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ABSTRACT OF THE DISSERTATION

Sequential Procedures for Nonparametric Statistical Process Control and Longitudinal
Data Classification

by

Xin Zhang

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2014

Professor Jun Li, Chairperson

Sequential analysis could potentially reduce financial and human cost due to its

capability of reaching an earlier conclusion. Since its introduction, sequential analysis has

been widely applied to many areas such as statistical process control (SPC) and clinical de-

sign. However, nonparametric SPC cumulative sum (CUSUM) procedures for multivariate

data and correlated observations are still rare in literatures, and there is little discussion in

sequential classification for longitudinal data. In this dissertation we try to develop new se-

quential procedures for nonparametric statistical process control applicable to multivariate

and serially correlated data, and sequential classifier for longitudinal data.

First, we develop two nonparametric multivariate CUSUM control charts based

on spatial sign and data depth. These two procedures can be considered as the nonpara-

metric counterparts of the two parametric multivariate CUSUM procedures developed in

Crosier (1988). We show that the two proposed CUSUM procedures are affine-invariant

and asymptotically distribution-free over a broad family of distributions. In our simulation
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studies, the proposed CUSUM procedures perform well across a broad range of settings,

and compare favorably with existing CUSUM procedures for detecting location and scale

changes.

Second, on the foundation of the above nonparameric multivariate CUSUM control

charts, a nonparametric SPC procedure for correlated data is proposed. We incorporate

wavelet decomposition with Box and Jenkins time series models and the above multivari-

ate CUSUM control chart to obtain a procedure that is robust under correlated processes

without distributional assumption. The procedure is also shown to be powerful in detecting

location shift through extensive simulation studies.

Last, we develop a first of its kind sequential classification procedure for longi-

tudinal data. The procedure adapts a neutral zone classifier framework, and attempts to

reduce overall cost when the cost of time is considered. The sequential classifier evaluates

each subject at each longitudinal time point for evidence of classification. A classification

decision is not made until sufficient confidence is present or the last time point where the

data can be collected is reached. The early decision property of the proposed classifier may

aid the early diagnosis of severe disease diagnosis as in our real data example.
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Chapter 1

Introduction

Sequential analysis is a statistical analysis where no pre-determined sample size is

assigned and data are evaluated as they are collected. A pre-defined stopping rule is applied

to terminate further sampling which may sometimes result in a much earlier conclusion and

consequently reduce the financial and human cost. The conception of sequential analysis

could be dated back to quality control chart introduced by Shewhart (1931). The formal in-

troduction of sequential analysis appears in Wald’s sequential probability ratio test (SPRT)

(Wald (1945)). Since its introduction, the sequential analysis and sequential procedures are

widely applied to various areas such as Statistical Process Control (SPC) and clinical trials

and design.

The online SPC procedures are direct use of the sequential analysis. This procedure

is a real-time monitoring tool, and therefore more suitable for real applications compared

to offline SPC procedures. Throughout this dissertation we use SPC to refer to online SPC

procedure if no confusion is generated. The SPC problem involves evaluating each (batch)
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of the observations as they are collected from the process based on a known underlying

distribution of the process or an estimated distribution from the observed in-control sample

(referred to as the reference sample). The procedure stops when the monitoring statistic

goes beyond the control limit (stopping rule). The performance of a SPC procedure can be

evaluated by the Average Run Length (ARL) defined as the expected time for the procedure

to breach the control limit. We define ARL0 as the in-control ARL, which is analogous to

the type I error in a hypothesis testing, and ARL1 as the out-of-control ARL, which can

be considered as the power in a hypothesis testing. Our task is to seek a procedure which

has a smaller ARL1 given a fixed ARL0. This procedure would minimize the waste and the

problems passing on to the customers when the monitored process has abnormal variations.

As the processes are getting more and more complicated, in many practical situ-

ations, multiple measurements are collected to characterize the underlying processes. The

correlation between the multiple measurements may cause problems when they are moni-

tored separately. Therefore, a multivariate control chart which can monitor multiple mea-

surements simultaneously is needed. Within different multivariate control charts, multi-

variate CUSUM charts are popular choice for detecting small and moderate changes in the

process. However, most of the existing multivariate CUSUM control charts are relying on

multivariate normality assumption, which, in practice, is difficult to justify. To overcome

this difficulty, we propose two new nonparametric multivariate CUSUM control charts for

location and scale change detection. The proposed control charts use spatial sign and data

depth which are proven to be promising nonparametric tools. More precisely, the two con-

trol charts are formed based on procedures proposed by Crosier (1988) by replacing the
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original data with their spatial sign or data depth related statistics. It could be shown

that our proposed procedures are distribution-free (nonparametric) under the elliptical di-

rections family, a broad family of distributions. Our simulation studies show that they are

robust even outside the elliptical directions family. This distribution-free property makes

our procedures widely applicable to many multivariate SPC problems, especially when the

underlying distribution of the data is difficult to justify.

Another challenge for SPC problems is a result of the rapid development of sam-

pling techniques in information technology. The processes can now sample a lot more fre-

quently than before. The resulting larger sample size indeed provides more information, but

on the other hand increases the autocorrelation within the observations. In some processes

where SPC is applied, the correlation structures are even considered as Long Range Depen-

dent (LRD). The variants of the conventional SPC procedures such as Shewhart, CUSUM,

and exponentially weighted moving average (EWMA) could not successfully handle the

autocorrelated process. Most of the existing SPC procedures for autocorrelated processes

are based on some parametric model to account for the correlation structure within the

data. In this dissertation, we develop a nonparametric CUSUM control chart for serially

correlated processes. The procedure is based on the decorrelation property of wavelet de-

composition. The data are first divided into batches according to the wavelet decomposition

level. Then the coefficients from each level of wavelet decomposition are further modeled

by Box and Jenkins time series model to extract the approximately uncorrelated residuals,

which are grouped appropriately as multivariate vectors based on which batch the resid-

ual is from. The multivariate vectors are finally treated as inputs for the nonparametric
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multivariate CUSUM control chart developed above. The procedure is shown to be robust

under processes generated from different distributions in our simulation studies. The pro-

posed procedure is especially useful when the monitored process possesses long memory.

A network surveillance data is monitored using our proposed method to demonstrate its

application. The procedure is shown to have well controlled ARL0 and quick response to

an artificially created process location change.

Another application of sequential analysis in this dissertation is to develop sequen-

tial classifiers for longitudinal data. Similarly as other sequential procedures, sequential

classifiers can lead to earlier classification and could potentially save cost when the cost

of time is taken into account. In practice, an earlier classification is highly desirable in

many applications. One example would be severe disease diagnosis. However, sequential

procedure for longitudinal data classification is still lacking in the literature. In this dis-

sertation, we propose a sequential classifier for longitudinal data which utilize the neutral

zone classifier framework. To overcome the commonly encountered difficulties of longitu-

dinal data, such as missing values and irregular sampled data, we also incorporate mixed

effects model in our procedure. The classifier utilizes the subject-specific effects estimated

from the mixed effects model as input. The classification procedure evaluates each subject

sequentially at each longitudinal time point. If there is not adequate confidence in making

a classification at a given time point, the decision will wait until the next time point where

another measurement is collected. This process continues until there is enough confidence

of making a classification or until the last time point where data can be collected is reached.

The procedure is shown to be able to reduce cost via extensive simulation studies. As a
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demonstration, we apply the procedure to a severe sepsis diagnosis data set. The procedure

shows reduction in overall cost and average diagnosis waiting time.

The rest of the dissertation is organized as follows. In Chapter 2, the work on non-

parametric multivariate CUSUM control charts is collected. It begins with a background

introduction and literature review. Then notations on spatial sign and data depth, and

required transformation is introduced. It follows by the details of the two nonparamet-

ric multivariate CUSUM control charts. A simulation study is included to evaluate our

proposed procedures. In Chapter 3, we present the nonparametric CUSUM control chart

for serially correlated processes. After discussing the network surveillance data that moti-

vate this work and the related literatures, we briefly review the preliminary knowledge on

wavelets. Then we introduce our proposed procedure. A simulation study to compare our

proposed method to the “residual-based” methods is shown next. Some implementation

issues are also included. Finally we enclose a network surveillance example to illustrate the

application of our proposed method. In Chapter 4, we develop the sequential classifier for

longitudinal data. Motivation and literature review are first included, followed by review

of neutral zone classifier framework. We next introduce the mixed effects model based

logistic regression procedure, which leads to our sequential classification procedure. A per-

formance evaluation demonstrating the overall cost reduction via simulation studies is also

included. Moreover, our proposed sequential procedure is applied to the motivating severe

sepsis diagnosis example to show overall cost and average waiting time reduction. Some

concluding remarks are given in Chapter 5. Appendix A collects all the proofs in Chapter 2

and Appendix B contains some extra simulation results for Chapter 2. Appendix C details

5



derivation of eBLUPs used in Chapter 4. Appendix D compares the performance between

our proposed mixed effects model based logistic regression classifier and the observation

based logistic regression classifier based on misclassification error rate (MER).
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Chapter 2

Nonparametric Multivariate

CUSUM Control Charts

2.1 Introduction

A typical setup for multivariate control charts is the following. There are m inde-

pendent and identically distributed historical (reference) data for the p monitored charac-

teristics, denoted by Y1, . . . ,Ym ∈ <p, from the in-control process. Let F0 be the underlying

distribution of Yi, also referred to as the in-control distribution. Let X1,X2, . . . be future

observations of the process, under the distribution F1. The task of multivariate control

charts is to determine if F1 is the same as F0 and if not, to signal when F1 changes from

F0 as early as possible.

There are many existing multivariate control charts in the literature. We refer

to Bersimis, Psarakis and Panretos (2007) for an overview on this topic. The multivari-
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ate control charts we are particularly interested in is multivariate CUSUM control charts

since they are the popular choice for detecting small and moderate changes in F1 from F0.

Crosier (1988) proposed two multivariate CUSUM procedures for detecting location shifts

in F1 from F0 by assuming that F0 and F1 are both multivariate normal distributions.

One of the proposed procedures is the univariate CUSUM procedure for monitoring the T

statistic, which is the square root of Hotelling’s T 2 statistic, therefore it is referred to as

COT (CUSUM of T ) procedure. Another one Crosier proposed is called MCUSUM proce-

dure which monitors the cumulative sum of Xi directly. Based on the simulations in his

paper, the MCUSUM procedure performs better than the COT procedure for detecting lo-

cation shifts. Both of the two CUSUM procedures in Crosier’s paper were developed under

the multivariate normality assumption. However, this assumption may not hold in many

situations. Therefore, nonparametric multivariate CUSUM procedures are more desirable.

Qiu and Hawkins (2001, 2003) developed a nonparametric multivariate CUSUM

procedure for detecting location shifts based on the anti-ranks of the p components in Xi.

However, the method is not distribution-free since it depends on the in-control distributions

of the anti-ranks. The method also only uses subset of the anti-ranks of the p components,

which may lead to loss of power for detecting location changes. Furthermore, how to choose

the subset of anti-ranks is not clear especially when no information about the possible

location shift is available. In this chapter, we propose a new simple nonparametric CUSUM

procedure for detecting location changes, which is based on spatial signs of the Xi and can

be considered as the nonparametric counterpart of Crosier’s MCUSUM procedure. This

procedure is shown to be asymptotically distribution-free for a broad family of distributions,
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and our simulation studies show this procedure is very robust even for distributions outside

of this family. More importantly, our CUSUM procedure is shown to be more powerful

than the anti-rank CUSUM procedure for detecting location shifts in a variety of simulation

settings.

So far, most of the existing nonparametric CUSUM procedures were developed for

detecting location changes. In practice, scale changes of the measurements may also indicate

abnormal variations of the process, and therefore need to be detected as well. A number

of papers have taken on this problem under the normality assumption, for example, Chan

and Zhang (2001), Reynolds and Cho (2006), Reynolds and Stoumbos (2008), Hawkins and

Maboudou-Tchao (2008), Yen and Shiau (2010). However, little progress has been made

on nonparametric CUSUM procedures for detecting scale changes. Therefore, the second

objective of this chapter is to develop a nonparametric CUSUM procedure for detecting scale

changes. In many applications, scale increases indicate increases in variability, and therefore

are of more concern than scale decreases. Thus, we focus our nonparametric procedure on

detecting scale increases. The CUSUM procedure we propose is based on the so-called data

depth and can be considered as a nonparametric version of the aforementioned Crosier’s

COT procedure. Crosier’s COT procedure was originally proposed for detecting location

shifts, but was later found to be more powerful for detecting scale increases (Hawkins and

Olwell, 1998).

The rest of the chapter is organized as follows. In Section 2.2, we review the

background materials, including spatial sign, data depth and transformation needed in our

proposed CUSUM procedures. In Section 2.3, we propose the nonparametric CUSUM pro-

9



cedure based on spatial sign for detecting location shifts. In Section 2.4, we introduce

another nonparametric CUSUM scheme based on data depth for detecting scale increases.

We present some simulation studies in Section 2.5 to evaluate the performance of our pro-

posed CUSUM procedures.

2.2 Spatial Sign, Data Depth and Transformation

2.2.1 Spatial Sign

In the univariate case, the sign of a number x has three values, namely -1, 0,

and 1, for x < 0, x = 0, and x > 0. The sign of non-zero x can be also calculated by

U(x) = x/|x|. We can extend this definition to the multivariate case, and obtain spatial

sign of any non-zero multivariate observation by U(x) = x/‖x‖, where x is any non-zero

p-dimensional vector, and ‖ · ‖ denotes the Euclidean norm. Based on the definition, the

spatial sign of a non-zero multivariate observation is a vector of unit length pointing to the

same direction as the observation. Therefore, it can be considered as the direction vector

of the multivariate observation.

2.2.2 Data Depth

Data depth is a measure of centrality of a given point with respect to a multivariate

data cloud or its underlying distribution. There are many notions of data depth in the

literature, for example, the half-space depth introduced by Tukey (1975), simplicial depth

proposed by Liu (1990), and projection depth used in Stahel (1981), Donoho (1982), Donoho

and Gasko (1992), and Zuo (2003). To see a more complete list of different notions of data
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depth, see Liu et al. (1999) and Zuo and Serfling (2000). In this chapter, we use spatial

depth in our data depth based CUSUM procedure due to the fact that the spatial depth is

much easier to compute for higher dimensional data than other depths. The definition of

spatial depth is given below.

Definition 2.1. The spatial depth (Chaudhuri (1996), Vardi and Zhang (2000), and Serfling

(2002)) at x with respect to F is defined as

SPDF (x) = 1−
∥∥∥∥EF { x− Y

‖x− Y ‖

}∥∥∥∥ , where Y ∼ F.

Based on the above definition of spatial sign, the spatial depth can be written as

SPDF (x) = 1− ‖EF {U(x− Y )}‖ , where Y ∼ F.

When the observation x is near the center of the distribution F , EF {U(x− Y )} would be

very close to 0, and therefore SPDF (x) would attain its maximum value 1. On the other

hand, if x is relatively near the outskirts, SPDF (x) would approach its minimum value 0.

Therefore, the spatial depth provides a reasonable measure of “depth” of x with respect to

the distribution F .

Given a sample {Y1, · · · ,Ym} from F , the sample spatial depth is defined as

SPDFm(x) = 1−

∥∥∥∥∥ 1

m

m∑
i=1

U(x− Yi)

∥∥∥∥∥ ,
where Fm represents the empirical distribution of {Y1, · · · ,Ym}.

2.2.3 Transformation

Our proposed CUSUM procedures in the next two sections, if directly based on

the above spatial sign and spatial depth, are only invariant under rotation or when the
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same scale transformation is done on all components. They are not invariant under general

affine transformations of the data. The affine invariance is sometimes a desired property

for a CUSUM procedure, and is also a key property in order to obtain a distribution-free

procedure in Section 2.3.

In the literature, many procedures based on spatial sign and spatial depth can

achieve affine invariance through transformation-retransformation procedure (Chakraborty,

Chaudhuri, and Oja (1998)). The idea behind the transformation-retransformation proce-

dure is making some appropriate transformation on the data first and then applying the

procedure to the transformed data. We will adopt this transformation-retransformation

approach. In particular, the transformation we will use on our data is motivated by

Hettmansperger and Randles (2002). Recall that {Y1, ...,Ym} is the reference sample, and

{X1,X2, · · · } is the new observations from the process. The transformation we will use on

Yi and Xi is,

Y ∗i = Âm(Yi − θ̂m), X∗i = Âm(Xi − θ̂m), (2.1)

where (θ̂m, Âm) is the solution to the following equations,

1

m

m∑
i=1

(
Âm(Yi − θ̂m)

‖Âm(Yi − θ̂m)‖

)
= 0, (2.2)

1

m

m∑
i=1

(
Âm(Yi − θ̂m)(Yi − θ̂m)′Â′m

‖Âm(Yi − θ̂m)‖2

)
=

1

p
Ip. (2.3)

and Âm is the upper triangular p × p matrix with positive diagonal elements and a 1 in

the upper-left element. We follow the iterative algorithm developed in Hettmansperger and

Randles (2002) to find the solution (θ̂m, Âm) to the above two equations. In both of our

proposed CUSUM procedures in the following sections, we first transform {Y1, ...,Ym} and
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{X1,X2, · · · } as in (2.1), and then work with the transformed data Y ∗i and X∗i .

2.3 Spatial Sign CUSUM Control Chart (SS-CUSUM)

Crosier (1988) introduced the MCUSUM procedure, which has been shown to work

well for detecting small location shifts for multivariate normal distribution. The MCUSUM

procedure is described as follows.

Define

Cn = [(Sn−1 +Xn − µ̂0)
′
Σ̂−10 (Sn−1 +Xn − µ̂0)]

1/2

Sn =



0 if Cn ≤ k

(Sn−1 +Xn − µ̂0)(1− k/Cn) if Cn > k

where k > 0, S0 = 0 and µ̂0 and Σ̂0 are the sample mean and sample covariance matrix from

the multinormal reference sample {Y1, ...,Ym}. Let Ln = [S
′
nΣ̂−10 Sn]1/2, and the system

triggers an alarm when Ln > h, where h is the control limit.

To develop a nonparametric version of the above MCUSUM procedure, we first

notice that the nonparametric sign test in the univariate case was obtained by replacing the

original observations by their signs. Therefore, we can follow this idea and replaceXn in the

above MCUSUM procedure by its spatial sign. Again to achieve affine invariance, we build

our procedure on the transformed data {Y ∗1 , ...,Y ∗m} and {X∗1 ,X∗2 , · · · }. Therefore, Xn in

the MCUSUM is replaced by Un = U(X∗n), the spatial sign of X∗n, µ̂0 and Σ̂0 are replaced

by the sample mean and sample covariance matrix of the spatial signs of the transformed
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reference sample {Y ∗1 , ...,Y ∗m}. Based on (2.2) and (2.3), it is not difficult to see that the

sample mean and sample covariance matrix of the spatial signs of {Y ∗1 , ...,Y ∗m} are 0 and

Ip/p, respectively. Therefore, our proposed nonparametric CUSUM procedure is as follows.

Define

Cn = [(Sn−1 +Un)
′
(Sn−1 +Un)]1/2

Sn =



0 if Cn ≤ k

Sn = (Sn−1 +Un)(1− k/Cn) if Cn > k

where k > 0, and S0 = 0. Let Ln = (S
′
nSn)1/2, and the procedure triggers an alarm when

Ln > h, where h is the control limit predetermined by k and the desired in-control average

run length (denoted by ARL0). We call this procedure Spatial Sign CUSUM (SS-CUSUM).

To illustrate the properties of our SS-CUSUM procedure, we first introduce dif-

ferent distributional assumptions for the underlying population in the nonparametric mul-

tivariate data analysis literature. Let {Zi} be the independent and identically distributed

random sample from F . The distribution F is said to belong to the family of elliptical

symmetric distributions if Zi = riDui+µ, where D is a fixed p×p nonsingular matrix, µ is

a fixed p-dimensional vector, the ui are independent and identically uniformly distributed

on the unit p sphere, and the ri are independent and identically distributed positive scalars,

independent of the ui. A weaker assumption than the elliptical symmetric family is the

elliptical directions family, which was first introduced by Randles (1989). In the ellipti-

cal directions family, the above ri are only assumed to be positive values, not necessarily
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random or independent and identically distributed or independent of the ui. This family

includes certain skewed distributions in addition to the elliptically symmetric family.

The following results show the properties of our proposed SS-CUSUM procedure.

Proposition 1 The SS-CUSUM procedure is affine-invariant.

Proposition 2 The SS-CUSUM procedure is asymptotically distribution-free for the distri-

butions in the elliptical directions family.

Based on the above results, determining the control limit h in our SS-CUSUM

procedure can be achieved by simulating data from standard multivariate normal distribu-

tion and finding h to obtain the desired ARL0 for any given k. Although the SS-CUSUM

is shown to be asymptotically distribution-free for the elliptical directions family, our sim-

ulation studies in Section 2.5 show that this SS-CUSUM procedure is also very robust for

distributions outside of the elliptical directions family. By investigating the value of Sn at

the alarm point, SS-CUSUM can also provide us with information of the direction of the

location shift.

2.4 Data Depth CUSUM Control Chart (DD-CUSUM)

We first review the COT procedure proposed in Croiser (1988). The COT proce-

dure is given by

Sn = max(0, Sn−1 + Tn − k),

where S0 ≥ 0, k > 0, Tn is the square root of Hotelling T 2 statistic

T 2
n = (Xn − µ̂0)

′
Σ̂−10 (Xn − µ̂0),
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and µ̂0 and Σ̂0 are the sample estimates of µ0 and Σ0 for the multinormal reference sample

{Y1, ...,Ym}. The procedure triggers an alarm when Sn > h, where h is the control limit.

Because Tn is more sensitive to the changes in the covariance matrix from Σ0 to aΣ0 (a > 1)

than the changes in µ0, the COT procedure is more powerful for detecting scale increases

than it is for detecting location changes (Hawkins and Olwell, 1998).

To develop a nonparametric counterpart of the above COT procedure, we first

review the depth-based R statistic introduced by Liu and Singh (1993). Let D(·) denote

any valid notion of depth. For any given x ∈ <p, the R statistic is defined as

RF (x) = P{DF (Y ) ≤ DF (x)},

where Y is a random vector drawn from F . If F is not known and a sample {Y1, ...,Ym} is

given, the sample version of R statistic is defined by:

RFm(x) = #{Yj | DFm(Yj) ≤ DFm(x), j = 1, · · · ,m}/m.

In Liu (1995), the statistic RFm above is used to construct several nonparametric

multivariate control charts. In this chapter, we propose a CUSUM control chart based

on the R statistic. For this purpose, we calculate RFm(Xn) of the new observation Xn

with respect to the reference sample {Y1, ...,Ym} by using spatial depth. According to the

definition of spatial depth, if Xn is near the center of the reference sample, there are many

Yj having smaller depth than Xn, and therefore RFm(Xn) will be large. On the other

hand, if Xn is near the outskirts of the reference sample, there are a few Yj having smaller

depth than Xn, and therefore RFm(Xn) will be small. Hence, 1−RFm(Xn) can be used to

quantify the relative distance between Xn and the center of the reference sample. Recall
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that, in the COT procedure, Tn can be considered as a standardized distance between Xn

and the center of the reference sample. This motivates us to replace Tn by 1−RFm(Xn) in

the COT procedure and obtain the following CUSUM procedure:

Sn = max(0, Sn−1 + (1−RFm(Xn))− k),

where S0 = 0 and k > 0. The procedure triggers an alarm when Sn > h, where h is the

control limit depending on the choice of k and the desired ARL0.

Liu and Singh (1993) show the following two important properties of the R statis-

tic.

(i) If X ∼ F , and DF (X) has a continuous distribution, then RF (X) ∼ Uniform[0, 1],

where Uniform[0, 1] denotes a uniform distribution supported in [0,1].

(ii) If X ∼ F , as m → ∞, RFm(X)
L→ Uniform[0, 1] along almost all {Y1, · · · ,Ym}

sequences, provided thatDFm(·) coverges toDF (·) uniformly asm→∞. The notation

L→ stands for covergence in law.

If F is continuous, the spatial depth SPDF (·) is a continuous function, and

SPDFm(·) converges uniformly to SPDF (·) (Kolchinskii (1997) and Serfling (2002)). There-

fore, the above two properties apply to the spatial depth, which implies that 1−RFm(Xn)

asymptotically follows Uniform[0, 1] when the process is in control. Since the mean of

Uniform[0, 1] is 0.5, we further modify our CUSUM procedure as

Sn = max(0, Sn−1 + (0.5−RFm(Xn))− k).

Here 0.5 − RFm(Xn) = (1 − RFm(Xn)) − 0.5. To attain affine invariance, we apply the

above CUSUM procedure to the transformed data {Y ∗1 , ...,Y ∗m} and {X∗1 ,X∗2 , ...} in (2.1),
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and obtain

Sn = max(0, Sn−1 + (0.5−RF ∗m(X∗n))− k),

where RF ∗m(X∗n) is the sample R statistic of X∗n with respect to the transformed reference

sample {Y ∗1 , ...,Y ∗m} based on spatial depth. Again, the procedure triggers an alarm when

Sn > h, where h is the control limit depending on the choice of k and the desired ARL0.

We call this procedure Data Depth CUSUM (DD-CUSUM).

The following results show the properties of our proposed DD-CUSUM procedure.

Proposition 3 The DD-CUSUM procedure is affine-invariant.

Proposition 4 The DD-CUSUM procedure is asymptotically distribution-free for any con-

tinuous multivariate distributions.

From the proof of Proposition 4, RF ∗m(X∗n) asymptotically follows Uniform[0, 1]

when the process is in control. Therefore, determining the control limit h in our DD-

CUSUM procedure can be achieved by simulating data from Uniform[0, 1] and finding h

to obtain the desired ARL0 for any given k. Similar to the COT procedure, the DD-

CUSUM procedure is capable of detecting many types of distributional changes including

location shifts. However, it is more sensitive to scale increases than location shifts. For

detecting location shifts, the SS-CUSUM procedure we propose in the previous section is

more powerful than the DD-CUSUM procedure. Therefore, in practice, we recommend

using both the SS-CUSUM procedure and DD-CUSUM procedure, with SS-CUSUM for

location shifts and DD-CUSUM for scale increases.
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2.5 Simulation Studies

In this section, we present some simulation studies to evaluate the performance of

our proposed SS-CUSUM and DD-CUSUM procedures. In particular, we will compare them

with the MCUSUM procedure proposed by Crosier (1988) and the anti-rank CUSUM (AR-

CUSUM) procedure proposed by Qiu and Hawkins (2003). In all the simulation studies,

we set the nominal ARL0 as 200 and the reference sample size as 50000, sufficiently large

so that our asymptotic results approximately hold. All the simulation results are based on

10000 replicates. The control limits of different CUSUM procedures to achieve the nominal

ARL0 are all determined through simulation using a bi-section search. The algorithm runs

as follows:

Step 1. For any control limit h, we obtain its corresponding in-control average run length

(denoted by ARLh0) by simulating 10000 in-control sample paths and averaging out

the run lengths from these 10000 sample paths. Based on this approach, we first find

h1 such that ARLh10 < ARL0, and h2 such that ARLh20 > ARL0.

Step 2. Find ARLh30 where h3 is the midpoint of h1 and h2.

Step 3. If ARLh30 < ARL0, assign h1 = h3. If ARLh30 > ARL0, assign h2 = h3;

Step 4. Repeat Steps 2 and 3 until ARLh30 is sufficiently close to ARL0;

Step 5. Use h3 as the control limit.

For MCUSUM, the control limit for monitoring a p-dimensional random vector is

determined by simulating sample paths from standard p-dimensional multivariate normal

19



distribution, since MCUSUM is affine invariant and is based on normality assumption. For

AR-CUSUM, the control limit depends on the in-control distribution. In our simulation,

as in practice, the reference sample is used to estimate the in-control distribution, which

in turn, is used to compute the control limit. Therefore, the control limit for AR-CUSUM

has to be simulated from each distribution separately. For SS-CUSUM, since it is affine

invariant and is asymptotically distribution-free for the elliptical directions family, the con-

trol limit of SS-CUSUM for monitoring any p-dimension random vector is determined by

simulating sample paths from standard p-dimensional multivariate normal distribution. For

DD-CUSUM, since the statistic RF ∗m(X∗n) we use has an asymptotic Uniform[0, 1] distribu-

tion and the DD-CUSUM procedure is asymptotically distribution-free, the control limit

of DD-CUSUM for monitoring any dimensional random vector from any continuous dis-

tribution can be determined by simulating sample paths from Uniform[0, 1]. In summary,

the distribution-free properties of our DD-CUSUM and SS-CUSUM make computing their

control limits much simpler compared to AR-CUSUM.

2.5.1 Robustness of SS-CUSUM

As stated in Section 2.3, our proposed SS-CUSUM procedure is asymptotically

distribution-free for distributions in the elliptical directions family. In the following sim-

ulation study, we will investigate the ARL0 performance of the SS-CUSUM procedure for

different distributions, with particular attention to distributions outside of the elliptical

directions family. The distributions we consider are similar to those considered in Zou and

Tsung (2011), and they are: (i) p-dimensional standard multivariate normal distribution
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(denoted by Normp); (ii) p-dimensional standard multivariate t distribution with degrees

of freedom 3 (denoted by tp,3); (iii) p-dimensional multivariate distribution with indepen-

dent marginal Cauchy distributions (Cauchyp); (iv) p-dimensional multivariate distribution

with independent marginal chi-square distributions, the degree of freedom of each marginal

being 1 (denoted by χ2
p,1); and (v) p-dimensional multivariate gamma distribution with

shape parameter γ and scale parameter 1 (denoted by Gammap,γ). Details for generating

multivariate gamma random vectors can be found in Stoumbos and Sullivan (2002).

Table 1 shows the simulated ARL0 of our proposed SS-CUSUM along with their

corresponding standard errors (in the parentheses) under different distributions. In the

table, the first two columns are corresponding to multivariate normal and t distributions

which belong to the elliptical directions family. As expected, all the simulated ARL0 are

very close to the nominal level. The last six columns in the table are corresponding to

distributions outside of the elliptical directions family. As we can see from the table, except

for the two extremely skewed distributions, χ2
p,1 and Gammap,1, the other four distributions

have simulated ARL0 close to the nominal level with k as large as 0.5. For the two extremely

skewed distributions, when the dimension is not high, the ARL0 are still close to the nominal

one. When the dimension gets higher and the value of k gets larger, there is some deviation

from the nominal ARL0 level. However, if we use k ≤ 0.3, the ARL0 values are still well

controlled near the nominal level. From the above simulation, we can see that, although

the SS-CUSUM procedure is shown to be asymptotically distribution-free for the elliptical

directions family, it can achieve reasonable ARL0 for a variety of distributions outside of

the elliptical directions family if we choose relatively small k.
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2.5.2 Location Shift Detection

As mentioned earlier, our proposed DD-CUSUM is more sensitive to scale increases

than location shifts. In our simulation studies, it has been confirmed that SS-CUSUM is

more powerful than DD-CUSUM for detecting location shifts. Therefore, we recommend

using SS-CUSUM for detecting location shifts in practice. In this section, we present a

simulation study for comparing the detection power of SS-CUSUM with two existing meth-

ods, MCUSUM and AR-CUSUM, for detecting location shifts under different distribution

settings. The distributions we consider are Norm5, t5,3, Cauchy5, χ
2
5,1 and Gamma5,1. The

distribution notations are the same as the ones in the previous section. The first type of

location shifts we consider is the location shift in the first component with size of b varying

from 0 to 3 with an increment of 0.5. For AR-CUSUM, we have to choose which subset of

the anti-ranks to use. For computational simplicity, we use single anti-rank, and the single

anti-rank we consider is the first anti-rank and last anti-rank, which is recommended by Qiu

and Hawkins (2003). To make our simulations close to the situations in practice, for each

setting we introduce the location shift after 50 observations. It is possible that some of the

CUSUM procedures will trigger an alarm (false alarm) before the 50th observation in some

of the sample paths. To eliminate the effect of those false alarms on our power evaluation,

the sample paths in which any of the CUSUM procedures triggers an alarm before the 50th

observation are discarded. Therefore, in the simulated sample paths we consider here all

the CUSUM procedures signal after the 50th observation. The detection power of different

CUSUM procedures is then compared by the average signal time after the 50th observation.

This average signal time is sometimes called steady-state ARL (SSARL) in the literature
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(see, for example, Hawkins and Olwell (1998)). Table 2.2 lists the simulated SSARL of

each procedure from 10,000 replications under the Norm5 distribution. It also includes the

simulated ARL0. Since every CUSUM procedure involves the tuning parameter k, Table 2.2

lists the results with different choices of k for each procedure. From the table, we can see

that all the four CUSUM procedures can achieve the desired ARL0. By comparing the

four procedures, it is obvious that SS-CUSUM and MCUSUM both outperform the two

AR-CUSUM procedures. MCUSUM performs the best as we expected, since MCUSUM

is designed specifically for the multinormal distribution. However, SS-CUSUM, the non-

parametric counterpart, performs almost equally well as MCUSUM in this multinormal

case.

We also obtain similar tables as Table 2.2 which contain the SSARL performance

of the four CUSUM procedures under other distributions. One can see Appendix B for the

complete results. We here only present the SSARLs of SS-CUSUM with k = 0.2 and 0.3,

the SSARLs of MCUSUM with k = 0.2 and the SSARLs of AR-CUSUM with k = 0.1, since

those particular choices of k for each procedure give the procedure the best or nearly the

best detection power across different simulation settings.
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Table 2.2: Power comparison for location shifts: Norm5

p = 5 SS-CUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 203.5(1.67) 201.1(1.85) 203.4(1.92) 194.5(1.88) 200.4(1.98)
0.5 34.1(0.19) 33.5(0.23) 39.7(0.32) 48.5(0.43) 58.2(0.54)
1.0 17.4(0.07) 14.2(0.06) 13.5(0.07) 14.3(0.09) 16.1(0.11)
1.5 12.6(0.05) 9.7(0.03) 8.7(0.03) 8.2(0.03) 8.3(0.04)
2.0 10.4(0.04) 7.9(0.03) 6.8(0.02) 6.3(0.02) 6.0(0.02)
2.5 9.2(0.03) 6.9(0.02) 6.0(0.02) 5.4(0.01) 5.0(0.01)
3.0 8.6(0.03) 6.5(0.02) 5.5(0.01) 4.9(0.01) 4.6(0.01)

p = 5 MCUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 203.0(1.44) 202.6(1.64) 199.3(1.73) 206.1(1.88) 204.9(1.91)
0.5 36.6(0.18) 31.5(0.17) 29.4(0.18) 29.8(0.19) 30.6(0.22)
1.0 19.2(0.08) 15.5(0.07) 13.5(0.06) 12.6(0.06) 11.9(0.06)
1.5 13.1(0.05) 10.3(0.04) 8.8(0.03) 8.0(0.03) 7.3(0.03)
2.0 9.9(0.04) 7.9(0.03) 6.6(0.02) 6.0(0.02) 5.4(0.02)
2.5 8.0(0.03) 6.3(0.02) 5.3(0.02) 4.7(0.02) 4.3(0.01)
3.0 6.8(0.02) 5.3(0.02) 4.5(0.02) 4.0(0.01) 3.6(0.01)

p = 5 AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 199.7(2.63) 200.1(2.40) 200.3(2.27) 197.3(2.09) 201.3(2.15)
0.5 106.8(0.96) 129.3(1.30) 134.2(1.34) 131.4(1.36) 131.5(1.30)
1.0 51.7(0.34) 72.5(0.63) 96.5(0.97) 97.6(1.00) 89.4(1.05)
1.5 39.1(0.22) 50.4(0.37) 75.0(0.74) 86.0(0.88) 89.5(0.93)
2.0 35.4(0.19) 43.4(0.28) 65.3(0.59) 80.1(0.84) 84.3(0.88)
2.5 34.5(0.18) 42.1(0.27) 62.0(0.57) 78.4(0.82) 82.4(0.84)
3.0 34.1(0.17) 41.9(0.26) 61.2(0.54) 77.0(0.80) 81.7(0.83)

p = 5 AR-CUSUM Last

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 200.5(2.71) 195.4(2.33) 203.8(2.30) 193.3(2.05) 196.1(2.10)
0.5 72.1(0.57) 87.9(0.77) 107.2(0.99) 123.9(1.15) 153.4(1.45)
1.0 24.2(0.13) 24.5(0.15) 25.9(0.17) 28.6(0.20) 32.5(0.25)
1.5 14.2(0.07) 13.3(0.06) 13.2(0.06) 13.4(0.07) 14.1(0.08)
2.0 10.5(0.04) 9.6(0.04) 9.2(0.04) 9.1(0.04) 9.3(0.04)
2.5 8.8(0.03) 8.0(0.03) 7.6(0.03) 7.4(0.03) 7.6(0.03)
3.0 8.1(0.03) 7.3(0.03) 6.8(0.03) 6.8(0.03) 6.8(0.04)
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Figure 2.1 shows the SSARL curves of the four procedures with those particular

choices of k for the selected distributions. In all the four plots, the SSARLs are plotted on log

scale. Figures 2.1 (a) and (b) show the results for the t5,3 and Cauchy5 distributions, both

of which are heavy tailed. MCUSUM is not shown in these two plots since it fails to achieve

nominal ARL0 level. In contrast, both SS-CUSUM and AR-CUSUM can achieve the desired

ARL0. However, SS-CUSUM outperforms AR-CUSUM in both of the cases. Figures 2.1 (c)

and (d) show the SSARL curves for the skewed distributions χ2
5,1 and Gamma5,1. Although

SS-CUSUM is not distribution-free under these two distributions, because we select small

values of k SS-CUSUM can still achieve the nominal ARL0 as shown in the earlier robustness

study. From Figures 2.1 (c) and (d), again we can see that the detection power of our SS-

CUSUM dominates that of MCUSUM and AR-CUSUM in both cases.

We also carry out a simulation study to compare the detection power of the four

CUSUM procedures for location shifts with an equal magnitude in all the components.

Without loss of generality, we focus on the downward shifts. We choose the shift magnitude

b in every component to vary from 0.2 to 1 with an increment of 0.2. Based on those b’s, the

choices of k for each of the four CUSUM procedures from the above one-component location

shift study will still give the procedures the best or nearly the best detection power across

different simulation settings. The SSARL curves of the four CUSUM procedures with those

particular choices of k under different distributions are presented in Figure 2.2. Similar to

the above one-component location shift study, for the two heavy tailed distributions, t5,3

and Cauchy5, MCUSUM fails to achieve the nominal ARL0, therefore it is not shown in

Figures 2.2 (b) and (c). From all the five plots, we can see that the performance of our
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(a) (b)

(c) (d)

Figure 2.1: Power comparision of SS-CUSUM, MCUSUM, AR-CUSUMF (AR-CUSUM

with the first anti-rank), and AR-CUSUML (AR-CUSUM with the last anti-rank) with a

shift of b in the first component under: (a) t5,3; (b) Cauchy5; (c) χ2
5,1; (d) Gamma5,1.
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SS-CUSUM is consistently among the best, especially surpasses the performance of the last

anti-rank AR-CUSUM in most of the cases. It is worth pointing out that the out-of-control

SSARLs for the first anti-rank AR-CUSUM under the five distributions are all larger than

the in-control ARL0, which implies that the first anti-rank AR-CUSUM is powerless for

detecting this kind of location shifts. This phenomenon was also briefly mentioned in Qiu

and Hawkins (2003) and they referred to it as bias phenomenon, similar to the “biased”

statistical test.

In the following we provide some brief explanation for this biased phenomenon. We

first write the new observation Xn as (Xn1, ..., Xn5)
′ and define its observed first anti-rank

vector as ηn = (ηn0, ηn1, ..., ηn5)
′, where

ηn0 = I{0 is the smallest among {Xn1, ..., Xn5, 0}},

ηnj = I{Xnj is the smallest among {Xn1, ..., Xn5, 0}}, for j = 1, ..., 5,

and I{A} is the indicator function and takes 1 if A is true and 0 otherwise. Similarly

we can define the expected first anti-rank vector when the process is in control as d0 =

(d0, d1, ..., d5)
′, where

d0 = P{0 is the smallest among {Xn1, ..., Xn5, 0} when the process is in control } = E0(ηn0),

dj = P{Xnj is the smallest among {Xn1, ..., Xn5, 0} when the process is in control} = E0(ηnj),

for j = 1, ..., 5. If we use the Norm5 distribution as an example,

d0 = (0.03125, 0.19375, 0.19375, 0.19375, 0.19375, 0.19375)′.
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Given a downward shift of 1 in all the 5 components for the Norm5 distribution,

the observed first anti-rank vector ηn has the expected value

d1 = E1(ηn) = (0.0001, 0.19998, 0.19998, 0.19998, 0.19998, 0.19998)′,

which is quite close to d0. Loosely speaking, the first antirank AR-CUSUM is roughly

monitoring ‖ηn − d0‖2. Since ‖E1(ηn) − d0‖2 = ‖d1 − d0‖2 = 0.0011644, which is very

small, it explains why it is difficult for the first anti-rank AR-CUSUM to detect this kind

of downward location shifts.

Next we explain why it takes longer for the first anti-rank AR-CUSUM to trigger an

alarm when the process is out of control than when it is in control (the biased phenomenon).

We still use the Norm5 distribution as an example. As we mention above, loosely speaking,

the monitoring statistic for the first anti-rank AR-CUSUM roughly accumulates ‖ηn−d0‖2.

If one of the Xnj (j = 1, ..., 5) is the smallest among {Xn1, ..., Xn5, 0}, ‖ηn − d0‖2 = 0.801.

If 0 is the smallest among {Xn1, ..., Xn5, 0}, ‖ηn − d0‖2 = 1.126. Therefore, when the

process is in control, E‖ηn − d0‖2 = 0.801 × 0.96875 + 1.126 × 0.03125 = 0.811, and

when the process is out of control with a downward shift of 1 in all the 5 components,

E‖ηn − d0‖2 = 0.801 × 0.9999 + 1.126 × 0.0001 = 0.801 < 0.811. This implies that the

monitoring statistic is more likely to go beyond the control limit when the process is in

control than when the process is out of control. Therefore, it takes longer to trigger the

alarm when the process is out of control than when the process is in control.

In the above simulation, the last anti-rank AR-CUSUM has some power for de-

tecting the downward shifts with an equal magnitude in all the components, while the first

anti-rank AR-CUSUM is powerless for this purpose. Using the similar argument as above,
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we can also see that the last anti-rank AR-CUSUM will be powerless for detecting the

upward shifts with an equal magnitude in all the components. Therefore, which anti-rank

to use is very critical for the performance of AR-CUSUM. If the anti-rank is not appro-

priately selected, the AR-CUSUM procedure can be useless. However, how to choose the

anti-rank depends on what kind of location shifts the process will encounter, which is usu-

ally unknown in practice. In contrast, our SS-CUSUM can achieve good detection power for

different types of location shifts, and it even has comparable performance with MCUSUM

when the underlying distribution is multinormal.

2.5.3 Scale Increase Detection

In this section, we consider the scale increase detection, i.e. detecting increases

in variability of the process. Based on our simulations, SS-CUSUM is not as powerful as

our DD-CUSUM for detecting this kind of change. Therefore, we recommend using DD-

CUSUM for detecting scale increases in practice. In this section, we present some simulation

studies to investigate the performance of DD-CUSUM for scale increase detection under

different distributions. The distributions considered here are Norm5, t5,3, Cauchy5, χ
2
5,1,

and Gamma5,1. We consider two scale increase scenarios: (a) scale change by b times in all

components, and (b) scale change by b times only in the first component. In both of the

cases, b varies from 1 to 8, with an increment of 2. Similar to the previous simulation study

for location changes, we introduce the scale change after the 50th observation. The SSARL

will be reported for each scale change setting.
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(a)

(b) (c)

(d) (e)

Figure 2.2: Power comparision of SS-CUSUM, MCUSUM, AR-CUSUMF (AR-CUSUM

with the first anti-rank), and AR-CUSUML (AR-CUSUM with the last anti-rank) with a

downward shift of b in all the components under: (a) Norm5; (b) t5,3; (c) Cauchy5; (d) χ2
5,1;

(e) Gamma5,1.
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For the first scale change scenario where the scales increase by the same magnitude

in all components, AR-CUSUM will not have any detection power. This is due to the fact

that if all components have the same scale increase, the probability vector for any anti-rank

will not change, so that the scheme will not signal any abnormality. However, DD-CUSUM

can easily detect this type of scale increase. The simulated ARLs for DD-CUSUM are

displayed in Table 2.3. From the table we can see that DD-CUSUM can achieve the desired

ARL0 when the process is in control under all the five distributions. When there is a scale

increase, the out-of-control SSARLs decrease rapidly from 200, which indicates the good

power of DD-CUSUM for detecting the change.

Next, we would like to compare the performance of DD-CUSUM with AR-CUSUM

when there is a scale increase in only one component. This time, AR-CUSUM will have

detection power, since scale increases in only one component will alter the order of com-

ponents, and affect the probability vector of the anti-ranks. We still use the previous

distribution settings. The simulated SSARLs are listed in Table 2.4. To save the space,

we only show the results for the first anti-rank AR-CUSUM, since its performance is as

good as or better than the performance of the last anti-rank AR-CUSUM in our simulation

studies. As we can see from the table, for symmetric distributions such as Norm5, t5,3 and

Cauchy5, DD-CUSUM completely dominates AR-CUSUM. However, for χ2
5,1, AR-CUSUM

performs better than DD-CUSUM. For Gamma5,1 distribution, the two procedures have

comparable performance. AR-CUSUM does better under the χ2
5,1 distribution because the

extremely right skewness enables the scale increase in one component to significantly alter

the probability distribution of the first anti-rank. As a result, AR-CUSUM with the first
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Table 2.3: Detection power for DD-CUSUM: scale increases in all components

Norm5

b k = 0.1 k = 0.2 k = 0.3 k = 0.4
1 193.1(1.85) 194.6(1.94) 188.3(1.88) 206.6(2.05)
2 6.8(0.04) 6.6(0.05) 6.2(0.05) 7.1(0.06)
4 3.9(0.01) 3.2(0.01) 2.6(0.01) 2.6(0.01)
6 3.5(0.01) 2.9(0.01) 2.2(0.01) 2.2(0.01)
8 3.4(0.01) 2.8(0.01) 2.0(0.01) 2.0(0.01)

t5,3
b k = 0.1 k = 0.2 k = 0.3 k = 0.4
1 183.1(1.79) 197.1(1.91) 216.2(2.08) 193.6(1.95)
2 13.7(0.10) 18.6(0.16) 27.7(0.26) 35.1(0.34)
4 5.7(0.03) 5.8(0.03) 7.1(0.05) 9.1(0.08)
6 4.6(0.02) 4.1(0.02) 4.4(0.03) 5.2(0.04)
8 4.1(0.01) 3.5(0.01) 3.4(0.02) 3.8(0.02)

Cauchy5

b k = 0.1 k = 0.2 k = 0.3 k = 0.4
1 196.7(1.88) 206.7(2.03) 199.6(1.96) 193.8(1.95)
2 34.1(0.30) 56.5(0.54) 81.6(0.79) 97.2(0.95)
4 11.9(0.07) 18.2(0.15) 32.1(0.30) 48.8(0.48)
6 8.4(0.04) 11.2(0.08) 19.6(0.18) 33.2(0.32)
8 7.1(0.03) 8.3(0.05) 13.9(0.12) 25.2(0.24)

χ2
5,1

b k = 0.1 k = 0.2 k = 0.3 k = 0.4
1 186.2(1.80) 191.0(1.90) 201.9(1.99) 200.4(1.99)
2 18.3(0.15) 21.6(0.20) 24.7(0.24) 28.3(0.27)
4 7.5(0.05) 7.5(0.05) 7.5(0.06) 8.4(0.07)
6 5.8(0.03) 5.3(0.03) 5.0(0.04) 5.3(0.04)
8 5.0(0.02) 4.4(0.02) 4.0(0.02) 4.1(0.03)

Gamma5,1
b k = 0.1 k = 0.2 k = 0.3 k = 0.4
1 194.6(1.90) 199.0(1.96) 199.4(1.98) 201.8(2.02)
2 14.5(0.11) 16.2(0.14) 18.0(0.16) 21.0(0.20)
4 6.0(0.03) 5.6(0.03) 5.3(0.04) 5.9(0.05)
6 4.6(0.02) 4.1(0.02) 3.6(0.02) 3.8(0.03)
8 4.1(0.02) 3.5(0.01) 3.0(0.02) 3.1(0.02)
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anti-rank is more powerful in detecting this kind of change.

To investigate the performance of DD-CUSUM and AR-CUSUM under moderately

skewed distributions, we conduct a power comparison study under χ2
5,3, χ

2
5,5, Gamma5,3 and

Gamma5,5. The results are shown in Table 2.5. It is obvious from the table that DD-CUSUM

outperforms AR-CUSUM in all the cases. When the distribution becomes less skewed, the

power advantage of DD-CUSUM over AR-CUSUM becomes more significant.

The conclusion from the above simulation study is that unless you have a-priori

concern for extreme skewed distributions, we recommend the DD-CUSUM procedure. If

the potential for extreme skewed distributions exists, then we recommend running both the

DD-CUSUM and AR-CUSUM procedures in parallel.
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Table 2.4: Power comparison for scale increases in one component

Norm5

p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 198.8(1.93) 201.4(1.99) 200.3(2.00) 205.1(2.72) 200.9(2.39) 206.0(2.32)
2 41.0(0.38) 47.4(0.45) 48.2(0.46) 175.9(1.73) 185.6(1.84) 189.5(1.87)
4 14.3(0.11) 15.4(0.13) 14.5(0.13) 83.4(0.71) 97.3(0.90) 111.7(1.08)
6 9.9(0.07) 9.9(0.08) 8.7(0.07) 60.0(0.47) 69.8(0.60) 80.8(0.74)
8 8.1(0.05) 7.8(0.06) 6.8(0.05) 50.8(0.38) 57.0(0.47) 65.7(0.58)

t5,3
p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 190.5(1.86) 195.6(1.93) 196.7(1.95) 200.3(2.72) 199.5(2.42) 199.4(2.27)
2 74.2(0.73) 96.2(0.96) 111.9(1.12) 173.0(1.65) 186.1(1.87) 187.2(1.83)
4 29.6(0.26) 39.6(0.37) 50.8(0.50) 84.3(0.71) 97.4(0.89) 111.0(1.06)
6 18.7(0.15) 24.3(0.22) 30.3(0.29) 60.4(0.48) 69.3(0.61) 80.8(0.74)
8 14.3(0.11) 16.9(0.15) 21.0(0.19) 50.1(0.37) 57.0(0.47) 65.6(0.58)

Cauchy5

p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 194.0(1.85) 207.7(2.03) 195.3(1.94) 199.0(2.66) 198.6(2.38) 204.4(2.29)
2 121.5(1.20) 153.4(1.53) 157.6(1.60) 240.7(2.44) 222.3(2.24) 218.4(2.17)
4 72.0(0.70) 104.1(1.03) 121.1(1.20) 160.1(1.53) 171.7(1.66) 179.8(1.81)
6 51.7(0.49) 81.3(0.79) 98.4(0.98) 122.5(1.11) 138.2(1.33) 151.2(1.50)
8 41.2(0.38) 66.6(0.64) 87.2(0.87) 101.6(0.91) 117.7(1.09) 134.7(1.49)

χ2
5,1

p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 193.8(1.87) 199.6(1.97) 204.3(2.04) 202.1(2.24) 201.8(2.17) 203.1(2.06)
2 87.8(0.87) 101.3(1.01) 107.1(1.07) 30.9(0.19) 31.2(0.21) 32.3(0.24)
4 41.9(0.39) 47.6(0.46) 49.0(0.48) 20.9(0.11) 20.1(0.12) 19.5(0.12)
6 29.1(0.27) 32.1(0.30) 32.2(0.31) 19.0(0.10) 17.5(0.09) 16.9(0.10)
8 22.9(0.20) 25.2(0.23) 24.4(0.23) 17.7(0.09) 16.6(0.09) 15.7(0.09)

Gamma5,1
p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 188.0(1.81) 198.7(1.95) 190.2(1.87) 202.3(2.65) 201.7(2.35) 203.0(2.22)
2 69.8(0.68) 79.8(0.78) 80.7(0.81) 52.3(0.39) 61.7(0.51) 78.9(0.71)
4 27.0(0.24) 30.7(0.29) 30.3(0.28) 27.7(0.16) 29.9(0.20) 34.3(0.25)
6 17.3(0.14) 19.1(0.17) 17.7(0.16) 24.1(0.14) 24.6(0.15) 27.2(0.18)
8 13.4(0.10) 14.1(0.12) 13.2(0.11) 22.1(0.12) 22.1(0.13) 24.7(0.16)
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Table 2.5: Power comparison for scale increases in one component

χ2
5,3

p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 196.2(1.92) 200.5(1.96) 194.9(1.92) 201.6(2.52) 199.6(2.17) 201.7(2.13)
2 60.5(0.58) 67.1(0.65) 69.9(0.68) 75.6(0.62) 110.2(1.04) 175.0(1.71)
4 20.7(0.18) 22.3(0.21) 22.0(0.21) 35.9(0.23) 44.3(0.32) 66.1(0.55)
6 12.9(0.10) 13.5(0.11) 12.7(0.11) 28.5(0.17) 34.1(0.23) 47.2(0.35)
8 10.0(0.07) 9.8(0.08) 9.1(0.08) 26.0(0.15) 29.8(0.19) 39.7(0.28)

χ2
5,5

p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 203.6(1.96) 199.7(1.97) 198.7(1.97) 202.5(2.57) 200.2(2.17) 202.6(2.19)
2 48.2(0.46) 53.0(0.53) 55.7(0.53) 96.1(0.85) 129.5(1.24) 175.6(1.74)
4 14.0(0.11) 14.5(0.13) 13.9(0.13) 42.1(0.29) 52.8(0.42) 75.5(0.67)
6 8.8(0.06) 8.5(0.07) 7.9(0.07) 32.9(0.21) 38.5(0.28) 52.2(0.42)
8 6.9(0.04) 6.4(0.04) 5.7(0.04) 29.5(0.18) 33.0(0.23) 43.5(0.33)

Gamma5,3
p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 187.4(1.80) 194.9(1.93) 198.5(1.93) 197.4(2.66) 203.0(2.44) 201.3(2.23)
2 40.6(0.39) 47.1(0.45) 50.2(0.49) 104.8(0.94) 123.2(1.16) 134.2(1.32)
4 11.5(0.08) 11.9(0.10) 11.8(0.10) 44.7(0.31) 50.7(0.40) 56.7(0.48)
6 7.3(0.04) 7.2(0.05) 6.5(0.05) 34.9(0.23) 37.1(0.27) 41.8(0.33)
8 5.9(0.03) 5.4(0.03) 4.8(0.03) 30.7(0.19) 31.5(0.22) 34.9(0.26)

Gamma5,5
p = 5 DD-CUSUM AR-CUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.1 k = 0.2 k = 0.3
1 204.1(1.97) 202.9(1.99) 198.6(1.98) 200.4(2.69) 200.9(2.37) 196.9(2.21)
2 30.7(0.28) 34.0(0.32) 34.0(0.32) 130.2(1.20) 143.8(1.38) 156.3(1.53)
4 7.8(0.05) 7.7(0.06) 7.1(0.06) 53.9(0.39) 60.7(0.51) 69.7(0.62)
6 5.3(0.03) 4.7(0.03) 4.1(0.03) 40.6(0.27) 43.6(0.33) 50.4(0.43)
8 4.5(0.02) 3.9(0.02) 3.2(0.02) 35.6(0.22) 37.1(0.26) 41.6(0.33)
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Chapter 3

Nonparametric CUSUM Control

Chart for Autocorrelated Processes

3.1 Introduction

The development of modern sampling technology enables one to sample data at a

high frequency from a process. However, the more complex autocorrelation structure within

the high frequency observations creates challenge to the process monitoring procedure. One

example of this process is illustrated in Figure 3.1 (a), which demonstrates a portion of CPU

usage records of a network server that motivates this work. The full data consist of the CPU

usage of a network server from May 31st to November 21st in 2010, with measurements

recorded every 5 minutes. The data shown in Figure 3.1 (a) is the snapshot of the CPU

usage for one week. One can find the histogram of the data in Figure 3.1 (b) and the

Autocorrelation Function (ACF) in Figure 3.1 (c). From the Figure 3.1 (c), we can see that

37



there is a slowly decaying autocorrelation within the observations. In fact, many network

data demonstrate such correlation structure, and it is sometimes considered as Long-Range

Dependence (LRD) (Park et al. (2011)).

It has been shown that for the conventional control charts (such as the original

versions of Shewhart chart, Cumulative Sum (CUSUM) chart, and Exponentially Weighted

Moving Average (EWMA) chart), deviation from either the distributional assumption or

the iid assumption or both may result in either more frequent false alarms (e.g. failing

to control the in-control average run length (denoted by ARL0)) or weakened anomaly

detection power (e.g. enlarging the out-of-control average run length (denoted by ARL1))

(see Johnson and Bagshaw (1974) and Black et al. (2011) for example).

There have been many studies in developing SPC procedure for serially correlated

observations with the normality assumption. Most of them are the so called “residual-

based” methods, where a parametric model is assumed to describe the correlation structure

within the data, and the approximately uncorrelated residuals are extracted for use in a

control chart (see Harris and Ross (1991), Runger and Willemain (1995), and Cheng and

Thaga (2005) for details). The parametric models used could be Box and Jenkins time

series models (i.e. autoregressive (AR) models and autoregressive moving average (ARMA)

models) for stationary processes with a fast decaying auto-correlation. For the LRD cases, a

popular model is the fractional ARIMA model (details in Section 3.4). However, the model

assumption used in this approach is difficult to justify in the real application. Especially

for the LRD case where a fractional ARIMA model is utilized, the estimate of the frac-

tional differencing parameter d is based on the maximum likelihood (ML) method, where
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Figure 3.1: Real CPU Usage Data: (a) illustrates the CPU usage data, (b) demonstrates

the histogram of the data in (a), and (c) represents the autocorrelation function (ACF) of

the data in (a)
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a distributional assumption is required. A deviation from this assumption would result in

unreliable parameter estimates, which in turn affects the correlation structure of the esti-

mated residuals. Therefore, the ARL0 and ARL1 performance of the control charts could

be compromised ultimately. The control charts used are the variants of classic Shewhart

chart, CUSUM chart, or EWMA chart.

Another approach for handling correlation is to use a data transformation tech-

nique to diminish its magnitude. For instance, Runger and Willemain (1995) proposed the

weighted and unweighted Batch Means chart (referred to as WBM and UBM chart, respec-

tively). The WBM chart assumes some specific correlation structures in the data (e.g. first

order autoregressive (AR(1)) model) and transform the data accordingly to eliminate the

autocorrelation. In some applications, including network surveillance, it may not always

be possible to find such a transformation, especially where LRD is present. The UBM

chart does not make correlation structure assumption. However, its performance was only

evaluated with data from an AR(1) model. The performance and validity of UBM under

more complex correlation structure is unknown. Besides what has been discussed above,

both of these methods could only solve the problem where the correlation decays fairly fast.

For the situation where the correlation sustains for a longer period of time (i.e. LRD), it

would be difficult for these methods to transform the data and break up the autocorrelation

successfully.

To overcome the previously mentioned difficulties, we propose a wavelet-based

nonparametric CUSUM control chart in this chapter. Wavelet analysis has been applied to

a variety of fields in statistics, such as nonparametric regression, density estimation, and
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time series analysis. In the SPC field, studies concentrate on either using wavelet analysis

to denoise and pre-process the data before a SPC method is conducted, or relying on the

multi-scale properties of the wavelet based techniques to detect different types of changes

in the process (see Ganesan et al (2010) for a review). However, studies that apply wavelet

analysis in control charts for serially correlated process, especially one possessing LRD is

still rare in the literature. In this chapter, we propose a SPC procedure which utilizes

the approximate decorrelation property of wavelets that makes the procedure robust to

different autocorrelation structures. At the same time, the procedure incorporates the SS-

CUSUM control chart proposed in Chapter 2. It is therefore robust to the situations where

observations do not follow a normal distribution.

The rest of the chapter is organized as follows. Since wavelet analysis is the

key component of our procedure, we give a brief review in Section 3.2. Our proposed

methodology is detailed in Section 3.3. In Section 3.4.1 and 3.4.2, we report simulation

studies that compare the ARL0 and ARL1 performance between our propsed method and

the residual based method. Some practical issues are discussed in Section 3.4.3. Finally, in

Section 3.5, we will revisit the CPU usage example to demonstrate the real application of

our proposed procedure.

3.2 Wavelets

Assume we have a discrete signal y = (y1, y2, · · · , yN )′. For simplicity, we further

assume N = 2n. The wavelet tranformation of the signal involves passing the sequence

through two filters, known as low pass filter (denoted as h) and high pass filter (denoted as
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g), respectively. The number of nonzero elements in h and g is called the filter length. The

filters take the input sequence y and produce two series of coefficients via convolution prod-

uct h ∗y and g ∗y, where ∗ denotes the convolution product. The resulting series of coeffi-

cients are referred to as the first scale scaling coefficients (denoted as c1 = (c1,1, · · · , c1,N/2)′)

and the first scale wavelet coefficients (denoted as w1 = (w1,1, · · · , w1,N/2)
′), respectively.

Note that the scaling coefficients and the wavelet coefficients both are half the length of

the original sequence. The scaling coefficients can be considered as an approximation of the

original input sequence y, while the wavelet coefficients provide information about how far

the scaling coefficients are from the original series.

The wavelet transformation described above could be conducted iteratively in order

to decompose the signal to a specific scale j (j ≤ n). This can be achieved by sequentially

applying the low and high pass filters to the previous scale coefficients. This method is

known as the “Pyrimidal Algorithm”. More precisely, the vector of the coefficients at scale j

can be computed recursively as ci = h∗ci−1 and wi = g∗ci−1 with i = 1, 2, · · · , j and c0 =

y. The scaling coefficients at the jth scale are known as the scaling coefficients at the

coarsest scale. Together, all j scales of wavelet coefficients and the scaling coefficients at

the coarsest scale contain all the information in y.

There are many different wavelets in the literature. A simplest example is the

Haar wavelet proposed by Alfréd Haar in 1909. The low pass and high pass filters for Haar

wavelet are h = ( 1√
2

1√
2
) and g = ( 1√

2
− 1√

2
), respectively. Hence the Harr wavelet has a

filter length of 2. For a more complete list of wavelets and their corresponding filters, one

can consult Daubechies (1988).
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Wavelets have many nice properties which make them widely applicable to many

fields in statistics. The most appealing property for our application is the approximate

decorrelation property that yields wavelet coefficients approximately uncorrelated even if

the original data is serially correlated (Aradhye et al. (2003)). This phenomenon can be

explained by the fact that the wavelets are approximate eigenfunctions of many mathe-

matical operators (Beylkin et al. (1991)). Even for fractionally differenced series which

possess LRD, the correlation structure of wavelet coefficients within each scale can often

be modeled adequately by an autoregressive model of order 1 (AR(1)) (Craigmile and Per-

cival (2005)). In Figure 3.2, we show the ACF of Haar wavelet coefficients computed on

data illustrated in Figure 3.1. From the figures, we can see that the ACF of wavelet coef-

ficients no longer present LRD, and the correlation structure may be described adequately

by an AR(1) model. This empirical result as well as simulation results shown in Section

3.4 suggest we could model wavelet coefficients using an AR(1) model, and then extract the

approximately uncorrelated residuals for input into a suitable control charts.

However, using the uncorrelated residuals at each scale to build separate control

charts would result in a different comparison problem since the between-scale correlation

cannot be neglected. As a result, it would be difficult to control the overall ARL0. One

possible way to account for the between scale correlation and successfully control the overall

ARL0 is to put residuals from different scales into a multivariate vector and monitor the

process using a multivariate control chart. In this dissertation, we use the SS-CUSUM

control chart introduced in Chapter 2.
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Figure 3.2: ACF of Wavelet Coefficients: (a) - (c) represents the ACFs of wavelet coefficients

from data in Figure 3.1 (a) at scale 1, 2, and 3, respectively.
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3.3 Wavelet-Based SS-CUSUM Control Chart

In this section, we detail our wavelet-based nonparametric SS-CUSUM procedure

for processes with serially correlated observations. Assume that we have a reference sam-

ple (y1, · · · , yN ). For simplicity, we assume N = 2n throughout. Further denote the

new observations by (x1, x2, · · · ), which comes from the same mechanism as the refer-

ence sample if there is no change in the process. Suppose that our analysis requires a

l-scale (l < n) wavelet decomposition (details of determining the decomposition scale is

given in Section 3.4.3). Then from the discussion in Section 3.2, every 2l observations

would produce 2l−1 first scale wavelet coefficients, 2l−2 second scale wavelet coefficients,

etc. and one l scale scaling coefficient. For instance, reference observations (y1, · · · , y2l)

could produce (w1,1, · · · , w1,2l−1 , w2,1, · · · , w2,2l−2 , · · · , wl,1, cl,1). These 2l coefficients con-

tain all the information in the 2l observations. Therefore, we put every 2l reference

observations into one batch, so that the reference sample is grouped into 2n−l batches.

From each batch, there are 2l−i ith scale wavelet coefficients, i = 1, · · · , l and one scal-

ing coefficient produced in the wavelet decomposition. If we group the wavelet coefficients

at the same scale across all the 2n−l batches, for the ith scale wavelet coefficients, we

have (wi,1, · · · , wi,2l−i , wi,2l−i+1, · · · , wi,2l−i+1 , · · · , wi,2n−i−2l−i+1, · · · , wi,2n−i), i = 1, · · · , l,

and for the coarest level scaling coefficients we have (cl,1, · · · , c2n−l).

Within each scale of wavelet coefficients, due to Craigmile et al. (2005), an AR(1)

model is sufficient to account for the within-scale auto-correlation of the wavelet coefficients.

Hence, we fit l separate AR(1) models for each of the l scales of the wavelet coefficients.

For instance, at scale i, i = 1, · · · , l, the AR(1) model can be written as

45



wi,t − µwi = αi(wi,t−1 − µwi) + εi,t, t = 1, · · · , 2n−i

where the µwi is the mean of wi,t and the εi,t are iid random variables with mean 0 and

standard deviation σεi . The estimate of the autoregressive coefficient αi (denoted by α̂i)

and µwi (denoted by µ̂wi) can be obtained by Least Square (LS) method. The estimated

residuals can be found by

êi,t = wi,t − ŵi,t, t = 1, · · · , 2n−i (3.1)

where ŵi,t = α̂i(wi,t−1 − µ̂wi) is the predicted value of wi,t. The residuals for the ith scale

are recorded as êi = (êi,1, · · · , êi,2n−i)′.

For the coarsest level scaling coefficients denoted as cl = (cl,1, · · · , cl,2n−l)′, since

they can be considered as an approximation of the original data, the correlation structure

within the coefficients depends on the original data. Based on our observation, the scaling

coefficients are non-stationary in our real data. Therefore, we propose to use the following

autoregressive integrated moving average model with p = 1, d = 1, q = 1 (ARIMA(1, 1, 1))

to account for its auto-correlation structure. If we denote the one-step differencing series

by Dt = cl,t − cl,t−1, the ARIMA(1, 1, 1) model can be written as

Dt = βDt−1 + εc,t + γεc,t−1

where β is the autoregressive coefficient and γ is the moving average coefficient. The εc,t

are iid random variables with mean 0 and standard deviation σεc . The estimates of β and
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γ (denoted as β̂ and γ̂, respectively) can be obtained similarly using the LS method. Then

the estimated residuals can be calculated as

êc,t = Dt − D̂t (3.2)

where D̂t = β̂Dt−1 + γ̂êc,t−1 is the predicted value of Dt. The residuals are then recorded

as êc = (êc,1, · · · , êc,2n−j ).

Once we obtain the residuals êi, (i = 1, · · · , l), and êc, we group all the resid-

uals from the same batch of original data into the same vector. For instance, residuals

(ê1,2l−1(m−1)+1, · · · , ê1,2l−1m, ê2,2l−2(m−1)+1, · · · , ê2,2l−2m, · · · , êi,2l−i(m−1)+1, · · · , êi,2l−im, · · · ,

êl,m, êc,m) are all originated from the mth batch of observations (y2l(m−1)+1, · · · , y2lm),m =

1, · · · , 2n−l. Therefore, we put these 2l residuals into a vector to represent the information

contained in (y2l(m−1)+1, · · · , y2lm). We denote Ym = (ê1,2l−1(m−1)+1, · · · , ê1,2l−1m, · · · , êl,m,

êc,m),m = 1, · · · , 2n−l. Then (Y1, · · · ,Y2n−l) can be considered as the reference sample in

our procedure. Since, after the wavelet transformation and time series model fitting, the

residuals in the vectors are approximately decorrelated, (Y1, · · · ,Y2n−l) can be considered

uncorrelated, and the SS-CUSUM procedure can be applied. The solutions (θ̂2n−l , Â2n−l)

can be found based on equations (2.2) and (2.3).

For the new observations, we need to wait until there are 2l observations before

we can apply the same wavelet decomposition as we did for the reference data. For every 2l

new observations collected, we apply (3.1) and (3.2) to each corresponding scale of wavelet

and scaling coefficients to find the residuals. The 2l residuals are put into an 2l-dimensional

vector similarly as for the reference sample and we denote it as X. Then the transformation
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defined in (2.1) is applied to X, and the resulting X∗ is used in the SS-CUSUM procedure

described in Section 2.3. If there is a mean shift in the new observations, this change can

be reflected in all scales of wavelet and scaling coefficients. The means of the estimated

residuals for each scale would change, which can be detected by the SS-CUSUM control

chart. Note that all the 2l wavelet and scaling coefficients are important in our procedure.

The wavelet coefficients are sensitive to the abrupt mean change in the process, while the

scaling coefficients are better in detecting persistent change (Aradhye et al. (2003)). In our

application where the mean shift is persistent, the scaling coefficients contribute more in

the final detection. However, the wavelet coefficients would pick up the change immediately

after its happenning, so that the test statistic could be raised toward the control limit, and

as a result, the detection time could be shortened.

When modeling the correlation structures of the wavelet coefficients, we use the

AR(1) models due to the recommendation from Craigmile et al. (2005). We also use

ARIMA(1, 1, 1) model to model the scaling coefficients due to their non-stationary charac-

teristics. One could use other more sophisticated models such as AR(p) (p > 1), ARMA(p, q),

or ARIMA(p, d, q) models to account for the correlation structures. Our choice of using fixed

order AR and ARIMA models here could help make our procedure easier to automate and

more convenient to use for practioners. Our simulation studies in Section 3.4 show that this

choice of models works appropriately under a variety of settings.

One drawback of our procedure is that there is a delay of 2l in our detection due

to the grouping of the new observations. Therefore, the choice of l is important for the

detection power of our scheme. In order to reduce the delay, we should choose a smaller
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l. However, the larger the l is, the better the decorrelation power. Therefore, one should

choose an l that balances the time delay and the decorrelation power. Generally speaking,

when the correlation is known a priori to be decaying faster, one should choose a smaller l,

while when the correlation is known to be decaying very slowly, one should choose a larger l

accordingly. A method to choose l based on multivariate run test proposed by Paindaveine

(2009) will be discussed in Section 3.4.3.

Another problem worth discussing is the choice of wavelet filter. According to

Craigmile et al. (2005), longer wavelet filters will asymptotically decorrelate the between-

scale wavelet coefficients. However, the increase in wavelet filter length would lead to

an increase in the covariance in the within-scale wavelet coefficients. Since our goal is

to decorrelate the within-scale wavelet coefficients, and the correlation of between-scale

coefficients can be accounted for by the multivariate control chart, we should choose a

shorter wavelet filter. Therefore, in this chapter, we choose to use Haar wavelet, which has

the shortest filter length.

3.4 Simulation Studies

In this section, we report simulation studies to evaluate our proposed method, and

compare it to the method which uses nonparametric control charts based on residuals from

fractional ARIMA models. Fractional ARIMA models are proposed by Granger and Joyeus

(1980) and Hosking (1981) to model the LRD time series. Before we detail the simulation

studies, we first briefly review the fractional ARIMA model.

For a time series {yt}mt=1, we denote B as the backshift operator where Bjyt = yt−j ,
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and define polynomials

φ(x) = 1−
p∑
j=1

φjx
j

and

ψ(x) = 1−
q∑
j=1

ψjx
j .

We can write the commonly used ARIMA(p, d, q) model as

φ(B)(1−B)dyt = ψ(B)εt (3.3)

where d can only take integer vlaues, and εt is Gaussion noise. The process can

be transformed into an ARMA(p, q) process if we difference yt d times. However, (3.3) can

also be generalized natually by allowing d to take any real values. To achieve this, first note

that (1−B)d can be written as

(1−B)d =
d∑

k=0

(
d

k

)
(−1)kBk

with the binomial coefficients

(
d

k

)
=

d!

k!(d− k)!
=

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)

where Γ(·) denotes the gamma function. Since gamma function is also defined for all real

numbers, we can formally define (1−B)d for any real number d by

(1−B)d =

∞∑
k=0

(
d

k

)
(−1)kBk =

∞∑
k=0

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
(−1)kBk (3.4)

By doing so, the commonly used ARIMA(p, d, q) model in (3.3) is generalized to

a fractional ARIMA model using (3.4). In the LRD context, the most interesting range for

d is 0 ≤ d < 1
2 , since the process is stationary when d is within this range (Beran (1994)).
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The parameter estimates of the fractional ARIMA models can be obtained using

normal maximum likelihood (ML) methods described in Haslett and Raftery (1989). An

automatic ML based parameter estimate procedure can be found in Hyndman and Khan-

dakar (2008), which we use to get the parameter estimates in our simulation studies. The

algorithm first assumes a fractional ARIMA (2,d,0) model, and uses normal MLE method

to find d, which is used to difference the time series. An ARMA (p, q) model is then selected

using the differenced time series. Then finally the full model is re-estimated using MLE

method with the value of (p, q) from last step.

After the parameter estimates of the fractional ARIMA model are found, the

estimated residuals can be obtained by subtracting the predicted value ŷt from the observed

value yt. The predicted value ŷt is calculated using method described in Peiris and Perera

(1987).

As discussed in Section 3.1, a SPC procedure can be formulated by charting the

approximately uncorrelated residuals from the fractional ARIMA model. The control charts

we use in our simulation studies are distribution-free charts. There are two schemes we use.

The first one is proposed by Willemain and Runger (1996) (referred to as “Runger Chart”

throughout). It is a Shewhart-type chart based on the empirical distribution estimated

from the reference sample. This method basically uses the empirical order statistics as the

control limits. If ARL0 is set to be a, then the control limits are (Y( m
2a

), Y(m−m
2a

)), where

Y(i) denotes the ith order statistic for reference sample {Yt}mt=1.

The second procedure is the modification of the DD-CUSUM chart we proposed in

Chapter 2 (referred to as “Rank CUSUM Chart” throughout). This procedure was proposed
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originally as a multivariate control chart based on data depth, the multivariate version of

rank. We modify the procedure by using the univariate rank directly. The procedure can

be summarized as follows.

If we have a reference sample (Y1, · · · , Ym) and we define the R statistic of a new

observation Xn as Rn = number of Yi<Xn
m+1 , then the Rn asymptotically follows a uniform

distribution on (0, 1) as m → ∞, when Xn is from the same distribution as the reference

sample (see McDonald (1990)). Then the Rank CUSUM procedure can be defined as

S+
n = max(0, S+

n−1 − (0.5−Rn)− k)

S−n = min(0, S−n−1 − (0.5−Rn) + k)

where S±0 = 0 and k > 0. The procedure triggers an alarm when S+
n > h or S−n < −h,

where h is the control limit predetermined based on the choice of k and the desired ARL0.

One can use the bisection search algorithm discussed in Section 2.5 to obtain h.

3.4.1 ARL0 Performance Evaluation

In this section, we evaluate the ARL0 performance of our proposed method and

compare it with the Runger chart and Rank CUSUM chart utilizing the estimated residuals

from fractional ARIMA models. We also consider a situation where data is generated by a

generalized linear mixed model.

We first consider fractional ARIMA(1, d, 1) and fractional ARIMA(3, d, 2) mod-

els. We choose d = 0.2 and 0.3. For p = 1, q = 1, we choose φ1 = 0.5 and ψ1 = 0.3.

For p = 3, q = 2, we set (φ1, φ2, φ3) = (0.5, 0.3, 0.1) and (ψ1, ψ2) = (0.4, 0.2). There are

two distributions we used as the innovations to generate the time series. One is the stan-

52



dard normal distribution. The second one is a centered poisson distribution. The latter

innovations are obtained by subtracting the mean and dividing the standard deviation of a

random sample generated from a poisson distribution with mean 3. The reference sample

size is chosen to be m = 32000. A discussion on the choice of reference sample size can be

found in Section 3.4.3

To evaluate the ARL0 performance, we generate 10000 sample paths for the test

data using the same settings as the reference sample. For each sample path, a run length

is recorded. Then the conditional ARL0 is calculated by averaging the 10000 run lengths.

This process is repeated for 100 times to give an approximate distribution of the conditional

ARL0. The desired ARL0 is set to be 1000.

We apply the procedure described in Section 3.3 with l = 4 and l = 5 for d = 0.2

and l = 5 and l = 6 for d = 0.3. These choices of decomposition scales are discussed in

Section 3.4.3. The k parameter for SS-CUSUM in our proposed procedure is chosen to be

0.2 or 0.3, as recommended by Li et al. (2013) to achieve robustness under different distri-

butions. We also apply the Runger chart and Rank CUSUM chart as discussed previously.

The k parameter for the Rank CUSUM chart is chosen to be 0.2. The results for fractional

ARIMA (1, 0.2, 1) with standard normal innovations is displayed in Figure 3.3 (a). In the

figure, we can see six boxplots representing the approximate distributions of conditional

ARL0 using different procedures.

From the figure we can see that our proposed wavelet-based method has a better

control with most of the ARL0 within 20% of the nominal level. The ARL0 from the

Runger chart and Rank CUSUM chart are around the nominal level, but the variation is
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much larger than our proposed method. In fact, both of these two methods require more

reference sample to achieve a similar ARL0 control as our method. The decomposition scale

also affect the ARL0 control of our proposed method. A higher scale will result in a better

control, due to the fact that higher scale of wavelet decomposition has a better decorrelation

power. However, a lower scale of decomposition will have reduced detection time. Therefore,

practitioners could choose the decomposition scale based on their priorities.

The result for the situation where data are generated from a fractional ARIMA

(3, 0.2, 2) model with standard normal innovation is collected in Figure 3.3 (b). From the

figure we can see significantly more variability in the conditional distribution of ARL0 for

the Runger chart and Rank CUSUM chart. This may be due to the fact that the reference

sample is not large enough to fit the model well. As a result, the fitted fractional ARIMA

models can be very different from the fractional ARIMA models that simulate the data.

The misspecification of the fractional ARIMA model would result in a significant correlation

presented in the estimated residuals, and ultimately affect the ARL0 performance. On the

opposite, our proposed procedure still appropriately controls the ARL0 at the desired level.

Certainly, the performance of control charts based on residual estimates from fractional

ARIMA model fitting could be improved if a model close to the real model is used. However,

it would be difficult to obtain the correct model. In real applications, the true model is

seldomly known.

Figures 3.3 (c) and (d) present the results for fractional ARIMA (1, 0.2, 1) and

(3, 0.2, 2) models with centered poisson innovations. The methods based on estimated

residuals from fractional ARIMA models generally fail to control the ARL0. This is due to
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Figure 3.3: ARL0 Performance for Data Generated from Fractional ARIMA (p,0.2,q) Mod-

els: (a) Normal innovation, p = 1, q = 1, (b) Normal innovation, p = 3, q = 2, (c) Poission

innovation, p = 1, q = 1, and (d) Poisson innovation, p = 3, q = 2. The six boxplots, from

left to right, represent the proposed method with l = 4 and k = 0.2, with l = 4 and k = 0.3,

with l = 5 and k = 0.2, with l = 5 and k = 0.3, Runger chart, and Rank CUSUM chart,

respectively.
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Figure 3.4: ARL0 Performance for Data Generated from Fractional ARIMA (p,0.3,q) Mod-

els:(a) Normal innovation, p = 1, q = 1, (b) Normal innovation, p = 3, q = 2, (c) Poission

innovation, p = 1, q = 1, and (d) Poisson innovation, p = 3, q = 2. The six boxplots, from

left to right, represent the proposed method with l=5 and k=0.2, with l=5 and k=0.3, with

l=6 and k=0.2, with l=6 and k=0.3, Runger chart, and Rank CUSUM chart, respectively.
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the fact that the parameter estimates of the fractional ARIMA models are based on the ML

methods, which requires normality assumption. The deviation from normality affects the

parameter estimates, especially the estimate in the differencing parameter d. Therefore, the

estimated residuals are not approximately uncorrelated. On the other hand, our proposed

method still controls the ARL0 at the nominal level, with almost all the ARL0 within 20%

of the desired level.

Results for the cases described above but with d = 0.3 are displayed in Figure 3.4.

We can see they are very similar to what we observed in fractional ARIMA (p, 0.2, q) case.

Another data generating scheme is considered in our simulation studies to mimic

the data we observed in our real example illustrated in Figure 3.1 (a). We first assume

the data in each week are independent and have the same pattern with fixed hourly means

which can be estimated from the real data. There are 168 hours per week, so we denote

the hourly means by {µt}168t=1. Then correlated random effects δ = (δ1, · · · , δ168)′ following

a multivariate normal distribution with mean 0 and variance Σ are added to µt. The

correlation between δi and δj is ρj−i for all j > i, i = 1, · · · , 167. We choose ρ = 0.5 or

0.9. For each hour there are 12 observations. Hence, there are 2016 observations in a week.

If we denote these observations by {Yk}2016k=1 , and for k = 12(t− 1) + 1, · · · , 12(t− 1) + 12,

t = 1, · · · , 168 we set

E(Yk|δt) = µt + δt, (3.5)

then we can generate data Yk from a normal distribution with mean defined in (3.5) and

standard deviation 1, or a poisson distribution with mean defined in (3.5). This data

generating scheme coincides with the (Generalized) Linear Mixed Model ((G)LMM). We
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can repeat the previous process to generate observations for multiple weeks.

To demonstrate the goodness-of-fit of the model to the real data, we simulated

1000 weeks of data using the above data generating scheme with Poisson distribution and

ρ = 0.9. One can see Figure 3.5 for the comparison between the simulated data and one

week of the true data. From the figure, we can see that the true data is well contained

within our simulated data. There are only a few outliers. We also examined other weeks

of true data, and found similar results. Hence, we could conclude that our data generating

scheme could describe the real data well.

We generate 16 weeks of data using this scheme as the reference samples, so that

the effective reference sample depth is approximately 32000. Similarly as the previous cases,

for each reference sample generated, we use 10000 test samples to evaluate the conditional

ARL0. This process is repeated 100 times to obtain the approximate distribution of the

conditional ARL0. We apply our proposed methods, Runger chart, and Rank CUSUM

chart. The residuals for Runger chart and Rank CUSUM charts are obtained by fitting

fractional ARIMA models estimated from the data. The results are shown in Figure 3.6.

From the figures, we can see that our proposed method is controlling the ARL0 properly.

The Runger chart and Rank CUSUM chart fail to control the ARL0. The Rank CUSUM

chart has a much smaller ARL0 than the desired one. The Runger chart has a well controlled

median ARL0. However, the large variation in the conditional ARL0 distribution makes

its practical usefulness questionable. The reason for both of the residual-based methods

failing to control the ARL0 may be due to the fact that the fractional ARIMA model could

not decorrelate the data thoroughly, since the data generating scheme is different from the
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Figure 3.5: Goodness-of-fit of the GLMM Model to the Real Data

fractional ARIMA model, which would result in a model misspecification.

3.4.2 ARL1 Performance Evaluation

From Section 3.4.1, we can see that both Runger chart and Rank CUSUM chart

using estimated residuals from fractional ARIMA model generally do not control the ARL0

well. On the other hand, our proposed method is working properly under all simulation

settings. In this section, we will compare the ARL1 performance of these three control

charts. Note that we only include the ARL1 performance for each control chart when it has

appropriate ARL0 control.

We simulate data using the same two schemes as in Section 3.4.1. For test data,

we use a step change in the mean. That is, we add a change δ to the test data. The

magnitude of δ is (0.6, 1.2, 1.8, 2.4, 3). We also assume that the change will persist until

the alarm is triggered. We still use 10000 sample paths to find the ARL at each value of
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Figure 3.6: ARL0 Performance for Data Generated from GLMM Model: (a) Normal ρ = 0.9,

(b) Normal ρ = 0.5, (c) Poisson ρ = 0.9, and (d) Possion ρ = 0.5. The six boxplots are in

the same order as in Figure 3.3
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δ. Then the process is repeated 100 times, and an average of the ARL estimates is taken

which represents the unconditional ARL at each value of δ.

The results for data simulated from fractional ARIMA model with d = 0.2 are

shown in Table 3.1. From the table we can see that for the data simulated with normal

innovations, the Rank CUSUM has the best detection power among all the three methods,

with a slight advantage over our proposed method. Both of these two methods outperform

the Runger chart by a significant margin. However, if we take the ARL0 control into

consideration, with a much smaller variation in the conditional ARL0 distribution, our

proposed scheme should still be the method of choice. When it comes to the poisson

innovation scenario, the two residual based methods totally fail to control the ARL0. Hence

there is no fair ARL1 comparison between the three methods. However, we can see that

our proposed method has a decent performance in the sense that, as δ increases, the ARL1

quickly decreases. The results for data simulated from fractional ARIMA model with d = 0.3

are similar to what we saw above, and are collected in Table 3.2. The Rank CUSUM chart

could not control the ARL0 well, so we exclude their ARL1 performance in the comparison.

From the results, we can see that our proposed method dominates its competitor in the

ARL1 performance. The results for data simulated from GLMM model are shown in Table

3.3. From the table we can see that our proposed method has a superior ARL1 performance

than its competitors when the ARL0 is properly controlled, especially if we choose a smaller

decomposition level. Therefore, from the simulation results shown above, our method not

only controls ARL0 better, but also has a similar, if not better, detection power than its

competitors under most of the simulation settings.
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3.4.3 Implementation Issues

In this section, we discuss some implementation issues in our proposed method.

The first problem is how to choose the scale of wavelet decomposition. We use a method

based on a multivariate run test proposed by Paindaveine (2009). The method is detailed

as follows.

We use the procedure described in Section 3.3 to obtain the residual vectors Yk

from the reference sample (y1, · · · , yN ) at scale l. Then the multivariate run test is applied

to the sample {Yk}2
n−l

k=1 to determine if there is correlation between these vectors. The

run test is conducted using every r multivariate observations, r = 1, 2, · · · q, q ≤ 2n−1,

respectively, and we denote the test statistic by Qr, which is given as follows:

Qr = p2
1

n′ − 1

n′∑
s,t=2

U′sUtU
′
s−1Ut−1 (3.6)

where p is the dimension of the vector, n′ is the number of the vectors, and Uk is the

spatial sign of Y∗k discussed in Section 2.2.3. If Qr > χ2
p2,1−α, then there is correlation

between the multivariate observations at lag r at significance level α. Therefore, Qr can

be seen as the multivariate counterpart of ACF of the univariate time series at lag r. A

plot of Qr versus the lag r can be used to determine if there is autocorrelation between the

multivariate observations. We repeat this process for any scale l = 2, 3, · · · . Then the scale

of decomposition is chosen to be the smallest scale where its test statistics at all lags are

insignificant (or near insignificant). Figure 3.7 is an example. The data are generated from

the same fractional ARIMA (1, 0.2, 1) model described in Section 3.4.1. The significance

level for the run test is set to be α = 0.05. From the figures, we can see that at scale 4,
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the statistics at all lags are almost insignificant. This result actually validates our choice of

decomposition scale in our simulation study.

Another issue we discuss in this section is the reference sample size for our method

to performe appropriately, especially for the ARL0 to be controlled at the desired level.

A simulation study is conducted to investigate the effect of reference sample size on the

ARL0 control. We use the fractional ARIMA(1, 0.2, 1) model described in Section 3.4.1

with standard normal innovations as an example. The reference sample sizes are set to be

n = 16000, 32000 and 64000. The nominal ARL0 is set to be 1000 as before. Then we apply

our proposed method as well as the two competitors to evaluate the ARL0 performance

at each reference sample size as described previously. The results are shown in Figure

3.8. It can be seen that the ARL0 performance for all the methods gets better as the

reference sample size increases. For our proposed method, this is due to the fact that the

SSCUSUM control chart involved in our procedure is asympototically distribution free. A

larger sample size is essential for the control chart to maintain a desired level of ARL0. For

the two residual-based methods, the larger sample size would help in the fractional ARIMA

model fitting, which would lead to approximately uncorrelated residuals.

At the same time, we also discover the phenomenon that the ARL0 control of

our proposed procedure is affected by the value of the target ARL0. For a smaller target

ARL0, a smaller sample size is required to achieve appropriate control, while a larger target

ARL0 is in need for a larger reference sample size. The reason is that our procedure only

approximately decorrelate the signal. Therefore, after the wavelet transformation and time

series model fitting, there might still be correlation remaining in the multivariate vectors.
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Figure 3.7: Multivariate Run Test for Decomposition Scale Determination.
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For smaller target ARL0, the impact of remaining correlation is not significant, whereas the

correlation may accumulate and affect the ARL significantly for a longer series of data (i.e.

larger target ARL0). Therefore, if the desired ARL0 is larger, the practitioners will need a

larger reference sample. Our experiments with ARL0 = 1000 suggest reference sample sizes

on the order of 30000 to 50000 is needed.

The third issue we discuss is the missing value treatment. It is very common for

the real data to contain a substantial portion of missing values. The missing values in the

reference sample could be addressed by using the existing information in the sample. Some

commonly used techniques are mean imputation, or imputation based on some parametric

models. As long as the practitioners consider the assumption for the imputation justifiable,

any imputation method could be applied. For the test sample, where the mean could

potentially shift, one could not use the information from reference sample for the imputation

purpose. We assume that for the network data, the means for consecutive observations

are similar. Hence, we could substitute the missing values with the average of their non-

missing neighbors, if there are not many consecutive missing values. If there is a block of

observations missing (for instance 4 or more consecutive values are missing), then we would

suspend our monitoring process until we have sufficient observations to resume. Before we

could resume the monitoring process, it is necessary that we have a burn-in period that

allows us to find reliable residual estimates from the ARIMA(1, 1, 1) model for the scaling

coefficients. A longer burn-in period may result in better residual estimates, while on the

other hand, delay the out of control detection.
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Figure 3.8: Sample Size Comparison for: (a) Wavelet SSCUSUM Chart with l=4, (b)

Wavelet SSCUSUM Chart with l=5, (c) Runger Chart, and (d) Rank CUSUM Chart
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3.5 Real Data Example

In this section, we use the data illustrated in Figure 3.1 (a) to demonstrate the

implementation of our proposed method, and compare it with the Runger and Rank CUSUM

charts that utilize the estimated residuals from fractional ARIMA models. The data consist

of the CPU usage of a network server from May 31st to November 21st in 2010, with

measurements recorded every 5 minutes. During October 11th to November 7th, there are

four weeks of data missing. Therefore, in total, there are 21 weeks of data available. We

take the data from the first 18 consecutive weeks (May 31st to Oct 3rd) as the reference

sample to calibrate our procedure as described in Section 3.3. The last three weeks (week

starting from Oct 4th to Oct 10th and two consecutive weeks starting from Nov 8th to Nov

21st) are treated as the test sample. From Figure 3.1 (b) and (c), we can see that the data

deviate from normality, and there is LRD presented within the observations. Therefore, our

proposed wavelet-based SS-CUSUM control chart is appropriate to monitor the process. We

also include Runger chart and Rank CUSUM chart for performance comparison.

Before we could use the proposed method to monitor the process, the massive

number of missing values is treated as follows. For the reference sample, we assume the

observations within the same hour during the week share the same mean, we could substitute

the missing values with the corresponding hourly means. And for the test sample, we use

the method discussed in Section 3.4.3. For this real application, during the three monitoring

weeks, the first week has 1 missing value, and the third week has 4 non-consecutive missing

values. Hence we just use the averages of the neighboring values to impute the missing values

in those two weeks. However, between the first and second week in our test sample, there
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are four weeks of data missing. And even for the second week itself, we have 96 consecutive

missing values at the beginning of the week. Therefore, we suspend our monitoring process

during this time, and use the observations from the rest of the second week as our burn-in

period. We use this long burn-in period just for more accurate residual estimates. Our

monitoring process resumes at the beginning of the third week for the test sample.

We use an ARL0 = 1000 for the three control charts, which is equivalent to ap-

proximately 2 false alarms per week. We use the method described in Section 3.4.3 to

determine the decomposition scale. The result is shown in Figure 3.9. From the figure, a

5-scale wavelet decomposition should be appropriate. For the SS-CUSUM scheme in our

proposed method, we pick k = 0.2 in order to achieve robustness to non-normal distribution.

The control chart is shown in Figure 3.10. From the figure, we can see that our proposed

method has three alarms, the Runger Chart has two alarms, and the Rank CUSUM chart

has numerous alarms. After checking the general trend, mean and spread of both the ref-

erence sample and the test sample, we could not see any anomaly presented in the test

data. Therefore, our proposed method and the Runger chart has appropriate control on

ARL0. The Rank CUSUM chart, on the other hand has too many false alarms. This result

is consistent with our simulation result, where Rank CUSUM chart tends to have more

frequent false alarms than the other two methods.

To demonstrate the anomaly detection power of our method, we add a persistent

location shift of δ = 15 to the second week of the test sample. This choice of value for δ is

due to the fact that the overall standard deviation of the data is 10. The control chart are

reconstructed based on the new data, and shown in Figure 3.11. Since Rank CUSUM chart
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Figure 3.9: Multivariate Run Test for Decomposition Scale Determination on Real Data.
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fails in the ARL0 control, we do not include it in this power comparison. For the remaining

two control charts, we terminate the monitoring process as soon as an alarm is triggered in

the second week. We can see from the figure that the location shift was picked up by our

control chart after 129 observations in the second week, compared to the original control

chart, which has a false alarm at 1505 observation. This shows that our procedure could

identify the abnormal activity in the network data within a short time. On the other hand,

the Runger Chart has no power in detecting this location shift.
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Figure 3.10: Real CPU Usage Monitoring with (a) Wavelet-Based SS-CUSUM control chart,

(b) Runger Control Chart, and (c) Rank CUSUM Control Chart.
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Figure 3.11: Real CPU Usage Monitoring with location shift δ, with (a) Wavelet-Based

SS-CUSUM control chart and (b) Runger Control Chart
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Table 3.1: ARL1 Comparison for Fractional ARIMA (d=0.2)

Fractional ARIMA (1, 0.2, 1) with Normal Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 577.54 237.46 135.97 106.18 92.40

Wavelet l=4, k=0.3 594.40 226.45 113.43 86.21 74.62

Wavelet l=5, k=0.2 658.81 355.31 232.02 184.47 162.51

Wavelet l=5, k=0.3 645.68 314.53 190.16 149.11 132.29

Runger 996.01 947.94 848.94 692.65 495.00

Rank CUSUM 668.81 466.83 251.57 112.63 37.16

Fractional ARIMA (3, 0.2, 2) with Normal Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 923.18 757.52 568.57 410.96 298.89

Wavelet l=4, k=0.3 948.19 797.54 609.86 437.32 306.00

Wavelet l=5, k=0.2 876.77 747.74 600.79 472.50 377.13

Wavelet l=5, k=0.3 874.60 743.47 587.84 446.87 341.10

Runger 876.38 829.11 752.61 651.93 535.51

Rank CUSUM 609.25 494.92 375.69 306.37 236.72

Fractional ARIMA (1, 0.2, 1) with Poisson Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 593.45 235.65 133.40 104.41 91.16

Wavelet l=4, k=0.3 608.92 223.96 110.29 84.52 73.43

Wavelet l=5, k=0.2 654.63 347.14 227.15 181.56 161.05

Wavelet l=5, k=0.3 640.57 304.70 185.09 146.46 130.89

Fractional ARIMA (3, 0.2, 2) with Poisson Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 932.28 776.00 586.71 421.24 302.59

Wavelet l=4, k=0.3 951.55 812.16 625.84 447.78 309.67

Wavelet l=5, k=0.2 882.57 762.30 619.38 491.40 392.77

Wavelet l=5, k=0.3 878.52 756.93 606.65 466.80 358.04
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Table 3.2: ARL1 Comparison for Fractional ARIMA (d=0.3)

Fractional ARIMA (1, 0.3, 1) with Normal Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=5, k=0.2 822.73 647.71 464.09 331.49 252.66

Wavelet l=5, k=0.3 815.16 630.57 432.38 289.81 209.45

Wavelet l=6, k=0.2 859.00 736.29 601.88 492.18 413.69

Wavelet l=6, k=0.3 840.37 701.29 550.89 433.44 353.47

Runger 908.31 858.30 772.00 648.47 499.26

Fractional ARIMA (3, 0.3, 2) with Normal Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=5, k=0.2 927.50 899.11 851.17 789.20 718.94

Wavelet l=5, k=0.3 934.31 905.93 857.86 794.62 720.79

Wavelet l=6, k=0.2 912.41 894.13 862.05 819.11 768.97

Wavelet l=6, k=0.3 885.51 865.51 829.87 782.15 726.39

Fractional ARIMA (1, 0.3, 1) with Poisson Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=5, k=0.2 851.85 673.82 473.40 329.89 250.34

Wavelet l=5, k=0.3 844.12 658.90 442.47 286.39 205.50

Wavelet l=6, k=0.2 870.95 742.81 601.61 487.81 408.11

Wavelet l=6, k=0.3 839.57 697.38 540.81 420.50 342.01

Fractional ARIMA (3, 0.3, 2) with Poisson Innovation

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=5, k=0.2 921.69 894.23 847.83 787.68 718.86

Wavelet l=5, k=0.3 929.18 901.66 854.50 792.21 719.86

Wavelet l=6, k=0.2 904.04 880.18 843.60 797.15 745.55

Wavelet l=6, k=0.3 876.88 850.57 810.18 759.16 701.36
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Table 3.3: ARL1 Comparison for GLMM

Normal with ρ = 0.9

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 915.47 780.12 619.93 476.16 364.79

Wavelet l=4, k=0.3 931.20 811.65 659.32 509.00 382.21

Wavelet l=5, k=0.2 965.86 899.93 820.14 746.38 686.24

Wavelet l=5, k=0.3 971.10 907.93 826.20 746.53 679.39

Runger 922.39 874.99 790.91 677.05 544.25

Normal with ρ = 0.5

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 770.66 445.77 263.60 182.99 144.73

Wavelet l=4, k=0.3 801.77 470.99 257.34 161.99 121.64

Wavelet l=5, k=0.2 767.34 502.91 345.88 265.06 220.49

Wavelet l=5, k=0.3 766.31 478.39 304.45 222.37 181.43

Runger 956.95 921.20 857.73 767.37 653.97

Poisson with ρ = 0.9

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 886.43 713.60 490.34 297.35 178.23

Wavelet l=4, k=0.3 849.65 672.37 442.85 252.28 141.63

Wavelet l=5, k=0.2 803.70 584.41 398.94 277.15 211.56

Wavelet l=5, k=0.3 789.93 552.14 348.98 224.66 167.58

Runger 922.64 918.94 913.34 905.55 893.82

Poisson with ρ = 0.5

Location Shift δ

Procedure 0.6 1.2 1.8 2.4 3

Wavelet l=4, k=0.2 546.42 218.08 137.73 111.79 98.60

Wavelet l=4, k=0.3 571.87 202.70 116.87 93.41 81.87

Wavelet l=5, k=0.2 629.84 342.72 226.81 180.80 161.61

Wavelet l=5, k=0.3 619.01 294.78 183.22 148.44 132.06

Runger 971.57 968.09 962.77 955.43 944.71
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Chapter 4

Sequential Classifier for

Longitudinal Data

4.1 Introduction

Statistical classification is the problem of assigning an observation to one of a set

of populations, based on a training set of observations whose population membership is

known. One applicable area of statistical classification is disease diagnosis. Many diseases

can be detected based on a patients’ change in levels of certain clinical characteristics (e.g.

biomarkers). Commonly, these characteristics would be repeatedly measured throughout

hospitalization, so that disease diagnosis can be made according to patients’ profile change.

Consider, for example, the data illustrated in Figure 4.1, which consists of a subset of

biomarker profiles in a severe sepsis diagnosis study that includes 990 patients. Within a

72 hour window, as many as 7 blood draws were taken from each patient at time points
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t = 0, 3, 6, 12, 24, 48, and 72 hours, and the biomarker level at each time point was recorded.

The goal of the study is to use the evolving biomarker profiles of the patients to build a

classifier which can separate sepsis patients from severe sepsis patients.

Classifying longitudinal data presents more challenges than classifying regular mul-

tivariate data. First, there are usually many missing values in the longitudinal data. Second,

the time points at which the repeated measures are observed may vary between subjects.

To overcome these difficulties several procedures have been proposed for classifying longitu-

dinal data (see Verbeke and Lesaffre (1996), Marshall and Barón (2000), James and Hastie

(2001), Luts et al. (2012) for example). These procedures were developed to classify the

longitudinal data based on the complete profile of the data. In the example of our sepsis

diagnosis study, those procedures will classify the subject at the end of 72 hours. However,

in the sepsis diagnosis study, it is extremely desirable to classify the subject as early as

possible, since severe sepsis is a life-threatening condition and an earlier detection would

result in a lower mortality rate. If we directly apply the existing longitudinal data classifiers

at earlier time points, the performance of the classifiers may be compromised, since some

subjects may not have enough information to be correctly classified at earlier time points.

On the other hand, some subjects may indeed show signs of belonging to one of the class

groups based on data from early time points, and therefore could be accurately classified

sooner.

This observation motivates us to consider a sequential classifier, which will sequen-

tially evaluate the subject and decide whether to classify at each time point. To develop

such a sequential classifier, we adopt the neutral zone classifier framework. Different from
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Figure 4.1: Biomarker measurements of selected 40 patients with Severe Sepsis symptoms.

The black lines represent non-severe sepsis group and the grey lines represent severe sepsis

group

the traditional classifiers which always assign the subject to one of the class groups, a neu-

tral zone classifier allows to assign a neutral classification (not belonging to any of the class

groups) when there is not enough confidence to classify to any of the class groups. There-

fore, for our sequential classifier, at each time point (starting from the first time point),

we evaluate the confidence in classifying the subject to each of the class groups. If we do

not have enough confidence in making a classification, we assign a neutral classification,

and continue to collect another measurement at the next time point and re-evaluate how

confident we are given the new measurement. This process continues until there is enough

confidence of making a classification or the last time point where data can be collected is

reached. Using this sequential procedure allows early decisions on subjects which are easier

to classify, and also delays decisions on subjects that are difficult to classify. As a result,
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the proposed sequential classifier reduces the overall cost when the cost of time is taken into

account.

The rest of the chapter is organized as follows. In Section 4.2, we present our

sequential classifier. Since our sequential classifier is developed based on the neutral zone

classifier, we first discuss the neutral zone classifier in Section 4.2.1. To implement the

neutral zone classifier and make it a sequential procedure for classifying longitudinal data,

calculating the posterior probability of the subject belonging to one of the class groups at

any given time point is a key step. In Section 4.2.2, we describe calculating such probabilities

based on a combined logistic regression model and mixed effects model. In Section 4.2.3,

we detail the overall sequential classification procedure. A simulation study for evaluating

the performance of our sequential classifier is given in Section 4.3. In Section 4.4 we revisit

the sepsis data to demonstrate an application of our proposed sequential classifier.

4.2 Sequential Classifier for Longitudinal Data

4.2.1 Neutral Zone Classifier

Different from traditional classifiers, neutral zone classifiers can assign a neutral

classification to a subject when there is not enough confidence in assigning it to any of the

class groups. Since most of the disease diagnosis applications concern two class groups,

we focus on two-class classification problem throughout the chapter. For the two-class

classification problem, there are three possible classification outcomes for a neutral zone

classifier: group 0 or group 1 or neutral (labeled by N). Jeske et al. (2007), Yu et al. (2010)
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and Benecke et al. (2013) derived a neutral zone classifier based on the minimum cost

criterion. Denote the posterior probabilities of the new subject belonging to group 1 and

group 0 by p1(y) and p0(y), respectively. Assume that a cost structure is given in Table 4.1,

where Cij is the cost of assigning the subject in group j to group i, i 6= j and i, j ∈ {0, 1},

and CN is the cost of assigning the subject the neutral classification. Define ρij = Cij/CN .

Benecke et al. (2013) show that, if 1
ρ01

+ 1
ρ10

< 1, the minimum cost classifier is



classify to group 0 if p1(y) ≤ 1
ρ01

classify to group 1 if p1(y) ≥ 1− 1
ρ10

classify as N if 1
ρ01
≤ p1(y) ≤ 1− 1

ρ10

(4.1)

and if 1
ρ01

+ 1
ρ10
≥ 1, the minimum cost classifier is

classify to group 0 if p1(y) ≤ ρ10
ρ01+ρ10

classify to group 1 if p1(y) ≥ ρ10
ρ01+ρ10

.

(4.2)

The classifier given in (4.2) is the traditional minimum cost classifier. In real

applications, Cij is usually much larger than CN , therefore we assume that 1
ρ01

+ 1
ρ10

< 1

holds throughout the chapter.

Table 4.1: Cost Structure of Two Class Neutral Zone Classifier

Predicted Label
True Label

0 1 N

0 0 C10 CN
1 C01 0 CN
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Note that p0(y) = 1 − p1(y), and p0(y) and p1(y) can be used to measure the

confidence in assigning the subject to group 0 and 1, respectively. From (4.1), we can

see that, only if p0(y) or p1(y) is large enough (i.e. only if we have enough confidence

classifying) will the subject be assigned to one of the two class groups. Otherwise, the

subject will be given a neutral classification.

The above neutral zone classifier provides a framework for classifying subjects with

longitudinal data sequentially. Given the cost structure in Table 4.1, at each time point

(starting from the first time point), we can classify the subject to group 0 or group 1 if

p1(y) ≤ 1
ρ01

or p1(y) ≥ 1 − 1
ρ10

. If 1
ρ01
≤ p1(y) ≤ 1 − 1

ρ10
, we will assign the subject to N

and wait until the next time point to collect another measurement for this subject. With

this new measurement, we will evaluate the subject again based on the updated p1(y) and

a decision of classifying into group 0 or 1 or N will be made accordingly. We note that it

would be easy, and perhaps useful, to modify the procedure to allow the cost structure in

Table 4.1 to vary with time.

To implement the above sequential procedure, it is necessary to evaluate p1(y), the

posterior probability of the subject belonging to group 1 given the repeated measurements

y observed up to the current time point. Since we have two class groups in the training

sample, a logistic regression (LR) model can be used to fit the data and the prediction from

the LR model can then be considered as the posterior probability of the subject belonging

to one of the class groups. However, in longitudinal data, the time points at which the

repeated measures are observed usually vary between subjects. Even when the subjects are

measured synchronously, the number of available measurements for each subject will usually
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vary. Therefore, it is difficult to directly use the repeated measurements y as features in

the LR model. To overcome this difficulty, we propose fitting a mixed effects model first to

the longitudinal data, and extract the subject-specific random effects from the fitted mixed

effects model and use them as features in the LR model. In the following we describe this

method, which we refer to as mixed effects model based logistic regression method.

4.2.2 Mixed Effects Model Based Logistic Regression

Mixed effects models are widely used for modeling longitudinal data in the litera-

ture, since they are capable of handling asynchronous measurements and providing robust

inference under missing at random (MAR) data patterns which are common in longitudinal

studies. In the literature, there are two popular mixed effects models: linear mixed ef-

fects(LME) models (Harville(1976, 1977)) and nonparametric mixed effects (NME) models

(see Wu and Zhang (2006) for examples). Our classification procedure can be built with

either type of mixed effects model. For ease of exposition, we first use LME model to

demonstrate how the method works. At the end of this section, we will extend it from LME

model to NME model.

Suppose that there are m subjects in a randomly sampled training data set. We

denote the training data set by (yij , tij , Ui), i = 1, ...,m, j = 1, ..., ni, where yij is the jth

measurement for the ith subject, tij is the time when yij is measured, and Ui is the group

label for the ith subject, Ui = 0 if it is from group 0 and Ui = 1 if it is from group 1.

Assuming a linear trend over time for both groups, we can have the following LME model

82



for our training sample (yij , tij , Ui),

yij = β0 + δ0Ui + b0i + (β1 + δ1Ui + b1i)tij + εij (4.3)

where (β0, β1) and (β0+δ0, β1+δ1) are the population intercept and slope of the linear trends

(fixed effects) for group 0 and 1, respectively, and (b0i, b1i) are the unobservable subject-

specific random effects for the intercept and slope. Together (β0 + δ0Ui + b0i, β1 + δ1Ui +

b1i) represent the subject-specific intercept and slope. The standard assumptions are that

(b0i, b1i) are independent and identically distributed (iid) bivariate normal random vector

with mean zero and covariance matrix D, and the random errors εij are iid univariate

normal random variables with mean zero and variance σ2e . It is also assumed that the

random effects are independent of the random errors.

The Fitting Phase

As mentioned above, it is difficult to directly use yij as features in the LR model.

Instead, we can represent each subject by its subject-specific intercept and slope (β0+δ0Ui+

b0i, β1+δ1Ui+b1i) and use them as features in the LR model. To this end, we first fit the LME

model (4.3) to our training sample and obtain the estimates of (β0+δ0Ui+b0i, β1+δ1Ui+b1i).

The estimates for (β0 + δ0Ui + b0i, β1 + δ1Ui + b1i) we use are the empirical Best Linear

Unbiased Predictors (eBLUPs). In the following, we briefly describe how to obtain those

eBLUPs.

We first introduce a few notations. Denote all the measurements for the ith subject

by yi = (yi1, ..., yini)
′, and then y = (y′1, ...,y

′
m)′ is the n-dimensional vector of all the mea-

surements in the training sample, where n =
∑m

i=1 ni. Similarly, denote the n-dimensional
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vector of all random errors by ε = (ε′1, ..., ε
′
m)′, where εi = (εi1, ..., εini)

′. Further denote

the vector of the fixed-effects by β = (β0, β1)
′ and δ = (δ0, δ1)

′, and write γ = (β′, δ′)′, and

denote the vector of random-effects by b = (b01, b11, ..., b0m, b1m)′. Then we can represent

the model in (4.3) in the following matrix form,

y = Xγ + Zb+ ε, (4.4)

where X (of dimension n × 4) and Z (of dimension n × 2m)) are the design matrices for

the fixed and random effects. The Best Linear Unbiased Predictors (BLUPs) of b and γ

(denoted by b̃ and γ̃, respectively) can be obtained by solving the following Mixed Model

Equations (MME, see Henderson (1950)):X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + Σ−1s


γ̃
b̃

 =

X′R−1y

Z′R−1y

 (4.5)

where Σs = Im ⊗ D is the covariance matrix of b, R = σ2eIn is the covariance matrix

of ε, Ip is the p-dimensional identity matrix and ⊗ denotes the Kronecker product. By

plugging in estimates of D and σ2e into b̃ and γ̃, one can obtain the eBLUPs of b and γ,

denoted by b̂ and γ̂, respectively. The eBLUPs of the subject-specific intercept and slope

(β0 + δ0Ui + b0i, β1 + δ1Ui + b1i) then can be obtained by replacing β0, δ0, b0i, β1, δ1, and b1i

by their respective eBLUPs. We denote those eBLUPs by (α̂0i, α̂1i).

Once we obtain (α̂0i, α̂1i), i = 1, ...,m, our training data can be represented by

{(α̂0i, α̂1i, Ui)}mi=1. A fitted LR model is given by

log(p̂i/(1− p̂i)) = ĉ0 + ĉ1α̂0i + ĉ2α̂1i, (4.6)
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where p̂i is the predicted probability of the ith subject belonging to group 1, and the ĉi

(i = 0, 1, 2) are the fitted coefficients in the LR model based on the training data.

The Prediction Phase

Since we use eBLUPs of subject-specific intercepts and slopes as the features in

the above LR model, we need to find eBLUPs of the subject-specific intercept and slope

for a new subject. To this end, we first need to modify the LME model in (4.3) to account

for the fact that we do not know the group label of a new subject. Assume that the new

subject has s measurements, denoted by y∗ = (y∗1, ..., y
∗
s)
′. The time points when the s

measurements are taken are (t1, ..., ts). Then the LME model for y∗ = (y∗1, ..., y
∗
s)
′ is

y∗j = β0 + δ0W + b0 + (β1 + δ1W + b1)tj + εj , j = 1, ..., s,

where W now is a Bernoulli random variable with probability π being the prevalence pro-

portion of group 1. Throughout this chapter, we assume that π is known a priori or can

be estimated based on the random sample of training data. The subject-specific intercept

and slope for this new subject is then (β0 + b0 + δ0W,β1 + b1 + δ1W ). Define X∗ =

[
1s t

]
and Z∗ =

[
X∗ X∗δ

]
, where 1s is a vector of s ones and t = (t1, ..., ts)

′. The eBLUP of

(β0 + δ0W + b0, β1 + δ1W + b1)
′, denoted by (α̂∗0, α̂

∗
1)
′, can be shown to be equal to

β̂ + πδ̂ +
{

X∗D̂ + π(1− π)X∗δ̂δ̂
′}′ (

Z∗Λ̂Z∗
′
+ σ̂2eIs

)−1 {
y∗ −X∗β̂ − Z∗π

}
, (4.7)

where β̂ = (β̂0, β̂1)
′, and δ̂ = (δ̂0, δ̂1)

′ are elements of the eBLUPs of (β0, β1, δ0, δ1)
′ obtained

from the training sample, D̂ and σ̂2ε are estimates of D and σ2ε , respectively (e.g. maximum

likelihood estimates), Λ̂ =

D̂ 0

0 π(1− π)

, and π = (0, 0, π)′. A detailed derivation for
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this formula can be found in the Appendix C. Once we obtain (α̂∗0, α̂
∗
1), we can put them

into the fitted LR model in (4.6) and obtain the predicted probability of this new subject

belonging to group 1, namely,

p∗ =
exp(ĉ0 + ĉ1α̂

∗
0 + ĉ2α̂

∗
1)

1 + exp(ĉ0 + ĉ1α̂∗0 + ĉ2α̂∗1)
. (4.8)

Extension to Nonparametric Mixed Effects Model

The LME model in the previous section is suitable for the situation where one is

willing to assume a parametric form for the data trend. However, it might be difficult to

make such an assumption for many real applications. While other specific parametric trends

can be incorporated as alternatives, a Nonparametric Mixed Effects (NME) model has been

developed as a more robust approach. This NME model does not require the specification

of any parametric form for the data trend. Considering our training data (yij , tij , Ui), the

corresponding NME model is as follows:

yij = g0(tij)I{Ui=0} + g1(tij)I{Ui=1} + vi(tij) + εij

where g0(·), g1(·) and vi(·) are all smooth functions, g0(·) and g1(·) model the population

mean curves (fixed effects) for group 0 and 1, respectively, vi(·) models the individual curve

variation (random effects) from its population mean curve, and I{A} takes the value of 1 if

the condition A is true and 0 otherwise. Using basis functions to approximate the above

smooth functions, we can rewrite the model as

yij =

q∑
k=0

(βk + δkUi + bki)Ψk(tij) + εij (4.9)
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where Ψk(·), k = 0, ..., q, are the basis functions, (β0, β1, · · · , βq) are the coefficients of the

basis functions in the approximation of g0(·) and (β0 + δ0, β1 + δ1, · · · , βq + δq) are the

coefficients of the basis functions in the approximation of g1(·), and bi = (b0i, b1i, · · · , bqi)′

are the coefficients of the basis functions in the approximation of vi(·). Similar to the LME

model, it is usually assumed that the bi are iid (q + 1)-dimensional multivariate normal

random vectors with mean zero and covariance D and the εij are iid univariate normal

random variables with mean zero and variance σ2e , and that the bi are independent of the

εij .

The basis functions Ψk(·) we use in our simulation study and real data analysis

are the B-spline basis functions. There are many other choices of basis functions. For a

complete list of basis functions, one can refer to Wu and Zhang (2006). After we choose

appropriate basis functions, the model can be seen as a linear mixed effects model with

respect to the basis functions. Then, similar to the previous section, we can use the eBLUPs

of (β0+δ0Ui+b0i, ..., βq+δqUi+bqi) as the features to represent each subject in the training

sample. The model fitting technique we discuss in the previous section can be used to find

those eBLUPs after we redefine X, β, Z, b according to model (4.9). An LR model is then

fitted with those eBLUPs as features. The feature vector of a new subject can be similarly

obtained by the eBLUP of (β1 + δ1W + b1i, ..., βq + δqW + bqi), where W is a Bernoulli

random variable with probability π being the prevalence proportion of group 1 (see details

in Appendix C). Based on this feature vector and the fitted LR model from the training

sample, we can obtain p∗, the predicted probability of this new subject belonging to group

1.
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4.2.3 Sequential Classification Procedure

In this section, we detail our sequential classification procedure. At the training

phase, a mixed effects model is fitted to the training data. The eBLUPs of the subject-

specific random effects from the fitted mixed effects model are then used as features to fit a

LR model. For a new subject, starting from the first time point, we find the eBLUPs of its

subject-specific random effects using the measurements available, say (y∗1, ..., y
∗
` ), from the

prediction phase mixed effects model. We then insert the eBLUPs into the fitted LR model

to find p∗, the predicted probability of belonging to group 1. Given the cost structure in

Table 4.1, we will classify the new subject according to the rule

classify to group 0 if p∗ ≤ 1
ρ01

classify to group 1 if p∗ ≥ 1− 1
ρ10

classify as N if 1
ρ01
≤ p∗ ≤ 1− 1

ρ10

If we classify the new subject as N, the subject is evaluated again after collecting another

measurement y∗`+1 using the same procedure as above with the updated measurements

(y∗1, ..., y
∗
`+1). This process continues until the subject is classified to group 0 or 1, or the

measurement process reaches the last time point. At the last time point, if we have to

classify the subject to group 0 or 1, we will use the classifier in (4.2) with p1(y) being

replaced by the most recent p∗.

Our sequential classifier depends on the cost structure specified in Table 4.1. In

our sequential procedure, CN can be interpreted as the cost of time. The costs of making

misclassification (C01 and C10) as well as the cost of time CN can be determined based
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on the specific application, according to expert opinion. Different cost structures lead to

different sequential classifiers, and as mentioned earlier, one could easily incorporate time-

varying cost structures. In general, a higher ratio between the cost of misclassification

and the cost of time (i.e. a higher ρ01 or ρ10) would result in a more cautious classifier

which allows for waiting longer and collecting more measurements before a classification

can be made. On the other hand, a lower cost ratio would drive the classifier to make

a classification earlier in order to reduce the cost of time. The effect of different cost

structures on the performance of our sequential classifier will be investigated further in the

next section. There are two extreme cases worth discussing. If one does not care about the

cost of time (i.e. CN = 0), our sequential classifier becomes the conventional non-sequential

classifier and makes decisions at the last time point where data can be collected using (4.2).

However, if the cost of time is large compared to the misclassification cost such that there is

no neutral zone based on (4.1), our proposed classifier would force classification at the first

time point to prevent introducing more cost of time. In either case, our sequential classifier

would result in a cost as low as, if not lower than, the conventional non-sequential method.

4.3 Performance Evaluation

In this section, we report on a simulation study that demonstrates the performance

of our proposed sequential classifier. First, we generate training data from the LME model

in (4.3). In order to match prevalence proportion in our real sepsis example, we use 200

subjects in group 0 and 800 subjects in group 1 for the training data set. For each subject the

measurements are taken at up to 7 time points that are equally spaced at 0/7, 1/7, · · · , 6/7.
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The covariance matrix of the random effects (b0i, b1i) is D =

σ20 0

0 σ21

. Values for σ20,

σ21, and σ2e are chosen from 0.2, 0.4, and 0.6. Three scenarios are considered for the linear

trend over time from the two groups: V-shape, reverse V-shape, and X-shape. For the

V-shape situation, we use β0 = 0, δ0 = 0, β1 = 0.5 ×
√
σ20 + σ21 + σ2e , and δ1 = −2 ×

β1. For the reverse V-shape scenario, we use β0 = 0.5 ×
√
σ20 + σ21 + σ2e , δ0 = −2 × β0,

β1 = −0.5 ×
√
σ20 + σ21 + σ2e , and δ1 = −2 × β1. Finally for the X-shape case, we use

β0 = 1
2×0.5×

√
σ20 + σ21 + σ2e , δ0 = −2×β0, β1 = −0.5×

√
σ20 + σ21 + σ2e , and δ1 = −2×β1.

The above fixed-effects parameters are chosen so that the two populations in each scenario

have only moderate separation. Typical simulated sample paths for the V-shape are shown

in Figure 4.2. The black lines represent simulated trajectories for subjects in group 0, while

gray lines represent trajectories for subjects in group 1. The bold lines are population

curves.

In our simulation, we incorporate missing values via a missing at random (MAR)

mechanism. MAR is a more realistic mechanism in longitudinal data than missing com-

pletely at random (MCAR) (see Fitzmaurice et al. (2004) for example). We assume that

the MAR mechanism follows a drop-out model, which implies that as soon as a measure-

ment is missing at time point t for one subject, there will not be any further measurements

observed for that subject. To generate our missing data, we utilize a model in Fitzmaurice

et al. (2004). More specifically, given that j measurements have been observed for the ith

subject, the probability that the j+1th measurement for the subject will be missing, Pi,j+1,
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Figure 4.2: Typical Sample Path for LME Simulation: V-shape

is determined by:

log
Pi,j+1

1− Pi,j+1
= θ0 + θ1yij + θ2yi,j+1 (4.10)

where yij is the jth measurement for subject i. In (4.10), if θ1 6= 0 but θ2 = 0, we have

MAR. In our simulation, we choose θ0 = −1, θ1 = 1, and θ2 = 0. Based on those choices,

the overall missing proportion is approximately 50%.

Table 4.2: Cost Structures for Simulations

setting CN C10 C01

1 1 4 4

2 1 4 16

3 1 100 100

As mentioned in Section 4.2.3, the performance of our sequential classifier depends

on the two cost ratios ρ01 and ρ10. In our simulation, we consider three cost structures listed

in Table 4.2. In the first setting, the costs for the two types of misclassification are equal.

91



In the second setting, we have unequal costs for the two types of misclassification, which is

quite common in many disease diagnosis studies where misclassifying a subject into one of

the two groups has a relatively more severe consequence. The last setting is an extreme case

where both types of misclassification would cost a lot more than the cost of time. According

to the comments in Section 4.2.3, we can expect that this cost structure would lead to a

very cautious classifier, with classification being made mostly at the last time point.

To evaluate the performance of our sequential classifier, a test set is simulated

using the same LME model that generated the training data. There are 1000 subjects in

the test set, with 200 in group 0 and 800 in group 1. To simplify our comparison, we do not

incorporate missing data in the test set. We apply our sequential classifier to this test set

and the average cost of our sequential classifier is calculated as follows. At each time point

(starting from the first time point) we use our sequential procedure to predict the group

label for each subject in the test set. When the predicted group label is N, we add CN to

the cost of this subject. When the predicted group label is 0 or 1, we add the corresponding

misclassification cost to the cost of this subject if a misclassification is made. This way we

obtain the total cost for each subject in the test set. The average cost of our sequential

classifier is then obtained by averaging the total cost of the 1000 subjects in the test set.

To compare the performance of our sequential classifier to the non-sequential clas-

sifier, we also classify each subject in the test set one time using all 7 measurements. That

is, we calculate the predicted probability of each subject in the test set belonging to group

1 using all 7 measurements. We then use those predicted probabilities as their posterior

probabilities p1(y), and classify the subject to group 0 or 1 according to the classification
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rule in (4.2). The cost for each subject from this non-sequential classifier is then the sum

of the time cost (CN × 6) and the misclassification cost (C01 or C10) if a misclassification is

made. The average cost for this non-sequential classifier is then the average of the cost of

the 1000 subjects in the test set.

We repeat the above simulations 100 times and the boxplots of the average costs for

the sequential classifier and non-sequential classifier for the V-shape model under the three

cost structures are shown in Figure 4.3 (a) - (c). From the figure, we can see that, when the

cost ratio between the cost of misclassification and the cost of time (i.e. ρ01 or ρ10) is low,

our sequential classifier benefits from being able to make an early decision, which results

in significant reduction in the overall cost. When the cost ratio becomes larger, which

implies that the cost of time is less significant compared to the cost of misclassification,

our sequential classifier becomes more cautious and more strict in terms of making early

decisions. In the extreme case as in our third cost structure setting, our sequential classifier

tends to wait until a later time point to make the decision. This leads to the similar average

cost performance between the two methods. The results for the reverse V-shape and X-

shape models are shown in Figure 4.3 (d) - (f) and Figure 4.4 (a) - (c). They are very

similar to the V-shape case.

We also carried out the above simulation using an NME model. The model we

use to generate data is the following trigonometric model, which was discussed in Wu and

Zhang (2002):

yij = (α0 + γ0Ui + a0i) + (α1 + γ1Ui + a1i) cos(2πtij) + (α2 + γ2Ui + a2i) sin(2πtij) + εij

where ai = (a0i, a1i, a2i)
′ are random-effects, with a0i following a normal distribution with
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Figure 4.3: Cost Comparisons 1: (a) - (c) represents cost comparisons for V-shape profiles;

(d) - (f) represents cost comparisons for reverse V-shape profiles.
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Figure 4.4: Cost Comparisons 2: (a) - (c) represents cost comparisons for X-shape profiles;

(d) - (f) represents cost comparisons for trigonometric model.
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zero mean and standard deviation of 2, and a1i and a2i both following a standard normal

distribution. In order for the two groups to have moderate seperation, we use α0 = 1, γ0 =

0, α1 = 1.5, γ1 = −1, α2 = 2, and γ2 = −1.5. The model contains sin-cos functions that

would be difficult to capture with an LME model. Therefore we use the NME model

described in Section 4.2.2. In the NME model, we use the B-spline basis functions with

q = 3. The boxplots of the average costs for the sequential classifier and the non-sequential

classifier over 100 simulations under the three cost structures are shown in Figure 4.4 (d)

- (f). The results are very similar to what we observe in the LME setting. A lower cost

ratio between the cost of misclassification and the cost of time results in much lower average

cost for our sequential classifier. This indicates that, when the cost of time is not negligible

compared to the cost of misclassification, the sequential classifier is a more suitable choice.

4.4 Application to Sepsis Study

In this section, we use the sepsis data introduced in Section 4.1 to illustrate the

application of our proposed sequential classifier. Sepsis is a potentially lethal medical con-

dition characterized by a whole-body inflammatory state that is triggered by an infection.

Early detection of sepsis can significantly reduce the chance of death. Therefore, diagnosis of

sepsis as early as possible is extremely helpful for managing the disease. The sepsis diagnosis

study includes 990 individuals, with 798 confirmed severe sepsis patients and 192 confirmed

non-severe sepsis patients. Within a 72 hour window, up to 7 blood draws were taken from

each subject at time points t = 0, 3, 6, 12, 24, 48, and 72 hours, and the biomarker level at

each time point was measured. A subset of profiles is displayed in Figure 4.1.
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Since we do not have any information about the form of the data trend, we use

the NME model in our sequential classifier as described in 4.2.2. In the NME model, we

use the B-spline basis functions with q = 2. To assess the performance of our sequential

classifier, we use a 10-fold cross validation to estimate the expected cost. More specifically,

the sepsis data is randomly partitioned into 10 disjoint sets, preserving the proportions of

the two groups in the original data set. Each of the 10 sets then takes a turn to serve as the

test set and the remaining nine sets serve as the training data. For each of the test sets, we

calculate the average costs of our sequential classifier and the non-sequential classifier as in

our simulation study. Table 4.3 reports the average costs of the two classifiers over the 10

test sets. The cost structures we use are the same as in Table 4.2. The cost of time CN is

assumed to be the cost per hour. We can see from the table that the sequential classifier

has a much lower average cost than the non-sequential classifier. Even for the extreme case,

where the cost ratio between the cost of misclassification and the cost of time is as large as

100, the sequential classifier still has a significant advantage.

Table 4.3: Average Cost: Sepsis Data

Cost Structure
Classifier

1 2 3

Sequential 9.25 31.71 66.21

Non-Sequential 72.91 74.02 94.74

We also use our 10-fold cross validation analysis to compare the average waiting

time for the sequential and the non-sequential classifiers. For the non-sequential classifier,

the classification for each subject is made at the last time point. Therefore, the average

waiting time is 72 hours. For our sequential classifier, if a subject is assigned to group 0 or
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1 at time point t, then the waiting time is t. By averaging all the subjects’ waiting time,

we can obtain the average waiting time for our sequential classifier. Table 4.4 shows the

average waiting time for the two classifiers under the three cost structures. From the table

we can see that the sequential classifier has a much lower average waiting time than its

non-sequential counterpart for cost structures 1 and 2. Even for cost structure 3, where our

sequential classifier does not encourage to make early decisions, a smaller average waiting

time is observed. From the table, we can see significant time can be saved when we apply

the sequential classifier. This is often very important in the disease diagnosis process.

Table 4.4: Average Waiting Time: Sepsis Data

Cost Structure
Classifier

1 2 3

Sequential 8.47 29.80 44.30

Non-Sequential 72 72 72
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Chapter 5

Concluding Remarks

In this dissertation, we propose sequential procedures for statistical process control

and longitudinal data classification. This includes the development of two nonparametric

multivariate CUSUM control charts for location and scale change detection, a wavelet-based

nonparametric CUSUM control chart for autocorrelated processes, and the construction of

a sequential classifier for longitudinal data.

Our proposed nonparametric multivariate control charts can be viewed as the non-

parametric counterparts of the two parametric multivariate CUSUM procedures developed

by Crosier (1988). The first one is based on the spatial sign, which is particularly powerful

for detecting location shifts. The second one is based on the spatial depth, which is par-

ticularly suitable for detecting scale increases. Computation of the control limit for each of

these CUSUM procedures is particularly easy due to their distribution-free properties. We

recommend using both procedures in practice, since it is rarely known in advance what type

of distributional changes the process will have. Similar to multiple comparison problem,

99



when using both procedures in parallel, the nominal ARL0 for each individual procedure

needs to be adjusted so that the overall ARL0 is still controlled at the desired level. One

possible adjustment based on Bonferroni inequality is doubling the nominal ARL0 for each

individual procedure. Similar to all other CUSUM procedures in the literature, the two

proposed CUSUM procedures depend on the choice of k. In general, for both procedures,

smaller k is more powerful for detecting smaller changes, while larger k is more powerful for

detecting larger changes. In practice, if some location shift or scale increase is particularly

of interest, we can always choose an optimal k by comparing the performance of different

choices of k under this particular distributional change.

On the foundation of the above spatial sign based nonparametric multivariate

CUSUM control chart, we develop a nonparametric CUSUM control chart for autocorrelated

processes. The procedure utilizes the approximate decorrelation property of the wavelet

coefficients, which makes the procedure robust to serially correlated processes, including the

ones with long-memory. The method is also approximately distribution-free under a variety

of distributions if a smaller k for the CUSUM scheme is chosen. We conducted extensive

simulation studies and compared our proposed method with residual-based nonparametric

control charts. Our proposed method illustrates a superior ARL0 control, while at the

same time, has a similar, if not better, ARL1 performances. We also used network CPU

usage data to demonstrate a real application of our method. The procedure outperforms

its competitors both in ARL0 control and detection power. Implementation issues such as

determination of decomposition scale, reference sample depth, and missing value treatment

are also discussed. Our proposed wavelet-based method is easy to implemente and therefore
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will be widely useable to many applications that feature serially correlated data patterns.

In this dissertation we only considered location shift detection. Some further study may be

conducted by applying similar procedure but incorporating the DD-CUSUM control chart

discussed in Chapter 2 to develop a SPC procedure for scale change detection. Ultimately,

our goal would be combining the two procedures together to form a control chart for both

location shift and scale increase detection.

In this dissertation, we also consider another sequential procedure for classification

problems. The proposed sequential classifier for longitudinal data is based on a neutral zone

classifier. Simulation results show that the proposed sequential classifier can significantly

reduce the average cost compared to the non-sequential classifier which waits until the

last time point to classify when the cost of time is taken into account. The proposed

sequential classifier is applied to real data obtained from a severe sepsis diagnosis study

and is shown to outperform the non-sequential classifier. Our proposed sequential classifier

is especially valuable for its reduction in the time required to make a classification, which

is very important in disease diagnosis and other applications where the cost of time is

significant. There are several interesting topics for future study. For example, the cost of

time CN considered in this dissertation is fixed. However, in real life, applications may

require a changing cost over time. For instance, the cost of time may increase for patients

waiting for a diagnosis result, especially in the context of acute disease diagnosis. Also we

mainly focus on the two-class classification problem. Another research topic we plan to

pursue is how to extend our sequential classifier to the multiple-class setting.
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Appendix A

Proofs

Proof of Proposition 1. Let (Y1, · · · ,Ym) be the reference sample, and

(X1,X2, · · · ) be the future sample. Let Zi = DYi + v and Wi = DXi + v, where D

is an arbitrary p× p nonsigular matrix and v is an arbitrary p-dimensional vector. Denote

θ̂Y and θ̂Z as the solution of θ in (2.2) computed on Yi and Zi, respectively. Based on the

proposition in Hettmansperger and Randles (2002), we have θ̂Z = Dθ̂Y + v. Denote ÂY

and ÂZ as nonsingular p×p matrice computed on Yi and Zi, respectively, that satisfy (2.3).

The SS-CUSUM is affine-invariant if the statistic Ln calculated from Xi using (θ̂Y , ÂY ) is

the same as the one calculated from Wi using (θ̂Z , ÂZ).

From (2.3), we have

1

m

m∑
i=1

(
ÂY (Yi − θ̂Y )(Yi − θ̂Y )′Â′Y

‖ÂY (Yi − θ̂Y )‖2

)
=

1

p
Ip. (A.1)

Define

Â∗
′

ZÂ
∗
Z = (D′)−1Â

′
Y ÂYD

−1

108



where ÂZ∗ is a nonsingular p ∗ p matrix. Hence, we have

Â
′
Y ÂY = D′Â∗

′
ZÂ
∗
ZD (A.2)

Left and right multiplying both sides of (A.1) with Â
′
Y and ÂY , respectively, and plugging

(A.2) into (A.1), we get

1

m

m∑
i=1

(
D′Â∗

′
ZÂ
∗
Z(Zi − θ̂Z)(Zi − θ̂Z)′Â∗

′
ZÂ
∗
ZD

‖Â∗Z(Zi − θ̂Z)‖2

)
=

1

p
D′Â∗

′
ZÂ
∗
ZD

Since D and Â∗Z are both nonsigular p× p matrices, we can easily get

1

m

m∑
i=1

(
Â∗Z(Zi − θ̂Z)(Zi − θ̂Z)′Â′∗Z

‖Â∗Z(Zi − θ̂Z)‖2

)
=

1

p
Ip.

Therefore, Â∗Z is also a solution to

1

m

m∑
i=1

(
A(Zi − θ̂Z)(Zi − θ̂Z)′A′

‖A(Zi − θ̂Z)‖2

)
=

1

p
Ip. (A.3)

According to Tyler (1987), the solution to (A.3) is unique up to a multiplication by some

positive constant, hence ÂZ = kÂ∗Z . Therefore, we have

Â
′
ZÂZ = k2(D′)−1Â

′
Y ÂYD

−1

Define Θ = k−1ÂZDÂ
−1
Y . It is easy to verify that Θ is orthogonal, and ÂZD = kΘÂY .

Then we have,

ÂZ(Wn − θ̂Z) = ÂZD(Xn − θ̂Y ) = kΘÂY (Xn − θ̂Y ), n = 1, 2, ...

Therefore,

UW ∗
n

=
ÂZ(Wn − θ̂Z)

‖ÂZ(Wn − θ̂Z)‖
= Θ

ÂY (Xn − θ̂Y )

‖ÂY (Xn − θ̂Y )‖
= ΘUX∗n
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where UW ∗
n

and UX∗n denote the spatial signs of W ∗
n and X∗n, the transformed data of Wn

and Xn, respectively. Thus any orthogonally invariant statistic computed on UX∗n will be

affine-invariant. Recall that, in our SS-CUSUM procedure, Un ≡ UX∗n . Therefore, it is

not difficult to see that our statistic Ln in SS-CUSUM is orthogonally invariant statistic

computed on UX∗n . Hence, our SS-CUSUM procedure is affine-invariant.

Proof of Proposition 2. Since the in-control distribution F0 belongs to the

elliptical directions family, when the process is in-control, we have Xi = riDui + µ, where

D is a fixed p×p nonsingular matrix, the ui are independent and identically distributed uni-

formly distributed on the unit p sphere, and the ri are positive scalars. Based on the trans-

formation in (2.1), X∗i = riÂmDui + Âm(µ− θ̂m). Following the result in Hettmansperger

and Randles (2002), θ̂m
a.s.→ µ, as m → ∞. Therefore, X∗i is asymptotically equivalent

to riÂmDui. Since the statistic in our SS-CUSUM is only related to the direction vector

of X∗i , the ri are irrelevant. In other words, the SS-CUSUM from Xi is asymptotically

equivalent to the SS-CUSUM from Dui + µ. Based on Proposition 1 that the SS-CUSUM

is affine-invariant, the SS-CUSUM from Xi is asymptotically equivalent to the SS-CUSUM

from ui. Therefore, the SS-CUSUM is asymptotically distribution-free under the elliptical

directions family.

Proof of Proposition 3. The DD-CUSUM procedure is affine-invariant if the

spatial depth of the transformed data we use to generate R statistic is affine-invariant. Using

the same notation as in the proof of Proposition 1, it suffices to show that SPDF ∗m(X∗j ) =

SPDG∗m(W ∗
j ), where F ∗m and G∗m are the empirical distributions of the reference samples

(Y ∗1 , · · · ,Y ∗m) and (Z∗1 , · · · ,Z∗m), respectively. From the proof of Proposition 1, we have
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ÂZD = kΘÂY . Therefore

ÂZ(Wj −Zi) = ÂZD(Xj − Yi) = kΘÂY (Xj − Yi).

This implies that

SPDG∗m(W ∗
j ) = 1−

∥∥∥∥∥ 1

m

m∑
i=1

ÂZ(Wj −Zi)
‖ÂZ(Wj −Zi)‖

∥∥∥∥∥
= 1−

∥∥∥∥∥ 1

m

m∑
i=1

ΘÂY (Xj − Yi)
‖ÂY (Xj − Yi)‖

∥∥∥∥∥ = SPDF ∗m(X∗j ).

The result follows.

Proof of Proposition 4. Define θ0 and A0 as the solutions to the following

equations:

EF0

(
A(Y − θ)

‖A(Y − θ)‖

)
= 0,

EF0

(
A(Y − θ)(Y − θ)′A′

‖A(Y − θ)‖2

)
=

1

p
Ip.

It is easy to see that our (θ̂m, Âm) used in the transformation is the sample version of

(θ0, A0). Following the proof in Hettmansperger and Randles (2002), we have θ̂m
a.s.→ θ0,

Âm
a.s.→ A0, as m→∞.

Define Zi = A0(Yi − θ0) and denote the empirical distribution of Zi (i = 1, ...,m)
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by Gm and its population version as G. Therefore, for any y ∈ <p, we have

∣∣∣SPDF ∗m(Âm(y − θ̂m))− SPDGm(A0(y − θ0))
∣∣∣

=

∣∣∣∣∣
∥∥∥∥∥ 1

m

m∑
i=1

Âm(y − Yi)
‖Âm(y − Yi)‖

∥∥∥∥∥−
∥∥∥∥∥ 1

m

m∑
i=1

A0(y − Yi)
‖A0(y − Yi)‖

∥∥∥∥∥
∣∣∣∣∣

≤

∥∥∥∥∥ 1

m

m∑
i=1

Âm(y − Yi)
‖Âm(y − Yi)‖

− 1

m

m∑
i=1

A0(y − Yi)
‖A0(y − Yi)‖

∥∥∥∥∥
≤ 1

m

m∑
i=1

∥∥∥∥∥ Âm(y − Yi)
‖Âm(y − Yi)‖

− A0(y − Yi)
‖A0(y − Yi)‖

∥∥∥∥∥
=

1

m

m∑
i=1

2 sinαj/2 (where αj is the angle between Âm(y − Yi) and A0(y − Yi))

≤ 1

m

m∑
i=1

2 sinαj (provided that αj ≤ π/2, which can be guaranteed with sufficiently large m)

≤ 1

m

m∑
i=1

2
‖(Âm −A0)(y − Yi)‖
‖A0(y − Yi)‖

=
1

m

m∑
i=1

2

√
(y − Yi)′(Âm −A0)′(Âm −A0)(y − Yi)

(y − Yi)′A′0A0(y − Yi)

≤2

√
λ1

(
(A′0A0)−1(Âm −A0)′(Âm −A0)

)
(where λ1(B) is the largest eigenvalue of B)

Since λ1(B) is a continuous function with respect to B and Âm
a.s.→ A0 as m→∞, for any

given ε > 0, there exists some m1 such that, for all m ≥ m1,

sup
y∈<P

∣∣∣SPDF ∗m(Âm(y − θ̂m))− SPDGm(A0(y − θ0))
∣∣∣ ≤ ε/4,

along almost all {Y1, ...,Ym} sequences. Based on the uniform convergence of sample spatial

depth, there exists some m2 such that, for all m ≥ m2,

sup
y∈<P

|SPDGm(A0(y − θ0))− SPDG(A0(y − θ0))| ≤ ε/4,

along almost all {Y1, ...,Ym} sequences. Therefore, for all m ≥ max(m1,m2) and any given
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x ∈ <p, we have

{Y : SPDG(A0(Y − θ0)) ≤ SPDG(A0(x− θ0))− ε}

⊆{Y : SPDF ∗m(Âm(Y − θ̂m)) ≤ SPDF ∗m(Âm(x− θ̂m))}

⊆{Y : SPDG(A0(Y − θ0)) ≤ SPDG(A0(x− θ0)) + ε}. (A.4)

Define

RF ∗m(Âm(x− θ̂m)) = #{Yj | SPDF ∗m(Âm(Yj − θ̂m)) ≤ SPDF ∗m(Âm(x− θ̂m))}/m,

RG(A0(x− θ0)) = P{SPDG(A0(Y − θ0)) ≤ SPDG(A0(x− θ0))|Y ∼ F0}.

By letting ε in (A.4) tend to 0, it is not difficult to see that RF ∗m(Âm(x− θ̂m)) converges to

RG(A0(x−θ0)) for almost all fixed x along almost all {Y1, ...,Ym} sequences. Following Liu

and Singh (1993), when the process is in control, RG(A0(Xn − θ0)) follows Uniform[0, 1].

Therefore, RF ∗m(X∗n) = RF ∗m(Âm(Xn − θ̂m)) asymptotically follows Uniform[0, 1], and our

DD-CUSUM is asymptotically distribution-free.
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Appendix B

Additional Power Comparison

Results for SS-CUSUM
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Table B.1: Power Comparison for One Direction Location Shift: Cauchy5

p=5 SS-CUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 203(1.64) 200(1.82) 202(1.94) 197(1.94) 200(1.95)
0.5 83.8(0.68) 100(0.93) 120(1.15) 133(1.31) 150(1.50)
1.0 42.6(0.26) 44.5(0.34) 54.0(0.46) 64.5(0.58) 78.1(0.74)
1.5 28.7(0.15) 26.4(0.17) 29.3(0.22) 34.2(0.29) 41.1(0.37)
2.0 22.6(0.11) 19.4(0.11) 20.0(0.13) 21.7(0.16) 25.1(0.21)
2.5 19.0(0.09) 15.8(0.08) 15.2(0.09) 16.1(0.10) 17.6(0.13)
3.0 16.8(0.07) 13.6(0.06) 12.6(0.07) 12.8(0.08) 13.7(0.08)

p=5 MCUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 2440(24.57) 1847(18.77) 1477(14.86) 1281(12.82) 1077(10.90)
0.5 2410(23.83) 1865(18.38) 1509(15.10) 1249(12.55) 1093(10.89)
1.0 2444(24.50) 1833(18.49) 1484(14.58) 1284(12.72) 1095(10.95)
1.5 2420(24.28) 1857(18.23) 1509(15.16) 1264(12.84) 1083(10.87)
2.0 2394(24.42) 1827(18.39) 1501(15.14) 1253(12.56) 1112(11.03)
2.5 2418(24.34) 1869(19.15) 1500(14.83) 1266(12.87) 1082(10.83)
3.0 2389(23.66) 1856(18.46) 1518(15.20) 1257(12.38) 1096(11.08)

p=5 ARCUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 201(2.68) 197(2.33) 199(2.23) 199(2.09) 202(2.17)
0.5 172(1.71) 160(1.57) 153(1.53) 147(1.46) 146(1.46)
1.0 119(1.13) 125(1.24) 122(1.20) 116(1.15) 120(1.19)
1.5 89.9(0.80) 105(1.04) 107(1.07) 103(1.02) 105(1.05)
2.0 75.1(0.62) 92.9(0.91) 99.6(0.98) 97.5(0.98) 97.1(0.97)
2.5 66.3(0.52) 84.5(0.81) 94.0(0.93) 92.7(0.93) 92.2(0.93)
3.0 60.5(0.46) 80.1(0.77) 90.9(0.91) 89.0(0.89) 88.9(0.90)

p=5 ARCUSUM Last

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 199(2.72) 201(2.40) 205(2.29) 196(2.08) 201(2.10)
0.5 192(1.87) 220(2.18) 245(2.43) 258(2.58) 286(2.85)
1.0 70.9(0.55) 88.2(0.77) 109(1.01) 129(1.23) 159(1.53)
1.5 38.3(0.25) 42.8(0.32) 49.2(0.39) 57.4(0.48) 69.3(0.61)
2.0 26.5(0.15) 27.2(0.17) 29.7(0.21) 32.9(0.24) 37.4(0.29)
2.5 20.6(0.11) 20.4(0.11) 21.2(0.13) 23.0(0.15) 25.2(0.18)
3.0 17.6(0.09) 16.8(0.09) 16.9(0.09) 17.9(0.11) 19.3(0.12)
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Table B.2: Power Comparison for One Direction Location Shift: t5,3

p=5 SS-CUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 203(1.68) 199(1.82) 201(1.88) 198(1.88) 202(1.94)
0.5 36.8(0.22) 36.6(0.27) 43.9(0.37) 53.6(0.48) 65.8(0.61)
1.0 18.9(0.09) 16.0(0.08) 15.7(0.09) 16.8(0.11) 19(0.14)
1.5 13.9(0.05) 11.0(0.04) 9.9(0.04) 9.7(0.05) 10.1(0.06)
2.0 11.4(0.04) 8.9(0.03) 7.8(0.03) 7.4(0.03) 7.3(0.03)
2.5 10.2(0.04) 7.8(0.03) 6.8(0.02) 6.2(0.02) 6.0(0.02)
3.0 9.3(0.03) 7.2(0.02) 6.1(0.02) 5.6(0.02) 5.3(0.02)

p=5 MCUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 239(1.82) 237(2.15) 212(2.00) 178(1.70) 144(1.40)
0.5 65.5(0.37) 64.3(0.43) 68.9(0.53) 78.4(0.70) 84.0(0.79)
1.0 34.0(0.15) 29.8(0.14) 27.9(0.14) 28.3(0.16) 30.3(0.20)
1.5 23.0(0.09) 19.2(0.08) 17.2(0.07) 16.5(0.07) 16.0(0.08)
2.0 17.6(0.06) 14.1(0.05) 12.4(0.05) 11.4(0.05) 10.8(0.04)
2.5 14.1(0.05) 11.3(0.04) 9.7(0.04) 8.8(0.03) 8.2(0.03)
3.0 11.9(0.04) 9.4(0.03) 8.0(0.03) 7.2(0.02) 6.7(0.02)

p=5 ARCUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 205(2.75) 198(2.34) 202(2.25) 197(2.10) 197(2.12)
0.5 121(1.15) 140(1.39) 141(1.43) 136(1.35) 137(1.36)
1.0 61.2(0.45) 87.3(0.83) 104(1.05) 106(1.10) 109(1.12)
1.5 46.1(0.28) 62.7(0.51) 87.4(0.87) 93.3(0.95) 90.6(0.96)
2.0 40.0(0.23) 52.2(0.38) 77.1(0.75) 87.2(0.89) 90.6(0.92)
2.5 37.7(0.20) 47.2(0.33) 70.0(0.68) 82.3(0.85) 86.3(0.87)
3.0 36.4(0.19) 45.8(0.30) 67.1(0.63) 80.2(0.83) 85.1(0.86)

p=5 ARCUSUM Last

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 205(2.74) 204(2.45) 203(2.31) 195(2.11) 199(2.11)
0.5 80.6(0.66) 99.9(0.90) 121(1.16) 137(1.34) 170(1.65)
1.0 27.2(0.16) 28.1(0.18) 30.5(0.21) 34.0(0.25) 38.6(0.31)
1.5 16.3(0.08) 15.5(0.08) 15.5(0.08) 16.1(0.09) 17.3(0.10)
2.0 12.4(0.05) 11.4(0.05) 11.1(0.05) 11.1(0.05) 11.5(0.06)
2.5 10.5(0.04) 9.5(0.04) 9.1(0.04) 9.0(0.04) 9.2(0.04)
3.0 9.4(0.04) 8.5(0.03) 8.2(0.03) 8.0(0.03) 8.1(0.03)
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Table B.3: Power Comparison for One Direction Location Shift: χ2
5,1

p=5 SS-CUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 199(1.65) 202(1.87) 196(1.87) 184(1.75) 172(1.67)
0.5 29.4(0.15) 28.1(0.17) 33.0(0.25) 42.2(0.36) 52.3(0.48)
1.0 15.2(0.06) 12.1(0.05) 11.3(0.05) 11.6(0.05) 12.8(0.07)
1.5 11.6(0.04) 8.9(0.03) 7.9(0.02) 7.3(0.02) 7.3(0.03)
2.0 10.1(0.03) 7.6(0.02) 6.6(0.02) 6.0(0.02) 5.8(0.02)
2.5 9.2(0.03) 7.0(0.02) 5.9(0.02) 5.4(0.01) 5.1(0.01)
3.0 8.7(0.03) 6.6(0.02) 5.6(0.01) 5.0(0.01) 4.7(0.01)

p=5 MCUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 207(1.48) 203(1.68) 189(1.69) 166(1.55) 133(1.27)
0.5 52.9(0.29) 48.1(0.31) 47.6(0.35) 50.9(0.42) 51.7(0.46)
1.0 27.3(0.12) 22.9(0.11) 20.8(0.11) 20.3(0.11) 19.9(0.12)
1.5 18.6(0.07) 15.0(0.06) 13.0(0.06) 12.3(0.06) 11.6(0.05)
2.0 14.0(0.05) 11.2(0.04) 9.7(0.04) 8.8(0.04) 8.1(0.03)
2.5 11.4(0.04) 9.0(0.03) 7.6(0.03) 6.8(0.03) 6.3(0.02)
3.0 9.6(0.03) 7.5(0.03) 6.3(0.02) 5.6(0.02) 5.1(0.02)

p=5 ARCUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 203(2.25) 202(2.18) 201(2.03) 198(2.00) 203(2.03)
0.5 47.6(0.26) 66.2(0.47) 96.7(0.92) 116(1.14) 117(1.16)
1.0 36.3(0.20) 44.3(0.29) 58.7(0.53) 68.0(0.68) 71.1(0.70)
1.5 36.1(0.20) 45.0(0.29) 59.9(0.54) 69.7(0.71) 71.3(0.71)
2.0 36.5(0.20) 44.8(0.29) 60.3(0.53) 68.8(0.69) 71.3(0.70)
2.5 36.0(0.20) 45.0(0.30) 59.2(0.53) 68.1(0.68) 70.4(0.70)
3.0 36.2(0.20) 44.8(0.29) 59.8(0.54) 67.4(0.67) 71.3(0.72)

p=5 ARCUSUM Last

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 198(2.86) 197(2.32) 205(2.30) 201(2.14) 200(2.07)
0.5 128(1.17) 128(1.20) 133(1.29) 139(1.39) 142(1.41)
1.0 22.8(0.12) 21.3(0.12) 21.8(0.14) 22.9(0.16) 23.5(0.18)
1.5 15.6(0.07) 13.9(0.07) 13.3(0.07) 13.2(0.08) 13.4(0.08)
2.0 12.2(0.05) 10.6(0.05) 9.9(0.05) 9.5(0.05) 9.5(0.03)
2.5 10.4(0.04) 8.9(0.04) 8.2(0.04) 7.8(0.03) 7.7(0.03)
3.0 9.2(0.04) 7.9(0.03) 7.3(0.03) 6.8(0.03) 6.7(0.03)
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Table B.4: Power Comparison for One Direction Location Shift: Gamma5,1

p=5 SS-CUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 201(1.63) 198(1.81) 197(1.89) 187(1.80) 183(1.77)
0.5 25.4(0.12) 22.8(0.12) 24.9(0.17) 30.3(0.24) 38.1(0.34)
1.0 13.5(0.05) 10.6(0.04) 9.5(0.03) 9.2(0.04) 9.7(0.05)
1.5 10.5(0.03) 8.0(0.02) 6.9(0.02) 6.3(0.02) 6.0(0.02)
2.0 9.2(0.03) 7.0(0.02) 6.0(0.02) 5.4(0.01) 5.0(0.01)
2.5 8.6(0.03) 6.5(0.02) 5.5(0.01) 4.9(0.01) 4.5(0.01)
3.0 8.2(0.03) 6.2(0.02) 5.3(0.01) 4.6(0.01) 4.3(0.01)

p=5 MCUSUM

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 200(1.40) 196(1.64) 182(1.61) 169(1.55) 141(1.34)
0.5 37.6(0.18) 31.9(0.18) 30.0(0.18) 30.4(0.21) 31.1(0.23)
1.0 19.3(0.08) 15.6(0.07) 13.5(0.06) 12.7(0.06) 11.9(0.06)
1.5 13.0(0.05) 10.4(0.04) 8.8(0.03) 8.0(0.03) 7.3(0.03)
2.0 9.9(0.03) 7.8(0.03) 6.6(0.02) 5.8(0.02) 5.3(0.02)
2.5 8.0(0.03) 6.3(0.02) 5.3(0.02) 4.7(0.02) 4.2(0.01)
3.0 6.7(0.02) 5.3(0.02) 4.4(0.01) 3.9(0.01) 3.5(0.01)

p=5 ARCUSUM First

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 203(2.65) 203(2.38) 201(2.18) 204(2.16) 200(2.13)
0.5 45.8(0.26) 68.9(0.54) 127(1.29) 178(1.87) 204(2.10)
1.0 33.3(0.17) 41.3(0.25) 68.2(0.59) 109(1.14) 128(1.35)
1.5 33.5(0.17) 41.3(0.26) 67.6(0.59) 107(1.14) 128(1.32)
2.0 33.3(0.17) 42.2(0.26) 67.9(0.58) 108(1.15) 128(1.33)
2.5 33.2(0.17) 41.3(0.25) 68.0(0.59) 107(1.12) 129(1.35)
3.0 33.5(0.17) 41.3(0.25) 68.1(0.59) 107(1.13) 129(1.33)

p=5 ARCUSUM Last

b k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5
0 201(2.77) 204(2.48) 197(2.17) 201(2.19) 198(2.10)
0.5 65.0(0.51) 70.6(0.61) 73.4(0.66) 81.5(0.76) 87.1(0.81)
1.0 17.1(0.08) 15.7(0.08) 15.4(0.09) 15.1(0.09) 15.6(0.10)
1.5 11.7(0.05) 10.3(0.05) 9.6(0.04) 9.3(0.04) 9.2(0.04)
2.0 9.5(0.04) 8.2(0.03) 7.5(0.03) 7.2(0.03) 7.0(0.03)
2.5 8.4(0.03) 7.2(0.03) 6.6(0.02) 6.3(0.02) 6.1(0.03)
3.0 7.8(0.03) 6.7(0.02) 6.1(0.02) 5.8(0.02) 5.6(0.03)

118



Appendix C

Derivations of eBLUPs for New

Subjects

We denote a new subject with s measurements observed at time points t =

(t1, · · · , ts)′ by y∗ = (y∗1, · · · , y∗s)′. Since we do not know his group label, we will mod-

ify the model (4.9) to

y∗j =

q∑
k=0

(βk + δkW + bk)Ψk(tj) + εj j = 1, · · · , s,

where W is a Bernoulli random variable with probability π being the prevalence proportion

of group 1. Define β = (β0, · · · , βq)′ and δ = (δ0, · · · , δq)′ as the fixed effects. Also Define

X∗ = (Ψ1, · · · ,Ψs)
′ and Z∗ =

[
X∗ X∗δ

]
, where Ψj = (Ψ0(tj),Ψ1(tj), · · · ,Ψq(tj))

′ is the

basis functions for the new patient at time j. Further define b∗ = (b0, b1, · · · , bq,W )′ as the

vector of random effects and ε∗ = (ε1, · · · , εs)′ as the random errors. Then the NME model
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for the new patient can be written as

y∗ = X∗β + Z∗b∗ + ε∗

If we write ỹ = (y′,y∗
′
)′, then the BLUP of ω = (β0+δ0W+b0, · · · , βq+δqW+bq)

′

can be expressed as

µω + V′ỹωV−1ỹỹ(ỹ − µỹ),

where µω is the mean of ω, Vỹω is the covariance matrix of (ỹ,ω), Vỹỹ is the variance of

ỹ, and µỹ is the mean of ỹ. It is not difficult to find µω, Vỹω, Vỹỹ, and µỹ, and plug them

into the above equation to obtain BLUP of ω. Then by substituting elements of β and δ

by their eBLUPs obtained in the training sample (which are elements of γ̂ and are denoted

by β̂ and δ̂, respectively) and replacing D and σ2e by their maximum likelihood estimates

(denoted by D̂ and σ̂2e , respectively), one can obtain the eBLUPs of ω as

β̂ + πδ̂ +
{

X∗D̂ + π(1− π)X∗δ̂δ̂
′}′ (

Z∗Λ̂Z∗
′
+ σ̂2eIs

)−1 {
y∗ −X∗β̂ − Z∗π

}
,

where Λ̂ =

D̂ 0

0 π(1− π)

, and π is a (q + 2)-demensional vector with the first q + 1

elements as 0 and the last element as π.

The eBLUPs under the LME model can be derived similarly as under the NME

model. We only need to redefine X∗ =

[
1s t

]
, where 1s is a vector of s ones and t =

(t1, · · · , ts)′, and set q = 1. By following the same steps as above, one can easily show that

the eBLUPs of (β0 + δ0W + b0, β1 + δqW + b1)
′ (denoted by (α̂∗0, α̂

∗
1)
′) is equal to (4.7).
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Appendix D

Mixed Effects Model Based

Logistic Regression Classifier

Performance Evaluation

As we discussed in Section 4.2.1, the mixed effects model could overcome the

difficulties that are often encountered in longitudinal data analysis, such as missing values

and irregularly sampled data. Therefore, for longitudinal data classification, we propose to

fit a mixed effects model to the longitudinal data and extract the subject-specific random

effects which are used as features in the LR model. In this Appendix, we first use a simple

example to theoretically demonstrate the advantage of the mixed effects model based LR

procedure. Then simulation results are shown to compare the proposed method to the

traditional observation based LR classifier. The comparisons are based on misclassification

error rate (MER).

121



D.1 Motivation

In this section, we discuss the motivation of utilizing the subject-specific random

effects extracted from LME model for classification instead of using the original observations

directly. Assume that the data come from an LME model as we introduced in (4.3). Also

assume that we know the true values of fixed and random effects. If we use the subject-

specific intercept and slope as a feature vector for classification, we might expect a lower

Misclassification Error Rate (MER) than using the original observations. This intuition is

based on the observation that the variation in the original observations comes from both

random effects and random error, and therefore is larger than the variation in random effects

themselves. In the following we use a simple example to show this conjecture is true.

Suppose the data come from (4.3). For simplicity, we further assume that the

measurements for all subjects are taken at the same n time points, as in the sepsis example.

Denote the design matrix as Xi = (1n, tn), the common fixed effects for both groups as

β = (β0, β1)
′, the offsets of group 1 from group 0 as δ = (δ0, δ1)

′, and random effects as

bi = (b0i, b1i)
′. Also assume that the random effects follow a bivariate normal distribution,

bi ∼ N(0,D), where D =

σ20 0

0 σ21

, and εi ∼ N(0, σ2eI). Then the optimal MER using

true subject-specific intercept and slope as features can be calculated as

MER1 = Φ(−∆

2
)

where Φ(·) is the cumulative distribution function of a standard normal distribution, and

∆2 = (µ1 − µ0)
′D−1(µ1 − µ0) with µ0 = β and µ1 = β + δ. After some simple algebra,

one obtains that ∆2 =
δ20
σ2
0

+
δ21
σ2
1
.
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On the other hand, if we use the original observations Yi for classification, the

optimal MER can be calculated as

MER2 = Φ(−∆∗

2
)

where

∆∗2 = (µ∗1 − µ∗0)′W−1(µ∗1 − µ∗0) (D.1)

with µ∗0 = Xiβ and µ∗1 = Xi(β + δ) as the population means for group 0 and group

1, respectively, and W = XiDX′i + σ2eI as the population covariance matrix. We write

R = σ2eI, and the inverse of W can be expressed as

W−1 = R−1 −R−1XD(D + DX
′
R−1XD)−1DX

′
R−1

After some algebra, we are able to find that

∆∗2 =
1

C
((nσ21

n∑
i=1

t2i+nσ
2
e−σ21(

n∑
i=1

ti)
2)δ20+2σ2e

n∑
i=1

tiδ0δ1+(nσ20

n∑
i=1

t2i+σ
2
e

n∑
i=1

t2i−σ20(
n∑
i=1

ti)
2)δ21)

where C = (nσ20 + σ2e)(σ
2
1

∑n
i=1 t

2
i + σ2e) − σ20σ21(

∑n
i=1 ti)

2. Therefore, to compare MER1

and MER2, we need to compare ∆2 and ∆∗2. Since Φ(·) is a monotonically increasing

function, to prove that MER1 < MER2, it suffices to show ∆2 > ∆∗2.

∆2 > ∆∗2

⇐⇒ σ41

n∑
i=1

t2i δ
2
0 + σ21σ

2
eδ

2
0 + nσ40δ

2
1 + σ20σ

2
eδ

2
1 − 2σ20σ

2
1(

n∑
i=1

ti)δ0δ1 > 0

⇐⇒ σ41δ
2
0t
′
ntn + σ40δ

2
11
′
n1n − 2σ20σ

2
1δ0δ11

′
ntn + σ2e(σ

2
0δ

2
1 + σ21δ

2
0) > 0

⇐⇒ (σ21δ0tn − σ0δ11)
′
(σ21δ0tn − σ0δ11) + a > 0

⇐⇒ λ
′
λ+ a > 0
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Since a = σ2e(σ
2
0δ

2
1 + σ21δ

2
0) > 0, it follows that ∆2 > ∆∗2, and thereby MER1 <

MER2. Consequently, we can see that if the subject-specific intercept and slope are avail-

able, using them as the feature vector in a classifier would lead to a better performance

than using the original measurements.

D.2 MER Comparison

D.2.1 LME Model Based Classification

In this section, we compare the performance of the LME model based LR classifier

with the original observation based LR classifier with respect to MER. The data we use

here are the same as the ones we generated in Section 4.3 for LME model performance

evaluation.

We implement the LME based LR classifier as in Sections 4.2.2. For the original

observation based method, we use mean imputation to fill in the missing values. We find the

group sample mean for each time point, and substitute the missing value at that time point

with the corresponding sample mean. Then for time point t, we can use all the observations

up to time t in the training sample to build an LR classifier. For the testing sample, we use

the original observations as the feature vector and predict on the group label based on the

built classifier. The performance of the two classifiers are compared based on MER, which

indicates how many mistakes we make on predicting group labels for test set based on the

classifiers we built. We run the simulation 100 times, and get 100 MERs for each of the

classifiers.
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Figure D.1: MER Comparison for the LME based Classifiers and the Original Observation

based Classifiers for V-shape. σ20 = 0.6, σ21 = 0.4, and σ2e = 0.2
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Figure D.2: MER Comparison for the LME based Classifiers and the Original Observation

based Classifiers for reverse V-shape. σ20 = 0.6, σ21 = 0.4, and σ2e = 0.2
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Figure D.3: MER Comparison for the LME based Classifiers and the Original Observation

based Classifiers for X-shape. σ20 = 0.6, σ21 = 0.4, and σ2e = 0.2
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Figures D.1, D.2, and D.3 show the results on comparisons of MERs for the two

classifiers. In each of the figures, there are six plots, corresponding to the six time points

except for time point 1. And for each of the plot, there are two boxplots, corresponding

to LME model based LR (“LME LR”) and original observation based LR (“All Obs LR”),

respectively. The results shown in the figures are all based on one simulation setting where

σ20 = 0.6, σ21 = 0.4, and σ2e = 0.2. The results from other simulation settings are similar

to the results shown. From the figures we can see that MERs for LME based method get

smaller rapidly as time goes by. This is intuitive since the classifiers are able to use more

information at a later time point. However, the MERs for observation based method do

not decrease as fast. As a result, the LME based LR classifier has a much lower MER than

original observation based LR classifier at later time points. And the difference margin gets

larger as more time points are considered. This is due to the fact that under MAR missing

mechanism, LME based method is robust while method based on observation with mean

imputation is not. At a later time point, more missing values are introduced. Hence mean

imputation introduces more biases to observation based method, and ultimately distorts its

performance.

D.2.2 NME Model Based Classification

In this section, we compare the performance of the NME model based LR classifier

and the original observation based LR model based on MER. We use the data simulated in

Section 4.3 for NME model performance evaluation.

The implementation of the NME model based LR classifier is introduced in Section
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4.2.2. We use B-spline basis functions with q = 3 to fit the NME model. For the observation

based method, the implementation is exactly the same as in section D.2.1. Figure D.4 shows

the comparison between the NME model based LR and observation based LR using σ2 = 4.

Other simulation settings would give similar results. From the figure we can see that the

result is quite like what we’ve observed in Section D.2.1. The NME model based LR

performs much better than observation based method. The advantage gets larger as time

points increases, since more missing values are included.

Through our simulation study we were able to show that the mixed effects model

based LR classifier is compared favorably to the conventional method which uses the original

observations as feature vectors.
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Figure D.4: MER Comparison for the NME based Classifier and the Original Observation

based Classifier for σ2 = 4
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