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ABSTRACT OF THE THESIS

Multi-frame Video Prediction with Learnable Temporal Motion Encodings

by

Rakesh Jasti

Master of Science in Electrical Engineering and Computer Science

University of California Merced, 2020

Professor Ming-Hsuan Yang, Chair

While recent deep learning methods have made significant progress on the video

prediction problem, most methods predict the immediate or a fixed number of future

frames. To obtain longer-term frame predictions, existing techniques usually process

the predicted frames iteratively, resulting in blurry or inconsistent predictions. In this

thesis, we present a new approach that can predict an arbitrary number of future video

frames with a single forward pass through the network. Instead of directly predicting

a fixed number of future optical flows or frames, we learn temporal motion encodings,

i.e., temporal motion basis vectors and a network to predict the coefficients. The learned

motion basis can be easily extended to arbitrary length at inference time, enabling us to

predict an arbitrary number of future frames. Experiments on benchmark datasets in-

dicate that our approach performs favorably against state-of-the-art techniques even for

the next frame prediction setting. When evaluated under 5-frame or 10-frame predic-

tion settings, the proposed method obtains bigger performance gains over the existing

state-of-the-art techniques that iteratively process the predictions.
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Chapter 1

Introduction

Video prediction refers to predicting future video frames by observing a sequence of

video frames. Many real-world applications need the prediction of future frames condi-

tioned on a given sequence of input video frames, such as online streaming, predicting

system behavior [62, 26, 18], autonomous driving and intelligent agents [20], data aug-

mentation [63] and video coding. For example, self-driving cars have to predict the

motion of the passing vehicles. This prediction capability is vital for the autonomous

systems in path planning and interacting with humans.

In most use cases, it is desirable to have video prediction models that can generate

high-resolution future frames for multiple future time-steps. This multiple-step video

prediction problem is highly challenging because the future states of a scene are uncer-

tain and a scene may have complex spatio-temporal dynamics due to camera motion,

lighting conditions, clutter, object deformations, occlusion, moving objects, etc.

Given the recent success of deep neural networks for understanding pixel motion

(optical flow) [43, 49] and also in generating realistic image content [14], there has been

a plethora of recent works [39] that leverage deep neural networks for video prediction.

Deep neural networks are well suited for this problem because of their ability to learn

adequate representations from high-dimensional data and increase their capacity with

the size of data available with large-scale optimization algorithms. Deep learning based

models fit perfectly into the learning by prediction paradigm, enabling the extraction of

meaningful spatio-temporal correlations from video data in a self-supervised fashion.

However, existing methods mainly focus on predictions in a short time horizon,

1
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Figure 1.1: Arbitrary-length multi-frame prediction. Our approach (top) can predict

an arbitrary number of future optical flows and synthesize corresponding future frames

with a single forward pass through the network. This is in contrast to most existing deep

learning works (bottom) that iteratively input the predicted frames into the network for

multi-frame video prediction.

usually a single time step. As illustrated in Fig. 1.1, most existing deep learning ap-

proaches [34, 13, 42, 29] for video prediction achieve multi-frame video prediction by

iteratively passing the previously predicted frames as observations into the network. Re-

cursive future prediction strategies usually produce high quality predictions for the first

few steps. But the prediction would then dramatically degrade, and could even lead to

a complete miss of the video context or generating a stationary frame. Such recursive

future prediction strategies usually also have more memory and runtime footprints mak-

ing them less suitable for real-world applications. Besides, iteratively predicting one

frame at a time and reusing those predictions as input to the network can result in error

accumulation over time.

Standard convolutional neural networks (CNN) are the basic building blocks of deep

learning architectures designed for visual reasoning since the Convolutional Neural Net-

works (CNNs) efficiently model the spatial structure of images.

Convolutional operations account for short-range intra-frame dependencies due to

their limited receptive fields, determined by the kernel size. This is a well-addressed
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issue, that many authors circumvented by (1) stacking more convolutional layers [23],

(2) increasing the kernel size (prohibitively expensive), (3) by linearly combining mul-

tiple scales [34] as in the reconstruction process of a Laplacian pyramid [8], (4) using

dilated convolutions to capture long-range spatial dependencies [60], (5) enlarging the

receptive fields [5] or subsampling, i.e. using pooling operations in exchange for losing

resolution. The latter could be mitigated by using residual connections [16, 52], to pre-

serve resolution while increasing the number of stacking convolutions. Vanilla CNNs

lack of explicit inter-frame modeling capabilities. To properly model inter-frame vari-

ability in a video sequence, 3D convolutions come into play as a promising alternative

to recurrent modeling. Several video prediction approaches leveraged 3D convolutions

to capture temporal consistency [1, 55, 54, 51]. However even after addressing these

limitations, CNNs still generate fixed-size results and cannot be readily used to predict

an arbitrary number of multiple future video frames.

Recurrent models were conceptually designed to model the spatio-temporal repre-

sentation of sequential data such as video frames. Among other sequence learning tasks,

such as machine translation, speech recognition and video captioning, to name a few,

Recurrent Neural Networks (RNNs) [45] demonstrated success to some degree in the

video prediction scenario [50, 59, 31]. However, RNNs have some important limita-

tions when dealing with long-term representations due to the vanishing and exploding

gradient issues, making the training hard and requiring higher memory requirements.

In this thesis, we propose a deep network architecture for simultaneously predicting

multiple and an arbitrary number of future video frames in a single forward pass through

the network. As illustrated in Fig. 1.1, instead of directly predicting future frames or

optical flows with a CNN, in this work, we propose to predict basis coefficients for a

learnable temporal motion basis. These basis coefficients together with learned temporal

motion basis can be used to generate an arbitrary number of future optical flows, which

in turn are used to produce multiple future video frames.

Specifically, we use a 3D convolutional network (Coefficient-Net) that can capture

the spatio-temporal features of the given video frames, to predict basis coefficients of

the learned temporal basis vectors at each pixel. These basis vectors model long term

per-pixel motion across video frames and are trained together with Coefficient-Net via



4

standard gradient descent techniques. We parameterize our temporal motion basis vec-

tors following linear time-invariant dynamical systems theory following the recent work

of DYAN [29] and then learn these basis parameters.

We evaluate our video prediction approach on two standard datasets of the CALTECH

PEDESTRIAN dataset [10] and consumer videos from the UCF-101 dataset [47]. Our

method achieves state-of-the-art results on both datasets while being able to predict an

arbitrary number of multiple future frames. Experiments demonstrate that the proposed

algorithm can boost the visual quality of generated videos and lead to more precise

results in long-term prediction compared to the prior works.

In brief, our video prediction technique has the following favorable properties:

• Multiple and an arbitrary number of future frame predictions. With a sin-

gle forward pass through our coefficient network, we can predict multiple and

arbitrary numbers of future video frames from a given video.

• Learned temporal motion basis. Along with the main network, we jointly

learn temporal motion basis vectors that model the per-pixel motion across video

frames.

• End-to-end trainable. Both the coefficient network and temporal motion basis

are learned in an end-to-end fashion enabling the use of large-scale training data

that is readily available for the video prediction task.

• State-of-the-art performance. Experiments on two benchmarks datasets [10, 47]

indicate the state-of-the-art prediction results using our technique.

The thesis is organized as follows. First, Chapter 2 discusses related previous work.

In Chapter 3, we present our approach and discuss the details of our implementation.

In Chapter 4, we report experiments comparing our performance in multi-step frame

prediction against the state-of-art approaches. Additionally, we perform multiple ablta-

tion studies to investigate the significance of various details and modules used in our

approach. Finally, Chapter 5 provides concluding remarks and directions for future ap-

plications of our work.



Chapter 2

Related Work

Multiple deep learning based methods for future video prediction have emerged re-

cently. Initial models focused on directly predicting pixel values by modeling the scene

dynamics. However, since the pixel space is high dimensional, extracting meaning-

ful and robust features from raw videos is challenging. As a natural next step, the

subsequent works focused on reducing the dimensionality of the feature space and the

supervision effort. To disentangle the factors of variation from the visual content and

factorize the prediction space, authors proposed: (1) modelling the source of variability

as transformations between frames (2) using a two stream computation to model the

visual and motion content separately. Other works have narrowed the prediction space

by conditioning the predictions on extra variables such as vehicle odometry or robot

state, or reformulating the problem in a higher-level space such as semantic and instance

segmentation, and human pose. In the following sections, we will delve into the recent

progress on the application of deep learning techniques for future video prediction given

the contextual data of a sequence of input frames. We review the recent methods for di-

rect pixel and latent representation prediction. We provide a comprehensive description

as well as an analysis of their strengths and weaknesses. Additionally, we also discuss

the recent methods that specifically address the challenges in video prediction for a long

time horizons.

5
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2.1 Prediction in the Raw Pixel Space

Early neural network approaches focus on predicting raw pixels conditioned on the

observed frames [48, 6, 4, 34, 24]. Building on the recent success of the Laplacian

Generative Adversarial Network (LAPGAN) [8], Mathieu et al. [34] propose using

GANs [14] with a multi-scale approach and image gradient loss for video prediction

that was trained in a adversarial setting. They employ novel GDL regularization with `1-

based reconstruction and adversarial training. Significant improvements over the previ-

ous state-of-the-art models [48] are reported by the authors in terms of prediction sharp-

ness. However, the results suffer from blurriness artifacts due to the difficulty in directly

regressing raw pixel values from the input frames. Lotter et al. [32] outperformed the

previous works [48, 34] with the Predictive Coding Network (PredNet). PredNet learns

feature representations by stacking convolutional LSTMs vertically. Each ConvLSTM

layer produces a layer-specific prediction at every time step to transmit the local `1error

term to the next layer.

Under the assumption that video sequences are symmetric in time, Kwon and Park [27]

explore a retrospective prediction scheme by training a generator that predicts both the

forward and backward frames (reversing the input sequence to predict the past). Their

cycle GAN-based approach ensure the consistency of bi-directional prediction through

retrospective prediction scheme. They employ distinct discriminators to enforce the su-

pervision on the frame content generation and on the temporal sequence consistency. In

the same spirit, other works focused on both, forward and backward predictions [19, 36].

For modeling short-term features, Wang et al. [55] integrated 3D convolutions into

a recurrent network demonstrating favorable results in both video prediction and early

activity recognition. While 3D convolutions efficiently preserves local dynamics, RNNs

enables long range video reasoning. The Eidetic 3d LSTM (E3d-LSTM) network fea-

tures a gated-controlled self-attention module, i.e. eidetic 3D memory, that effectively

manages historical memory records across multiple time steps. Outperforming previous

works, Yu et al. proposed the Conditionally Reversible Network (CrevNet) [61] con-

sisting of two modules, an invertible Auto-Encoder and a Reversible Predictive Model

(RPM). While the bijective two-way Auto-Encoder ensures no information loss and re-

duces the memory consumption, the RPM extends the reversibility from spatial to tem-
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poral domain. Some other works used 3D convolutional operations to model the time

dimension.

Extracting a robust representation from raw pixel values is an overly complicated

task due to the high-dimensionality of the pixel space and several challending factors

like camera motion, dynamically moving objects, occlusions, etc. Besides, iteratively

applying direct pixel-prediction methods for multiple frame predictions exacerbates the

artifacts and causes an exponential growth in the prediction error on the long-term hori-

zon (Fig. 1.1).

2.2 Predictions through Latent Factors

More recently, several approaches focus on learning the underlying factors of vari-

ations like optical flow [29, 42, 17], transformation kernels [12], human pose vec-

tors [53], etc. These methods assume that the visual information is already available in

the input sequence. These methods are highly efficient in dealing with the redundancy

of pixel information in the input sequence of frames. Let X = (Xt−n, ..., Xt−1, Xt) be

a video sequence of n frames, where t denotes time. Formally, these methods can be

defined as:

Ŷt+1 = T (G(Xt−n:t), Xt−n:t) (2.1)

where T is the transformation function operating on the parameters generated by the

learned function G. The transformation T is applied to the last observed frame Xt

to generate the future frame predictions Ŷt+1. The function T can be a kernel based

resampling, or a vector based resampling, or a combination of both.

Kernel-based Resampling. Kernel based resampling methods synthesize pixels by

convolving input patches with a predicted kernel. Such methods can be represented as

follows:

Ŷt+1 = K(x, y) ∗ Pt(x, y) (2.2)

where K(x, y) ∈ RN×N is the kernel predicted by G at (x, y) and Pt(x, y) is an N ×
N patch centered at (x, y) in Xt. Finn et al. [12] propose two kernel based motion

prediction modules outperforming previous approaches [34], (1) the Dynamic Neural

Advection (DNA) module predicting different distributions for each pixel and (2) the



8

CDNA module that instead of predicting different distributions for each pixel, it predicts

multiple discrete distributions applied convolutionally to the input image via convolu-

tion. While the DNA module generates per-pixel motion, CDNA masks out the objects

moving in consistent directions. Inspired by these modules, several works have been

since introduced. Using adversarial training, Vondrick et al. proposed a cGAN-based

model [54] consisting of a discriminator and a CNN generator featuring a transformer

module inspired on the CDNA model. Different from the CDNA model, transforma-

tions are not applied recurrently on a per-frame basis. To deal with in-the-wild videos

and make predictions invariant to camera motion, authors stabilized the input videos.

Vector-based Resampling. As an alternative, vector based resampling methods syn-

thesize future frames in the affine transformation space. Jaderberg et al. [22] propose the

ST module to regress the different affine transformation parameters for each input, to be

applied as a single transformation to the whole feature map(s) or image(s). The ST mod-

ule can be incorporated at any part of the CNNs and it is fully differentiable. Inspired

by the ST module, Liu et al. [30] propose the Deep Voxel Flow (DVF) architecture.

It consists of a multi-scale flow-based Encoder-Decoder model originally designed for

the video frame interpolation task, but was also evaluated on a video prediction tasks.

Liang et al. [28] use a flow-warping layer based on a bilinear interpolation. In addi-

tion to the DNA and CDNA modules, Finn et al. [12] propose the Spatial Transformer

Predictor (STP) motion-based model producing 2D affine transformations for bilinear

sampling.

Hybrid Resampling. Since vector based methods consider few pixels in synthesis,

their results often appear degraded by speckled noise patterns. Vector based methods

can, however, model large displacements without a significant increase in parameter

count. On the other hand, kernel based methods produces visually pleasing results for

small displacements, but require large kernels to be predicted at each location to capture

large motions. As such, the kernel-based approach can easily become not only costly at

inference, but also difficult to train. Combining kernel and vector-based resampling into

a hybrid solution, Reda et al. [42] proposed the Spatially Displaced Convolution (SDC)

module that synthesizes high resolution images applying a learned per-pixel motion

vector and kernel at a displaced location in the source image. Their 3D CNN model
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trained on synthetic data and featuring the SDC modules, reported promising predictions

of a high-fidelity.

Two-stream Video Prediction. One popular hypothesis is that a video sequence

can be factorized into content and motion, and these can be processed on separate path-

ways. The Motion-content Network (MCnet) [52] predicts the next frame by combining

the predicted motion feature and the extracted content feature. However, MCnet cannot

capture the motion information in the long-term prediction. In a similar fashion, DR-

NET [9] designed an adversarial training strategy to disentangle the motion and content

representations. Recently, Gao et al. [13] improve the sharpness of predictions by re-

ducing the occlusion effects of using optical flow. They compute occlusion maps using

the flow information and inpaint the occluded regions in the predictions.

Stochastic Variational Video Prediction. Another popular hypothesis is that the

outcome of an event is stochastic. As the vast majority of video prediction models

are deterministic, they are unable to manage probabilistic environments. To address

this issue, several authors proposed modeling future uncertainty with probabilistic mod-

els. Babaeizadeh et al. [2] proposed the Stochastic Variational Video Prediction (SV2P)

by incorporating latent variables into the deterministic CDNA architecture. The time-

invariant posterior distribution is the encoding of the entire video sequence via a feed

forward convolutional network. Denton et al. propose the SVG network [7] by combin-

ing a deterministic architecture with stochastic latent variables. Different from SV2P, it

outputs a different posterior distribution for every time step whose parameters were esti-

mated during training. The SVG model is easier to train and reported sharper predictions

in contrast to [2].

2.3 Long-Term Prediction

While most of the recent works focus on predicting the immediate next frame, our

work addresses generating frame predictions for an arbitrary number of time-steps si-

multaneously in a single forward pass of a neural network. Recent works [38, 53, 57]

exhibit long-term frame predictions.

Oh et al. [38] first propose long-term video predictions conditioned by control inputs
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from Atari games. Although the proposed Encoder-Decoder based models reported very

long-term predictions (+100), performance drops when dealing with small objects and

results in blurry predictions due to the squared error when generating the predictions

for the synthetic videos. Villegas et al. [53] regress future frames through supervised

prediction of human poses and analogy formulation. The authors compare the model

against [59, 34] and report long-term results. To make the model unsupervised on the

human pose, Wichers et al. [57] adopt different training strategies: end-to-end prediction

minimizing the `2 loss, and through analogy formulation, constraining the predicted

features to be close to the outputs of the future encoder. However, for each new time-

step, the discussed models update the recurrent decoder states to obtain the next frame

prediction.

Recently, the DYAN framework by Liu et al. [29] models a sequence of optical flows

using a temporal motion basis and the corresponding set of basis coefficients. For a given

input video, the basis coefficients are computed using FISTA [3], an iterative optimiza-

tion algorithm, with the objective of minimizing the frame reconstruction loss. Instead

of using an optimization scheme, we learn a deep network that can predict basis coef-

ficients while also learning the temporal motion basis using standard back-propagation

techniques. This enables us to leverage large amounts of training data resulting in better

performance.



Chapter 3

Approach

Video prediction aims to synthesize the future frames in a video sequence con-

ditioned on the input sequence of frames. Given a sequence of input RGB frames

X1:t = (X1, X2, ..., Xt); Xi ∈ Rn×3, each with n pixels, our model generates the

future frames Ŷt+1:t+k = (Ŷt+1, Ŷt+2, ..., Ŷt+k); Yi ∈ Rn×3 for k future time-steps. In

addition to X1:t, we also use optical flows from FlowNet2 [21] as input to encapsulate

the motion between the frames. Let Fi ∈ Rn×2 denotes the backward optical flow from

the ith frame to the i−1th frame.

We formulate frame prediction as future optical flow predictions and then synthesize

future frames using these predicted optical flows. As illustrated in Fig. 3.1, our network

takes X1:t and F2:t as input and produces arbitrary (k) number of future optical flows

F̂t+1:t+k = (F̂t+1, F̂t+2, ..., F̂t+k). Given these predicted flows, we recursively warp a

given or estimated previous frame to generate the current frame:

Ŷi = T (Ŷi−1, F̂i), (3.1)

where Ŷt = Xt and T denotes warping the previous frame to the current frame with

the optical flow. While we apply warping recursively, our network only performs the

forward pass once, which we will explain in the following paragraphs.

3.1 Temporal motion basis

A main goal of this work is to predict arbitrary number of future frames with a

single forward pass through the network. To achieve this, instead of directly predict-

11
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⟳

Temporal Motion 
Basis (V)

Warp

Flow Predictions Frame Predictions

X

Wu,v

Input Frames

Input Flows

Figure 3.1: Approach overview. Given input frames and the corresponding estimated

optical flows, the network G predicts basis coefficients Wu,v. We linearly combine these

coefficients with learned temporal motion basis (V ) to predict arbitrary-length future

optical flows. The predicted optical flows are in turn used to synthesize future frames

via warping image pixels.

ing future optical flows F̂t+1:t+k, we represent optical flows as a linear combination of

temporal motion basis vectors and predict the basis coefficients using our network. In

DYAN [29], Liu et al. show that an input sequence of optical flows can be modeled

with Linear Time Invariant (LTI) systems and this representation is successfully used

for future optical flow prediction. During the training, DYAN learns a structured motion

basis D in Eq. (3.2) of size m×N using a set of N dynamics-based atoms (columns of

D) to encode the input sequence of optical flows F̂t+1:t+m. These atoms are the impulse

responses of a low order LTI system. The atoms are represented as complex numbers

pi = ρie
jψi and are parameterized by magnitude ρi and phase ψi:

D =



1 1 . . . 1

p1 p2 . . . pN

p21 p22 . . . p2N
.
.
.

.

.

.
.
.
.

.

.

.

pm−1
1 pm−1

2 . . . pm−1
N


(3.2)

Each row in the dictionary D represents the temporal encoding for the particu-
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V1,.. =



1 1 0 −1 0 1 0 . . .

1 ρ1 cosψ1 ρ1 sinψ1 −ρ1 cosψ1 −ρ1 sinψ1 ρ2 cosψ2 ρ2 sinψ2 . . .

1 ρ21 cos 2ψ1 ρ21 sin 2ψ1 (−ρ1)2 cos 2ψ1 (−ρ1)2 sin 2ψ1 ρ22 cos 2ψ2 ρ22 sin 2ψ2 . . .

1 ρ31 cos 2ψ1 ρ31 sin 2ψ1 (−ρ1)3 cos 2ψ1 (−ρ1)3 sin 2ψ1 ρ32 cos 2ψ2 ρ32 sin 2ψ2 . . .
...

...
...

...
...

...
...

...

1 ρm−21 cos (m− 2)ψ1 ρm−21 sin (m− 2)ψ1 (−ρ1)m−2 cos (m− 2)ψ1 (−ρ1)m−2 sin (m− 2)ψ1 ρm−22 cos (m− 2)ψ2 ρm−22 sin (m− 2)ψ2 . . .

1 ρm−11 cos (m− 1)ψ1 ρm−11 sin (m− 1)ψ1 (−ρ1)m−1 cos (m− 1)ψ1 (−ρ1)m−1 sin (m− 1)ψ1 ρm−12 cos (m− 1)ψ2 ρm−12 sin (m− 1)ψ2 . . .


m×b

Figure 3.2: Motion Basis V1,m. The temporal motion basis V1,m is used to encode the

motion dynamics in a given dataset. The goal of motion basis is to capture the motion

encoding in the least possible combination of poles.


1 ρm1 cos (m)ψ1 ρm1 sin (m)ψ1 (−ρ1)m cos (m)ψ1 (−ρ1)m sin (m)ψ1 ρm2 cos (m)ψ2 ρm2 sin (m)ψ2 . . .

1 ρm+1
1 cos (m + 1)ψ1 ρm+1

1 sin (m + 1)ψ1 (−ρ1)m+1 cos (m + 1)ψ1 (−ρ1)m+1 sin (m + 1)ψ1 ρm+1
2 cos (m + 1)ψ2 ρm+1

2 sin (m + 1)ψ2 . . .

1 ρm+2
1 cos (m + 2)ψ1 ρm+2

1 sin (m + 2)ψ1 (−ρ1)m+2 cos (m + 2)ψ1 (−ρ1)m+2 sin (m + 2)ψ1 ρm+2
2 cos (m + 2)ψ2 ρm+2

2 sin (m + 2)ψ2 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.



Figure 3.3: Extended Motion Basis. The rows of the motion basis are extended for

future time-steps by using the parameter ρj and ψj . Thus, the motion basis can be used

for predicting arbitrary future frames.
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lar time-step. To avoid computing with complex numbers, Liu et al. [29] replace the

columns of D with the real and imaginary parts of the complex numbers pi = ρie
jψi

to obtain the motion basis V1,m in Fig. 3.2. The parameters ρj and phase ψj for each

basis vectors are learned using back propagation. For further details, please refer to

DYAN [29].

We reconstruct the input sequence F1:m by using the temporal motion basis V(1,m)

and a corresponding sparse vector of coefficientsWu,v ∈ Rn×2×b that selects and weighs

the individual basis such that:

min|F1:m −Wu,vV
>
(1,m)| (3.3)

A key observation we make use of in this work is that we can easily extend the rows

of the basis matrix V(1,m) to Fig. 3.3 for the additional future time-steps without adding

any new parameters, as each basis vector is only represented by two parameters ρj and

ψj . We explicitly denote the arbitrary dimensionality in V with V(a,b), denoting the basis

matrix with rows from time-step a to time-step b.

3.2 Coefficient-Net

As illustrated in Fig. 3.1, we train a network which we call ‘Coefficient-Net’ (G) that

takes given frames X1:t and computed flows F2:t as input and predicts basis coefficients

Wu,v ∈ Rn×2×b at each pixel and for each of the horizontal u and vertical v motion

directions:

Wu,v = G
(
X1:t, F2:t

)
. (3.4)

Note that this network output (Wu,v) dimension is independent of the number of future

frames we want to predict. We then obtain k future optical flows F̂t+1:t+k as a pixel-wise

multiplication of Wu,v and basis matrix V(t+1,t+k) with k rows:

F̂t+1:t+k = Wu,vV
>
(t+1,t+k). (3.5)

We use these predicted flows to iteratively estimate future video frames as explained

earlier in Eq. (3.1). To predict q frames instead of k, we simply extend the basis matrix

to q rows V(t+1,t+q) and then multiply with the predicted basis coefficientsWu,v. This en-

ables us to make arbitrary number of future frame predictions with a single forward pass
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through the network. During network training, we use Coefficient-Net to re-generate

both input frames Ŷt−l:t and future frames Ŷt:t+k by using basis matrix V(t−l,t+k) with

l + k rows. This is to make use of both input frames and future frames as ground-truth

supervision during training. We discuss the details of the parameters in the later parts of

this section.

3.3 Network Architecture

In order to capture spatio-temporal features from the input frames and flows, we

use an encoder-decoder based 3D CNN with skip connections for coefficient-net G.

The 3 channels from the input RGB images and the 2 channels from the corresponding

optical flows are concatenated to form 5 channel input at each time-step. We design

our G inspired by various U-net type encoder-decoder architectures [44, 35, 11]. The

feature maps are downsampled by applying 3D convolutions with a stride of (1,2,2)

followed by a Leaky Rectified Unit (LeakyRELU) [15] to capture the long-range spa-

tial dependencies. Following [42], we use 3X7X7 and 3X5X5 convolution kernels in

the first and second layers for capturing large displacements. In the subsequent layers,

we use 3X3X3 convolution kernels. Each decoding layer concatenates features from

the corresponding encoder layer and applies transposed convolution [46] followed by

LeakyRELU. To minimize the checkerboard artifacts [37], the last two decoding layers

are replaced with nearest neighbor upsampling followed by convolutions. The outputs

from the decoder are convolved repeatedly to reduce the time-dimension to 1. The

architecture details are provided in Table 3.1. Additionally, we enforce `0 regulariza-

tion [33] on the final convolution layer based on stochastic gates to learn sparse basis

coefficients. Lastly, we constrain the range of basis coefficients to (−r, r) to improve

the training stability. We choose the values for r empirically to account for the range

of pixel motions in the given dataset. Greater range of motion directly relates to greater

magnitudes of optical flow which require larger values of basis coefficients. We achieve

this by applying modified Sigmoid (σ) activation function:

Z(s) = 2r
(
σ(s)− 0.5)

)
(3.6)
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3.4 Loss Functions

Our primary training loss for the Coefficient-Net is the `1 pixel reconstruction loss

over the generated images:

L1 =
t+k∑
i=t−l

‖Xi − Ŷi‖1 (3.7)

We note that, during training, the prediction Ŷi is synthesized by warping the ground

truth frame Xi−1 with the optical flow prediction F̂i. We observe that this results in

stable training and convergence to a better solution. However during inference stage, we

warp the previous frame prediction Ŷi−1 to generate the next frame Ŷi. Additionally, we

enforce `0 regularization [33] on the basis coefficients to generate sparse representations.

The total loss is expressed as:

LP = L1 + λ‖Wu,v‖0 (3.8)

3.5 Training

We implement our work using PyTorch [40] neural network framework. We trained

our Coefficient-Net using frames extracted from the MINI-KINETICS-200 dataset [58]

after applying pre-processing steps suitable to the validation datasets as discussed in

Chapter 4. We divide every 30 frames into a training sample. We use a batch size of

16 and train over 4 Nvidia V100 GPUs. We optimize with Adam [25] with the standard

hyper-parameters and a learning rate of 1e−3 with no weight decay. Each training clip

consists of 11 randomly cropped consecutive input frames. The input for the network

G (Fig. 3.1) is every second frame sampled from the 11 consecutive images. The 5

evenly-spaced images capture greater spatio-temporal dynamics compared to using the

5 consecutive input frames for the same compute power requirements. Thus for a given

training example of frames X1:11, the input for module G are frames X1:11:2 and the

corresponding backward flows. During training, we condition V and Wu,v to generate

consecutive l input and k future frames. Using a coarse grid search, we observe that

restricting the temporal motion basis V for l = 5 and k = 5 frames during training is

a suitable right trade-off between capturing the motion dynamics and the computational
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power requirements.

Similar to [29], the motion basis Vl,k is initialized with the individual bases uniformly

distributed in the first quadrant between the two rings around the unit circle defined by

0.75 ≤ ρ ≤ 1.15, their 3 mirror images in the 2nd, 3rd and 4th quadrants, and a fixed

basis at (ρ, ψ) = (1, 0). Following [29], the temporal motion basis Vl,k is initialized

with b = 161 basis vectors. However, unlike [29], we do not normalize each column

of Vl,k to norm 1 and instead observe superior results when replaced with a learned

normalization factor.
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Table 3.1: Coefficient-Net Architecture. Given input sequence of images and the corre-

sponding optical flows, our architecture G predicts the basis coefficients of dimensions

2 × 161 × h × w. In the table, we use the input resolution size of UCF-101 dataset to

demonstrate the feature map dimensions at each layer.

Layer Name Kernel Size Stride Channels out Input Size Output Size Input Features

Conv1 3× 7× 7 2 64 256× 320 128× 160 Images and Flows

Conv2 3× 5× 5 2 128 128× 160 64× 80 Conv1

Conv3a 3× 5× 5 2 256 64× 80 32× 40 Conv2b

Conv3b 3× 3× 3 1 256 32× 40 32× 40 Conv3a

Conv4a 3× 3× 3 2 512 32× 40 16× 20 Conv3b

Conv4b 3× 3× 3 1 512 16× 20 16× 20 Conv4a

Conv5a 3× 3× 3 2 512 16× 20 8× 10 Conv3b

Conv5b 3× 3× 3 1 512 8× 10 8× 10 Conv4a

Conv6a 3× 3× 3 2 1024 8× 10 4× 5 Conv4b

Conv6b 3× 3× 3 1 1024 4× 5 4× 5 Conv5a

Deconv5 1× 4× 4 2 512 4× 5 8× 10 Conv6b

Deconv4 1× 4× 4 2 256 8× 10 16× 20 Deconv5+Conv5b

Deconv3 1× 4× 4 2 128 16× 20 32× 40 Deconv4+Conv4b

Deconv2 1× 4× 4 2 64 32× 40 64× 80 Deconv3+Conv3b

Deconv1 1× 4× 4 2 32 64× 80 128× 160 Deconv2+Conv2

Deconv0 1× 4× 4 2 16 128× 160 256× 320 Deconv1+Conv1

Coefficients 5× 3× 3 1 322 256× 320 256× 320 Deconv0+Images and Flows



Chapter 4

Experiments

We evaluate the proposed method against the state-of-the-art approaches on bench-

mark datasets. We show the model performance on both the immediate-frame prediction

and multi-frame prediction settings. We also perform multiple ablation studies to ana-

lyze the importance of various components in our architecture. All the source code and

trained models will be made available to the public.

4.1 Dataset and Metrics.

We evaluate our model on the CALTECH PEDESTRIAN (CALTECHPED) [10] and

UCF-101 [47] datasets, using Mean-Squared-Error (MSE/L2), Peak Signal-to-Noise

Ratio (PSNR), and Structural Similarity Index Measure (SSIM) [56].

4.2 Results on the Caltech Pedestrian dataset.

Following the settings in Lotter et al. [32], we adjusted the frame rate of CALTECH-

PED dataset and MINI-KINETICS-200 to 10 and downsize and center-crop the videos

to 128×160. We train our model on the MINI-KINETICS-200 dataset and directly eval-

uate on the CALTECHPED dataset. Following [32], we extract frames from sets 6 − 10

of the CALTECHPED dataset resulting in 3885 testing samples. During training on the

MINI-KINETICS-200 dataset, the frame sequences are subsampled to 10 FPS and the

frames are downsized and random cropped to match the same dimensions of 128× 160.

19
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Table 4.1: Frame prediction results on the Caltech Pedestrian dataset. MSE results are

in 1e−3.

Method

MSE↓
1 frame

SSIM↑
1 frame

MSE↓
5 frames

SSIM↑
5 frames

MSE↓
10 frames

SSIM↑
10 frames

BeyondMSE [34] 3.73 0.8432 19.09 0.6019 47.69 0.4532

MCNet [52] 3.13 0.8743 10.79 0.7354 19.95 0.6423

DYAN [29] 3.88 0.8671 9.08 0.7568 13.87 0.6858

CopyLast 7.95 0.7779 16.72 0.6561 23.39 0.5915

Ours 2.45 0.8965 6.83 0.7936 11.52 0.7185

The range r of the basis coefficients Wu,v is restricted to (−2, 2) using the modified

Sigmoid activation function in Eq. (3.6). Following [29], we normalize the image pixel

values between 0 and 1 before computing the image metrics. We summarize the quan-

titative results in Table 4.1. Results show that our approach performs favorably against

the current state of the art models. For fairness, we use the codebases of [34, 52, 29] and

evaluate their models on our validation set. For DYAN, we use the Coarse2Fine Opti-

cal Flows [41] as the inputs and obtain multi-frame predictions recursively as suggested

in [29]. The sample qualitative results are shown in Fig. 4.1, 4.2, 4.3, 4.4, 4.5. As shown

in the figures, our model generates sharper predictions. A significant difference in the

visual results between DYAN and Ours can be observed in the later time-steps of the

prediction.

4.3 Results on the UCF-101 dataset.

On the UCF-101 dataset, we train our model to generate higher resolution predic-

tions of size 240× 320. The training set of videos from MINI-KINETICS-200 is resized

and random-cropped to match the dimensions of the UCF-101 dataset [47]. Follow-

ing [34], we test on 10% of the dataset. Every 10th video was extracted from the test

list provided by [34]. The frames from the entire video are used in the validation set
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Table 4.2: SSIM and PSNR metrics are measured for the frame predictions on the UCF-

101 dataset utilizing the complete image.

Method

PSNR↑
1 frame

SSIM↑
1 frame

PSNR↑
5 frames

SSIM↑
5 frames

PSNR↑
10 frames

SSIM↑
10 frames

BeyondMSE [34] 27.00 0.8231 20.57 0.6290 16.86 0.5109

MCNet [52] 29.99 0.9003 24.78 0.8073 22.07 0.7454

DYAN [29] 30.70 0.8872 25.51 0.8119 23.65 0.7717

CopyLast 31.32 0.8883 25.48 0.8041 23.31 0.7568

Ours with different norms

No Norm enforced 29.51 0.8891 25.03 0.8084 21.72 0.6970

L1 Norm 29.37 0.9002 25.46 0.8254 23.51 0.7773

L0 Norm - Our main model 30.02 0.9063 25.83 0.8313 23.76 0.7823

resulting in 6440 validation examples. We set the range r of the basis coefficients Wu,v

to (−2, 2) in Eq. (3.6). Table 4.2 shows the quantitative results. Following the prior

works, we also perform experiments to measure the metrics only in the areas of motion.

Similar to [34, 52], we compute EpicFlow [43] optical flows between the previous and

the current ground truth frames, compute the magnitude, and normalize it to [0, 1]. The

pixels where no motion was observed are masked out by using the computed optical flow

magnitude. If the flow magnitude is less than 0.2, the pixel value is replaced and set to 0

in the prediction and the corresponding ground truth frame. The image metrics are com-

puted on the resulting masked images and are summarized in Table 4.3. Results demon-

strate that our method shows consistent performance gains on all the metrics across the

different number of future frame prediction settings. Fig. 4.6, 4.7, 4.8, 4.9, 4.10 shows

sample qualitative results on the UCF-101 dataset.
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Table 4.3: SSIM and PSNR metrics are measured for the frame predictions on the UCF-

101 dataset for the areas of motion in the image using motion based pixel mask.

Method

PSNR↑
1 frame

SSIM↑
1 frame

PSNR↑
5 frames

SSIM↑
5 frames

PSNR↑
10 frames

SSIM↑
10 frames

BeyondMSE [34] 32.98 0.9236 27.11 0.8640 23.80 0.8298

MCNet [52] 34.40 0.9363 29.84 0.8962 27.53 0.8738

DYAN [29] 34.52 0.9362 30.80 0.8999 28.95 0.8794

Ours 34.84 0.9407 31.01 0.9055 29.18 0.8852

Table 4.4: Results on the CALTECHPED dataset with models trained on the KITTI and

MINI-KINETICS-200 datasets using Coarse2Fine [41] and FlowNet2 [21] optical flows.

Method Optical Flows Training dataset

MSE↓
1 frame

SSIM↑
1 frame

MSE↓
5 frames

SSIM↑
5 frames

MSE↓
10 frames

SSIM↑
10 frames

DYAN [29] Coarse2Fine [41] KITTI 3.88 0.8671 9.08 0.7568 13.87 0.6858

DYAN FlowNet2 [21] KITTI 3.72 0.8665 10.39 0.7380 16.50 0.6631

DYAN:Extended FlowNet2 [21] KITTI 3.37 0.8812 9.12 0.7581 14.85 0.6774

DYAN:Extended FlowNet2 [21] MINI-KINETICS-200 3.19 0.8854 8.46 0.7733 13.48 0.6992

Ours FlowNet2 [21] KITTI 2.96 0.8869 7.738 0.7800 12.58 0.7046

Ours FlowNet2 [21] MINI-KINETICS-200 2.45 0.8965 6.83 0.7936 11.52 0.7185

4.4 Ablation studies

4.4.1 DYAN trained with FlowNet2 optical flows.

The DYAN results in Table 4.1 and Table 4.2 are evaluated using the Coarse2Fine

Optical Flows as originally suggested in [29]. To test the significance of FlowNet2 opti-

cal flows, we train DYAN on the KITTI dataset with FlowNet2 optical flows and evalu-

ate the results on the CALTECHPED dataset. In Table 4.4, we observe that DYAN trained

with FlowNet2 optical flows performs better than the original DYAN model. However,

Coefficient-Net trained on KITTI dataset using the FlowNet2 optical flows consistently
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outperforms the DYAN models. This suggests that our high capacity Coefficient-Net

captures is better at capturing diverse motion ranges compared to the DYAN.

4.4.2 Extending the motion basis for DYAN.

The DYAN results in Table 4.1 and Table 4.2 are obtained recursively as originally

recommended in [29]. We perform experiments to compare the DYAN performance

on multi-frame prediction using a single forward pass by extending the DYAN motion

basis. This is performed by modifying the DYAN model and removing the basis nor-

malization step. This enables us to extend the DYAN basis for arbitrary time-steps.

The modified DYAN model is trained on the KITTI dataset with FlowNet2 opticals

flows and evaluated on the CALTECHPED dataset. In Table 4.4, we observe that the

newly modified single pass DYAN model performs better than the original DYAN model

trained on the KITTI dataset with FlowNet2 optical flows. Nevertheless, our higher ca-

pacity network Coefficient-Net outperforms the DYAN models.

4.4.3 Training on the KITTI or MINI-KINETICS-200 dataset.

For validating on CALTECHPED dataset, prior works mainly train on the KITTI

dataset. We study the relevance of using the MINI-KINETICS-200 dataset for Coefficient-

Net compared with the KITTI dataset. We compare DYAN performance with our

network performance when trained with the KITTI or MINI-KINETICS-200 dataset.

Table 4.4 shows the quantitative results. Our model trained on the KITTI dataset per-

forms better than DYAN and worse than our model trained on the MINI-KINETICS-200

dataset. We also observe that our high capacity Coefficient-Net can learn from large

datasets to better capture diverse motion ranges compared to the DYAN model.

4.4.4 Sparsity of basis coefficients.

To validate the importance of `0 sparsity on the basis coefficients, we train models

using `0 norm, `1 norm, and finally without any norm enforced on the basis coefficients

(Eq. (3.8)). We train all models using the MINI-KINETICS-200 dataset and evaluate

them on the UCF-101 dataset. The results in Table 4.2 show that when no sparsity
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norm is used, our network trained on predicting 5 frames does not generalize well to

predicting more future frames (10 frames). This is attributed to the implicit assumption

for a sparse representation of the dynamics of the optical flow in the motion basis [29].

4.4.5 Limitations.

We observe that our model does not perform well when there are multiple inde-

pendently moving objects in a given video. This is partly due to the limitation of the

motion basis space we choose to represent temporal pixel motion dynamics. An inter-

esting future direction would be to improve the expressiveness of the temporal motion

basis while retaining the desired property of being able to predict arbitrary-length future

video frames.
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Groundtruth
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t+2 t+4 t+6 t+8 t+10

Figure 4.1: Qualitative results on a sample video from the Caltech Pedestrian dataset.

Results show that our predicted frames matches more closely with ground-truth frames

compared to predictions with other state-of-the-art techniques. The silver car on the left

is the least distorted in the Coefficient-Net results when compared to the other methods.
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Figure 4.2: Qualitative results on a sample video from the Caltech Pedestrian dataset.

As shown in the image, the white car on the right is modeled more accurately by our

Coefficient-Net.
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Figure 4.3: Qualitative results on a sample video from the Caltech Pedestrian dataset.

The image illustrates that results generated through Coefficient-Net contain less noise

compared to the other methods.
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Figure 4.4: Qualitative results on a sample video from the Caltech Pedestrian dataset.

The image illustrates that results generated through Coefficient-Net contain less noise

compared to the other methods.
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Figure 4.5: Qualitative results on a sample video from the Caltech Pedestrian dataset.

We notice less distortion in the results generated by Coefficient-Net compared to the

other methods.



30

Groundtruth

Coefficient-
Net (Ours)

DYAN

MCNet

BeyondMSE

t+2 t+4 t+6 t+8 t+10

Figure 4.6: Qualitative results on a sample UCF-101 dataset video. We observe that

our network predicted frames have motion that more closely follows the ground-truth

motion when compared to the prediction by the state-of-the-art DYAN [29] network.

The arms and torso of the person are highly distorted in the DYAN compared to out

Coefficient-Net.
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Figure 4.7: Qualitative results on a sample UCF-101 dataset video. While DYAN gener-

ates static images copied from the previous time-step, results from our Coefficient-Net

demostrate motion similar to the ground-truth.
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Figure 4.8: Qualitative results on a sample UCF-101 dataset video. The person on the

bicycle is less distorted in the Coefficient-Net results and closely follows the ground-

truth motion when compared to the other results.
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Figure 4.9: Qualitative results on a sample UCF-101 dataset video. While DYAN gen-

erates a static image over the future time-steps, our Coefficient-Net closely follows the

ground-truth motion.
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Figure 4.10: Qualitative results on a sample UCF-101 dataset video. While DYAN

generates a static image over the future time-steps, our Coefficient-Net closely follows

the ground-truth motion.



Chapter 5

Conclusion

In this thesis, after formulating the the task of video prediction, we have closely re-

viewed the various approaches employed for the task: prediction in the raw pixel space,

prediction through latent factors and their applicability for long-term prediction. The

current existing methods are limited to predictions in the short-term horizons. While

frames in the immediate future are extrapolated with high accuracy, in the long term

horizon the prediction problem becomes challenging. Initial solutions consisted of con-

ditioning the prediction on previously predicted frames. However, these recursive mod-

els tend to accumulate prediction errors that progressively diverge the generated predic-

tion from the expected outcome. On the other hand, due to memory issues, there is a

lack of resolution in predictions.

To this end, we introduce a novel deep learning technique for multi-frame video

prediction which can predict an arbitrary number of video frames with a single forward

pass. To this end, we propose learning temporal motion encodings instead of directly

predicting future frames or optical flows. Specifically, we predict fixed-dimensional

basis coefficients and multiply them with arbitrary time-length motion basis vectors to

predict an arbitrary number of future optical flows. We then use these predicted optical

flows to synthesize future frames. The motion basis vectors are learned together with

the main network. To our knowledge, this is the first neural network approach for video

prediction that can predict an arbitrary number of future frames with a single forward

pass through the network.

In the end, we have discussed the performance results on the two most popular
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datasets, the UCF-101 dataset and the CALTECHPED dataset using the most common

metrics to demonstrate the superior performance of our method compared with several

state-of-the-art video prediction techniques. We also provide useful insights for the fu-

ture research directions and open problems.

In conclusion, video prediction is a promising research area for the self-supervised

learning of rich spatiotemporal data to improve the prediction capabilities of the existing

intelligent decision-making systems. While great strides have been made, there is still

room for improvement in video prediction using the modern deep learning techniques.
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