlikely: if TBRR > 1.15;

• Possible: if 1.05 < TBRR < 1.15 (represented by the area shown in light green in the

plots presented in the following subsections);

• Possible with high confidence: if TBRR < 1.05 (represented by the area shown in dark
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green in the plots presented in the following subsections).

6.4.2.1 Effect of tritium burn fraction, fueling efficiency, and tritium processing

time on tritium self-sufficiency

Figure 6.5 shows the required TBR variation as a function of the fueling efficiency and burn

fraction product (ηffb). Furthermore, the plot shows the effect of the tritium processing time

of the Isotope Separation System (tp) on the required TBR. Representative processing times

of 1, 4, and 12 hours are used in the analysis. The required TBR is plotted for availability

factors of 50%.

Figure 6.5: Required TBR as a function of the product of tritium burn fraction and fueling
efficiency for various tritium processing times in the Isotope Separation System (1, 4, and
12 h) and availability factor of 50%. Fixed parameters used in the analysis: Breeding Zone
residence time = 1 day, Tritium Extraction System processing time = 1 day, availability
factor = 50%, fusion power = 3 GW, reserve time = 24 h, fraction failing = 25%, doubling
time = 5 years.

It is seen that the TBRR increases slightly if the product of tritium burn fraction and

fueling efficiency decreases from 5% to 3%, largely if ηffb decreases from 3% to 1%, and

dramatically if ηffb is lower than 1%. Thus, burn fraction and fueling efficiency represent
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dominant parameters towards realizing tritium self-sufficiency. However, the results of Fig.

6.5 suggest that reducing the tritium processing time in the inner fuel cycle (i.e. in the ISS

in particular) has major impact on reducing the required TBR, especially at low ηffb. Con-

versely, if tritium processing time is high (∼12 h), self-sufficiency is impossible at ηffb <1%.

Required TBR in the 1.05−1.15 range is observed if 0.7% < ηffb <2% and the processing

time is less than 4 hours. Furthermore, a wide region of possible self-sufficiency with high

confidence is seen for ηffb >2% at processing time of 1−4 hours. Hence, major effort should

be made to develop efficient processing units in the inner fuel cycle to minimize the required

processing time as major improvements are needed for attaining tritium self-sufficiency with

higher confidence level. The suggested R&D goals are to achieve a product of fueling effi-

ciency and tritium burn fraction greater than 5% (or, at least not lower than 2%) and tritium

processing time shorter than 4 hours.

6.4.2.2 Self-sufficiency analysis during different stages of nuclear fusion devel-

opment: the effect of reactor availability factor

In this section we explore the effect of the reactor availability factors on self-sufficiency.

Figure 6.6 shows that the availability factor has a significant effect on the TBRR. In detail,

the required TBR increases slightly when AF is reduced from 80% to 60%, significantly

when AF is reduced from 60% to 30%, largely when AF is reduced from 30% to 10%,

and dramatically when AF is less than 10%. In fact, low availability factor implies long

times when tritium generation does not occurs (i.e. during MTTR) but tritium is lost due

to radioactive decay. Thus, higher TBR is required during reactor operation in order to

meet the requirements expressed in Eq. 6.17. Hence, the self-sufficiency problem is affected

by the “Long-Term” system dynamics, i.e. for times ∼ td which are comparable to the

tritium half-life. Conversely, the start-up inventory is practically not affected by the reactor

availability since the tritium inventory in the storage system starts to increase in a few days,

as explained in Paragraph 6.3.2.2. Thus, the start-up inventory depends on the “Short-Term”

system dynamics, when losses by radioactive decay are small.
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Figure 6.6: Required TBR as a function of reactor availability factor for various tritium burn
fraction and fueling efficiency products. Parameters used in the analysis: ISS processing time
= 4 h, Breeding Zone residence time = 1 day, Tritium Extraction System processing time =
1 day, fusion power = 3 GW, reserve time = 24 h, fraction failing = 25%, doubling time =
5 years.

Low reactor availability factor is expected in the early stage of fusion technology devel-

opment, e.g. for experimental facilities and DEMO reactors, due to frequent random failures

(short MTBF ) and long times needed to repair/replace components (long MTTR). As

physics and technology improve, the fusion systems will reach higher degree of maturity

and longer availability factors will be achieved. Thus, these results imply that attaining tri-

tium self-sufficiency in near-term fusion experimental facilities (e.g. FNSF, VNS, CTF,etc.)

could be impossible in light of the predicted low availability factor [21]. Therefore, near-term

facilities should have low power in order to:

1. Reduce the required tritium start-up inventory (non-fusion sources are not available);

2. Enable compensation for shortfall in tritium breeding.

On the other hand, we found that there only is a marginal change in the TBRR if AF > 60%

for specific values of ηffb. Thus, attaining tritium self-sufficiency in power reactors, which
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have AF >80%, will be less challenging and will depend on the performance of fusion fuel

cycle and advances in plasma confinement. To summarize, tritium self-sufficiency is:

• impossible if AF <10% for any ηffb;

• impossible if ηffb <0.5% for any availability factor;

• possible if 10%< AF <30% and ηffb >2%;

• possible if AF > 30% and 1%≤ ηffb ≤2%;

• possible with high confidence if AF >50% and ηffb > 2%.

Results suggest that obtaining high availability factor in fusion reactors is absolutely

necessary to achieve fuel self-sufficiency and accomplish a competitive alternative to con-

ventional power plants. In order to improve the fuel cycle design and reliability, near-term

experimental facilities should be constructed. Main goals of these facilities should be (i) iden-

tifying random failure types, (ii) evaluating the random failure rates, and (iii) performing

blankets and fuel cycle R&D, (iv) obtaining higher fuel cycle reliability and reactor availabil-

ity factor, and (v) investigating other issues that affect the likelihood of attaining tritium

self-sufficiency. These near-term devices must be designed to have small fusion powers in

order to enable mitigation for shortfall in tritium breeding.

176



6.4.2.3 Penetration of fusion energy into power market

In this subsection we analyze the effect of the doubling time on the required TBR for a

fusion near-term facility with modest availability factor of 30% (Fig. 6.7), and a mature

power reactor with high availability factor of 80% (Fig. 6.8). The doubling time is 1, 3, 5,

and 7 years for both cases. As shown in Fig. 6.7, self-sufficiency is possible if ηffb >1%

for doubling time of ∼5−7 years and for shorter doubling time, i.e. td =3 years when

ηffb =1.5%. It is impossible to obtain a required TBR lower than 1.15 for short doubling

time of 1 year. Fig. 6.8 shows lower required TBR values for the same burn fraction, fueling

efficiency, and doubling time due to an increase of the availability factor from 30% to 80%.

Figure 6.7: Required TBR as a function of the product of tritium burn fraction and fueling
efficiency for various doubling times (1, 3, 5, and 7 years) for availability factor of 30%.
Parameters used in the analysis: ISS processing time = 4 h, Breeding Zone residence time
= 1 day, Tritium Extraction System processing time = 1 day, fusion power = 3 GW, reserve
time = 24 h, fraction failing = 25%, availability factor = 30%.

Due to the scarcity of tritium resources and the inadequacy of non-fusion facilities to pro-

vide the required amounts of tritium to fusion facilities, the penetration of fusion technology
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Figure 6.8: Required TBR as a function of the product of tritium burn fraction and fueling
efficiency for various doubling times (1, 3, 5, and 7 years) for availability factor of 80%.
Parameters used in the analysis: ISS processing time = 4 h, Breeding Zone residence time
= 1 day, Tritium Extraction System processing time = 1 day, fusion power = 3 GW, reserve
time = 24 h, fraction failing = 25%, availability factor = 80%.

into the energy market will be strongly affected by the capability of the fusion reactors to

achieve self-sufficiency and generate appropriate start-up inventory to begin operation of new

reactors in short times. Typical doubling time of mature power industry, e.g. conventional

power plants, fission reactors, etc., is 5−7 years. However, for fusion technology a shorter

doubling time, e.g. ∼1−3 years, is highly desirable because of the lack of tritium resources.

The analysis shows that it is possible to attain tritium self-sufficiency for doubling time as

short as 3−5 years at low availability factors, which would allow the generation of tritium

start-up inventory for several DEMO reactors in reasonable times, but major improvements

regarding tritium burn fraction and fueling efficiency must be accommodated. For power

reactors self-sufficiency is less challenging and can be achieved for a wide range of parameters.
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6.4.3 Assessment of the availability of external tritium supply for start-up of

near and long term fusion facilities and calculation of the required start-

up tritium inventory

The issue of external tritium supply from non-fusion sources is serious and has major im-

plications on fusion development pathway. As discussed in Section 6.1 DEMO and future

generation power plants require ∼55.8 kg of T per 1000 MW of fusion power per year. Tri-

tium production rate in fission reactors is much smaller than the tritium consumption rate

in fusion reactors: tritium production in light water reactors (LWR) is limited to ∼0.5−1

kg/year whilst CANDU reactors produce ∼130 g per GWe per fpy from n−D reaction.

Future supply from CANDU depends on whether current reactors can be licensed to ex-

tend life by 20 years after refurbishment; however, there are political, national policy, and

practical issues, e.g. implies tritium permeation and safety issues. Furthermore, tritium

generation in fission reactors requires special tritium breeding systems and is very expensive

(∼80M−130M per kg, per DOE Inspector General). Other non-fission sources, e.g. proton

accelerator (APT), were proved to be uneconomical. Because of the relatively short life of

tritium, which decays at a rate of ∼5.5% per year (12.32 years half-life), and the issues and

limitations of tritium production in fission systems, tritium resources available now from

non-fusion sources are irrelevant to evaluating availability of tritium for start-up of DEMO

or FNSF which will be constructed after 2040.

The time evolution of tritium inventory available to provide start-up for fusion reactors is

presented in Fig. 6.9 [30]. With production and decay over 40 years of operation of CANDU

reactors, tritium supply peaks at 27 kg in 2027. A successful ITER D−T campaign starting in

2036 will leave only a few kg of tritium (<5 kg in 2050) left to provide a start-up inventory for

any major D−T fusion facility. With many independent countries currently designing their

own DEMO reactors, e.g. EU-DEMO, K-DEMO, etc., and planning operation to begin after

2040, it is necessary to accurately evaluate the tritium start-up inventory necessary to start

DEMO(s), since tritium resources could be exhausted or not sufficient. Hence, minimizing

the tritium start-up inventory is key developing a sustainable and economic fusion technology,
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which can be competitive in the energy market without further delay.

Figure 6.9: Tritium inventory available to provide start-up inventory in the temporal window
2000−2060 [30].

In the following subsections we perform tritium start-up inventory evaluation for different

reactor powers and technology parameters. Our analysis shows that the tritium start-up

inventory depends mainly on the fusion power, the amount of reserve inventory kept in the

storage system to supply tritium in case of partial failures in the fuel cycle (see Eq. 6.16),

and the tritium processing time.

6.4.3.1 Implications of tritium processing time on start-up inventory

The effect of tritium processing time on start-up inventory is shown in Fig. 6.10 for a reactor

of 3000 MW of fusion power. In the simulation we account for a reserve time of 24 h and

a fraction of the fuel cycle failing of 25%. Fig. 6.10 shows that a processing time reduction

from 12 hours to 1 hour corresponds to a start-up inventory decrease from ∼39 kg to ∼16

kg, i.e. difference of ∼23 kg, when ηffb=1%, while a reduction from ∼14 kg to ∼6 kg, i.e. a

difference of 8 kg, is obtained if ηffb=3%. Thus, reducing the processing time is particularly

useful at low to mid ηffb. For a 3 GW fusion power reactor the tritium initial start-up
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inventory is <10 kg when tp <4 hours and if the product of the tritium burn fraction and

fueling efficiency is >2%. Start-up inventories smaller than 5 kg are only possible for higher

burn fraction and fueling efficiency, ηffb >4%, and shorter processing times, tp <4 hours.

Figure 6.10: Start-up inventory as a function of tritium burn fraction and fueling efficiency
product for tritium processing time in ISS of 1, 4, and 12 hours. Parameters used in the
analysis: Breeding Zone residence time = 1 day, Tritium Extraction System processing time
= 1 day, fusion power = 3 GW, reserve time = 24 h, fraction failing = 25%, doubling time
= 5 years.

Since most part of the tritium in the plasma is exhausted to the inner fuel cycle processing

line, an efficient and fast tritium processing system must be designed in order to recover

tritium and inject it into the plasma in the shortest possible time. In fact, if the time lag

between tritium use and recovery increases, a larger start-up inventory will be necessary to

compensate for delays in tritium availability. Thus, in order to reduce the start-up inventory,

the tritium processing time must be minimized, e.g. by replacing batch technologies with

continuous technology as explained in [15, 16, 27]. Moreover, a reduction of processing time

implies lower inventory held in the various components of the fuel cycle, which is beneficial

for safety.
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6.4.3.2 The necessity of high fuel cycle reliability to reduce the reserve inven-

tory

In Figs. 6.11 and 6.12 we show the total start-up and reserve inventory for reserve time 0−48

hours and various values of burn fraction and fueling efficiency product. Note we use fraction

of fuel cycle that has a failure to be q =25%. The reserve inventory is proportional to the

product of tr and q. Therefore, the reserve inventory for other values of q can be deduced

from the figures by using values of tr that can keep the product trq constant. Overall, the

total start-up inventory can be <10 kg, if tr <24 hours and ηffb ≥2%, and <5 kg, if tr <6

hours and ηffb ≥3%, as seen in Fig. 6.11. Large amounts of tritium reserve inventory

to compensate for some major malfunction in the tritium fuel cycle system may be not

feasible at low ηffb. For example, ∼9−10 kg of extra tritium are required if we increase

the reserve time form 6 hr to 24 hr for ηffb =1% when the fraction of failure is q =25%.

Thus, even though it is desirable to maintain the reactor in operation for as long as possible,

when failures are not resolved in a few hours the reactor shutdown seems inevitable, since

the reserve inventory magnitude may be too large. Moreover, in case of low availability

factors in the early stages of fusion technology development, the reserve inventory is not as

meaningful as it is for a mature technology since the reserve time (tr ∼ hours) may be orders

of magnitude lower than the MTTR (∼ days −months). For these situations, the reactor

shutdown seems unavoidable and an extra amount of tritium should be obtained to overcome

tritium radioactive decay during the repair time (this may be provided by the TBR without

the need of purchasing extra tritium outside the reactor). If technology is more mature and

reliable, and high ηffb is reached, it is possible to increase the reserve time and, at the same

time, maintain acceptable values of reserve inventory. In Fig. 6.12 we see that the reserve

inventory is always lower than 5 kg if ηffb >2%) even for 24 hours of reserve time. The

analysis suggests that the tritium processing systems must be highly reliable in order to

increase the overall reactor availability since long reserve times seem not feasible in practice,

and lead to unacceptable reserve and start-up inventories requirements. A tritium reserve

inventory should however be accumulated by using some of the TBR margin produced within

the same reactor.
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Figure 6.11: Start-up inventory as a function of tritium burn fraction and fueling efficiency
product for various reserve times. Parameters used in the analysis: ISS processing time =
4 h, Breeding Zone residence time = 1 day, Tritium Extraction System processing time = 1
day, fusion power = 3 GW, fraction failing = 25%, doubling time = 5 years.

Figure 6.12: Reserve inventory as a function of tritium burn fraction and fueling efficiency
product for various reserve times. Parameters used in the analysis: ISS processing time =
4 h, Breeding Zone residence time = 1 day, Tritium Extraction System processing time = 1
day, fusion power = 3 GW, fraction failing = 25%, doubling time = 5 years.
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It is worth noticing that the reserve time also affects the required TBR. Figure 6.13 shows

the effect of reserve time on required TBR. We note that the increase of the tritium burn

fraction narrows the difference in the required TBR for a certain reserve time. One day of

reserve inventory with 25% of the fuel cycle failing leads to TBRR <1.15 when the reactor

has ηffb ∼1%. Higher product of burn fraction and fueling efficiency (ηffb ≥3%) allows a

reserve time of 2 days and gives TBRR ≤ 1.05, making self-sufficiency very likely. Even

though the effect of longer reserve time on required TBR is noticeable, we can conclude that

self-sufficiency is possible or possible with high confidence for a wide range of reserve times,

especially at mid-to-high burn fraction and fueling efficiency product.

Figure 6.13: Required TBR as a function of tritium burn fraction and fueling efficiency
product for various reserve times. Parameters used in the analysis: ISS processing time =
4 h, Breeding Zone residence time = 1 day, Tritium Extraction System processing time = 1
day, fusion power = 3 GW, fraction failing = 25%, doubling time = 5 years.
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6.4.3.3 Effect of reactor fusion power on tritium start-up inventory

Thus far we calculated the start-up inventory for fusion power of 3 GW. However, near-

term fusion development facilities (e.g. FNSF, VNS, CTF, CFETR) are designed for lower

fusion powers. In Fig. 6.14 we explore the effect of the device fusion power on the start-up

inventory in the case of 2019 state-of-the-art physics and technology parameters (red lines)

and in the case of major advances in physics and technology (blue lines). We found a linear

dependency between the tritium start-up inventory and the fusion power. In particular,

the tritium start-up inventory for a reactor of 100 MW fusion power is as small as 1 kg at

ηffb ∼ 0.5% or a few hundreds of grams if ηffb increases, but can be as high as ∼30−40

kg for 2−3 GW reactors at low ηffb. The product ηffb ∼5% is required to obtain a tritium

start-up inventory smaller than 5 kg for a mature fusion reactor with a reserve time of 1 day.

We present in Fig. 6.15 the start-up inventory for various reactors with different power for

ηffb =1% and 3%. A decrease of the reactor power allows major reductions of the start-up

inventory with minimum and maximum of (i) 710 g and 21.18 kg of tritium when ηffb =1%,

and (ii) 260 g and 7.63 kg of tritium when ηffb=3%, for powers of 100 MW and 3000 MW

respectively. These values are calculated for fixed values of other parameters, e.g. tp =4 hr,

tr=1 day, q = 25%.

The results highlight that near-term low power devices require a relatively small and

obtainable start-up inventory, i.e. less than a kilogram of tritium. Furthermore, low reactor

power is necessary in near term fusion facilities to enable compensation of the shortfall in

tritium breeding. Major advances are required to reduce the start-up inventory in higher

power reactors, e.g. DEMO and power reactors, which will have powers of 2−3 GW and will

require several kilograms of tritium.
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Figure 6.14: Start-up inventory as a function of fusion power for tritium burn fraction and
fueling efficiency product of 0.5% and 5%, and reserve time of 6 and 24 hours. Parameters
used in the analysis: ISS processing time = 4 h, Breeding Zone residence time = 1 day,
Tritium Extraction System processing time = 1 day, fraction failing = 25%, doubling time
= 5 years.

Figure 6.15: Start-up inventory for various fusion reactors (with different power level) and
a tritium burn fraction and fueling efficiency product of 1% and 3%. Parameters used in
the analysis: ISS processing time = 4 h, Breeding Zone residence time = 1 day, Tritium
Extraction System processing time = 1 day, reserve time = 24 h, fraction failing = 25%,
doubling time = 5 years.
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6.5 Conclusions

In this Chapter a dynamic model representing the overall fuel cycle was derived with the mean

residence time method. The model calculates tritium flow rates into and out of components

of the fuel cycle, and their inventory build-up. Furthermore, the model is able to simulate

different operational scenarios, e.g. availability factor < 100% due to random failures and

scheduled maintenance, or pulsed plasma behavior. The model predicts the required tritium

breeding ratio and the initial start-up tritium inventory in function of a wide range of plasma

physics and technology parameters.

The analysis shows that the product of fueling efficiency and burn fraction, ηffb, and

the availability factor, AF , have major effects on the TBRR. In general, ηffb ≥ 2% and

AF ≥ 30% are required for tritium self-sufficiency to be achievable. At low ηffb, a reduction

in the tritium processing time increases the likelihood of attaining tritium self-sufficiency

considerably. We showed in our analysis that the initial start-up inventory of fusion power

reactors with fusion power of 3 GW can be as low as a few kilograms (e.g. ≤5 kg) if

ηffb > 3%, tp ≤ 4 hr, and tr ≤ 12 hr, but increases tremendously (e.g. >15 kg) when we

use current DEMO expected values of ηf = 50% and fb = 1.5%. High initial inventory is

considered a show stopper for fusion technology because of the scarcity of available tritium

(∼25 kg), which is projected to be even lower after ITER campaigns (likely <5 kg), the

high tritium costs, and the safety implications. Thus, a major effort towards minimizing the

start-up inventory (e.g. by increasing ηffb to at least 2%, and decreasing tritium processing

time to less than 2−4 hours) is required. Reasonable tritium start-up inventories are possible

for plasma based experimental facilities which operate at lower power (e.g. 100−500 MW).

Furthermore, several facilities should be built in order for fusion technology to grow at a

higher rate. This requires attaining tritium self-sufficiency for low doubling times, which is

very challenging in near term facilities due to the expected low availability factors.

To conclude, major advances are needed to improve the stat-of-the-art of fusion technol-

ogy, attain self-sufficiency, and develop a competitive and attractive technology. Examples

of technologies to be pursued are proposed by Loarte and Baylor [30] and Day [15, 16], e.g.
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the direct internal recycling concept. The near term facilities must have low fusion power

in order to obtain acceptable tritium start-up inventories, and must be able to attain self-

sufficiency in order to provide tritium start-up inventories for DEMO and next generation

of fusion reactors for short doubling time. This is possible if the fuel cycle is highly reliable,

i.e. reaches high availability factor, and fueling efficiency and burn fraction can be increased

significantly.
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CHAPTER 7

Conclusions and Future Modeling Work

A new methodology to better estimate tritium transport within the Outer Fuel Cycle of

fusion systems was presented. It is based on the integration of detailed models, developed

in COMSOL Multiphysics, on system-level, with the use of S-Functions blocks within the

MATLAB/Simulink environment. Such tool is precious to evaluate the system dynamics

and maintain an high degree of accuracy in sub-systems definition. Particularly, the model

is being currently developed for the KO-HCCR ITER TBS and will be expanded to consider

the KO-HCCR DEMO design as well. The goal of the numerical model is obtaining a

more detailed representation of fusion components on system-level and calculate component

inventories, tritium permeation to coolant and purge gas loop, tritium molecules partial

pressure build-up in coolant and purge gas streams, and losses to buildings with better

accuracy. The model is flexible and can be applied to any Test Blanket Module design, and

represents a precious tool to be used for design, management and development of test blanket

systems. Furthermore, as more detailed design of other fusion components is available, other

detailed models can be incorporated in the system-level model.

In parallel, a numerical model describing the overall fuel cycle dynamics for typical fusion

reactors was developed. This model includes several features that were not considered in

previous researches, e.g. operational scenario, availability factor, random failures, etc. and

is useful to identify the critical areas and components of the fusion fuel cycle and provide

guidance for future development of fusion technology. The model was used to perform a

comprehensive analysis to determine the physics and technology requirements to achieve

tritium self-sufficiency and minimize the required tritium start-up inventory. We plan on

using the model to estimate the effects of new ideas, concepts, and proposals which aim
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to improve the fuel cycle design and to determine the performance of these key fuel cycle

components in order to strategically plan fusion R&D. The model is applicable to any fusion

reactor fuel cycle design.
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