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Bifurcation Analysis of Nonlinear Hamiltonian Dynamics in the Integrable Optics
Test Accelerator

Chad E. Mitchell,∗ Robert D. Ryne, and Kilean Hwang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: May 15, 2020)

The Integrable Optics Test Accelerator (IOTA) is a novel storage ring at Fermi National Ac-
celerator Laboratory designed (in part) to investigate the dynamics of beams in the presence of
highly nonlinear transverse focusing fields that generate integrable single-particle motion with a
large spread in the intrinsic betatron tunes. We describe how contemporary geometrical methods
from the theory of integrable Hamiltonian systems may be used to locate all critical separatrix-like
structures in the 4D transverse phase space, and to construct a complete analysis of the dynamical
bifurcations of the system. Application of these techniques results in a global picture of the nominal
on-energy transverse dynamics, revealing a rich diversity of accessible dynamical behavior. Similar
techniques may be applied to future facilities that exploit the concept of nonlinear integrable optics.

I. INTRODUCTION

The Integrable Optics Test Accelerator (IOTA) is a
storage ring at Fermi National Accelerator Laboratory
designed (in part) to investigate the dynamics of beams in
the presence of highly nonlinear transverse focusing fields
that generate integrable single-particle motion with large
intrinsic betatron tune spreads (∆νx,y > 0.25) [1, 2]. A
primary operational goal is to determine the degree to
which the decoherence of transverse oscillations may be
used to mitigate the development of instabilities [3] and
core-halo resonances at high space charge intensity [4, 5].
In comparison with nonlinear damping techniques using
octupoles [6, 7], integrability of the nonlinear Hamilto-
nian motion is enforced by design to improve the trans-
verse dynamic aperture and beam confinement [1, 8].

The nominal transverse dynamics is described by an
integrable Hamiltonian in two degrees of freedom con-
taining a single dimensionless parameter (the nonlinear
insert strength τ). In this paper, we apply contemporary
geometric techniques developed for studying the singu-
larities of integrable Hamiltonian systems [9–11] to ob-
tain a global picture of the qualitative dynamical behav-
ior of this system, including the fixed points, stable and
unstable periodic orbits, and phase space separatrices.
The word “bifurcation” of the title is used in two dis-
tinct ways: 1) to refer to the bifurcation diagram of an
integrable Hamiltonian system, which provides a visual
representation of those values of the invariants of motion
where the topology of the invariant level set changes, and
2) to refer to a sudden global change in the system dy-
namics as one or more parameters in the Hamiltonian
is continuously varied (in this case, the parameter τ).
Both meanings are intended here, and their relationship
is considered.

Analysis of integrable Hamiltonian systems is often
performed using one or more sets of action-angle phase
space coordinates. In general, such action-angle coor-
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dinates are defined only locally, and break down near
critical phase space structures (e.g., the separatrix of the
nonlinear pendulum). In addition, canonical transforma-
tions to such coordinates are difficult to obtain in explicit
form in even the simplest systems. The techniques de-
scribed here do not require the use of action-angle coordi-
nates, and are sufficiently general to be applied to future
machine designs [12] described by an autonomous Hamil-
tonian, in which a second invariant is analytically known.
Related techniques have recently had a major impact in
molecular spectroscopy [13–15], and have been applied to
a number of systems of physical interest [16, 17].

The layout of this paper is as follows. In Section II,
we describe the IOTA nonlinear magnetic insert and the
Hamiltonian of the associated dynamical system. In Sec-
tion III, we describe the critical points and the bifurca-
tion diagram of a general integrable Hamiltonian system,
and we apply these concepts to IOTA. Section IV dis-
cusses the classification of critical points in detail. In
Section V, we demonstrate how this information may be
used to classify the orbits of IOTA at nominal operation.
In Section VI, we extend this analysis to describe the
dependence of these dynamical properties on the nonlin-
ear insert strength parameter, and we consider bifurca-
tions of the dynamical fixed points. The paper ends with
a Conclusion, which includes a summary of key results.
There are five Appendices.

II. HAMILTONIAN DESCRIPTION OF THE
IOTA RING

The IOTA ring design (for operation of the integrable
optics experiment) consists of a “bare” linear lattice, with
an available 1.8 m long dispersion-free drift space for the
introduction of a magnetic insert [18] with highly nonlin-
ear transverse fields to provide strong betatron detuning.
Detailed analysis of the IOTA bare lattice optics may be
found elsewhere [2]. In this section, we provide a brief
summary of the Hamiltonian formalism describing the
ideal nonlinear operation [1, 19].
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A. The IOTA Nonlinear Magnetic Insert

The ideal 2D magnetic field within the nonlinear insert

is given at each longitudinal location s by ~B = Bxx̂+By ŷ
satisfying ∂xBx + ∂yBy = 0 and ∂xBy − ∂yBx = 0. This
field is most easily expressed in terms of either a magnetic

vector potential ~A = Asŝ or a magnetic scalar potential

ψ satisfying ~B = ∇⊥ × ~A = −∇⊥ψ at each s, where the
two potentials are given by the real and imaginary parts
of the function [19]:

F (z) =

(
z√

1− z2
)

arcsin(z), (1)

in terms of the dimensionless quantities:

t̃F =
As + iψ

Bρ
, z =

X + iY

c
√
β(s)

, t̃ =
τc2

β(s)
. (2)

Here τ is a dimensionless parameter characterizing the
strength of the magnet, c 6= 0 [m1/2] characterizes the
length scale of the potentials in the transverse plane, Bρ
is the magnetic rigidity, and β = βx = βy is the betatron
amplitude across the drift space in the bare lattice (“in-
sert drift”) that will contain the magnet, which is given
explicitly by:

β(s)

β∗
= 1 +

(
2s

L

)2

tan2 πµ0, for − L

2
≤ s ≤ L

2
. (3)

In (3), L denotes the length of the nonlinear insert, 0 ≤
µ0 < 1/2 denotes the bare lattice tune advance across
the insert drift, and β∗ denotes the betatron amplitude
at the midpoint of the insert drift, given in terms of the
parameters L and µ0 by:

β∗ =
L

2
cotπµ0. (4)

The function F is analytic in the domain of the complex
plane shown in Fig. 1, which excludes the two branch
cuts (shown in red) and the two singular points z = ±1.
The curves in blue denote the corresponding transverse
magnetic field lines, which coincide with the contours
of As. The magnetic multipole series can be obtained
directly from the power series for (1):

F (z) =

∞∑
n=1

22n−1n!(n− 1)!

(2n)!
z2n, |z| < 1. (5)

In practice, however, one is often interested in the dy-
namics well outside the radius of convergence of the series
(5).

B. Construction of The Integrable Hamiltonian

Since ~A⊥ = 0 in this model, the single-particle Hamil-
tonian within the nonlinear magnetic insert takes the fol-
lowing form, using the longitudinal coordinate s as the

Re(z)

Im(z)

branch'cuts'

circle'of'
convergence'

1 -1 

1 

-1 

FIG. 1. Domain of analyticity of the complex function F ,
which defines the vector potential of the nonlinear insert in
the transverse plane. The curves in blue denote magnetic field
lines. The dashed circle denotes the circle of convergence of
the multipole series. Singularities occur at the points z = ±1.

independent variable [21]:

H = −
√

1− 2Pt
β0

+ P 2
t − |~P |2 −As −

1

β0
Pt, (6)

where the transverse momenta ~P are normalized by the
design momentum p0 = mcβ0γ0, the longitudinal vari-
ables are T = c∆t and Pt = −∆γ/(β0γ0), and As =
As/Bρ. In the paraxial approximation Px, Py << 1, the
Hamiltonian for an on-energy particle (Pt = 0) within
the nonlinear magnetic insert takes the form:

H⊥(X,Px, Y, Py; s) =
1

2
(P 2
x + P 2

y )−As(X,Y, s). (7)

After making an s-dependent transformation to the di-
mensionless phase space variables [1]:

x =

(
1

c
√
β

)
X, px =

(
α

c
√
β

)
X +

(√
β

c

)
Px, (8a)

y =

(
1

c
√
β

)
Y, py =

(
α

c
√
β

)
Y +

(√
β

c

)
Py, (8b)

where α(s) = −β′(s)/2, and using the bare lattice beta-
tron phase advance ψ (defined by ψ′ = 1/β) as the inde-
pendent variable, the Hamiltonian takes the autonomous
form:

H(x, px, y, py) =
1

2
(p2x + p2y) + V (x, y), (9)

where the potential function V is given by (z = x+ iy):

V (x, y) =
1

2
(x2 + y2)− τU(x, y), (10)

U(x, y) = Re
(

z√
1− z2

arcsin(z)

)
.
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x

y V

FIG. 2. Contours of the nonlinear potential (10) for a typical
insert strength τ = −0.4. Singularities occur at the points
(x, y) = (±1, 0). The potential is continuous away from these
points and real-analytic away from the branch cuts (|x| ≥ 1,
y = 0). Symmetry exists under reflections x 7→ −x and y 7→
−y. Note the presence of one minimum (black dot) and 4
saddle points (yellow dots).

Note that (10) is characterized by the single dimension-
less parameter τ (nonlinear insert strength). The nonlin-
ear potential V is shown in Fig. 2 for a typical value of
τ . In the remainder of this paper, the terms “singular-
ity” and “singular point” refer exclusively to the spatial
points (x, y) = (±1, 0) where the potential V diverges.

The bare lattice optics in IOTA (from the exit of the
nonlinear insert to its entrance) is designed to provide
equal linear focusing in the horizontal and vertical planes,
with corresponding phase advance given by 2πk, for in-
teger k [20]. As a consequence, the transfer map between
passes through the magnetic insert is described in coor-
dinates (8) by the identity map, and (9) is sufficient to
describe the dynamics of the IOTA ring.

The Hamiltonian (9) admits an exactly-known integral
of motion (invariant) of the form:

I(x, px, y, py) = (xpy − ypx)2 + p2x + x2 − τW (x, y),

W (x, y) = Re
(

z + z̄√
1− z2

arcsin(z)

)
, (11)

where z̄ denotes the complex conjugate of z = x+ iy. It
may be directly verified that {H, I} = 0, where {·, ·} de-
notes the classical Poisson bracket [19]. In addition, we
will see that ∇H and ∇I are linearly independent every-
where except on a set of zero measure (phase space vol-
ume), so that the pair (H, I) forms an integrable Hamil-
tonian system [22–24]. The remainder of this paper con-
cerns the dynamics of the system described by (9-11).

III. CRITICAL POINTS AND THE
BIFURCATION DIAGRAM

A. The Momentum Mapping and Its Critical
Points

Suppose H is an integrable Hamiltonian for an n
degree-of-freedom system on a phase space M , and let
H = f1, . . . , fn denote its n invariants of motion. The
momentum mapping [9] is the smooth function F : M →
Rn given by:

F(p) = (f1(p), . . . , fn(p)), p ∈M. (12)

At any point p ∈ M , the Jacobian DFp of (12) using
phase space coordinates (ζ1, ζ2, . . . , ζ2n) is the n×2n ma-
trix given by:

[DFp]jk =
∂fj
∂ζk

(j = 1, . . . , n, k = 1, . . . , 2n).

(13)
A point p in M is a critical point of the momentum map-
ping F if

rank(DFp) < n. (14)

Let K denote the set of critical points. If p ∈ K, its
image F(p) in Rn is called a critical value. The set of all
critical values Σ = F(K) is called the bifurcation diagram
of H.

The following observations illustrate the importance of
these concepts.

• Since each f1, . . . , fn is invariant under the Hamil-
tonian flow, each orbit is confined to lie on a level
set of F . These invariant level sets partition the
entire phase space M .

• A regular level set of F is one that contains no
critical points. Its compact connected components
are invariant n-dimensional tori, as described by
the Liouville-Arnold theorem [22].

• A critical level set of F is one corresponding to a
critical value in Σ. The critical level sets include
exceptional lower-dimensional tori, fixed points, pe-
riodic orbits, and their stable and unstable mani-
folds.

• The bifurcation diagram Σ contains those values
(f1, . . . , fn) ∈ Rn where the level sets of F undergo
topological (qualitative) change as the invariants fj
are varied.

The momentum mapping in the case of IOTA is given
explicitly by:

F(x, px, y, py) = (H(x, px, y, py), I(x, px, y, py)), (15)

where H and I are the two invariants of motion given in
(9-11). To search for a critical point p = (x, px, y, py) of
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(15), one may check any of the following four equivalent
conditions:

1) rank(DFp) < 2, (16a)

2) det(DFp)T (DFp) = 0, (16b)

3)∇H(p) and ∇I(p) are linearly dependent, (16c)

4)dH ∧ dI = 0 at p. (16d)

Finding the set of critical points using (16) requires
searching for the simultaneous zeros of one or more func-
tions of four variables. For example, applying condition
(16d), which is expressed using exterior differential forms,
results in a set of six functions to be zeroed. In Appendix
A, we provide additional details and summarize the main
families of critical points obtained using this method.

A detailed classification of the critical points is pro-
vided in Section IV. We remark that the theory [9] as-
sumes that fj (j = 1, . . . , n) are smooth, while the two
functions H and I have vertical derivatives that are dis-
continuous across the two branch cuts. The latter fact
has a few (minor) consequences that will play a role in
later sections.

B. Bifurcation Diagram of IOTA

Taking the image under F of the set K of critical
points obtained using (16) yields the bifurcation diagram
Σ = F(K). In general, the points on the bifurcation di-
agram must be obtained numerically. In the special case
of the Hamiltonian (9-10), an explicit parameterization is
possible, as described in Appendix C. The result consists
of the union of the following four parameterized curves
in the (H, I) plane:

HA =
1

2

(
−1 + 2ξ2 + τ +

(−1 + 2ξ2)τ arccosh ξ

ξ
√
ξ2 − 1

)
,

IA = ξ

(
ξ3 + ξτ +

τ arccosh ξ√
ξ2 − 1

)
, ξ ≥ ξmin (17a)

HB =
1

2

(
−1 + 2η2 + τ +

(1− 2η2)τ arcsin η

η
√

1− η2

)
, (17b)

IB = η

(
η3 + ητ − τ arcsin η√

1− η2

)
, ηmin ≤ η ≤ 1

HC = s, IC = 2s, s ≥ smin (17c)

HD = t, ID = 0, t ≥ tmin (17d)

The values (ξmin, ηmin, smin, tmin) depend on the nonlin-
ear insert strength τ . For a value in the nominal range
−1/2 < τ < 0, one has ξmin = 1, smin = tmin = 0,

-0.5 0.0 0.5 1.0 1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

H

I

�3/2 < ⌧ < �1/2 (⌧ = �1)

A"

B"
G"

C"

E"

H

I

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

H

I A"

B"

G"

C"

H

I

�1/2 < ⌧ < 0 (⌧ = �0.4)

FIG. 3. Bifurcation diagram Σ for the integrable Hamilto-
nian system of IOTA (9-11) at the nominal operating value
τ = −0.4, separating the (H, I) plane into four regions with
distinct dynamical behavior. Curves in blue, green, red, and
black correspond to the four curves in (17), respectively. Sig-
nificance of the solid-dashed distinction and the large dots is
explained in Section IV.C.

and ηmin = η̄, where (ξ̄, η̄) is the unique solution of
HA(ξ̄) = HB(η̄), IA(ξ̄) = IB(η̄).

Figure 3 illustrates the bifurcation diagram for the case
τ = −0.4. The curves partition the plane into four re-
gions. All values of (H, I) appearing in the interior of a
given region generate regular level sets F−1({(H, I)}) of
the same topological type. Each of these regular level sets
is a 2-dimensional surface embedded in the 4-dimensional
phase space M , which is readily illustrated via its projec-
tion into the (x, y) plane. (See Appendix B for details.)
We find a total of 7 distinct types of regular level sets,
indicated by the codes A-G. Only four of these are acces-
sible when τ = −0.4. They are shown in Fig. 4. Values
of (H, I) that lie on the curves in Fig. 3 generate critical
level sets that correspond to transitions between these
four cases. These critical level sets form the skeleton of
the global dynamics, and are treated in subsequent sec-
tions.

IV. CLASSIFICATION OF CRITICAL POINTS

In (14), the integer 0 ≤ rank(DFp) < n is called the
rank of the critical point. Consider the system (9-11),
with invariants f1 = H and f2 = I. The rank of a critical
point p ∈ K may also be expressed as:

rank(DFp) = dim (Span{∇H(p),∇I(p)}) . (18)

Critical points of rank 0 and of rank 1 are discussed be-
low. It is significant that the dynamical stability of these
critical points can be analyzed using only knowledge of
the two invariants of motion H and I. For a compre-
hensive approach to the classification of critical points
in a general integrable Hamiltonian system, see [9–11].
For the system (9-11), we use the simplified classifica-
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FIG. 4. Projections of level sets from each of the four regions
shown in Fig. 3 (τ = −0.4). A non-resonant orbit on such
a level set densely fills one of its connected components. (B)
One connected component, not intersecting the branch cuts.
(C) One connected component, intersecting the branch cuts
(hole visible). (G) Four connected components. (A) Empty.

tion scheme described below, which is sufficient for our
purposes.

A. Fixed points

Let p ∈ M be a rank-0 critical point of the momen-
tum mapping F . From (18), it follows that ∇H(p) = 0.
Since the Hamiltonian equations of motion take the form
(Appendix D):

ζ̇ = J∇H(ζ), (19)

it follows that p is an equilibrium point (fixed point) of
the Hamiltonian flow. Conversely, it is possible to prove
using (9-11) that ∇H(p) = 0 implies ∇I(p) = 0, and we
conclude from (18) that the set of rank-0 critical points
coincides with the set of dynamical fixed points.

As described in Appendix D, the dynamical stability
of a fixed point is determined by the eigenvalues of the
4× 4 matrix JS, where S is the Hessian matrix of H at
p:

Sij = (HesspH)ij =
∂2H

∂ζi∂ζj
(p), (i, j = 1, . . . , 4). (20)

For a Hamiltonian of the form (9), we see that p =
(x, px, y, py) is a fixed point if and only if:

px = py = 0, ∇V (x, y) = 0. (21)

The analysis of stability is then reduced to studying the
eigenvalues of the 2 × 2 Hessian matrix of the potential
V (Appendix D).

It is convenient to express the gradient of the potential
V of (10) in the form:

∇V (x, y) = (x− τReF ′, y + τImF ′), (22)

where F is given in (1), and the complex derivative F ′

is evaluated at the point z = x + iy. The fixed point
condition (21) can then be expressed as the following
equation in the complex plane:

z̄ = τF ′(z), z = x+ iy. (23)

Likewise, the Hessian matrix of second derivatives of V
can be expressed as:

Hess(V ) =

(
1− τReF ′′ τImF ′′
τImF ′′ 1 + τReF ′′

)
, (24)

where F ′′ is evaluated at the point z = x+ iy. Stability
at a fixed point zc ∈ C satisfying (23) is determined by
the two eigenvalues of (24), given explicitly by:

λ± = 1± τ |F ′′(zc)|, zc = xc + iyc. (25)

Note that one of the values in (25) is always positive, and
the sign of the second value coincides with the sign of the
determinant λ+λ−.

Given a fixed point p ∈ M , we say that p is
stable, unstable, or degenerate if det(Hessp(V )) > 0,
det(Hessp(V )) < 0, or det(Hessp(V )) = 0, respec-
tively. We note that this classification is coordinate-
independent. (That is, any choice of smooth coordinates
near p may be used to evaluate the Hessian matrix.) Ex-
amples of stable and unstable fixed points may be seen
in Fig. 2 for the nominal insert strength τ = −0.4, given
by the black and yellow dots, respectively.

B. Periodic orbits

Next, let p ∈ M be a rank-1 critical point of the mo-
mentum mapping F . It follows from (18) that the gra-
dients of H and I are parallel at p. Informally, the level
set containing p looks locally 1-dimensional at p. (For ex-
ample, the level set may contain a “cusp” along a curve
containing p.) If the level set is compact, this typically
implies that p lies on a periodic orbit. We refer to such or-
bits as critical periodic orbits, to distinguish them from
periodic orbits that lie on those regular level sets with
resonant characteristic frequencies.

To study such a periodic orbit, let S be a 2D Poincaré
section transverse to the periodic orbit of p within the
3D isoenergy surface. Explicitly, define a set of the form:

S = {ζ ∈M : H(ζ) = H0, G(ζ) = G0}, (26)
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where H0 = H(p), G0 = G(p), and G is any smooth
function on M with:

{H,G}|p 6= 0. (27)

Then S defines a smooth 2D surface in a neighborhood
of p, and p is a fixed point of the Poincaré return map
on this surface.

Consider the restriction of the invariant function I to
the surface S, denoted by I|S . Since rank(DFp) = 1,
it follows that the function I|S has vanishing derivatives
at p, in the sense that D (I|S)

p
= 0. We say that p is

stable, unstable, or degenerate if det (Hessp (I|S)) > 0,
det (Hessp (I|S)) < 0, or det (Hessp (I|S)) = 0, respec-
tively. It can be shown that this classification is indepen-
dent of the choice of G satisfying (27) in the definition of
S, and it is also independent of the set of coordinates on
S used to evaluate this 2× 2 Hessian matrix.

This is best illustrated by an example. For the system
(9-11), consider a point p ∈M of the form:

(x, px, y, py) = (0, a, 0, 0), a > 0. (28)

We see from Appendix A (case 4) that any such point
is a critical point of F . Since px = a is nonzero, this
critical point has rank 1 and energy H0 = a2/2. It is not
difficult to see (using the symmetry of V ) that p lies on
a periodic orbit confined to the (x, px) plane. In (26),
take G(x, px, y, py) = x and G0 = 0. The criterion (27)
is satisfied since:

{H,G}|p = {H,x}|p = −a 6= 0. (29)

Then S in (26) defines a smooth 2D surface near p,
namely the Poincaré section H = H0, x = 0, which in-
tersects the orbit transversely. On this surface, we have:

px = g(y, py), g(y, py) =
√

2(H0 − V (0, y))− p2y.

The restriction of I to this surface is then given (in the
coordinates (y, py)) by:

I|S (y, py) = I(0, g(y, py), y, py). (30)

Figure 5 shows contours of the function I|S for two values
of H0 at the nominal insert strength τ = −0.4. The
periodic orbit of the point (28) intersects S at the origin,
and it is stable when H0 < 0.1, unstable when H0 > 0.1,
and degenerate when H0 = 0.1.

A summary of the classification scheme described in
subsections IV.A and IV.B is provided in Table I, where
a connection is made with the mathematical literature
[11].

C. Interpretation of the bifurcation diagram

The bifurcation diagram Σ encodes valuable informa-
tion about the global structure of the integrable Hamil-
tonian system [9–11]. For a system with two degrees of
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FIG. 5. Stable and unstable critical periodic orbits (τ =
−0.4). Contours of the function I|S are shown on the surface
S defined by H = H0, x = 0 near the critical point (28). The
periodic orbit of p pierces the surface S at the origin. (Left)
The case H0 = 0.05, for which p is stable. (Right) The case
H0 = 0.5, for which p is unstable. The visible portion of the
level set containing p is shown in red.

TABLE I. Classification of a critical point p by rank and sta-
bility. The terminology in parentheses is taken from [11].

Type Criterion

Fixed point rank(DFp) = 0

stable (elliptic-elliptic) det(Hessp(V )) > 0

unstable (elliptic-hyperbolic) det(Hessp(V )) < 0

degenerate det(Hessp(V )) = 0

Periodic orbit rank(DFp) = 1

stable (transversally elliptic) det(Hessp(I|S)) > 0

unstable (transversally hyperbolic) det(Hessp(I|S)) < 0

degenerate det(Hessp(I|S)) = 0

freedom, each point on a well-behaved curve in Σ corre-
sponds to a level set containing a nondegenerate rank-1
critical point ([9], Prop. 1.16). On the other hand, a
“cusp” or intersection point in the bifurcation diagram
generally indicates the presence of a degenerate rank-1
critical point or a rank-0 critical point (fixed point). For
the bifurcation diagram shown in Fig. 3, information re-
garding the classification of critical points is indicated as
follows:

• A black dot indicates that the level set contains one
or more fixed points, all of which are stable.

• A yellow dot indicates that the level set contains
one or more fixed points, at least one of which is
unstable.

• A solid line indicates that the level set contains one
or more periodic orbits, all of which are stable.

• A dashed line indicates that the level set contains
one or more periodic orbits, at least one of which
is unstable.

The stability of each critical periodic orbit is determined
by using an appropriate choice of Poincaré section, as
described in the previous section. The results may be
summarized using the Hessian determinant for a typical
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periodic orbit on the level sets obtained along each of the
four parametrized curves given in (17):

detA(Hess I|S) = 4

(
4ξ4 + 2ξ2(−2 + τ)− τ − τ arccosh ξ

ξ
√
ξ2 − 1

)
,

detB(Hess I|S) = 4

(
4η4 + 2η2(−2 + τ)− τ +

τ arcsin η

η
√

1− η2

)
,

detC(Hess I|S) = 4− 8s+ 8τ,

detD(Hess I|S) = 4 + 8t− 8τ.

Note that the choice of S differs in each case. The above
result is valid for any τ < 0. When τ ≥ 0, the stability
results for case C are modified slightly.

V. DYNAMICS AT NOMINAL INSERT
STRENGTH

In this section, we illustrate the relevance of the infor-
mation contained in Figs. 3-4 to the dynamics of IOTA
at the nominal insert strength τ = −0.4. To do this, re-
call that the phase space M is partitioned into level sets
of the momentum mapping F . The critical level sets play
a central role, and their union is given by F−1(Σ), where
Σ denotes the bifurcation diagram. We refer to F−1(Σ)
as the set of critical initial conditions in the phase space
M . This set includes all the critical points of F . In ad-
dition, it includes all points whose orbits may approach
a critical point in the limit t → ∞ or t → −∞ (stable
and unstable manifolds). We will see that this set di-
vides the phase space M into regions with qualitatively
distinct dynamical behaviors.

In order to visualize the set F−1(Σ) in the 4D phase
space M , we take its intersection with the plane defined
by px = py = 0. The resulting network of critical initial
conditions in the (x, y) plane is shown in Fig. 6. The var-
ious curves and points, as well as their colors and stability
indicators (solid, dashed) correspond to those shown in
Fig. 3 under the mapping F . Note that there are five
fixed points: one stable fixed point at the origin (black
dot) and four unstable fixed points (yellow dots), which
correspond also to the five points shown in Fig. 2. The
letter codes correspond to the level set types shown in
Fig. 4. Although only two level set types appear (B and
G), we will see dynamical differences between the regions
of type G. The level set type C does not appear, as no or-
bit on such a level set contains a point with px = py = 0.

A. Orbits on regular level sets

Consider the orbit of a particle with initial condition
px = py = 0 and coordinates (x, y) in the transverse
plane. If the point (x, y) does not lie on one of the curves
shown in Fig. 6, then the orbit lies on a regular level
set of F consisting of one or more connected components
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FIG. 6. Critical initial condition set F−1(Σ), shown in the
(x, y) plane with px = py = 0, for the nominal insert strength
τ = −0.4. Only one quadrant is shown. (Results are symmet-
ric about the x- and y-axes.) Colors and labels correspond
to those found in Fig. 3. This set includes one stable fixed
point (black dot, origin) and four unstable fixed points (yel-
low dots, one visible). The visible singular point is located at
(1, 0) (purple), but is not considered part of the phase space
M . A particle with its initial condition on one of the solid
curves executes a stable periodic orbit.

(Liouville tori). (See Fig. 4.) Due to the continuity of
the Hamiltonian flow, the orbit is confined exclusively to
one of these connected components. Furthermore, if the
characteristic frequencies are non-resonant, the orbit is
dense on this component, and the projection of the level
set into the (x, y) plane provides a complete picture of
the orbit geometry in this plane.

All such orbits can be classified as shown in Fig. 7.
The three figures illustrate three shaded (gray) regions
in the plane, and initial conditions in distinct regions
have distinct orbit geometry. For reference, the network
of critical initial conditions is shown in black. (The col-
ors that appear in Fig. 6 have been removed to avoid
visual clutter.) Note that the dashed red arc and the
dashed green arc appearing in Fig. 6 define the bound-
aries of the shaded regions. Level sets of F corresponding
to three distinct initial conditions are shown (blue), one
from each region. In each case, the initial condition is
located on one of the visible “corners” of the level set.
(These corners correspond to the turning points where
px = py = 0.)

For the initial condition (x, y) = (0.3, 0.6), the orbit
executes motion surrounding the origin, filling densely
a level set that is symmetric about the x- and y-axes
(Fig. 7(a)). For the initial condition (x, y) = (0.7, 0.3),
the orbit fills densely the upper component of the level
set in Fig. 7(b), executing motion in the upper half-
plane. In this case, the orbit effectively “bounces” off
of the potential barrier formed by the presence of the
singularities. (Likewise, the orbit of (x, y) = (0.7,−0.3)
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FIG. 7. Level sets (blue) for three distinct initial conditions
with px = py = 0, reflecting three distinct types of orbit
geometry at the nominal insert strength τ = −0.4. The set of
critical initial conditions is shown in black. (a) The orbit is
symmetric about the x- and y- axes. (b) The orbit is confined
to the upper half-plane. (c) The orbit is confined to the right
half-plane.

is confined to the lower half-plane.) Finally, for the initial
condition (x, y) = (1.3, 0.2), the orbit fills densely the
small rightmost component of the level set in Fig. 7(c),
executing motion in the right half-plane and crossing the
branch cut. (Likewise, the orbit of (x, y) = (−1.3, 0.2) is
confined to the left half-plane.)

This behavior was verified by numerical tracking us-
ing a symplectic integrator. For example, Fig. 8 illus-
trates the orbit obtained for the initial condition (x, y) =
(0.7, 0.3), together with the upper component of the level
set shown in Fig. 7(b). The orbit comes arbitrarily close
to each point within the blue boundary as t → ∞. If
the initial condition (x, y) = (0.7,−0.3) is used, the orbit
similarly fills the lower component in Fig. 7(b). Similar
behavior occurs for the other orbits whose geometry is
described in Fig. 7.

Note that we have considered orbits initialized from
rest. However, there exist orbits with no turning points
(points where px = py = 0). An example is given by the
initial condition (x, px, y, py) = (0, 1, 1, 0). One may ver-
ify that the corresponding point (H, I) lies in the region
C of Fig. 3, and the orbit fills densely a level set of type
C (Fig. 4), encircling the origin.

x

y

FIG. 8. The orbit obtained by numerical tracking of ini-
tial condition px = py = 0 and (x, y) = (0.7, 0.3) for
τ = −0.4 is shown together with the upper component of
the corresponding invariant level set, which is defined by
(H, I) = (0.39, 0.86). The boundary of the level set appears
in blue. Compare Fig. 7(b).

B. Orbits on critical level sets

For an initial condition with (x, y) located on one of
the solid curves in Fig. 6, the corresponding level set of
F is a 1D closed curve in the 4D phase space, indicating
that motion occurs on a stable periodic orbit. For exam-
ple, in Fig. 7(a), as the initial condition is moved toward
the vertical (horizontal) axis, the projection of the level
set shrinks to a vertical (horizontal) line segment. Simi-
lar behavior occurs for the shaded regions shown in Figs.
7(b)-(c). In these cases, as the black curve is approached
the level set projection shrinks to the union of four seg-
ments of an ellipse, one of which coincides with the orbit.

The behavior of orbits for points on the dashed curves
in Fig. 6 is more complex, as these are associated with
separatrix-like structures in the phase space M . For
a point on the dashed red arc, we obtain a level set
that is intermediate between those shown in Figs. 7(a)-
(b), with upper and lower components merged along
a cusp with y = 0. The dynamics near such a level
set (H, I) = (0.5, 1) is illustrated in Fig. 9 using a
Poincaré section. (We examine the intersection of the
level sets of F with the surface S defined in (26) by tak-
ing G = x, H0 = 0.5, G0 = 0.) This level set con-
tains (among others) points (x, px, y, py) = (0.68, 0, 0, 0)
and (x, px, y, py) = (0.95, 0, 0.74, 0) that appear on the
dashed red curves in Fig. 6. The first of these points
yields an unstable periodic orbit that intersects the sur-
face S at the origin in Fig. 9. The second of these points
yields an orbit whose intersections with the surface are
confined to the red curve in Fig. 9. All such orbits on
the red curve are homoclinic to the periodic orbit at the
origin. Note that nearby orbits with I < 2H0 cross the
midplane y = 0, while nearby orbits with I > 2H0 do
not. The latter behavior can also be seen by studying
the line H = H0 in Fig. 3.

Similarly, as an initial condition is moved from the
shaded region in Fig. 7(b) or (c) to the dashed green arc
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FIG. 9. Poincaré section illustrating the critical level set
(H, I) = (0.5, 1) (red curve). Intersections of several level sets
of F with the surface defined by H = 0.5, x = 0 are shown for
τ = −0.4. Curves in blue correspond to distinct values of I
ranging from I = 0.8 to I = 1.2. The critical level set contains
an unstable periodic orbit, intersecting the surface at the ori-
gin. Black arrows denote the stable and unstable directions
associated with this periodic orbit. In addition, two stable
periodic orbits intersect the surface near (y, py) = (±0.7, 0).

shown in Fig. 6, the upper and lower components of the
level set merge with the right and left components of the
level set. An initial condition exactly on the green arc
yields an unstable periodic orbit that lies on a separatrix-
like level set similar to that shown in Fig. 9.

Finally, the level set containing the 4 unstable fixed
points (yellow dot in Fig. 6) is shown in Fig. 10 via its
projections into the (x, y) and (x, px) planes. In addition
to the fixed points themselves, the level set contains 8
heteroclinic orbits, each such orbit connecting one pair
of unstable fixed points. This example also shows that
a single level set may contain both rank-0 and rank-1
critical points.

VI. DEPENDENCE ON THE STRENGTH
PARAMETER

In this section, we study the dependence of the dynam-
ics on the nonlinear insert strength τ . In particular, we
determine those values τ where bifurcation occurs.

A. Bifurcation of fixed points

Recall from (23) that fixed points of the Hamiltonian
flow occur where px = py = 0 and:

∇V (x, y) = 0 ⇔ z̄ = τF ′(z), z = x+ iy. (32)

It follows from (1) that F ′(z) = 0 if and only if z = 0,
and the origin is therefore a fixed point for every τ . To
determine all other fixed points, we may solve for τ in
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FIG. 10. Critical level set containing the four unstable fixed
points for the case τ = −0.4. (Upper) Projection into the
(x, y) plane. Fixed points are shown in yellow. (Lower) Pro-
jection into the (x, px) plane. Fixed points are located at the
two curve self-intersections. Black arrows denote stable and
unstable directions near the fixed points. The projection of
the level set into the (y, py) plane has a similar structure.

(32) to obtain, after taking real and imaginary parts:

Re
(

z̄

F ′(z)

)
= τ, Im

(
z̄

F ′(z)

)
= 0. (33)

Plotting the contour corresponding to the rightmost
equation in (33) yields the set of black curves shown in
Fig. 11. Contours of the leftmost equation in (33) are
indicated by the dashed red lines, shown for several dis-
tinct values of τ . For a given value of τ , the fixed points
appear at the intersection(s) of these curves. In this fig-
ure, one may follow the locations of the fixed points as τ
is decreased from τ = 1/2 to τ = −9.

We consider a fixed point bifurcation to occur when two
fixed points split/merge from each other as τ is varied,
or when a fixed point splits/merges from one of the sin-
gularities (±1, 0). The former case is accompanied by
a change in stability type. Thus, we determine all val-
ues of τ for which one or more degenerate fixed points
is present. Recall that a degenerate fixed point occurs
where (32) is satisfied and:

det(HessV (x, y)) = 0 ⇔ 1 = ±τ |F ′′(z)|. (34)

These conditions are satisfied at exactly 3 triples (x, y, τ),
namely those given by:

(x, y, τ) =

(
0, 0,±1

2

)
or (x, y, τ) = (0, yc, τc) , (35)
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FIG. 11. Contours of the real (red dashed) and imaginary
(solid black) parts of the complex function in (33), illustrating
the locations of fixed points in one quadrant of the transverse
plane for all values of τ . The origin is always a fixed point.
The remaining fixed points move over the solid black curves
as τ varies. Dashed red curves are shown for decreasing values
of τ ranging from τ = 0.5 to τ = −1 (in decrements of 0.1)
and from τ = −1 to τ = −9 (in decrements of 1).
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FIG. 12. Spatial coordinates (x, y) of the dynamical fixed
points lying in one quadrant of the transverse plane are shown
as functions of the parameter τ , illustrating the fixed point
bifurcations discussed in Section VI.A. Each figure must be
extended by symmetry to x < 0 or y < 0. (Black) Stable fixed
point. (Red) Unstable fixed point. Compare the summary in
Table II.

where yc ≈ 2.7 and τc ≈ −6.8 are determined by solving:

−3yc
√

1 + y2c + (−1 + 2y2c ) asinh yc = 0, τc =
1

2
− y2c .

(36)
Likewise, for any fixed point that approaches the singu-
larity z = 1, it follows from (33) that merger occurs at
the insert strength:

τ = lim
z→1

(
z̄

F ′(z)

)
= 0, (37)

since F ′(z) diverges at z = 1. (The same result holds for
z = −1.)

These fixed point bifurcations can be seen in Fig. 12,
which illustrates the coordinates (x, y) of each fixed point
as a function of τ . The solid lines indicate the coordinates
of those fixed points with either x or y vanishing, while
the dashed lines indicate those fixed points with both x
and y nonzero. The stability type is indicated by color
(black – stable, red – unstable). Moving from right to
left (τ decreasing), one begins with a single fixed point
at the origin. At τ = 1/2, two additional fixed points
are created, which move along the x-axis until colliding
with the singular points at τ = 0. At τ = 0, each of
these fixed points splits into two, resulting in four fixed
points (in addition to the fixed point at the origin). Two
additional fixed points emerge from the origin at τ =
−1/2. The latter two fixed points move along the y-axis
until merging with those located on the dashed curve at
τ = τc. Outside the range τc ≤ τ ≤ 1/2, no additional
fixed point bifurcations occur.

There also exist local minima of V that lie along the
branch cuts (Fig. 1) for certain values of τ . At these
points, ∂xV = 0, while ∂yV is not defined (as it jumps
discontinuously across the branch cut). We refer to these
points as pseudo-fixed points. At each of these points,

y = 0, |x| > 1, ∂xV = 0. (38)

Note that for x > 1,

∂xV (x, 0) = x+
τx

x2 − 1
− τ arccoshx

(x2 − 1)3/2
. (39)

Pseudo-fixed points occur at those values of x where
(39) vanishes. Equation (39) has one root x > 1 when
τ < −3/2. This pseudo-fixed point may merge with the
singularity (1, 0). To see this, note that a finite one-sided
limit exists as the singular point is approached along the
line y = 0, x > 1, since:

lim
x→1+

∂xV (x, 0) = 1 +
2τ

3
. (40)

Note that (40) vanishes when τ = −3/2. Thus, the
pseudo-fixed point emerges from the singularity at τ =
−3/2 and moves toward increasing |x| as τ decreases.

The complete set of values τ at which fixed point bi-
furcations occur is therefore given by:

τ ∈ {1/2, 0,−1/2,−3/2, τc}, (41)
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where τc is the value given by (36). Table II summarizes
the number and type of fixed points present as τ is varied.
Note that the origin is only stable in the range −1/2 <
τ < 1/2.

TABLE II. Number and stability of fixed points (PF denotes
pseudo-fixed point).

Parameter Fixed Points Origin Stable?

(τ > 1/2) 1 unstable N

(0 < τ < 1/2) 1 stable, 2 unstable Y

(−1/2 < τ < 0) 1 stable, 4 unstable Y

(−3/2 < τ < −1/2) 2 stable, 5 unstable N

(τc < τ < −3/2) 2 stable, 5 unstable, 2 PF N

(τ < τc) 3 unstable, 2 PF N

B. Extended bifurcation diagram

The bifurcation diagram Σ (defined in Section III.A) it-
self undergoes topological changes as the insert strength
parameter τ is varied. The τ -dependence of Σ can be
studied systematically by working in an extended phase
space with one additional degree of freedom, as described
in Appendix E. This procedure results in an extended bi-
furcation diagram Σ3 in the 3D parameter space (H, I, τ).
Because the structure of Σ3 is difficult to visualize, we
consider its intersection with several planes of the form
τ = τ0. Such an intersection yields the bifurcation dia-
gram Σ for the value τ = τ0. We consider a set of values
τ0 that is sufficient to demonstrate the range of topolog-
ically distinct behaviors for Σ.

The extended bifurcation diagram Σ3 divides the pa-
rameter space (H, I, τ) into 8 distinct regions, separat-
ing a total of 7 distinct types of regular level sets of F ,
which will be denoted by the letter codes A-G. Four of
these types were shown in Fig. 4. The remaining three
are shown in Fig. 13, via their projections into the (x, y)
plane. Note that a regular level set may have 0, 1, 2, 3,
or 4 connected components, and that all such level sets
are bounded in the spatial variables (x, y).

For each τ ∈ R, Σ is defined by the four curves
given in (17) and their intersections, where the values
(ξmin, ηmin, smin, tmin) are defined piecewise for all
τ ∈ R as follows:

FIG. 13. Projections of three additional level set types, com-
pleting the collection (A-G) begun in Fig. 4. In each figure,
the numerical triple denotes (H, I, τ). A non-resonant orbit
on such a level set densely fills one of its connected compo-
nents. (D) Two connected components, not intersecting the
branch cuts. (E) Two connected components, intersecting the
branch cuts. (F) Three connected components.

ξmin =

{
1, τ ≥ −3/2,

ξ > 1 zero IA(ξ)− 2HA(ξ), τ < −3/2

ηmin =


0, τ ≥ 1/2,

η > 0 zero IB(η)− 2HB(η), 0 < τ < 1/2,

solution HA = HB , IA = IB , τc < τ < 0,

0, τ < τc

smin =


−∞, τ > 0,

0, −1/2 ≤ τ ≤ 0,

1/2 + τ, −3/2 ≤ τ < −1/2,

HA(ξmin), τ < −3/2,

tmin =

{
0, τ ≥ −1/2,

HA(ξd), ξd > 1 zero IA(ξ) = 0, τ < −1/2,

Figures 14-19 illustrate the bifurcation diagram Σ ob-
tained using 7 representative values of τ . Information
about the classification of critical points is indicated us-
ing the scheme described in Section IV.C. In several of
these figures, a second illustration of the bifurcation di-
agram is shown at a larger scale, in order to highlight
features that are difficult to resolve by eye. Each fixed
point bifurcation, as described in the previous section, re-
sults in a topological change in the bifurcation diagram
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FIG. 14. Bifurcation diagram Σ for the insert strength value
τ = 2, dividing the (H, I) plane into five distinct regions.
(Upper) Default view, showing all available regions. (Lower)
Scaled-up view near (H, I) = (0, 0).

Σ. One additional topological change of Σ, which is re-
lated to the periodic orbits instead of the fixed points,
occurs at τ = 3/2.

When τ > 0, the singularities at (±1, 0) are attractive,
and the two values H and I are not bounded below. In
particular, for τ > 3/2, we see from Table II that there is
one unstable fixed point at the origin, which is reflected
by the yellow dot in Fig. 14. As τ decreases through
τ = 3/2, a new region appears with level sets of type F
(Fig. 15), and a new family of unstable periodic orbits
appears (dashed green). A fixed point bifurcation oc-
curs at τ = 1/2, and the region of type F intersects the
line I = 2H (red curve). The diagram changes suddenly
when τ < 0, as H and I are now bounded below, and the
regions of type D and F disappear, replaced by a new re-
gion of type G. At τ = −1/2, the fixed point bifurcation
results in a new region of type E, containing values with
H < 0 and I < 0. Once τ decreases through the value
−3/2, the cusp at the lowermost values of (H, I) transi-
tions to a level set containing the pseudo-fixed point. At
τ = τc, a final fixed point bifurcation occurs, and a new
family of unstable periodic orbits appears (on the bound-
ary between regions C and E). No additional topological
changes occur outside the range τc ≤ τ ≤ 3/2.
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FIG. 15. Bifurcation diagram Σ for the insert strength value
τ = 1, dividing the (H, I) plane into six distinct regions.
(Upper) Default view. (Lower) Scaled-up view near (H, I) =
(0, 0), in which the region of type F is visible.

C. Critical initial conditions

In this subsection, we comment on the τ -dependence
of the set of critical initial conditions F−1(Σ) defined
in Section V. The set of critical initial conditions (x, y)
with px = py = 0 is shown in Fig. 20 for the two values
τ = −1 and τ = 0.4, showing one case with an unstable
origin, and one case with reversed insert sign (attractive
singularities). (Compare Fig. 6.) Rather than providing
similar figures for all 7 cases shown in Figs. 14-19, we
note that many features of F−1(Σ) are reflected in the
corresponding bifurcation diagram Σ. For this purpose,
it is helpful to note that all points with px = py = 0
on the horizontal axis map under F to the curve (17c)
(shown in red), and all points on the vertical axis map
under F to the black curve (17d) (shown in black).

For a beam on-axis in the nonlinear magnet, the dy-
namics of primary interest is motion about a stable fixed
point at the origin. Recall that the origin is stable for
−1/2 < τ < 1/2. In this case, one is interested in the
those critical structures in the phase space that are near-
est the origin. Write Σ = Σs ∪ Σu ∪ Σd, where Σs (Σu,
Σd) denotes the image under F of all stable (unstable,
degenerate) critical points in K. We then define the dis-
tance (within the plane px = py = 0) to the innermost
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FIG. 16. Bifurcation diagram Σ for the insert strength value
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(0, 0), in which the region of type F is visible.

unstable critical structure by:

d(τ) = inf{
√
x2 + y2 : (x, 0, y, 0) ∈ F−1(Σu)}. (42)

When −1/2 < τ < 0, it is apparent from Fig. 6 that the
innermost unstable structure occurs on the x-axis, where
the red curve transitions from solid (stable) to dashed
(unstable). When 0 < τ < 1/2, it is apparent from Fig.
20 that that the innermost unstable structure occurs at
the location of the unstable fixed point (yellow) on the x-
axis. Figure 21 illustrates (42) as a function of τ , showing
how this distance shrinks as the magnetic insert strength
is increased.

VII. CONCLUSIONS

Any accelerator system designed to a strongly non-
linear working point requires theoretical tools that are
sufficient for understanding the nominal single-particle
dynamics. For rings based on nonlinear integrable op-
tics [1, 2], tools from the geometric theory of integrable
Hamiltonian systems may be applied [9–11] that do not
require the use of special coordinates or action-angle vari-
ables, and which extend to any number of degrees of free-
dom. In particular, the geometry of orbits is clarified by
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FIG. 17. (Upper) Bifurcation diagram Σ for the insert
strength value τ = −0.4, dividing the (H, I) plane into four
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strength parameter τ = −1, dividing the (H, I) plane into five
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pair of singular points, excluded from the phase space M .
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studying how the phase space is partitioned into con-
nected components of the level sets of the invariants of
motion (the Liouville foliation). The critical level sets
contain all of the phase space structures of qualitative
dynamical interest, including the fixed points, critical
periodic orbits, and separatrix-like structures. We have
described how these may be determined and visualized
using the bifurcation diagram Σ. Key results are sum-
marized as follows:

• The single-particle nominal on-energy dynamics in
IOTA is described by the integrable Hamiltonian
(9-10) with second invariant (11).

• A global analysis of the orbits is achieved by study-
ing the momentum mapping (15) (its level sets,
critical points, and critical values). This begins
with a search for its critical points (16).

• The bifurcation diagram (Fig. 3) contains critical
values of the momentum mapping, where the ge-
ometry of the level sets (and hence, the geometry
of the orbits) changes qualitatively.

• The critical points include dynamical fixed points
and critical periodic orbits, and these may be clas-
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sified in a way that reflects the local stability of
motion (Table I).

• Level sets corresponding to critical values (critical
level sets) partition the phase space into regions
with distinct dynamical behavior (Figs. 6-7).

• Analysis of the fixed point condition (32) can be
used to study the number and stability of fixed
points as the nonlinear insert strength τ is varied
((12) and Table II).

• A global picture of the dynamics for all values of
τ is obtained by extending the bifurcation diagram
to the 3D parameter space (H, I, τ). Figs. (14-19).

The application of these methods to the IOTA ring re-
veals a rich diversity of accessible dynamical behavior
that could be explored experimentally, subject to the lim-
itations of the physical aperture. Understanding the dy-
namical dependence on the system parameters (H, I, τ)
may also indicate new machine operating points and help
to guide future accelerator designs [12] based on simi-
lar nonlinear magnetic elements. While we have not ad-
dressed the computation of characteristic orbital frequen-
cies in this paper, we remark that this information may
be obtained from the momentum mapping F , by evalu-
ating a set of appropriately-defined integrals over paths
that lie within the level sets of F . This is a topic of
ongoing research.

APPENDIX A: SPECIAL FAMILIES OF
CRITICAL POINTS

Expressing the forms dH and dI in the local phase
space coordinates (ζ1, ζ2, ζ3, ζ4) = (x, px, y, py) gives:

dH =

4∑
j=1

(
∂H

∂ζj

)
dζj , dI =

4∑
k=1

(
∂I

∂ζk

)
dζk. (43)

Taking the wedge product gives, after using the antisym-
metry of ∧:

dH ∧dI =

4∑
k=2

k−1∑
j=1

(
∂H

∂ζj

∂I

∂ζk
− ∂H

∂ζk

∂I

∂ζj

)
dζj ∧dζk. (44)

The critical points of F occur where (44) vanishes, which
occurs if and only if each of the six coefficients in paren-
theses in (44) vanishes. Rather than solving this system
of 6 equations in 4 unknowns directly, it is simplest to
search for solutions of (44) satisfying the following spe-
cial conditions (reducing the problem from four to two
unknowns).

1) Critical points located in the plane px = py = 0:
This is the set of all points (x, y) satisfying:

(x− τ∂xU)(τ∂yW ) + (y− τ∂yU)(2x− τ∂xW ) = 0, (45)

where U and W are the functions appearing in (10-11).
This set includes, in particular, all of the dynamical fixed
points.

2) Critical points located in the plane x = y = 0:
This is the set of all points (px, py) with either px = 0 or
py = 0.

3) Critical points located in the plane x = px = 0:
All points in this plane are critical points.

4) Critical points located in the plane y = py = 0:
All points in this plane are critical points.

5) Critical points located in the plane y = px = 0:
This is the set of all points (x, py) with either py = 0 or

xp2y − (x− τ∂xU)(x2 − 1) = 0, (46)

where U is the function appearing in (10).
6) Critical points located in the plane x = py = 0:

This is the set of all points (px, y) with either px = 0 or

yp2x − (y − τ∂yU)(y2 + 1) = 0, (47)

where U is the function appearing in (10).
Next, note that the Hamiltonian flow maps critical

points to critical points. To see this, let p ∈ K be a
critical point, and let φt (t ∈ R) denote the Hamiltonian
flow. The fact that f1, . . . , fn are invariant under φt im-
plies that F ◦ φt = F . Applying the chain rule to the
Jacobian at p gives:

DFp = D(F ◦ φt)p = DFφt(p)D(φt)p. (48)

Since D(φt)p is a symplectic matrix, it is invertible. Thus
(48) implies,

rank(DFφt(p)) = rank(DFp). (49)

Since p satisfies (14), so does φt(p), and therefore φt(p) ∈
K.

Thus, the orbits of the points defined by 1)-6) consist
entirely of critical points. It follows from the structure
of the level sets (Appendix B) and their symmetry under
x 7→ −x and y 7→ −y that the orbit of every critical point
must intersect at least one of these six planes, and this
exhausts the set K of critical points.

APPENDIX B: LEVEL SETS

We wish to visualize the level set F−1({(H0, I0)}) in
the 4D phase space M , corresponding to invariant values
H = H0 and I = I0. This can be done through inter-
section with a 2D surface to yield a Poincaré section, as
described in Section IV.B, or by projection into one or
more planes. Below, we consider projection into the (x, y)
plane, which also yields a convenient 2D parametrization
of the level surface.

Solving for the magnitude of momentum in the equa-
tion H = H0 gives:

|p| =
√

2(H0 − V (x, y)), V (x, y) ≤ H0. (50)
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A real solution of (50) exists for all values of (x, y) satis-
fying the inequality. Define

(px, py) = (|p| cosφ, |p| sinφ), t = e2iφ. (51)

The equation I = I0 then takes the form of an equation
for t:

A(x, y)t2 +B(x, y)t+ C(x, y) = 0, (52)

where

A(x, y) = C̄(x, y) =
|p|2
4

(1− x2 + y2 + 2ixy), (53)

B(x, y) =
|p|2
2

(1 + x2 + y2) + x2 − τW (x, y)− I0, (54)

and |p| is given by (50). A solution of (52) for t exists on
the unit circle for all values of (x, y) satisfying:

B(x, y)2 − 4|A(x, y)|2 ≤ 0. (55)

Using such t in (50-51) gives the value(s) of (px, py) that
lie on the desired level surface over the point (x, y).

The projection of the level set into the (x, y) plane
is therefore given by the set of points satisfying simul-
taneously the two inequalities in (50) and (55). It is
convenient that (55) factors when expressed in elliptic
coordinates to give:

F1(ξ)F2(η) ≤ 0, (56)

where the coordinates (ξ, η) are related to (x, y) by:

(x, y) = (ξη,±
√

(ξ2 − 1)(1− η2)) (57)

and the two functions F1 and F2 are:

F1(ξ) = I0 + ξ2(−1− 2H0 + ξ2) + 2τξ
√
ξ2 − 1 arccosh(ξ),

F2(η) = I0 + η2(−1− 2H0 + η2) + 2τη
√

1− η2 arcsin(η).

Points on the boundary of the level set in the (x, y) plane
occur only where equality holds in (56), so that

F1(ξ) = 0 or F2(η) = 0. (58)

Solution of (58) yields an ellipse (ξ = ξ0) or hyperbola
(η = η0) in the (x, y) plane, with foci located at the two
singular points (x, y) = (±1, 0). The boundary of the
projected level set then consists of one or more segments
of these ellipses and hyperbolae, as constrained by the
additional inequality (50).

APPENDIX C: BIFURCATION DIAGRAM

The set K of critical points satisfying (16) must gen-
erally be obtained by searching numerically for the si-
multaneous zeros of a set of real-valued functions on the
phase space, as in Appendix A. Evaluating the invariants

at the locations of these numerically determined critical
points then yields the bifurcation diagram Σ = F(K).

In the special case of the Hamiltonian (9-10), one may
also use the results of Appendix B to obtain an explicit
parameterization of the bifurcation diagram as follows.
The boundary of each level set’s projection into the (x, y)
plane is determined by the zeros of the two functions
F1 and F2 (58). The topology of the level set therefore
changes at each value of (H0, I0) that coincides with a
change in the number of zeros of F1 or F2. This coincides
with the presence of a double root, where F1 = F ′1 = 0
or F2 = F ′2 = 0. Also, the boundary ellipse (ξ = ξ0) or
hyperbola (η = η0) becomes degenerate at the limiting
values ξ0 = 1, η0 = 0, or η0 = 1. The topology of the
level set may change at any value of (H0, I0) for which F1

or F2 has a root at one of these values. One then obtains
the parameterization (17) as follows:

A) Solve F ′1 = 0 for H0, to obtain the parameterization
of HA. Substitute H0 = HA into F1 = 0, and solve for
I0 to obtain the parameterization of IA.

B) Solve F ′2 = 0 for H0, to obtain the parameterization
of HB . Substitute H0 = HB into F2 = 0, and solve for
I0 to obtain the parameterization of IB .

C) Note that:

lim
ξ→1

F1(ξ) = lim
η→1

F2(η) = −2H0 + I0. (59)

Setting (59) to zero yields I0 = 2H0, giving (HC , IC).
D) Note that:

lim
η→0

F2(η) = I0. (60)

Setting (60) to zero yields I0 = 0, giving (HD, ID).
Finally, the values (ξmin, ηmin, smin, tmin) are defined

by the intersection points of the four curves A)-D).
This procedure yields the same results as a direct eval-

uation of Σ = F(K) based on the results of Appendix
A. In particular, taking the images of the 6 families of
critical points in Appendix A gives the following result:

1) In the plane px = py = 0, solving (45) numerically
for (x, y) and evaluating (H, I) at these points yields criti-
cal values lying on the four curves A)-D) of (17). This was
verified numerically for a range of τ , including τ = −0.4.

2) In the plane x = y = 0, the case px = 0 gives by
direct evaluation that I = 0 (on curve D). Similarly, the
case py = 0 gives I = 2H (on curve C).

3) In the plane x = px = 0, direct evaluation gives that
I = 0 (on curve D).

4) In the plane y = py = 0, direct evaluation gives that
I = 2H (on curve C).

5) In the plane y = px = 0, the case py = 0 gives
I = 2H (on curve C). Otherwise, solve (46) for p2y and
substitute into (H, I). If |x| > 1, taking x = ξ gives the
curve (HA, IA). If |x| < 1, taking x = η gives the curve
(HB , IB).

6) In the plane x = py = 0, the case px = 0 gives
I = 0 (curve D). Otherwise, solve (47) for p2x and substi-

tute into (H, I). Taking y = ±
√
ξ2 − 1 gives the curve

(HA, IA).
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It follows that all critical points have invariant values
(H, I) that lie on the four curves defined in (17).

APPENDIX D: DYNAMICAL STABILITY

A general Hamiltonian flow on a phase space of dimen-
sion 2n is described by the equations of motion:

ζ̇ = J∇H(ζ), (61)

where ζ = (q1, p1, . . . , qn, pn), and J denotes the 2n× 2n
matrix of the symplectic form:

J = diag(J1, . . . , J1), J1 =

(
0 1

−1 0

)
. (62)

Let ζd denote an orbit of (61) with period T ≥ 0. (In
this Appendix, we consider both periodic orbits and fixed
points, where for a fixed point we set T = 0.) Dynamical
stability is determined by linearizing (61) about the orbit
ζd, yielding the variational equations:

δζ̇ = JS(t)δζ, S(t) = Hessζd(t)(H). (63)

The solution of (63) takes the form δζ(t) = R(t)δζ(0),
where the linear transport matrix R satisfies the matrix
equation [21]:

Ṙ = JS(t)R, R(0) = Id, (64)

and Id denotes the 2n × 2n identity matrix. By the
Floquet-Lyapunov theorem ([25], 2.5.2 and 2.1.1), there
exist a real symplectic matrix P (t) and a real symmetric
matrix B such that:

R(t) = P (t)etJB , P (0) = Id, (65)

where P is periodic in t with period T or 2T . The eigen-
values of JB are called the characteristic exponents of
the orbit ζd. The orbit ζd is said to be (spectrally) sta-
ble if JB is diagonalizable and all of its eigenvalues are
purely imaginary. In this case, solutions of (63) remain
bounded for all t ∈ R ([25], 5.1.1). Note that, if λ ∈ C
is a characteristic exponent, then so are ±λ, ±λ̄ ([25],
2.3.1).

At a fixed point ζd, the matrix S(t) is independent of
t. It follows that we may take B = S and P = Id in
(65), and the stability problem is reduced to studying
the eigenvalues of JS. For a Hamiltonian in two degrees

of freedom of the form (9), the eigenvalues σ of JS are
the roots of:

det(JS − σId) = det(Hess(V ) + σ2Id) = 0. (66)

If λ1, λ2 denote the eigenvalues of Hess(V ), it follows
that the 4 characteristic exponents are given by:

σ
(±)
j = ±iλ1/2j , (j = 1, 2). (67)

Since Hess(V ) is a symmetric matrix, each λj ∈ R. It
then follows from (67) that a fixed point of the system
(9) is (spectrally) stable if and only if λ1, λ2 > 0.

APPENDIX E: EXTENDED PHASE SPACE

We may extend the theory of Section III to treat the
τ -dependence of the Hamiltonian (9) as follows. Let M4

denote the usual 4D phase space, with its canonical coor-
dinates (x, px, y, py). We define an extended phase space
M6 = M4 × S1 × R, where S1 denotes the unit circle,
with canonical coordinates (x, px, y, py, θ, τ). Here θ is an
angle variable with eiθ ∈ S1, and τ ∈ R is the nonlinear
insert strength. Define a Hamiltonian H̃ on the phase
space M6 using the expression (9), where τ is now a dy-

namical variable, and define a function Ĩ on M6 using
the expression (11). Then H̃, Ĩ, and τ are functionally
independent on M6, and one may verify that:

{H̃, τ} = 0, {Ĩ , τ} = 0, {H̃, Ĩ} = 0. (68)

This defines an integrable Hamiltonian system on the
extended phase space M6, with invariants of motion f1 =
H̃, f2 = Ĩ, and f3 = τ , to which the theory of Section
III can be applied. In this way, we obtain an extended
bifurcation diagram Σ3 in the parameter space (H̃, Ĩ, τ).
The diagram Σ3 consists of four parametrized 2-surfaces
and their intersections in three-dimensional space, given
by the expressions in (17), where τ is now treated as
a parameter. The surfaces in Σ3 divide R3 into distinct
regions (chambers), separating the 7 types of regular level
sets shown in Figs. 4, 13. In Section VI.B., we study the
bifurcation diagram Σ3 by illustrating its intersections
with the planes τ = τ0 (slices) at several fixed values of
τ0.
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