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Allosteric regulation plays an important role in many biological processes, such as signal transduction, tran-
scriptional regulation, andmetabolism. Allostery is rooted in the fundamental physical properties of macromo-
lecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a
recent interdisciplinary CECAM (Center Européen deCalcul Atomique etMoléculaire) workshop is used here to
provide an overview of the progress and remaining limitations in the understanding of the mechanistic founda-
tions of allostery gained from computational and experimental analyses of real protein systems andmodel sys-
tems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of
these frameworks in illuminatingmolecular mechanisms and explaining cellular processes, and describe some
of their promising practical applications in engineering molecular sensors and informing drug design efforts.
Introduction
Allostery refers to processes whereby a binding event at one site

of a biological macromolecule affects the binding activity at
566 Structure 27, April 2, 2019 ª 2019 Published by Elsevier Ltd.
another distinct functional site, enabling the regulation of the cor-

responding function. Since its initial formulations over 50 years

ago (Changeux, 1961, 2011; Koshland et al., 1966; Monod and
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Jacob, 1961; Monod et al., 1965), allosteric regulation has been

recognized as playing a key role in many biological processes,

most prominently in signal transduction (Changeux, 2012;

Changeux and Edelstein, 2005; Falke and Piasta, 2014; Nussi-

nov et al., 2013), molecular machine function (Saibil, 2013), tran-

scriptional regulation (Li et al., 2017; Wright and Dyson,

2015), and metabolism (Link et al., 2014). Allostery is rooted

in the fundamental physical properties of macromolecular

systems, and probably of other materials as well. However, the

detailed mechanisms whereby these physical properties under-

pin allostery are not fully understood. Furthermore, allosteric

effects are modulated by the cellular context in both health

and disease.

Computational approaches have all along played an important

role in the investigation of allosteric mechanisms. They have

provided insights into some of the underpinnings of allostery

(Dokholyan, 2016; Guo and Zhou, 2016; Schueler-Furman and

Wodak, 2016) and have recently shown great promise in various

practical applications, such as engineering regulatory modules

in proteins and identifying allosteric binding sites that can be

targeted by specific drugs. Notable examples of the latter appli-

cation include re-sensitizing resistant hepatitis C variants by a

combination therapy that involves binding to the allosteric site

of NS5A (Sun et al., 2015), allosteric inhibitors of HIV integrase

(Hayouka et al., 2007), or the discovery of allosteric drugs that

inhibit PARP-1 without hampering its action in cancer-related

DNA repair deficiencies (Steffen et al., 2014).

One should also mention various recent bioinformatics ap-

proaches, which analyze sequence information (patterns of

sequence conservation or correlated mutations) with the goal

of uncovering signals of evolutionary pressure that may either

inform or validate mechanistic aspects of allosteric processes

(Dima and Thirumalai, 2006; Kass and Horovitz, 2002; Livesay

et al., 2012; Lockless and Ranganathan, 1999; May et al.,

2007). Here, too, the vast increase in available data on protein

sequences fromdifferent organisms andmassive data on human

polymorphism derived from next-generation sequencing efforts

(Clarke et al., 2016) is providing unprecedented (and still largely

untapped) opportunities for investigating the role of evolution in

shaping allosteric regulation.

A recent CECAM (Center Européen de Calcul Atomique etMo-

léculaire) workshop brought together about 30 computational

biophysicists, protein modelers, and bioinformaticians, as well

as experimentalists, for an inspiring 2.5 days of stimulating talks

and discussions. Among the important topics addressed

were the new insights gained into the mechanistic foundations

of allostery from computational and experimental analyses

of real protein systems, as well as from very simple in silico

toy materials. Also presented were informative examples

describing how allostery enables information processing in

cellular signaling cascades. Real excitement was generated by

reports on the rational design of allosteric systems that can

be modulated to produce desired activity and cellular behavior,

or engineered to act as sensitive molecular sensors. Encour-

aging results were also described on the rational discovery of

allosteric drugs by combining computational and experimental

approaches.

In the following we summarize the highlights of the meeting.

Further details are provided in the Supplemental Information.
Mechanistic Underpinnings of Allostery: Insights from
Computational and Experimental Approaches
The current understanding of allosteric systems has been

increasingly influenced by the so-called ensemble model of

allostery (Hilser et al., 2012; Motlagh et al., 2014), itself rooted

in the seminal Monod-Wyman-Changeux model (Monod et al.,

1965), derived from studies on hemoglobin (Perutz, 1970), the

‘‘ancestor’’ of all allosteric systems.

According to the ensemble model, first described in the 1980s

(Cooper, 1984; Frauenfelder et al., 1988), the allosteric behavior

of a macromolecular system arises from the properties of the

native free-energy landscape of the system, and how this land-

scape is remodeled by various ‘‘perturbations,’’ such as ligand

binding, protonation, or interactions with other proteins (Do-

kholyan, 2016; Kern and Zuiderweg, 2003; Schueler-Furman

andWodak, 2016). The main parameters that determine the allo-

steric behavior are thus (1) the relative stabilities (or populations)

of all the states accessible to the system including those corre-

sponding to active and inactive conformations (with respect to

ligand binding for instance), (2) the timescales and energy bar-

riers associated with the transitions between states, and (3) the

binding affinities of the ligands/effectors or conditions, which

may modify the set of dominant states, and thereby remodel

the energy landscape of the system (Hilser et al., 2012; Motlagh

et al., 2014). However, much remains unknown about these

important parameters. What is the role of thermodynamics,

e.g., stabilizing/destabilizing different states of the system,

versus the role of kinetics, e.g., the timescales and energy bar-

riers associated with the transitions between states? What are

the relative contributions of entropy and enthalpy to the allosteric

free energy? Is there a special role in allostery for protein intrinsic

disorder? Are molecular machines a distinct category of allo-

steric systems? What can we learn about allostery from simple

toy materials? These are some of the questions that the work-

shop set out to scrutinize.

Bolhuis and Faccioli reported progress in simulation algo-

rithms for investigating and sampling rare events such as those

associated with protein folding or unfolding, or with conforma-

tional transitions between active and inactive states in some

allosteric systems. Such events may involve high free-energy

barriers and long transition times that are not accessible by clas-

sical molecular dynamics (MD) simulations, even with the help of

advanced high-performance computers, and therefore require

the use of specialized sampling techniques involving various

levels of approximations (Amaro et al., 2007; Markwick and

McCammon, 2011; Pontiggia et al., 2015; Proctor et al., 2015).

The advantage of the enhanced sampling algorithms devel-

oped in the Bolhuis group is that they require no prior knowledge

of the reaction coordinates (the main geometric parameters that

change during the reaction process), which is usually not avail-

able. Using only information on the initial and final states, these

algorithms generate the collection of trajectories that connect

these two states, and employ the transition path sampling

(TPS) algorithm (Bolhuis et al., 2002), which incorporates

methods for selecting efficient moves along the energy land-

scape (Brotzakis and Bolhuis, 2016), to sample the shortest

transition paths across these trajectories. These can then be

scrutinized for pertinent reaction coordinates, and used to esti-

mate the transition rates by evaluating the trajectory fluxes
Structure 27, April 2, 2019 567



Figure 1. Mechanistic Underpinning of Allostery: Insights from Computations and Experiments
(A) Artist rendering of the conformational transitions network of the photoactive yellow protein, the 125-residue water-soluble blue-light photoreceptor from
H. halophile, mapped onto the energy landscape of the system using the simulation procedures of Bolhuis and collaborators.
(B) Frustration-based allostery in the human glucocorticoid receptor (GR), an intrinsically disordered transcription factor analyzed by Li et al. (2017). (I) Domain
organization of the constitutively active GR constructs for translational isoforms, wherein the intrinsically disordered (ID) N-terminal domain (NTD) varies in length.
Residues 1–97 (red) are labeled R (for Regulatory) and residues 98–420 (gray) are labeled F (for Functional). Also labeled are residues corresponding to the
activation function 1 core (AF1 core) region, which is required for transcriptional activity. (II) Competing thermodynamic coupling in GR produces frustration.
Schematic view of the thermodynamic configuration of GR. According to the displayed convention, the positive (+) signs between the DNA-binding domain (DBD)
and F-domain, and the DBD and R-domain signify they are positively coupled; stabilization of one domain stabilizes the other. The negative (�) sign between the
R- and the F-domains indicates that they are negatively coupled; stabilization of one domain destabilizes the other.
(C) The closed conformation adenylate kinase observed upon ligand binding is sampled by the open form apo structure, illustrating the work of Bahar. (I) Two
experimentally resolved structures, unbound (left) and ligand-bound (right). (II) Conformer predicted by ENM analysis to be accessible via a soft mode to the
unbound structure. Blue and green refer to different domains. The substrate is shown in orange spheres (adapted from Temiz et al., 2004).
(D) Distributions of GroEL molecules with different numbers of bound ATP molecules at different ATP concentrations from the work of Horovitz and co-workers.
(E) Allosteric regulation in CRISPR-Cas9, by Palermo and McCammon. (I) Dynamical network model of CRISPR-Cas9, identifying groups (or ‘‘communities’’) of
closely correlated residues and the strength of correlation between them before (top) and upon (bottom) PAM binding. (II). The allosteric path between the
spatially distance HNH and RuvC domains of the Cas9 protein.
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(Moroni et al., 2005). An example of the application of TPS to

sample the light-induced conformational transition of the photo-

active yellow protein (Vreede et al., 2010), a water-soluble blue-

light photoreceptor from Halorhodospira halophila, is illustrated

in Figure 1A. All the path-finding methods developed by these

authors are available in the OpenPathSampling software (Swen-

son et al., 2018).

The self-consistent path sampling (SCPS) method of Faccioli

and collaborators affords further reductions in computational

cost, but at the price of additional approximations, making it

possible to simulate very slow conformational transitions of

very large protein systems, using state-of-the-art atom-based

force fields. Their method is based on a set of self-consistent

stochastic equations of motion from which reaction pathways

are generated by an iterative procedure (Orioli et al., 2017).
568 Structure 27, April 2, 2019
The method also outputs a stochastic estimate of the reaction

coordinates, and enables estimation of the potential of mean

force of arbitrary collective coordinates. A variant of the SCPS

methodswas used to characterize the extremely slow conforma-

tional transition of the �400-residue alpha1-antitrypsin of the

serpin family (Cazzolli et al., 2014).

The two sampling methods, originally developed to model

protein folding/unfolding reactions, represent important ad-

vances. But their potential to yield reliable mechanistic descrip-

tions of the conformational transitions of allosteric systems

still needs confirmation. Such confirmations could be obtained

by applying the simulation procedures to systems for which

the allosteric transition has been characterized experimentally,

thereby enabling direct comparison with the results of the

simulations.
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Stock and colleagues have done precisely that. Recent time-

resolved infrared spectroscopy experiments on a photo switch-

able PDZ2 domain have indicated that the allosteric transition in

this system occurs on multiple timescales (Buchli et al., 2013).

Moreover, NMR relaxation experiments on the closely related

PDZ3 domain revealed allosteric couplings between the binding

pocket and the C terminus (Petit et al., 2009). To gain insight

into the underlying process, Stock and colleagues employed

exhaustive non-equilibrium MD simulations to derive a time-

dependent description of this transition (Buchenberg et al.,

2017; Stock and Hamm, 2018). Results revealed that the struc-

tural and dynamic changes undergone by the system are highly

non-linear and occur in a non-local fashion, in excellent agree-

ment with the experimental data. This in turn led the authors to

propose similarities with the process of downhill protein folding

and to question the soundness of interpreting allosteric transi-

tions in terms of well-defined pathways for propagating the

conformational changes, as commonly done in the literature.

The experimental andmodeling work by Hilser and colleagues

on proteins with intrinsically disordered regions also undermines

a strict pathway interpretation of allosteric transitions. Intrinsi-

cally disordered proteins represent a functional oddity because

they lack stable tertiary structures, but represent nevertheless

allosteric systems that play a central role in signaling processes

(Ferreon et al., 2013; Garcia-Pino et al., 2010; Lum et al., 2012;

Motlagh et al., 2014; Sevcsik et al., 2011). Investigating the

mechanism of transcriptional regulation of the glucocorticoid

receptor, a protein involved in signaling whose functionally

important N-terminal domain (NTD) is intrinsically disordered,

the authors showed that this protein is able to allosterically regu-

late function by simultaneously tuning transcriptional activation

and repression (Li et al., 2017). This allosteric regulation is

achieved by producing translational isoforms differing only in

the length of the disordered domain and displaying different

DNA binding affinities and transcriptional activities that are

uncorrelated to each other. Based on biophysical measurements

analyzed in the framework of the ensemble model of allostery

championed by the authors (Motlagh et al., 2014), compelling

evidence was presented that this uncorrelated behavior is

enabled through a mechanism of ‘‘energetic frustration,’’

whereby opposing energetic couplings between the structured

domains and the disordered regions compete to modulate the

overall response, as illustrated in Figure 1B.

Bahar and coworkers reviewed approaches based on elastic

network models (ENMs), which have demonstrated the signifi-

cance of soft collective modes of motion in enabling allosteric

regulation of protein systems (Bahar et al., 2007, 2017). These

approaches are in line with the ensemble view of allostery, but

focus on conformational ensembles sampled by thermal fluctu-

ations near the native state minimum of the energy landscape.

The motions described by such ensembles can be evaluated

by normal mode analysis at full atomic detail (Go et al., 1983).

However, the coarse-graining of the energy landscape with the

help of ENMs permits sampling a relatively broad subspace of

conformers and yields a unique analytical solution for the spec-

trum of modes for a given protein fold. The modes at the low

frequency end of the spectrum (soft modes) are particularly rele-

vant to allostery, as they are both highly cooperative and robustly

defined by the overall architecture of the system.
Applying ENMs to several systems showed that the conforma-

tional changes of proteins elicited by ligand binding closely over-

lapwith one ormore of the soft modes accessible in the unbound

form (Bahar et al., 2010; Tobi and Bahar, 2005), as illustrated for

adenylate kinase (Temiz et al., 2004) (Figure 1C). The soft modes

have therefore been described as ‘‘paths’’ in conformational

space enabling the allosteric transitions (Meireles et al., 2011),

suggesting in turn that the ability to favor such soft modes may

have played a role in the evolutionary selection of modules and

domains that lend themselves to allosteric regulation.

McLeish presented work focusing on allosteric control

enabled solely through the modulation of thermal fluctuations

and the resulting entropy changes, induced by ligand binding.

A feature of this mechanism, first formalized by Cooper and

Dryden (1984) and termed thermal fluctuations allostery by the

author or ‘‘dynamic allostery’’ elsewhere (Guo and Zhou, 2016;

Kern and Zuiderweg, 2003; Schueler-Furman and Wodak,

2016), is that soft global modes of motion rather than more local

ones are recruited to enable allosteric cooperativity. As seen

above, such soft modes may be readily described by coarse-

grained models like those Bahar et al. (2010) and others (Haw-

kins and McLeish, 2004; Zhu et al., 2011). To further investigate

the implications of ‘‘fluctuation allostery,’’ McLeish uses the

coarsest possible toy model of a protein, consisting of just one

(harmonic) internal degree of freedom. This simple unit, termed

allosteron, of which a real example was described in the 1980s

(Onan et al., 1983), features one or more ligand-binding sites

and can also oligomerize. Crucially, it undergoes internal fluctu-

ations modified by the binding of each ligand (Figure 2A). The

author demonstrates that using the classical approximation to

the harmonic-oscillator partition function yields reasonable esti-

mates of the allosteric free energy between two ligands bound to

such a system, which contain no enthalpic terms. Extensions of

the allosteron model have been helpful in identifying the physical

origin of associated phenomena, such as the coupling of global

and local vibrational modes in dynamic allostery of proteins

(Hawkins and McLeish, 2006), the negative cooperativity of the

catabolite activator protein homodimer (Toncrova and McLeish,

2010), or the sequence of effector binding events in allosteric

multi-protein assemblies (McLeish et al., 2018).

The important role of protein dynamics in enabling allosteric

regulation was further highlighted by the computational studies

of Palermo and McCammon, performed on the large multi-

domain CRISPR-Cas9 system (Palermo et al., 2016, 2017b,

2017a), the centerpiece of a recently emerged transformative

genome-editing technology (Chen and Doudna, 2017). In this

multi-domain system, the endonuclease Cas9 associates with

single-guide RNAs to site-specifically recognize and cleave

any DNA sequence bearing a protospacer adjacent motif

(PAM) sequence. RNA-mediated binding to this sequence initi-

ates DNA association and cleavage, with the latter performed

by two spatially distant domains of the protein, HNH and

RuvC, via a concerted mechanism. From MD trajectories of the

CRISPR-Cas9 complex bound to PAM and for its analog crystal-

lized without PAM (Palermo et al., 2017b), the authors computed

the generalized correlations (GCs), capturing both linear and

non-linear correlated motions of the system. Using the GC coef-

ficients as edge weights, a residue dynamic network was built

from each trajectory. Analyzing these networks revealed tighter
Structure 27, April 2, 2019 569



Figure 2. Allosteric Toy Models and
Allosteric Materials
(A) Schematics of the allosteron model of McLeish,
in binding (A) and self-assembly (B) illustrating local
changes to spring constants k, and the introduction
of coupling springs between allosteron units kc.
(B) Illustration of the work of Wyart and collabora-
tors: (I) response (black) arrows to a stimulus
(purple arrows) in random spring network decays
rapidly with distance, i.e., there is little action at a
distance. (II) Networks can be evolved in which
there is specific action at a distance. Note that
the response is amplified near the active site (blue
arrows), indicating the presence of a lever in the
structure. (III) Example of hinge architecture ob-
tained while optimizing cooperativity, in which
two parts of the material rotate around a hinge
located at the center of the system. (IV–VI) Illus-
tration of the cooperative architectures found:
hinge (clothespin), shear (mint box), and twist
(Rubik’s cube).
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communication (and increased correlated motions) between the

HNH and RuvC domains in the presence of PAM (Figure 1E). This

led the authors to conclude that PAM binding to CRISPR-Cas9

plays a key role in triggering the interdependent conformational

dynamics of HNH and RuvC, likely enabling the concerted

cleavage of the DNA strands (Palermo et al., 2018). It furthermore

allowed the identification of residues responsible for the informa-

tion relay. Mutating two of these residues (K775A and R905A)

was shown to decrease off-target cleavage of partially comple-

mentary DNAs (Chen and Doudna, 2017), opening an avenue

for modulating the activity of CRISPR-Cas9 systems.

In their contribution to this workshop review, Nussinov and

colleagues adhere to the ensemble model of allostery, and

view allosteric regulation as resulting from perturbations of

the inactive (or active) conformational ensembles leading to acti-

vation (or inactivation) via a ‘‘population shift’’ (Gunasekaran

et al., 2004; Tsai and Nussinov, 2014). They also acknowledge

the role of dynamics, but argue against the concept of dynamic

allostery discussed above, which involves no changes between

distinct conformational states (see also Kern and Zuiderweg,

2003). In Nussinov’s view, only distinct states, corresponding

to local minima of the native free-energy landscape, can

contribute to functional allostery, because specific functions

are performed by distinct protein conformations (Nussinov and

Tsai, 2015) as exemplified in Figure S1. In support of their view

they enumerate reasons for failing to observe conformational

changes in some prominent allosteric systems. These reasons
570 Structure 27, April 2, 2019
include crystal-packing effects, non-native

crystallization conditions, which may sta-

bilize the inactive state or destabilize the

effector-bound active conformation and

therefore trap a state exhibiting no confor-

mational change. Also mentioned are,

inadequate accounting for disordered

regions, ignoring synergistic effects be-

tween allosteric effectors, and too short

MD simulations.

Novel mechanistic insights into the allo-

steric transitions of large multi-subunit
molecular machines were derived from the experimental work

of Horovitz. The efficiency of molecular machines is path depen-

dent. Understanding how these machines work therefore re-

quires characterizing the intermediate and transition states of

the allosteric switch reaction. In the case of ATP-consuming

bio-molecular machines, which are often multimeric proteins, a

key issue is whether they undergo concerted (Monod et al.,

1965), sequential (Koshland et al., 1966), or probabilistic confor-

mational changes. Horovitz showed how recent advances in

single-molecule techniques and native mass spectrometry

finally made it possible to distinguishing between these models.

Using these techniques enables quantification of the populations

of co-existing states with different numbers of bound ligand

molecules, giving rise to a particular degree of fractional satura-

tion (Figure 1D). Given these populations, it is possible to deter-

mine the ligand binding constants for a multimeric protein and,

thus, to infer its allosteric mechanism (Gruber and Horovitz,

2018). Results showed that the ATP-promoted allosteric transi-

tions of the homo-heptameric rings of GroEL are concerted

(Dyachenko et al., 2013). Phi value analysis, shown to be useful

for studying protein folding reactions, revealed two parallel path-

ways for the allosteric transition of this protein (Gruber and

Horovitz, 2016). A different approach based on an Arrhenius

analysis of ATP hydrolysis by the group II chaperonin CCT/

TRiC, the eukaryotic homolog of GroEL, revealed that the intra-

ring conformational changes in this protein associated with

ATP hydrolysis are sequential (Gruber et al., 2017). Structural



Structure

Review
features and possible evolutionary pressure that may underlie

these intriguing differences between the two chaperonins were

briefly discussed.

Thought-provoking investigations of the architectural princi-

ples and properties of allosteric materials were presented by

Wyart. Considering allostery as the process whereby ligand

binding at one site of a protein transmits a signal to a distant

functional site, the authors investigate this process from a purely

physical perspective. Among the questions that they set out to

answer were howmaterials can be designed to carry mechanical

information over long distances, or what allosteric pathwaysmay

be optimized for? The approach consists in using in silico ‘‘evo-

lution’’ schemes to optimize elastic toy materials, two- and

three-dimensional spring networks, for carrying out a specific

‘‘function’’ (Flechsig, 2017; Rocks et al., 2017; Yan et al.,

2017a, 2017b, 2018). A surprising result from these in silico

experiments is that the type of function greatly affects the result-

ing architectures. Optimizing the networks for a geometric task,

by selecting network structures where binding a ligand leads to a

defined displacement on the other side of the network (‘‘active

site’’), yields networks displaying a powerful lever at the active

site, where the signal is required (Flechsig, 2017; Rocks et al.,

2017; Yan et al., 2017a, 2017b). This lever has distinctive

structural properties (between those of a solid and liquid) and

may represent a potential candidate mechanism for allosteric

proteins in which motion such as that for opening or closing a

channel is required (Figure 2B). Completely different architec-

tures evolve when the networks are optimized for cooperative

binding energy between the allosteric and active site (Yan

et al., 2017a). These evolved architectures feature a very soft

elastic mode that extends throughout the structure. In addition,

most of the response tends to be captured by a single normal

mode, as observed in some allosteric proteins. Crucially, it was

found that, to induce cooperativity, the frequency of this mode

must adopt moderate values, with the predicted optimal fre-

quency depending on the linear size of the system. Despite the

simplicity of the investigated materials, one is left with the

impression that these in silico evolution approaches should be

very useful for formulating key questions about real allosteric

systems that may be addressed experimentally.

Allostery and Signaling
The allosteric behavior of proteins and protein assemblies plays

a key role in signaling processes. Unraveling the mechanistic

underpinning of this behavior should therefore lead to improved

understanding of how signaling events are relayed and regu-

lated, and enable their modulation with promising pharmaceu-

tical avenues for targeting human disease (Dokholyan, 2016).

Stote and Dejaegere reported findings on the mechanism of

allosteric regulation of retinoic acid receptors (RARs), members

of the nuclear receptor superfamily implicated in the transcrip-

tional cascades underlying many physiological phenomena,

such as cell differentiation and growth (Brelivet et al., 2012;

Helsen and Claessens, 2014). Although retinoic acid has been

considered the primary regulator of RARs, phosphorylation of

the ligand binding domain has been shown to modulate down-

stream nuclear signaling by phosphorylation of the regulatory

NTD (Figure S2). Crystallographic studies of phospho-mimetic

mutations of RARg (S371E) and MD simulations showed that
phosphorylation of the RARg (and RARa) receptors of this family

leads to subtle changes in the dynamic properties of the protein

without producing significant conformational rearrangements

(Chebaro et al., 2013, 2017). It was furthermore proposed that

a conserved long a helix plays a key role in mediating the allo-

steric communication between sites in these receptors and likely

in other members of the nuclear receptor superfamily where the

long helix in question is well conserved.

Cecchini and Changeux presented a strategy for modeling

allosteric transitions in proteins. This strategy involves adding

or removing an agonist from the binding site of an allosteric

protein and using unbiased MD simulations to capture the spon-

taneous transition/relaxation of the system to a distinct physio-

logical state (Figure S3). The approach was applied to the

pentameric ligand-gated ion channels (pLGICs), representing

typical allosteric membrane proteins that serve as signal trans-

ducers in neurotransmitter-mediated intercellular communica-

tion. In these systems, the activation/relaxation MD protocol

was used to explore the pore-closing transition or un-gating of

the prokaryotic proton-gated channel GLIC (Nury et al., 2010).

Similarly, MD relaxation of the open form of the eukaryotic gluta-

mate-gated ion channel (GluCl) upon removal of the positive allo-

steric modulator ivermectin, was shown to promote partial

closure of the ion pore through a complex quaternary mecha-

nism involving global receptor twisting and a radial expansion

(blooming) of the extracellular domain (Calimet et al., 2013). A

more extended relaxation of the same channel in the absence

of ivermectin captured the full closing motion that is consistent

with the ligand-free GluCl X-ray structure (Martin et al., 2017).

Using the same approach, the gating mechanism of pLGICs

was explored also in the forward direction (from resting to

active), revealing a correlation between orthosteric agonist bind-

ing and ion-pore opening (Yoluk et al., 2015; Yuan et al., 2016).

The MD-based activation/relaxation protocol thus appears as a

useful approach for exploring the allosteric transitions at atomic

resolution in these large important systems, despite its high

computational costs and the fact that it collects only a limited

number of transition events.

Rational Design of Allosteric Systems and Identification
of Allosteric Sites
Several approaches for the rational design of allosteric systems,

allosteric switches, and allosteric sensors, were described by

Dokholyan, Berezovsky, Karanicolas, and Plaxco.

Dokholyan and coworkers described new optogenetic and

chemogenetic tools for controlling individual proteins and

signaling cascades in living cells (Dagliyan et al., 2013, 2016,

2017). The approach consists of using computational proced-

ures to identify solvent-accessible allosteric sites (Proctor

et al., 2015) on a target protein and physically engineering natu-

rally occurring light-sensitive or ligand-sensitive domains into

these sites. Light or a ligand are then used tomodulate structural

disorder in these domains, which, in turn, affects the active site of

the target protein, switching it between inactive (increased disor-

der) and active (less disorder) states. In the illustrated examples

(Figure 3A) the small naturally occurring light-sensitive LOV2

domain, and the rapamycin-responsive uniRapR domain, were

respectively engineered into several kinases involved in cell

motility (Dagliyan et al., 2013). Light and rapamycin were then
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Figure 3. Rational Design of Allosteric Systems and Identification of Allosteric Sites
(A) Schematic diagrams illustrating the work of Dokholyan and colleagues on optogenetic and chemogenetic control of target proteins using allostery and protein
order-disorder transition (reprinted from Dagliyan et al. 2016).
(B) Illustration of the approach by involving the chemical rescue of the active conformation of a protein. The example shows howmutation of a buried tryptophan
to glycine leads to a structural disruption—either through a discrete conformational change or through loss of protein stability—that leads to loss of protein
function. Adding exogenous indole can then complement the cavity caused by the deleted side chain, restoring the original protein conformation and, thus, its
function.
(C) Principle of the rational design and engineering of a synthetic DNA-based nanodevice described by Plaxco. Top: the designed cooperative DNA-nanodevice
comprises the recognition element consisting of a triplex-forming DNA sequence, which behaves like a ‘‘clamp’’ that binds a specific 9-base DNA ligand via
the formation of both Watson-Crick and Hoogsteen base-pair interactions. The cooperative DNA-nanodevice is obtained by joining together two sequential
copies of one-half of such recognition element linked via a flexible 22-base, single-stranded loop (gray portion) to two sequential copies of its other half. Binding
of the ligand to the first receptor decreases the entropic cost associated with the binding to the second receptor (and thus improves its affinity for the ligand).
As a result, this nanodevice shows a Hill-type cooperative response, with a Hill coefficient nH = 2.1 ± 0.1 (figure reproduced from Mariottini et al. 2017).
(D) Binding hotspots of small chemical probes to flexible regions of the protein tend to correspond to cryptic binding sites. Example from the work of Kozakov,
showing themapping of hotspots identified by FTsite in the unbound structure of the catalytic subunit of the cAMP-dependent protein kinase A (PDB: 2GFC, chain
A) displayed in tan. Three hotspots, obtained after domain splitting, are shown as clusters ofmolecular probes: a cluster of 18 probes (cyan); a cluster of 16 probes
(magenta); a cluster of 13 probes (gray). An inhibitor (yellow) is superimposed for reference.
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used to, respectively, inactivate and activate the target proteins,

with the resulting effects on cell motility directly monitored by

imaging techniques.

The computational approach presented by Berezovsky quan-

tifies the configurational work exerted in different parts of a pro-

tein as a result of ligand binding to a known or putative allosteric

site and can be used to infer allosteric sites, ultimately enabling

the design of effector molecules (Guarnera and Berezovsky,

2016a, b). In this approach, an approximation similar to those

described by Bahar and McLeish is used to model the protein

native state dynamics. The protein force field is represented by

a simple Ca-based harmonic potential, and the presence of a

ligand at the allosteric site is modeled by locally restraining res-

idue pairs at the binding site. Next, the dynamics of the ligand-

free and ligand-bound proteins are described using normal
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mode analysis, from which a set of relevant normal modes is

derived. These modes are then used to evaluate the so-called

‘‘allosteric potential,’’ defined as the mean work exerted on a

residue as a result of the local motion of its neighbors. Lastly a

per-residue ‘‘allosteric free energy’’ is computed from the differ-

ence between the ligand-free and ligand-bound conformational

ensembles sampled by the relevant modes. Extension of the

method to identify the effect of allosteric mutations and its appli-

cation to the regulation of the activity of the insulin-degrading

enzyme (Guarnera and Berezovsky, 2016b; Kurochkin et al.,

2017) were also mentioned. The extended method is imple-

mented in the AlloSigMA (http://allosigma.bii.a-star.edu.sg/

home/) web-server (Guarnera et al., 2017), which can be used

as a first approach for investigating allosteric effects on protein

activity elicited by ligands or mutations, or for identifying

http://allosigma.bii.a-star.edu.sg/home/
http://allosigma.bii.a-star.edu.sg/home/
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potential new allosteric sites and candidates for allosteric muta-

tions (Tee et al., 2018).

Karanicolas, on the other hand, described a method for build-

ing molecular switches, which involves the chemical rescue of

the active conformation of a protein. In this procedure, a disrup-

tive mutation (often of a hydrophobic residue important for

protein stability) introduced into the protein is rescued by addi-

tion of a small molecule that complements the deleted atoms.

Proof-of-concept for this approach was demonstrated by intro-

ducing a (deactivating) tryptophan-to-glycine mutation into an

enzyme, then showing that activity could be restored by adding

indole to complement the resulting cavity (Deckert et al., 2012).

The generality of this approach for building allosteric control

into proteins other than enzymes was then explored by devel-

oping a cell-based reporter assay. This allowed for screening

of many W/G mutations to determine which would attenuate

protein activity, and then for testing which of these mutants

could subsequently be rescued using indole. A suite of compu-

tational and experimental methods, collectively led to the insight

that protein structure and function were most frequently modu-

lated indirectly through control of protein stability (Xia et al.,

2013). Addition of indole in these allosteric cases served not to

revert a discrete conformational change, but rather as an allo-

steric ligand that rescues activity by inducing the protein to refold

to its original conformation (Budiardjo et al., 2016), thereby rep-

resenting an excellent illustration of the ensemble model of

allostery.

Plaxco described how allostery and cooperativity may be

leveraged to engineer a wide range of artificial optical, biochem-

ical, and electrochemical biosensors. Among the examples used

to illustrate the approach was the rational design and engineer-

ing of a synthetic DNA-based nanodevice containing up to four

interacting binding sites that can load and release a cargo over

narrow concentration ranges, and whose affinity could be finely

controlled via both allosteric effectors and environmental cues

such as pH and temperature (Mariottini et al., 2017). In another

example, catalytic DNAzyme sequences (e.g., peroxidase-like

DNAzymes) were combined with the consensus sequence

recognized by specific transcription factors (either TATA binding

protein or the microphthalmia-associated transcription factor).

The resulting constructs exhibited, respectively, a more stable

catalytically inactive conformation unable to bind the cognate

transcription factor, and a less-stable conformation competent

to bind it. The presence of the transcription factor pushes the

equilibrium between these states toward the catalytically active

one, in a manner that can be finely controlled further by opti-

mizing the original design (Adornetto et al., 2015).

Kozakov presented an approach for identifying allosteric bind-

ing sites (also denoted as cryptic sites) in ligand-free protein

structures, and predicting their drug binding potential. The

method involves the identification of binding hotspots on the

protein surface. These hotspots represent clusters of low energy

binding poses for small organic molecular probes of various

shapes, sizes, and polarity, generated by their FTsite computa-

tional procedure (Ngan et al., 2012). Applying FTsite to protein

structures with known allosteric sites (Cimermancic et al.,

2016), it was found that the ligand-free apo structures generally

feature binding hotspots for the tested small molecular probes

that are in close proximity to the known allosteric sites
(Figure S4). Of these, the more highly populated hotspot clusters

(R16 low energy poses) were deemed druggable, e.g., can be

targeted by ligands with sufficient affinity (Kozakov et al.,

2015). The authors also reported that regions of protein struc-

tures close to cryptic binding sites are significantly more flexible

than regions surrounding any other potential binding hotspots

detected by their procedure (Beglov et al., 2018). This increased

flexibility seems to be linked to missing loops or side chains of

less-reliably modeled regions of the corresponding X-ray struc-

tures, suggesting that such regions may be good cryptic binding

site candidates.

Lastly, among the notable poster presentations, three re-

ported analyses of the dynamics and allosteric regulations in

important multi-subunit enzymes from various origins. Rivalta

and colleagues used classical MD simulations and a community

network analysis (Sethi et al., 2009), not unlike that of Palermo

and McCammon, to elucidate the allosteric regulation in the

imidazole glycerol phosphate synthase from Thermotoga mari-

tima (Rivalta et al., 2012). This analysis stimulated single-site

mutagenesis experiments and allosteric inhibitor design (Rivalta

et al., 2012) (Figure S5 for details). Gkeka and collaborators

described potentially important findings from combined experi-

mental and computational analyses on the allosteric modulation

of the lipid phosphoinositide 3-kinase alpha (PI3Ka), which plays

a pivotal role in cell proliferation and is a target for anti-cancer

drug development (see Figure S6 for details). They discovered

a ligand binding site distinct from the enzyme active site capable

of inhibiting a cancer-associated PI3Ka mutant responsible for

enzyme over activation. Ligand binding to this site was found

to modulate the membrane binding domain of the protein, and

not the active site, opening the avenue for designing selective in-

hibitors of protein-membrane interactions in this and other sys-

tems (Gkeka et al., 2014; Gkeka et al., 2015). Panecka-Hofman

and Wade reported preliminary results on the dynamic allosteric

coupling between distant residues of pteridine reductase 1, a

folate pathway enzyme unique to trypanosomatid parasites

(Panecka-Hofman et al., 2017) (Figure S7). The fourth poster re-

ported progress toward gaining insight into the allosteric regula-

tion of taste GPCRs (Di Pizio et al., 2016) (Figure S8).

Concluding Remarks
In this collection of contributions presented at the CECAMwork-

shop, we endeavored to provide an overview of the current

understanding of allosteric processes and its perceived limita-

tions. We also described how this still incomplete understanding

is exploitedmore or less successfully to illuminate the underlying

molecular mechanisms, explain cellular processes, design mo-

lecular sensors, and inform drug design efforts.

The concept of allostery has evolved significantly since the

first allosteric proteins were characterized (Motlagh et al.,

2014; Schueler-Furman and Wodak, 2016). We now have a bet-

ter grasp of the important functional role of protein dynamics

and, in particular, the role of protein intrinsic disorder. We also

have more powerful computational and experimental tools for

sampling significantly populated states of complex protein

systems.

Notwithstanding these advances, current computational

methods are still unable to chart the free-energy landscape of allo-

steric systems in an unbiased way, e.g., without prior knowledge
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of some significantly populated states of the system. Even when

such knowledge is available, computational procedures employ

various levels of approximations to sample the conformational

transition paths between these states, as illustrated by the

contributions of Bulhuis, Faccioli, and Stock, and work of groups

employingMarkov statemodels (Chodera andNoe, 2014; Pande

et al., 2010). Specific approaches depend moreover on the size

and complexity of the systems under study, making it difficult

to evaluate the information they provide about the identified

transition paths. To enable such evaluation it would be useful

to come up with a few allosteric protein systems with well-

characterized active and inactive states, to which different

computational methods for charting the allosteric transition

paths could be applied, results compared, and eventually evalu-

ated against experimental data.

Particularly useful would be data derived from phi value-type

analyses. Such analyses measure the changes in the activation

energy of unfolding and the free energy of unfolding brought

about by mutations, and those are used to characterize the tran-

sition states and intermediates of protein folding reactions

(Fersht et al., 1992). Employing similar analyses to characterize

the transition state of an allosteric pathway was suggested dur-

ing the meeting, but not further elaborated on, although there

have indeed been insightful precedents. Eaton et al. (1991)

were the first to apply such analyses, generally referred to as

rate-equilibrium linear free-energy relationships (LFERs), to

allostery. Using pH and ligand states instead of mutations to

perturb the kinetics and thermodynamics of the allosteric transi-

tion in hemoglobin, they showed that the transition state of the

R <� > T quaternary conformational change had closer thermo-

dynamic properties to those of the R than the T conformations,

validating an earlier computational study, based on a crude anal-

ysis of the surface areas buried between the subunits (Janin and

Wodak, 1985). A subsequent study of Yifrach and Horovitz

(1998) employed a genuine phi value analysis, involving a limited

number of mutations, to map the transition state of the allosteric

pathway of GroEL. LFERs derived from perturbations, notably

by a series of site-specific mutations, were used to map the

transition state of the gating reaction pathway of the muscle

acetylcholine receptor (Grosman et al., 2000), yielding detailed

information on the gating mechanism, described as involving a

wave-like conformational change.

Computational approaches to the seemingly more tractable

problem of identifying paths that mediate allosteric ‘‘communi-

cation’’ between sites in a protein would also benefit from a

more objective benchmarking. Although fundamentally different

from allosteric transition paths on the free-energy landscape,

identifying communication paths also involves sampling the

free-energy landscape, but only in the vicinity of the stable

‘‘end’’ states, and then quantifying the correlated motions of

the corresponding conformational ensembles. But here, too,

computational procedures and the set of investigated systems

tend to differ significantly between authors. Assessing the agree-

ment between communication paths identified by different

methods in the same set of allosteric systems should therefore

be very informative. Since even in a highly structured protein

‘‘communication’’ between sites is likely mediated by multiple

paths (Guo et al., 2015; Taylor et al., 2016), the questions of

whether a given path can be rigorously validated against exper-
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imental data, or whether its specific role can be rationalized,

need to be critically evaluated.

Two distinct but complementary conceptual frameworks for

probing the mechanism of allosteric regulation, highlighted in

this review, deserve special mention. One considers allosteric

regulation as enabled by the so-called ‘‘soft’’ modes of collec-

tive motions sampled by thermal fluctuations near the native

state minimum, usually of highly structured protein systems.

These soft modes are estimated computationally from experi-

mental structures, using coarse-grained ENMs, which strongly

depend on the reference structure (usually the experimentally

determined one). With skeptics, wary of such coarse-grained

models, one would argue that ENMs and the underlying con-

ceptual framework have been quite instrumental not only in

capturing the conformational transitions associated with the

allosteric regulation of complex protein systems, but also in

modeling the entropic contributions to the allosteric free energy,

and potentially for predicting allosteric binding sites in protein

systems, as reported by several contributions to this review

and references therein.

The other conceptual framework refers to the so-called

ensemble model of allostery, which focuses entirely on the ther-

modynamic analysis of the energy landscape of allosteric sys-

tems, including those featuring intrinsic disorder. It is thus of

very broad applicability. As already mentioned, the main task

of such analysis is quantifying the relative populations (stabil-

ities) of all the states accessible to the system and how this

population landscape is modified by ligand/effector binding,

or disorder-order transitions. Focusing on these thermody-

namic properties is amply justified. In many systems, the rate-

limiting step of the allosteric transition elicited by effector bind-

ing, may indeed be governed by the concentration (population)

of the pre-existing ligand binding competent state of a protein,

rather than by the free-energy barrier of the conformational

transition it needs to undergo to adopt this state. As illustrated

here by a number of contributions, fine-tuning the relative pop-

ulations of the active and inactive states of protein or nucleic

acid systems and the binding affinities of allosteric effectors,

are very effective ways, by nature or in the laboratory, to design

systems undergoing allosteric regulation of different levels of

complexity and versatility.

Clearly, allosteric regulation still needs to deliver many of its

secrets. An advantage of allosteric regulation over regulation

involving gene expression is its shorter response time to chang-

ing conditions. One may therefore wonder if this may determine

the set of properties of allosteric systems, such as the existence

of soft collective motions or population levels of relevant

states that evolution tends to select. Are all proteins allosteric,

as some have suggested (Gunasekaran et al., 2004)? Are

molecular machines a special category of allosteric systems?

And lastly, how much can we learn about the very fundamental

requirements of allostery from simple toy materials? These are

only some of the many intriguing questions to address, going

forward.
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