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Abstract

On the infinity Laplacian and Hrushovski’s fusion

by

Charles Krug Smart

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lawrence C. Evans, Co-chair

Professor Leo A. Harrington, Co-chair

We study viscosity solutions of the partial differential equation

−∆∞u = f in U,

where U ⊆ Rn is bounded and open, f ∈ C(U) ∩ L∞(U), and

∆∞u := |Du|−2
∑
ij

uxiuxiuxixj

is the infinity Laplacian.
Our first result is the Max-Ball Theorem, which states that if u ∈ USC(U) is a viscosity

subsolution of
−∆∞u ≤ f in U

and ε > 0, then the function v(x) := maxB̄(x,ε) u satisfies

2v(x)− max
B̄(x,ε)

v − min
B̄(x,ε)

v ≤ max
B̄(x,2ε)

f,

for all x ∈ U2ε := {x ∈ U : dist(x, ∂U) > 2ε}. The left-hand side of this latter inequality
is a monotone finite difference scheme that is comparatively easy to analyze. The Max-Ball
Theorem allows us to lift results for this finite difference scheme to the continuum equation.
In particular, we obtain a new proof of uniqueness of viscosity solutions to the Dirichlet
problem when f ≡ 0, inf f > 0, or sup f < 0. The results mentioned so far are joint work
with S. Armstrong.

The Max-Ball Theorem is also useful in the analysis of numerical methods for the infinity
Laplacian. We obtain a rate of convergence for the numerical method of Oberman [32]. We
also present a new adaptive finite difference scheme.
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We also prove some results in Model Theory. We study rank-preserving interpretations
of theories of finite Morley rank in strongly minimal sets. In particular, we partially answer
a question posed by Hasson [20], showing that definable degree is not necessary for such
interpretations. We generalize Ziegler’s fusion of structures of finite Morley rank [38] to a
class of theories without definable degree. Our main combinatorial lemma also allows us to
repair a mistake in [23].
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Chapter 1

Overview

This thesis comprises two disjoint parts. Chapters 2 and 3 study a problem in nonlinear
partial differential equations and Chapter 4 studies a problem mathematical logic. This
strange state of affairs reflects the unusual path of the author in graduate school. He initially
studied model theory with Leo Harrington, but then switched to studying partial differential
equations with Lawrence C. Evans. As both stages were important to the author’s career,
they are both represented here.

1.1 The infinity Laplacian

The archetypical problem in the L∞ Calculus of Variations is to find a minimizer of the
functional

Lip(u, U) := sup
x,y∈U
x 6=y

u(x)− u(y)

|x− y|
,

subject to u = g on ∂U , where U ⊆ Rn is bounded and open and g ∈ C(∂U) satisfies
Lip(g, ∂U) < ∞. A classical theorem of Kirszbraun [28] implies that g has a least one
extension u ∈ C(Ū) that satisfies

Lip(u, Ū) = Lip(g, ∂U).

In fact, there are infinitely many such extensions in general [30, 36]. To obtain a uniquely
optimal extension, we look for an extension u ∈ C(Ū) that is absolutely minimizing Lipschitz.
That is, it satisfies

Lip(u, V̄ ) = Lip(u, ∂V ) for every open V ⊂⊂ U.

It is known [10] that a function u ∈ C(U) is absolutely minimizing Lipschitz if and only if it
is infinity harmonic. That is, a viscosity solution (see Chapter 2) of the partial differential
equation

−∆∞u = 0 in U,
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where
∆∞u := |Du|−2

∑
ij

uxiuxjuxixj

is the infinity Laplacian.
Infinity harmonic extensions were first studied by Aronsson [5]. Existence and uniqueness

appeared ten years later in a famous paper of Jensen [27]. Aronsson’s famous example,

u(x, y) := |x|4/3 − |y|4/3,

of an infinity harmonic function on R2 showed that C1,α is the best regularity one could
hope for. Evans and Savin [17] proved that every infinity harmonic function on R2 is C1,α

loc .
Recently, Evans and the author [15, 14] showed everywhere differentiability in higher dimen-
sions.

Chapters 2 and 3 concern new techniques for the basic existence and uniqueness theory
of infinity harmonic functions. The most significant is the Max-Ball Theorem, which states
that if u ∈ C(U) is a subsolution of

(1.1.1) −∆∞u ≤ 0 in U

and we define
v(x) := max

|y−x|≤ε
u(y),

then

(1.1.2) 2v(x)− max
|y−x|≤ε

v(y)− min
|y−x|≤ε

v(y) ≤ 0,

for all x ∈ U2ε := {x ∈ U : dist(x, ∂U) > 2ε}. Informally, subsolutions of (1.1.1) perturb to
subsolutions of the finite difference scheme (1.1.2). The idea for this theorem was derived
from a paper by Peres, Schramm, Sheffield, and Wilson [34], who studied a two-player
random-turn game called tug-of-war.

We use the Max-Ball Theorem in several applications. Among these are a new proof of
uniqueness of infinity harmonic extensions, a rate-of-convergence analysis for Oberman’s [32]
numerical scheme for the infinity Laplacian, and a new adaptive finite difference scheme.

We remark that the results in Chapter 2, with the exception of the graph-theoretic
interpretation in Section 2.6 and Proposition 2.7.2 are joint work with S. Armstrong. Indeed,
the author has collaborated with a number people on “max-ball” projects [3, 4, 1]. We give
here a new presentation of the highlights of [2] together with a number of new applications.

1.2 Rank preserving interpretations

A great deal of the progress in model theory in the last thirty years was made in an
attempt to classify all strongly minimal theories. It was famously conjectured by Zilber
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that there were only three kinds of strongly minimal theories: trivial, vector space-like, and
field-like. This idea was put to rest by Hrushovski [26], who constructed a strongly minimal
theory that did not fit into the above classification. Since then, Hrushovski’s proof technique
has been adapted to produce more theories with a host of interesting properties [21].

Using Hrushovski’s techniques, Hasson proved [20] that every complete first-order theory
with finite definable Morley rank and Morley degree has a rank preserving interpretation in
a strongly minimal set. He also proved a partial converse, showing that every theory that
admits an interpretation (not necessarily rank preserving) in a strongly minimal set has finite
definable Morley rank and definably bounded Morley degree. This left open the question of
how much definable degree one needs to build a rank-preserving interpretation in a strongly
minimal theory.

In Chapter 4, we show that definable degree is not necessary. Unfortunately, we do not
show that definably bounded degree is sufficient. Instead, we show that a class of theories
derived from a test case proposed by Hasson [20] admit such interpretations. We actually
prove something slightly more general. We show that every pair of theories in our class
have a fusion. A result of Ziegler [38] then implies that all theories in our class have a rank
preserving interpretation in a strongly minimal set.

We also correct an error in the amalgamation construction of [23]. There, Remark 1.7
states that there are 2co(B

′/A′) atomic types extending atpS(B′, A′)∪atpL(A′). This is indeed
the case. However, some may conflict with the earlier multiplicity rules and therefore are
not admissible. Worse, the total number of admissible extensions may not be a power of 2.
In particular, the theory Tµ defined by Hasson and Hrushovski is not consistent. Fixing this
requires a definable way of detecting the number of admissible extensions. This is provided
by the main combinatorial lemma in Chapter 4.
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Chapter 2

The Max-Ball Theorem and some
applications

This chapter concerns viscosity solutions of the boundary value problem

(2.0.1)

{
−∆∞u = f in U,

u = g on ∂U,

where U ⊆ Rn is a bounded and open set, f ∈ C(U) ∩ L∞(U), g ∈ C(∂U), and

∆∞u := |Du|−2
∑
ij

uxiuxjuxixj

is the infinity Laplacian. See Crandall [10] for an introduction to the theory of this equation.
Our main result is the Max-Ball Theorem, which states that subsolutions of (2.0.1)

perturb to subsolutions of a certain finite difference scheme. The finite difference scheme is
comparatively easy to analyze, and we use the Max-Ball Theorem to transfer the results of
this analysis back to the continuum equation. Notably, we obtain a new proof of uniqueness
of viscosity solutions of (2.0.1) when f < 0, f > 0, or f ≡ 0. Our proof is remarkable
in that it is completely elementary. In particular, it avoids Alexandrov’s theorem on the
almost everywhere twice differentiability of convex functions used in [7, 6, 27, 11] and the
probabilistic arguments of [34].

Using additional analysis of the finite difference scheme, we obtain an estimate on how
the solution of (2.0.1) changes as the right-hand side varies. We also obtain a proof of
convergence for the finite difference scheme that is stronger than what the famous theorem
of Barles and Souganidis [8] on monotone schemes provides.

Also important is our graph-theoretic interpretation of the finite difference scheme in
Section 2.6. Here we translate the ideas of [34] and [2] into a language suitable for the analysis
of finite difference schemes in Chapter 3. These graph-theoretic ideas and Proposition 2.7.2
are the only parts of this chapter that are not joint work with S. Armstrong.
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2.1 Preliminaries

Throughout this chapter U , f , and g will be as above unless otherwise stated. We let
Ck(U), USC(U), LSC(U) and L∞(U) denote respectively the k-times continuously differ-
entiable, upper semiconintuous, lower semincontinuous, and bounded measurable functions
on U . We write Ū for the closure of U and ∂U := Ū \ U for the boundary of U . We write
|x| for the Euclidean norm of a point x ∈ Rm. If u ∈ C1(U) and x ∈ U , then Du(x) ∈ Rn
denotes the gradient of u at x. If u ∈ C2(U), then D2u(x) ∈ Sn denotes the n×n symmetric
matrix of second derivatives at x.

We recall the notion of viscosity solution [12]. Given an upper semicontinuous function
u ∈ USC(U) and a function f : U → R, we say that the differential inequality

(2.1.1) −∆∞u ≤ f in U

holds in the viscosity sense if and only if the following condition holds.

(2.1.2)
If ϕ ∈ C∞(U) and x 7→ (u− ϕ)(x) has a strict local
maximum at y ∈ U , then −∆+

∞ϕ(x) ≤ f(x).

Here we have used the notation

(2.1.3) ∆+
∞ϕ(x) :=

{
∆∞ϕ(x) if Dϕ(x) 6= 0,

max|v|=1〈D2ϕ(x)v, v〉 if Dϕ(x) = 0,

which is necessary since ∆∞ϕ may not be everywhere defined.
We call a function u ∈ USC(U) that satisfies (2.1.1) a subsolution of −∆∞u = f .

Negating u and f , we obtain the dual notion of supersolution. That is, v ∈ LSC(U) is a
supersolution of −∆∞v = f if and only if u := −v is a subsolution of −∆∞u = f .

A viscosity solution of (2.0.1) is a function u ∈ C(Ū) that satisfies u = g on ∂U and is
both a viscosity subsolution and a viscosity supersolution of −∆∞u = f in U .

Remark 2.1.1. We drop the word viscosity in the sequel and assume that differential in-
equalities are to be interpreted in the viscosity sense. We also note that the symmetry
between the notion of subsolution and supersolution allows the transfer of many results. We
often use the symmetric versions of results without further comment in the sequel.

2.2 The Max-Ball Theorem

2.2.1 The finite difference infinity Laplacian

Given a bounded function u : U → R and ε > 0, we define the functions T εu : Uε → R
and Tεu : Uε → R by

(2.2.1) T εu(x) := sup
B̄(x,ε)

u
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and

(2.2.2) Tεu(x) := inf
B̄(x,ε)

u,

where
Uε := {x ∈ U : dist(x, ∂U) > ε}.

We then define S+
ε u, S

−
ε u,∆

ε
∞u : Uε → R by

S−ε u =
1

ε
(u− Tεu),

S+
ε u =

1

ε
(T εu− u),

and

(2.2.3) −∆ε
∞u :=

1

ε
(S−ε u− S+

ε u) =
1

ε2
(2u− T εu− Tεu).

We call ∆ε
∞ the finite difference infinity Laplacian.

2.2.2 Comparison with cones

The first step in the proof of the Max-Ball Theorem is the following comparison with
cones lemma. The idea, originating in [27], is that one can restrict the test functions in
the definition of viscosity solution to cones. We prove something slightly stronger than
is necessary for the sequel. The proof is elementary and uses an interesting perturbation
argument to handle the gradient zero case.

Lemma 2.2.1. Suppose U ⊆ Rn is bounded and open, c ∈ R, and u ∈ USC(Ū) satisfies

−∆∞u ≤ c in U.

If ϕ ∈ C(Ū) ∩ C∞(U) is given by

(2.2.4) ϕ(x) := a|x− x0| −
c

2
|x− x0|2,

for some a ∈ R and x0 ∈ R2, then

(2.2.5) max
Ū

(u− ϕ) = max
∂U

(u− ϕ).
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Proof. Suppose first that x0 ∈ U . In this case ϕ ∈ C∞(U) implies that a = 0. If (2.2.5)
fails, then by continuity we may select a small ε > 0 and a y0 ∈ U such that

(u− ψ)(y0) = max
Ū

(u− ψ) > max
∂U

(u− ψ),

where
ψ(x) := ϕ(x)− ε

2
|x− x0|2.

The definition of subsolution then yields

c+ ε = −∆∞ψ(y0) ≤ c,

a contradiction.
Now suppose x0 /∈ U and (2.2.5) fails. We may again select ε > 0, y0 ∈ U , and ψ as

above. We may assume that ε < |c| if c 6= 0. Now, if c ≤ 0 or Dψ(y0) 6= 0, then we again
compute

−∆+
∞u(y0) ≥ −max{0, c+ ε} > c.

Thus we need only worry about the case c > 0 and Dψ(y0) = 0. Note that Dψ(y0) = 0
implies that |y0 − x0| = r := a/(c+ ε) > 0.

Consider the functions

ψ1(x) = ψ(x)− ε||x− x0| − r|,

and
ψ2(x) = ψ(x)− ε||x− x0| − r − ε|+ aε2.

Assuming ε > 0 is small enough, we still have

max
Ū

(u− ψi) > max
∂U

(u− ψi),

for i = 1, 2. Observe that ψ1 ≤ ψ2 and that ψ1(x) = ψ2(x) when |x− x0| ≤ r.
Select y0 ∈ U such that (u − ψ1)(y0) = maxŪ(u − ψ1). If |y0 − x0| 6= r, then we again

compute
c+ ε = −∆∞ψ1(y0) ≤ c.

On the other hand, if |y0 − x0| = r, then we in fact have (u− ψ2)(y0) = maxŪ(u− ψ2) and
compute

c+ ε = −∆∞ψ2(y0) ≤ c.

Thus we have a contradiction in either case.
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2.2.3 Slope estimates

The next step in the proof the max-ball theorem is the following slope estimates. Again,
we prove more than is strictly necessary. These are a natural generalization of the slope
estimates in [9, 10], adapted to the case of non-zero right-hand side.

If a function u : U → R is locally Lipschitz and x ∈ U , we define Lu : U → R by

Lu(x) := inf
r→0

Lip(u,B(0, r)).

Observe that if u ∈ C1(U), then Lu = |Du|. We use Lu instead of |Du| because it is upper
semicontinuous and everywhere defined. In fact, the two are equal by a new result of the
Evans and the author [15].

Lemma 2.2.2. Suppose u ∈ USC(U) satisfies

−∆∞u ≤ c in U,

for some c ∈ R. If B̄(x, ε) ⊆ U and y ∈ B̄(x, ε) satisfies u(y) = maxB̄(x,ε) u, then

(2.2.6) Lu(x) ≤ S+
ε u(x) +

c

2
ε

and

(2.2.7) Lu(y) ≥ S+
ε u(x)− c

2
ε.

In particular, u is locally Lipschitz.

Proof. Given z ∈ B(x, ε), define

ϕz(w) := u(z) +

(
u(y)− u(z)

ε− |x− z|
+
c

2
(ε+ |x− z|)

)
|w − z| − c

2
|w − z|2,

and observe by Lemma 2.2.1 that ϕz ≥ u on B̄(x, ε). In particular, if w ∈ B(x, ε), then

u(w) ≤ u(z) +

(
u(y)− u(z)

ε− |x− z|
+
c

2
(ε+ |x− z|)

)
|w − z| − c

2
|w − z|2.

This rearranges to

u(w)− u(z)

|w − z|
≤
(
u(y)− u(z)

ε− |x− z|
+
c

2
(ε+ |x− z|)

)
− c

2
|w − z|.

Now, if z ∈ B(x, ε/2), then u(x) ≤ φz(x) and u(z) ≤ u(y) together imply that |u(z)| ≤ C
for some constant C > 0. Thus

u(y)− u(z)

ε− |x− z|
≤ u(y)− u(z)

ε
+ C|x− z| = S+

ε u(x) + C|x− z|.
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Thus we obtain

u(w)− u(z)

|w − z|
≤ S+

ε u(x) +
c

2
ε+ C max{|w − x|, |z − x|},

for all w, z ∈ B(x, ε/2). This implies

Lip(u,B(x, δ)) ≤ S+
ε u(x) +

c

2
ε+ Cδ,

for all δ > 0. Sending δ → 0 gives (2.2.6).
To prove (2.2.7), we may assume that the right-hand side is positive. In particular,

z 7→ ϕx(z) is increasing in |z| when |z| = 1.
We claim that y ∈ ∂B(x, ε). If c ≥ 0 this is obvious because u(y) = ϕx(z) implies

|z − x| = ε. When c < 0, use Lemma 2.2.1 to obtain

max
|z−x|≤ε

(u(z) +
c

2
|z − x|2) = max

|z−x|=ε
(u(z) +

c

2
|z − x|2).

From this it follows that u(z) < max∂B(x,ε) u for all z ∈ B(x, ε).
Now consider the maps f, g : (0, dist(x, ∂U))→ R given by

f(t) := u(x+ ε−1(y − x)t) and g(t) := ϕ(x+ ε−1(y − x)t).

Since f(t) ≤ g(t) on (0, ε] and f(ε) = g(ε), we have

Lu(y) ≥ Lf(ε) ≥ Lg(ε) ≥ S+
ε u(x)− c

2
ε,

which is precisely (2.2.7).

2.2.4 Statement and proof of the Max-Ball Theorem

We are now ready to state and prove the max-ball theorem. The proof is a nearly trivial
consequence of the slope estimates above.

Theorem 2.2.3 (Max-Ball Theorem). If U ⊆ Rn is bounded open, f : U → R is bounded,
and u ∈ USC(U) satisfies

−∆∞u ≤ f in U,

then uε ∈ USC(Uε) satisfies

−∆ε
∞T

εu ≤ T 2εf in U2ε.
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Proof. Choose and arbitrary x ∈ U2ε and then select y ∈ B̄(x, ε) and z ∈ B̄(x, ε) such that
u(y) = T εu(x) and u(z) = T εu(y). The slope estimates (2.2.6) and (2.2.7) give

u(y)− u(x) ≤ εLu(y)− ε2

2
T 2εf(x)

and

u(z)− u(y) ≥ εLu(y) +
ε2

2
T 2εf(x).

Since TεT
εu(x) ≥ u(x), we compute

−ε2∆ε
∞T

εu(x) = (T εu(x)− TεT εu(x))− (T 2εu(x)− T εu(x))

≤ (u(y)− u(x))− (u(z)− u(y))

= ε2T 2εf(x).

Now divide by ε2.

2.3 Le Gruyer’s comparison argument

Part of what gives the Max-Ball theorem its power is that the finite difference infinity
Laplacian is a particularly easy to analyze. As a first example of this phenomenon, we give an
easy proof of comparison. This proof technique is originally due to Le Gruyer [29], although
our comparison result is stronger.

If U ⊆ Rn is bounded and open and u ∈ USC(U), then an ε-thick local maximum of u
in U is a closed set F ⊆ Uε such that u is constant on F and

(2.3.1) u(y) < u(F ) for every y ∈ U \ F such that dist(y, F ) ≤ ε.

Symmetrically, an ε-thick local minimum of a function v ∈ LSC(U) is an ε-thick local
maximum of −v.

Lemma 2.3.1. Suppose ε > 0 and u,−v ∈ USC(U) satisfy

(2.3.2) −∆ε
∞u ≤ −∆ε

∞v in Uε.

If u has no ε-thick local maximum in U , then

(2.3.3) sup
U

(u− v) = sup
U\Uε

(u− v).

Proof. Suppose for contradiction that (2.3.3) fails. In this case, supU(u− v) <∞. Define

E := {x ∈ U : (u− v)(x) = sup
U

(u− v)},
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and
F := {x ∈ E : u(x) = max

E
u}.

Observe that E ⊆ Uε is closed and non-empty by the upper semicontinuity of u−v. Therefore
the definition of F makes sense. We claim that F is an ε-thick local maximum of u in U .

To check (2.3.1), suppose for condradiction that there is a y ∈ U \F such that |y−x| ≤ ε
for some x ∈ F and u(y) ≥ u(F ). Observe that if z ∈ B̄(x, ε) and u(z) > u(y) then z /∈ F .
Thus, possibly selecting a different y, we may assume that

εS+u(x) = u(y)− u(x).

Since u(y) ≥ maxE u and y /∈ F , we must have y /∈ E. Thus u(y)− v(y) < u(x)− v(y) and
we compute

εS+u(x) = u(y)− u(x) < v(y)− v(x) ≤ εS+v(x).

However, the definition of x ∈ E implies that

S−ε u(x) ≥ S−ε v(x),

so we have −∆ε
∞u(x) > −∆ε

∞v(x), contradicting (2.3.2).

It is useful to state a weaker comparison result that avoids the additional distraction of
the ε-thick local maxima.

Lemma 2.3.2. If ε > 0, u,−v ∈ USC(U), and either

−∆ε
∞u < −∆ε

∞v in Uε,

or
−∆ε

∞u ≤ min{0,−∆ε
∞v} in Uε,

then

(2.3.4) sup
U

(u− v) = sup
U\Uε

(u− v).

Proof. In the case of strict inequality, suppose there is an x ∈ Uε such that

(u− v)(x) = sup
U

(u− v).

The above equality immediately implies

S+
ε u(x) ≤ S+

ε v(x) and S−ε u(x) ≥ S−ε v(x),

which contradicts −∆ε
∞u(x) < −∆ε

∞v(x).
Otherwise, we note that u can not have an ε-thick local maximum and apply Lemma

2.3.1. Indeed, if F ⊆ Uε were an ε-thick local maximum and x ∈ ∂F , then we would have

S+u(x) = 0 and S−u(x) > 0,

and therefore −∆ε
∞u(x) > 0.
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2.4 Uniqueness of viscosity solutions

Using the max-ball theorem together with Le Gruyer’s argument, we easily obtain a
comparison result for viscosity solutions.

Theorem 2.4.1. Suppose u,−v ∈ USC(Ū) satisfy

(2.4.1) −∆∞u ≤ f ≤ g ≤ −∆∞v in U,

for some f, g ∈ C(U) ∩ L∞(U). If either f < g, f ≡ 0, f < 0, or g > 0, then

(2.4.2) sup
U

(u− v) = sup
∂U

(u− v).

Proof. First observe that if (2.4.2) fails, then by the upper semicontinuity of u − v it still
fails if we replace U with Uε for some small ε > 0. In particular, we may assume that f and g
are uniformly continuous and that either supU(f − g) < 0, f ≡ 0, supU f < 0, or infU g > 0.

If supU(f − g) < 0, then Theorem 2.2.3 gives

−∆∞T
εu ≤ T 2εf in U2ε,

and
−∆∞Tεv ≥ T2εg in U2ε,

By uniform continuity, we have

T 2εf < T2εg in U2ε,

for all sufficiently small ε > 0. Thus Lemma 2.3.2 implies that

sup
Uε

(T εu− Tεv) = sup
Uε\U2ε

(T εu− Tεv),

for all sufficiently small ε > 0. Sending ε→ 0 yields (2.4.2).
When f ≡ 0, then Theorem 2.2.3 gives

−∆∞T
εu ≤ 0 ≤ −∆∞Tεv in U2ε.

Thus Lemma 2.3.2 yields

sup
Uε

(T εu− Tεv) = sup
Uε\U2ε

(T εu− Tεv),

and sending ε→ 0 yields (2.4.2).
When supU f < 0, we replace u with (1 + ε)u for some small ε > 0. Since the infinity

Laplacian is 1-homogeneous, we obtain −∆∞((1 + ε)u) ≤ (1 + ε)f < g. Thus (2.4.2) follows
as above. When infU g > 0 we replace v with (1 + ε)v.

Corollary 2.4.2. If satisfies either f ≡ 0, sup f < 0, or inf f > 0, then (2.0.1) has at most
one viscosity solution.
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2.5 Convergence

As a second application of the max-ball theorem, we prove a convergence result. This
result is interesting because it works in the absence of a comparison principal for the lim-
iting equation. In particular, this result is not implied by the famous result of Barles and
Souganidis [8] on monotone finite difference schemes for second-order equations. In fact,
one can use this result to prove existence and stability of solutions for (2.0.1) for arbitrary
f ∈ C(U) ∩ L∞(U), although we do not do that here. See [2] for more details.

The proof uses a perturbed test function argument [16]. That is, when u− ϕ attains its
maximum at x0, we use the Max-Ball Theorem to deduce things about Tεϕ and then send
ε→ 0.

Theorem 2.5.1. Suppose for each n > 0 that εn > 0 and un : U → R are bounded and
satisfy

−∆εn
∞un ≤ f in Uε,

for some f ∈ C(U) ∩ L∞(U). If εn → 0 and un → u ∈ C(U) as n→∞, then

−∆∞u ≤ f in U.

Proof. Suppose ϕ ∈ C∞(U) is a smooth test function and the map x 7→ (u − ϕ)(x) has a
strict maximum in U at some point y ∈ U .

Since ϕ is smooth, we have

−∆∞ϕ ≥ −∆+
∞ϕ in U,

in the sense of viscosity. Therefore Theorem 2.2.3 implies

−∆ε
∞Tεϕ ≥ T2ε(−∆+

∞ϕ) in U2ε,

for every ε > 0.
Since u− ϕ has a strict maximum at y, we know that the function un − Tεnϕ attains its

maximum on Uεn near y for all sufficiently large n. Thus we may select points yn ∈ Uεn such
that

(un − Tεnϕ)(yn) = sup
Uεn

(un − Tεnϕ).

This equality immediately implies that

−∆εn
∞un(yn) ≥ −∆εn

∞Tεnϕ(yn).

Note also that yn → y as n→∞.
Stringing our inequalities together, we obtain

T2ε(−∆+
∞ϕ)(yn) ≤ f(yn),

for all large n > 0. Since yn → y and −∆+
∞ϕ is lower semicontinuous, we may send n→∞

and obtain −∆+
∞ϕ(y) ≤ f(y).



14

2.6 Graph-theoretic results

A graph-theoretic abstraction of the finite difference infinity Laplacian (2.2.3) is useful
for the purposes of numerical approximation. It permits a certain uniformity of presentation
in the sequel. We remark that this section is an analytic translation of the game-theoretic
ideas of Peres, Schramm, Sheffield, and Wilson [34]. In particular, none of these results are
new. It is the presentation and language that is different. Most interesting is Lemma 2.6.3
which makes clear the fact that the patching theorem of Crandall, Gunnarsson and Wang
[11] and the backtracking strategy of [34] are actually the same idea.

Let G := (X,E, Y ) denote a finite diameter graph with vertex set X, edge set E, and
a distinguished non-empty set of boundary vertices Y ⊆ X. Recall that a path of length m
in G is a tuple of vertices (z0, ..., zm) ∈ Xm+1 such that zi ∼E zi+1 for i = 0, ...,m− 1. Our
assumption that G has finite diameter means that there is an M < ∞ such that for every
pair of vertices x, y ∈ X there a path (x, z1, ..., zm−1, y) in G of length m ≤M .

Given a bounded function u : X → R, we define the functions S+
Gu, S

−
Gu,∆

G
∞u : X \Y →

R by

(2.6.1) S+
Gu(x) = sup

y∼Ex
(u(y)− u(x)),

(2.6.2) S−Gu(x) = sup
y∼Ex

(u(x)− u(y)),

and

(2.6.3) −∆G
∞u(x) = S−Gu(x)− S+

Gu(x).

We call ∆G
∞ the discrete infinity Laplacian on G.

Remark 2.6.1. The finite difference infinity Laplacian ∆ε
∞ for U ⊆ Rn is a rescaling of the

discrete infinity Laplacian ∆G
∞ for the graph

G := (U,E, U \ Uε),

where
E := {{x, y} ⊆ U : x ∈ Uε and 0 < |x− y| ≤ ε}.

Indeed, if u : U → R is bounded, then

ε2∆ε
∞u = ∆G

∞u.

We need the following gradient estimate for our numerical results in Chapter 4. Its proof
uses a “marching” argument.



15

Lemma 2.6.2. If u : X → R is bounded and satisfies

−∆G
∞u = 0 on X \ Y,

then

(2.6.4) sup
X\Y

S+
Gu ≤ sup

x,y∈Y

u(x)− u(y)

d(x, y)
.

Proof. Suppose {x0, y0} ∈ E and u(x0) − u(y0) = k > 0. Using −∆G
∞u = 0 on X \ Y , we

may iteratively select x1, x2, ..., xm such that u(xi+1)− u(xi) ≥ k and xm ∈ Y . Similarly, we
may select y1, y2, ..., yn such that u(yi)− u(yi+1) ≥ k and yn ∈ Y . Thus

u(xm)− u(yn)

d(xm, yn)
≥ u(xm)− u(yn)

n+m+ 1
≥ k,

and (2.6.4).

The next lemma is a patching lemma for infinity subharmonic functions on graphs. It
shows that we can always perturb to the positive gradient case.

Lemma 2.6.3. If u : X → R is bounded from above and

−∆G
∞u ≤ 0 on X \ Y,

and k > 0, there is a function v : X → R that satisfies

(2.6.5) u ≥ v ≥ u− 2k dist(·, Y ),

(2.6.6) S+
Gv ≥ k,

and

(2.6.7) −∆G
∞v ≤ 0,

on X \ Y .

Proof. 1. Consider the set
Z := {S+u < k} ⊆ X \ Y,

and let P denote the set of paths (x0, ..., xm) such that m > 0, x0, ..., xm−1 ∈ Z and xm ∈
X \ Z. Define w : Z → R by

w(x) = sup{u(xm)− km : (x, x1, ..., xm) ∈ P},
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and then define v : X → R by

v(x) =

{
u(x) if x ∈ X \ Z,
w(x) if x ∈ Z.

We claim that v satisfies (2.6.5), (2.6.6), and (2.6.7).
2. Given (x0, x1, ..., xm) ∈ P , compute

u(xm)− km ≤ u(xm)−
m∑
i=1

S+u(xi−1)

≤ u(xm)−
m∑
i=1

(u(xi)− u(xi−1))

= u(x0).

Thus w ≤ u on Z. For the other half of (2.6.5), fix and arbitrary x0 ∈ Z and select a path
(x0, ..., xm) ∈ P such that m ≤ dist(x0, Y ). Compute

w(x0) ≥ u(xm)− km

= u(x0) +
m∑
i=1

(u(xi)− u(xi−1))− km

≥ u(x0)−
m∑
i=1

S−Gu(xi−1)− km

≥ u(x0)−
m∑
i=1

S+
Gu(xi−1)− km

≥ u(x0)− 2km

≥ u(x0)− 2k dist(x0, Y ).

3. To prove (2.6.6), suppose first that x0 ∈ Z. Given ε > 0, select (x0, ..., xm) ∈ P such
that

v(x0) ≤ u(xm)− km+ ε.

Observe that

S+v(x0) ≥ v(x1)− v(x0) ≥ [u(xm)− k(m− 1)]− [u(xm)− km+ ε] = k − ε.

Sending ε→ 0, we see that S+v ≥ k in Z.
Next, suppose x0 ∈ X \ (Y ∪Z). Suppose ε ∈ (0, k/4) and (x0, ..., xm) is a path such that

u(xi+1)− u(xi) ≥ S+
Gu(xi)−

ε

2i
,
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and xi ∈ X \ Y for i = 0, ...,m− 1. Since

S+
Gu(xi+1) ≥ S−Gu(xi+1) ≥ u(xi+1)− u(xi) ≥ S+

Gu(xi)−
ε

2i
,

we see that
S+
Gu(xi) ≥ u(xi+1)− u(xi) ≥ S+

Gu(x0)− 2ε.

Since u is bounded from above and ε < S+
Gu(x0)/4, we have m ≤ M for some constant

M > 0 independent of ε. Selecting a maximal path, we obtain xm ∈ Y . If x1 /∈ Z, then

S+
Gv(x0) ≥ u(x1)− u(x0) ≥ S+

Gu(x0)− 2ε.

Otherwise, since xm ∈ Y , there is an l ≤ m such that (x1, ..., xl) ∈ P and we have

S+
Gv(x0) ≥ u(x1)− u(x0)

≥ u(xl)− u(x0)− (l − 1)S+
Gu(x0)

≥ l(S+
Gu(x0)− 2ε)− (l − 1)S+

Gu(x0)

= S+
Gu(x0)− 2εM.

Sending ε→ 0, we obtain

(2.6.8) S+v(x0) ≥ S+u(x0),

and therefore (2.6.6).
4. To prove (2.6.7), suppose first that x ∈ X \ (Z ∪ Y ). The definition of w guarantees

that
S−Gv(x) ≤ max{k, S−Gu(x)}.

Since S+
Gv(x) ≥ S−Gu(x) ≥ k by (2.6.8), we see that (2.6.7) holds at x.

Next, suppose that x ∈ Z. We claim that S−Gv(x) ≤ k. For contradiction, suppose
u(x) − u(y) > k and y ∼E x. If y ∈ Z, then v(y) ≥ v(x) − k by the definition of w. Thus
y ∈ X \ Z, and we may compute

k < v(x)− v(y) ≤ u(x)− u(y) ≤ S−Gu(x) ≤ S+
Gu(x),

contradicting the definition of Z. Thus S−Gu ≤ k on Z and (2.6.6) implies that (2.6.7) holds
at x.

The following lemma is a “strictness” transformation for the discrete infinity Laplacian.
It shows that, when the gradient is positive, subsolutions perturb to strict subsolutions.

Lemma 2.6.4. Suppose u : X → R is bounded and satisfies u ≥ 0 and

−∆G
∞u ≤ 0 on X \ Y.

For every k > 0, the function v := u+ ku2 satisfies

(2.6.9) −∆G
∞v ≤ −∆G

∞u− k(S+
Gu)2 on X \ Y.
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Proof. Fix x ∈ X \ Y and suppose there are y, z ∼E x such that

S+u(x) = u(y)− u(x) and S−u(x) = u(x)− u(z).

Since the map t 7→ t+ kt2 is monotone on the range of u, we compute

S+v(x) = v(y)− v(x)

= S+u(x) + kv(y)2 − kv(x)2

= S+u(x) + kS+u(x)(v(y) + v(x)))

= S+u(x) + kS+u(x)(2v(x) + S+u(x)),

and

S−v(x) = v(x)− v(z)

= S−u(x) + kv(x)2 − kv(z)2

= S−u(x) + kS−u(x)(v(x) + v(z))

≤ S−u(x) + kS+u(x)(2v(x)).

Combining these inequalities gives (2.6.9).
In general, there are no y, z ∼E x that achieve S+

Gu(x) and S−Gu(x). Instead, we fix ε > 0,
and choose y and z such that

S+u(x) ≤ u(y)− u(x) + ε and S−u(x) ≤ u(x)− u(z) + ε.

Going through the above calculation again, we obtain

−∆G
∞v(x) ≤ −∆G

∞u(x)− k(S+
Gu)2(x) +O(ε).

Now, sending ε→ 0 gives (2.6.9).

Putting the patching and strictness lemmas together, we obtain a general comparison
result on graphs. Note that the Theorem below is strictly weaker than what the Le Gruyer
argument yielded in Lemma 2.3.1. This is because we no longer have the topology of Rn at
our disposal.

Theorem 2.6.5. Suppose u, v : X → R are bounded and satisfy

−∆G
∞u ≤ f ≤ g ≤ −∆G

∞v on X \ Y,

for some f, g : X \ Y → R. If supX\Y (f − g) < 0, f ≡ 0, supX\Y f < 0, or infX\Y f > 0,
then

(2.6.10) sup
X

(u− v) = sup
Y

(u− v).
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Proof. 1. We first consider the case supX\Y (f − g) < 0. Assume that

sup
X

(u− v) > sup
Y

(u− v).

Thus, given ε > 0, we may select a vertex x ∈ X \ Y such that

(u− v)(x) ≥ sup
X

(u− v)(x)− ε/2.

Observe that

S+
Gu(x) = sup

y∼Ex
(u(y)− u(x)) ≤ sup

y∼Ex
(u(y)− v(x) + ε/2) = S+

Gv(x) + ε/2,

and similarly
S−Gu(x) ≥ S−Gv(x)− ε/2,

Thus
f(x) ≥ −∆G

∞u(x) ≥ −∆G
∞v(x)− ε/2 ≥ g(x)− ε.

Since ε > 0 was arbitrary, we obtain

sup
X\Y

(f − g) ≥ 0.

2. Next we suppse that supX\Y f < 0. Since−∆G
∞u = S−Gu−S

+
Gu, we obtain infX\Y S

+u >
0. Thus Lemma 2.6.4 gives

−∆G
∞(u+ ku2) ≤ f ≤ g − δ on X \ Y,

for some δ > 0 and all k > 0. Now part one of the proof gives

sup
X

(u+ ku2 − v) = sup
Y

(u+ ku2 − v),

for all k > 0. Sending k → 0 gives (2.6.10).
3. The case infX\Y g > 0 is symmetric to supX\Y f < 0, so we may assume f ≡ 0. In this

case, Lemma 2.6.3 gives a family of functions uk : X → Y such that

inf
X\Y

S+uk ≥ k,

−∆∞uk ≤ 0 on X \ Y,
and

sup
X
|u− uk| ≤ O(k),

for every k > 0. Since infX\Y S
+uk > 0, the argument in part two of the proof gives

sup
X

(uk − v) = sup
Y

(uk − v).

Sending k → 0, we obtain (2.6.10).
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Finally, we prove existence of solution for the graph-theoretic boundary value problem.

Theorem 2.6.6. If g : Y → R and f : X \ Y → R are bounded, then there is a unique
bounded function u : X → R such that

(2.6.11)

{
−∆G

∞u = f on X \ Y,
u = g on Y.

Proof. Let d := diam(G) and c := 2 supY |g|+supX\Y |f |. Given y ∈ Y , consider the function

(2.6.12) v(x) := g(y)− c(1 + d2) dist(y, x) + c dist(y, x)2.

We claim that v satisfies {
−∆G

∞v ≤ c on X \ Y,
u ≤ g on Y.

Indeed, if k := dist(x, y) ≥ 1, then

v(x) ≤ v(y)− c ≤ v(y)− 2 sup
Y
|g| ≤ g(x).

If, in addition x ∈ X \ Y , then

S−Gu(x) ≤ [g(y)− c(1 + d2)k + ck2]− [g(y)− c(1 + d2)(k + 1) + c(k + 1)2]

≤ c(1 + d2)− c(2k + 1).

Moreover, since there is a z ∈ X such that z ∼E x and dist(z, y) = k − 1, we have

S+
Gu(x) ≥ u(z)− u(x)

= [g(y)− c(1 + d2)k + ck2]− [g(y)− c(1 + d2)(k − 1) + c(k − 1)2]

= c(1 + d2) + c(2k − 1).

Thus
−∆G

∞u(x) = S−Gu(x)− S+
Gu(x) ≤ −2c ≤ c.

Similarly, the function

w(x) := g(y) + c(1 + d2) dist(y, x)− c dist(y, x)2.

satisfies

(2.6.13)

{
−∆G

∞w ≥ c on X \ Y,
w ≥ g on Y.
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Now, let u : X → R be the supremum of all functions u : X → R satisfying

(2.6.14)

{
−∆G

∞u ≤ f on X \ Y,
u ≤ g on Y.

Using the function v constructed above, we see that the supremum is non-empty. Using the
function w and Theorem 2.6.5, we see that u < ∞. By varying the vertex y used to define
v, we see that u = g on Y . Thus we need only show −∆G

∞u = f on X \ Y .
That −∆G

∞u ≤ f on X \ Y is trivial from the observation that

−∆G
∞max{u1, u2} ≤ max{−∆G

∞u1,−∆G
∞u2},

for any bounded functions u1, u2 : X → R.
Suppose for contradiction that −∆G

∞u(x0) = f(x0) + δ for some δ > 0 and x0 ∈ X \ Y .
Consider ũ : X → R given by

ũ(x) :=

{
u(x) if x 6= x0,

u(x) + δ/2 if x = x0.

Since S−G ũ ≤ S−Gu and S+
G ũ ≥ S+

Gu on X \ (Y ∪ {x0}) and −∆∞ũ(x0) = f(x0), we see that
ũ satisfies (2.6.14). As ũ(x0) > u(x0), this contradicts the definition of u. In particular, u
solves (2.6.11).

Remark 2.6.7. Suppose each edge {x, y} ∈ E has a weight d(x, y) ∈ (0,∞). If we have
d− := infE∩[X\Y ]2 d > 0 and d+ := supE∩[X\Y ]2 d < 0, then the above results easily generalize
when we incorporate the weights. That is, when we define

S+
Gu(x) := sup

y∼Ex

u(y)− u(x)

d(y, x)
,

and

S−Gu(x) := sup
y∼Ex

u(x)− u(y)

d(y, x)
,

and define the length of a path (x0, .., xm) to be
∑

i d(xi, xi+1). The only difference in the
results is that the constants in the estimates (2.6.5) and (2.6.9) now depend on the ratio
d+/d− and that diam(G) must be measured using the weights.

2.7 Continuous dependence

For the purposes of building numerical approximations, it is useful to know how the
solution of (2.0.1) varies as one changes the right-hand side. In this section we prove two
continuous dependence estimates. The first works for arbitrary boundary data while the
second only works in some special cases. We suspect that the second estimate is in fact true
for arbitrary boundary data.
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Theorem 2.7.1. Suppose uk ∈ C(Ū) solves{
−∆∞uk = k in U,

uk = g on ∂U,

for every k ∈ R. There is a constant C > 0 depending only on diam(U) and ‖g‖L∞(∂U)) such
that

‖u0 − uk‖L∞(U) ≤ C|k|1/3,
for all sufficiently small k ∈ R.

Proof. We may assume that k ∈ (−1, 0) and 2 diam(U) ≤ u ≤ 2 diam(U) + 1. Fix ε > 0.
Theorem 2.2.3 implies that

−∆ε
∞T

εu0 ≤ 0 in U2ε.

Using Lemma 2.6.3, select a v : Uε → R such that

−∆ε
∞v ≤ 0, S+

ε v ≥ |k|1/3, and T εu0 ≥ v ≥ T εu0 − 2|k|1/3 dist(·, Uε \ U2ε),

in U2ε. Since v ≥ 0, we may set
w := v − k1/3v2,

and conclude by Lemma 2.6.4 that

∆ε
∞w ≤ k in U2ε.

and
‖w − T εu0‖L∞(Uε) ≤ Ck1/3.

we compute

sup
Uε

(T εu0 − Tεuk) ≤ sup
Uε

(w − Tεuk) + C|k|1/3

= sup
Uε\U2ε

(w − Tεuk) + C|k|1/3

≤ sup
Uε\U2ε

(T εu0 − Tεuk) + 2C|k|1/3.

Since uk ≤ u0 by Theorem 2.4.1, sending ε→ 0 yields ‖u0 − uk‖L∞(U) ≤ C|k|1/3.

We can improve the power in the above estimate from 1/3 to 1 in some special cases.
That it can be improved when the magnitude of the gradient is bounded away from 0
is trivial. However, it is new and unexpected for the Aronsson function. Moreover, this
strongly suggests that the improvement is possible for arbitrary boundary data. Indeed, the
Aronsson function has historically served as a “universal” counterexample for conjectures
about infinity harmonic functions.

We remark that this improvement is also possible whenever u ∈ C2(Ū), as a result of Yu
[37] implies that the magnitude of the gradient is bounded away from zero in this case.
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Proposition 2.7.2. Suppose the uk are as in the previous theorem. If infU |Du0| > 0 or
U ⊆ R2 and u0(x, y) = x4/3 − y4/3, then

(2.7.1) ‖u0 − uk‖L∞(U) ≤ C|k|,

for some constant C > 0.

Proof. If infU |Du0| = α > 0, then we have S+
ε u0 ≥ α for all ε > 0 by (2.2.7). Thus the

proof of Theorem 2.7.1 yields (2.7.1). Indeed, in this case we can avoid the application of
Lemma 2.6.3 and apply 2.6.4 with the parameter 2α−2|k| instead of 2|k|1/3.

Now suppose U ⊆ R2 and u0(x, y) = |x|4/3 − |y|4/3. Consider

w := u0 −
4

3
k|u0|3/2,

for k < 0. Assume temporarily that u0 and w are smooth. Compute

Dw = (1− 2k|u0|1/2)Du0,

D2w = (1− 2ku
1/2
0 )D2u0 − ku−1/2

0 Du0 ⊗Du0,

and thus
−∆∞w = −(1− 2k|u0|1/2)∆∞u0 + ku

−1/2
0 |Du0|2.

Since |Du0| ≥ |u|1/4 in R2, we have

(2.7.2) −∆∞w ≤ k,

where u0 and w are smooth.
In particular, the inequality (2.7.2) holds in the viscosity sense in Rn \ {u = 0}. That

it holds on all of {u = 0} follows because w can not be touched from above by a smooth
function on the set {u = 0} \ {0} and that w ≥ |x|2 on the set {y = 0}.

Thus, it follows from Theorem 2.4.1 that u0 ≥ uk ≥ u0 + Ck for some constant C > 0
independent of k < 0.
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Chapter 3

Numerical methods for the infinity
Laplacian

This chapter concerns the numerical approximation of the unique solution of

(3.0.1)

{
−∆∞u = 0 in U,

u = g on ∂U.

where U ⊆ Rn is bounded and open and g ∈ C(∂U) is Lipschitz.
Using the Max-Ball Theorem and the results of Section 2.6, we give an error analysis for

the finite difference scheme of Oberman [32]. We prove that Oberman’s scheme converges
at a rate of O(h1/5) in general and O(h1/3) in some interesting special cases.

These rates are slow, but this is not terribly unusual for schemes approximating viscosity
solutions. They reflect that fact that large stencil sizes are required for consistency when
the solutions are not smooth. Indeed, it appears to be difficult to construct fast numeri-
cal methods that are capable of resolving non-smooth viscosity solutions of fully nonlinear
operators [13, 31, 33].

To address the problem of large stencils, we introduce a new adaptive grid method.
The Max-Ball Thoerem and continuous dependence estimates from Chapter 3 provide an
easily computed a posteriori error estimate for approximate solutions of (3.0.1). We use this
estimate to automatically concentrate grid points near the non-smooth parts of solutions.

We point out two examples of related work. The first is the master’s thesis of Hansson
[19], who used FEMLAB to approximate p-harmonic extensions for large p. Hansson used
this analysis to investigate the concentration of gradient flow-lines as p → ∞. The second
is the vanishing moment method of Feng and Neilan [18], who used a finite element method
together with a fourth-order regularlization term. The results of these two papers are in a
different direction from what we present here. Indeed, we are interested in methods with
explicit rates of convergence and error estimates. It is still unknown how quickly the p-
harmonic and vanishing-moment approximations converge to infinity harmonic extensions.
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3.1 Oberman’s scheme

While discussing Oberman’s scheme, we assume that

U := {max{|x1|, |x2|} < 1} ⊆ R2,

This is not much of a restriction, since the generalization to arbitrary bounded and open
sets U ⊆ Rn is trivial. However, when n > 2 the scheme is computationally intractable.
Indeed, the stencils we define below have Dn points in them, where n is the dimension of
the ambient space and D an integer. To obtain accurate solutions, we need to choose fairly
large D. When n > 2, the stencils are too large for reasonable study on a laptop (in 2010).

3.1.1 Definition of the scheme

Select integers N > D > 0 and define the grid points

X := {(i/N, j/N) : i, j ∈ Z and −N ≤ i, j ≤ N},

and the boundary points

Y := {(i/N, j/N) : i, j ∈ Z and max{|i|, |j|} = N}.

Put a graph structure on X by letting the edge set E ⊆ [X]2 be such that {x, y} ∈ E if and
only if x ∈ X and either

max{|x1 − y1|, |x2 − y2|} =
D

N
,

or

max{|x1 − y1|, |x2 − y2|} <
D

N
and y ∈ Y.

The following picture shows two neighbor sets in the case N = 8 and D = 3.



26

Note that when a point is near the boundary its stencil has a different shape. The purpose
of this is to make path distance in the graph between any two points on the boundary close to
the Euclidean distance between the two points. This has the effect of making affine functions
close to being solutions of the finite difference scheme. This seems to improve the accuracy
of the scheme by a large constant factor.

Given g ∈ C(∂U), there is a unique function u : X → R such that

(3.1.1)

{
−∆N,D

∞ u = 0 on X \ Y,
u = g on Y,

where

(3.1.2) −∆N,D
∞ u(x) := max

y∼Ex

u(x)− u(y)

|y − x|
−max

y∼Ex

u(y)− u(x)

|y − x|
,

for x ∈ X \ Y . Observe that ∆N,D
∞ is exactly ∆G

∞ for the graph

G := (X,E, Y ),

with edge weights d(x, y) = |x− y| by Remark 2.6.7.
Oberman [32] proved the following convergence result.

Theorem 3.1.1 (Oberman). If Dk → ∞ and Nk/Dk → ∞ as k → ∞ and the uk solve
(3.1.1) for Nk and Dk, then uk → u the unique solution of (3.0.1) as k →∞.

This follows from Barles and Souganidis [8], using the fact that (3.1.1) is monotone and
consistent. This result leaves open two important questions. It says nothing about the rate
of convergence nor how to choose the ratio N/D.
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3.1.2 Circular stencils

Using the max-ball theorem to analyze the scheme (3.1.1) is complicated by the fact that
the stencils are square-shaped. While it is possible to carry this out, the extra effort does
not yield anything interesting. Instead, we redefine the edge set E to be

E :=

{
{x, y} ∈ [X]2 : x ∈ X and

D

N
− 1

2N
< |x− y| < D

N
+

1

2N

}
.

The following picture shows the new stencils in the case N = 8 and D = 3.

The advantage of this modification is made clear in the rate of convergence proof below. For
now, we simply observe that as D → ∞ and N/D → ∞, the stencils converge to circles.
Since the max-ball theorem operates on disks, this is a good sign.

We remark that Oberman’s convergence theorem [32] still applies in this case.

3.1.3 Rate of convergence

The first step in our convergence analysis is to estimate the error from the discretization
of ∆ε

∞ by ∆G
∞. The reader may find it strange that we only compute the discretization error

for subsolutions. This assumption allows guarantees the maxB̄(x,ε) u is attained on ∂B(x, ε)
for all x ∈ Uε. We need this because our stencils approximate the boundary of a ball and do
not contain interior points.

Lemma 3.1.2. If u ∈ C(U) satisfies

−∆∞u ≤ 0 in U,
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and ε = D/N , then

(3.1.3) −∆G
∞u ≤ −ε2∆ε

∞u+ C Lip(u, U)N−1 on X ∩ Uε,

where C > 0 is a universal constant.

Proof. Since −∆∞ ≥ 0, Lemma 2.2.1 implies that

max
B̄(x,ε)

u = max
∂B(x,ε)

u for every x ∈ U2ε.

Observe that if x ∈ X ∩ U2ε and y ∈ ∂B(x, ε), then there is a z ∈ X such that z ∼E x and
|y − z| ≤ CN−1. Thus, if x ∈ X ∩ U2ε, we compute

−∆G
∞u(x) ≤

[
2u(x)− min

∂B(x,ε)
u− max

∂B(x,ε)
u

]
+ C Lip(u, U)N−1

≤
[
2u(x)− min

B̄(x,ε)
u− max

B̄(x,ε)
u

]
+ C Lip(u, U)N−1

= −ε2∆ε
∞u(x) + C Lip(u, U)N−1.

Using Theorem 2.7.1, it is now fairly easy to obtain an O(h1/5) rate of convergence for
arbitrary boundary data.

Theorem 3.1.3. If D = dN4/5e, u solves (3.0.1), and ũ solves (3.1.1), then

(3.1.4) max
X
|u− ũ| ≤ CN−1/5 Lip(g, ∂U),

for some universal constant C > 0. Here dze denotes the least integer larger than z.

Proof. Define ε := D/N ≈ N−1/5 and observe that for any x ∈ X ∩ U2ε and y ∈ ∂B(x, ε),
there is a z ∈ X such that |y−z| ≤ Cε5. For each k > 0, Theorem 2.7.1 provides a uk ∈ C(Ū)
such that

−∆∞uk ≥ k in U,

Lip(uk, U) ≤ C(Lip(g, ∂U) + k),

and
sup
Ū

|u− uk| ≤ Ck1/3.

Since −∆∞Tεuk ≥ k in U2ε, the inequality (3.1.3) gives

−∆G
∞Tεuk ≥ kε2 + C Lip(uk, U)ε5 on X ∩ U2ε.

Thus if we set k := C Lip(uk, U)ε3, we obtain

−∆G
∞Tεuk ≥ 0 on X ∩ U2ε,
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and
sup
U
|u− Tεuk| ≤ Cε.

Now, Lemma 2.6.10 implies that

sup
X

(ũ− Tεuk) = sup
X\U2ε

(ũ− Tεuk),

and Lemma 2.6.2 implies
sup
X\U2ε

|u− ũ| ≤ C Lip(g, ∂U)ε.

The last three inequalities together imply that

ũ ≤ u+ C Lip(g, ∂U)ε on X.

The other half of (3.1.4) is symmetric.

Using Proposition 2.7.2 in place of Theorem 2.7.1, we obtain an O(h1/3) rate of conver-
gence for certain examples. As is the case for Proposition 2.7.2, we suspect that this rate is
attained for all boundary data.

Proposition 3.1.4. Suppose u solves (3.0.1) and either infU Lu > 0 or u(x, y) = x4/3−y4/3.
If D = dN2/3e and ũ solves (3.1.1), then

(3.1.5) max
X
|u− ũ| ≤ CN−1/3,

for some constant C > 0 depending on u.

Proof. Using ε := D/N ≈ N−1/3 and Proposition 2.7.2 in place of Theorem 2.7.1 in the
proof of the above theorem, we obtain the estimates

sup
U
|u− uk| ≤ Ck

and
−∆G

∞Tεuk ≥ kε2 − Cε3,

instead of
sup
U
|u− uk| ≤ Ck1/3.

and
−∆G

∞Tεuk ≥ kε2 − Cε5.

Thus we can set k := Cε and the rest of the proof goes through as before.

Remark 3.1.5. We suspect that even the faster rate (3.1.5) is pessimistic on account of
the following heuristic calculation. Suppose Tεu and T εu happen to be C2. In this case, the
discretization error (3.1.3) would be

−∆G
∞u ≤ −ε2∆ε

∞u+ C Lip(u, U)N−2.

If we also assume linear continuous dependence (2.7.2), then we could set D := dN1/3e and
obtain an O(h2/3) rate of convergence.



30

3.1.4 Implementation notes

To solve the scheme (3.1.1), one typically computes the fixed point of the operator F ,
where if u : X → R then Fu : X → R is the unique function satisfying{

Fu(x) = u(x) if x ∈ Y,
maxy∼Ex

Fu(x)−u(y)
|y−x| = maxy∼Ex

u(y)−Fu(x)
|y−x| if x ∈ X \ Y.

One must use a relaxation parameter α ∈ (0, 1) and iterate

u 7→ αu+ (1− α)Fu,

in order to achieve convergence. Any parameter α > 0 will do, although the optimal choice
of α seems to be problem-dependent.

Whether there is a faster solution method is an interesting open problem, as (3.1.1) is
highly non-linear. The other standard algorithm is to iteratively fill in the steepest path.
That is, to iterate the following process.

Select a path (x0, ..., xm) in X such that x0, xm ∈ Y , x1, .., xm−1 ∈ X \ Y ,
and s := (u(xm) − u(x0))/

∑
i d(xi, xi+1) is as large as possible. Set u(xk) =

u(x0) + s
∑k−1

i=0 d(xi, xi+1) for k = 1, ...,m− 1 and add x1, .., xm−1 to Y .

The naive implementation of this has worst-case time complexity O(N4D2 log(N)2), and is
much slower than the iterative process described above.

We remark that while increasing D increases the cost of computing F , it reduces the
number of iterations required to converge. In practice, increasing D actually reduces the
total computation time. This is due to the fact that a large D means information travels
farther during each iteration. Thus, when considering how to choose the optimal D for a
particular N , we can safely focus on accuracy alone.

3.2 Adapting the grid

The large stencil sizes in Oberman’s scheme are required for consistency. Indeed, large
stencils appear to be principal obstacle in developing fast numerical methods capable of
resolving of non-smooth viscosity solutions of fully nonlinear equations [13, 31, 33]. To get
around this, we design a scheme that resorts to large stencil sizes only when necessary.

3.2.1 An a posteriori error estimate

Using the Max-Ball Theorem and the continuous dependence estimates from Chapter 2,
we obtain the following a posteriori error estimate.
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Theorem 3.2.1. If u solves (3.0.1) and v ∈ C(Ū) is Lipschitz and satisfies v = g on ∂U ,
then

(3.2.1) sup
U
|u− v| ≤ C(εLip(v, U) + sup

U2ε

|∆ε
∞v|1/3),

for any ε ∈ (0, 1) and a constant C > 0 that depends only on diam(U) and Lip(g, ∂U). If in
addition infU Lu > 0 or U ⊆ R2 and u(x, y) = x4/3 − y4/3, then

(3.2.2) sup
U
|u− v| ≤ C(εLip(v, U) + sup

U2ε

|∆ε
∞v|).

Proof. Let k := supU2ε
|∆ε
∞v|. Theorem 2.7.1 provides a function w ∈ C(Ū) such that

−∆∞w ≥ k in U,

Lip(w,U) ≤ C(1 + k),

and
sup
U
|w − u| ≤ Ck1/3.

The Max-Ball Theorem implies that

−∆ε
∞Tεw ≥ k in U2ε,

and thus Lemma 2.3.1 implies that

sup
Uε

(v − w) = sup
Uε\U2ε

(v − w).

On the other hand,
sup
Ū\U2ε

|u− v| ≤ 2(Lip(v, U) + Lip(g, ∂U))ε.

Stringing these inequalities together, we obtain

v ≤ u+ C(εLip(v, U) + k1/3) in U.

A symmetric argument yields

v ≥ u− C(εLip(v, U) + k1/3) in U,

and thus (3.2.1).
In the special case that infU Lu > 0 or u(x, y) = x4/3− y4/3, Proposition (2.7.2) gives the

better estimate
sup
U
|w − u| ≤ Ck.

This gives (3.2.2).
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3.2.2 Boundary modification

To construct our scheme, we extending the definition of ∆ε
∞u to all of U . This is analogous

the stencil modifications near the boundary in Oberman’s scheme. Given a bounded function
u : U → R and x ∈ U , we define

S−ε u(x) := sup
|y−x|≤ε

u(x)− u(y)

ρε(x, y)
,

S+
ε u(x) := sup

|y−x|≤ε

u(y)− u(x)

ρε(x, y)
,

and

−∆ε
∞u(x) :=

1

ε
(S−ε u(x)− S+

ε u(x)),

where

ρε(x, y) =

{
|x− y| if x ∈ ∂U or y ∈ ∂U,
max{|x− y|, ε} if x, y ∈ U.

Observe that these new definitions coincide with the old definitions on Uε.
The corresponding boundary value problem is

(3.2.3)

{
−∆ε

∞u = 0 in U,

u = g on ∂U.

Existence and comparison of solutions for (3.2.3) follows by Remark 2.6.7.

3.2.3 A linearly interpolating finite difference scheme

Of course, the computer can not directly approximate (3.2.3). Instead, we suppose that
(H,V) is a triangulation of U given by a finite set of vertices V ⊆ U and triangles H ⊆ [V ]3.
Given a function u : V → R, we define Hu : Ū → R to be the piecewise linear interpolation
of u on Ū .

Theorem 3.2.2. Given ε > 0 and g : V ∩ ∂U → R, there is a unique function u : V → R
satisfying

(3.2.4)

{
u = g on V ∩ ∂U,
−∆ε

∞Hu = 0 on V ∩ U,

Proof. For uniqueness, we follow Le Gruyer’s argument and patch it to work for linear
interpolation on triangulations. Suppose u, v : V → R and

−∆ε
∞Hu ≤ 0 ≤ −∆ε

∞Hv on V ∩ U.
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Suppose, for contradiction, that

k := max
V

(u− v) > max
V∩∂U

(u− v).

Define
E := {x ∈ V : (u− v)(x) = k},

and
F := {x ∈ E : u(x) = max

E
u}.

Since maxŪ(Hu−Hv) = k, we conclude as in the proof of Lemma 2.3.1 that

S+
ε Hu = S+

ε Hv and S−ε Hu = S−ε Hv on U.

Now, suppose x ∈ F and S+
ε Hu(x) > 0 is realized at some point y ∈ t∩ B̄(x, ε) with t ∈ H.

Since u(z) − v(z) ≤ k for each vertex z of t and necessarily Hu(y) − Hv(y) = k for some
y ∈ t, we must have u(z) − v(z) = k for each vertex z of t. Thus, there is a vertex z ∈ E
with u(z) > u(x), contradicting the definition of F .

Thus S+
ε Hu(x) = 0 for every x ∈ F . Since S−ε Hu(x) ≤ S+

ε Hu(x), we conclude that Hu
is constant on {x ∈ Ū : dist(x, F ) ≤ ε}. However, as Hu is the linear interpolation of u on
a triangulation, this implies u is constant on V . Similarly, v is constant on V .

The boundary value problem (3.2.4) comprises one half of our new numerical scheme.
Missing is a good method for choosing the triangulation (H,V). If we apply this method to
regular triangulations like the one shown here,
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this scheme has performance roughly equivalent to that of Oberman’s scheme (3.1.1). While
the scheme incurs are large per-vertex penalty for linear interpolation, some additional accu-
racy is obtained by making affine functions exact solutions. These two effects seem to offset
one another.
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3.2.4 Minimizing the residual

Using Theorem 3.2.1, we can estimate how close a solution of (3.2.4) is to the solution of
(3.0.1). In fact, Theorem 3.2.1 suggests that we should look for triangulations that minimize
the residual.

If one knows in advance the shock structure of the solutions, then one can easily find
such triangulations. For example, the Aronsson function

u(x, y) = x4/3 − y4/3,

fails to be twice differentiable on the coordinate axes. Thus, we want more triangles near
the coordinate axes. If we fix in advance the total number of triangles and try to minimize

max

{
sup
Uε

|∆ε
∞T

εu|, sup
Uε

|∆ε
∞Tεu|

}
,

we obtain a triangulations like the following.
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The scheme (3.2.4) performs well on such triangulations. Of course, we do not usually know
in advance the shock structure of the solutions.

3.2.5 Automatic refinement

Theorem 3.2.1 suggest a natural way to generate good triangulations automatically. We
select ε > 0, a residual threshold η > 0, and an initial triangulation (H0,V0) of U with
approximate spacing ε. At stage k, we compute the unique uk : Vk → R that solves{

uk = g on Vk ∩ ∂U,
−∆ε

∞Hkuk = 0 on Vk ∩ U.
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If supU |∆ε
∞Hkuk| < η, then we stop. Otherwise, we construct Vk+1 from Vk by including

the circumcenter of every triangle t ∈ Hk such that supt |∆ε
∞Hkuk| ≥ η. Then we let Hk+1

be the Delaunay triangulation of Vk.
Using Theorem 3.2.1, this algorithm can guarantee any desired accuracy. Indeed, the

constant in the estimate (3.2.1) can be computed explicitly, and this will tell us how small
ε, η > 0 need to be in order to meet any accuracy requirement.

Below we give five examples of generated triangulations. In each case, we use the domain
U = B(0, 1) and the parameters ε = η = 0.1. The automatically generated triangulations are
significantly rougher than the one we hand-made for the Aronsson function above. This is
intentional. The scheme (3.2.4) does not care about element quality, so we sacrificed quality
for speed in our refinement algorithm.

Observe that the mesh refinement algorithm appears to uncover the “hidden” shock
structure of the solutions. The third and fourth examples make this particularly clear.

A careful implementation of our adaptive method seems to outperform Oberman’s scheme
in tests. However, neither method is particularly fast. The principal advantage of Oberman’s
scheme is its relatively simple formulation. It is easily implemented in an afternoon. Our
adaptive method is significantly more complicated. However, it succeeds in avoiding large
stencils in regions where the solutions are smooth.
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Example 1

When the boundary data is the Aronsson function,

g(x, y) = x4/3 − y4/3,

we obtain the following sequence of triangulations and computed solution contour lines.
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Example 2

When the boundary data is a cone,

g(x, y) = |(x, y)− (1, 0)|,

we obtain the following sequence of triangulations and computed solution contour lines.
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Example 3

When the boundary data is the infimum of two cones,

g(x, y) = min{|(x, y)− (1, 0)|, |(x, y)− (0, 1)|},

we obtain the following sequence of triangulations and computed solution contour lines.
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Example 4

When the boundary data is given by

g(x, y) = min{1/2, |(x, y)− (1, 0)|, |(x, y)− (0, 1)|},

we obtain the following sequence of triangulations and computed solution contour lines.

Note the complicated shock structure being revealed as the mesh is refined. The contour
wiggles near the boundary are artifacts of the coarse boundary discretization.
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Example 5

When the boundary data is the argument function,

g(x, y) = tan−1(y/(x+ 2)),

we obtain the following sequence of triangulations and computed solution contour lines.

Note in this case that the mesh converges after one iteration.
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Chapter 4

Interpreting Hasson’s example

4.1 Introduction

We assume familiarity with basic model theory [24] and stability theory [35]. In partic-
ular, we assume the reader is familiar with Morley rank, forking dependence, imaginaries,
and canonical bases. Unless otherwise specified, we assume that theories T are complete
and eliminate quantifiers in a countable and relational language L(T ). We drop the qualifier
Morley from Morley rank and Morley degree.

4.1.1 Definable rank and degree

Recall that a theory T has definable rank if for every φ(x,y) ∈ L(T ) and r ∈ N, there is
a θ(y) ∈ L(T ) such that

RM(φ(x, a)) = r if and only if M |= θ(a),

whenever M |= T and a ∈ M . Similarly, T has definable degree if for φ(x,y) ∈ L(T ) and
d ∈ N, there is a θ(y) ∈ L(T ) such that

dM(φ(x, a)) = d if and only if M |= θ(a),

whenever M |= T and a ∈M .
A theory T with definable rank has definably bounded degree if for every φ(x,y) ∈ L(T )

there is a d ∈ N such that
dM(φ(x, a)) ≤ d.

whenever M |= T and a ∈ M . By compactness, any theory with definable rank and degree
has definably bounded degree.

In the literature, definable rank and degree is usually called the definable multiplicity
property (DMP), and Hrushovski and Hasson [23] call definable rank and definably bounded
degree the weak definable multiplicity property (wDMP). We use definable rank and definable
and definably bounded degree here, as we believe it to be more clear.
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4.1.2 Fusion

Suppose T1 and T2 are theories of finite rank in disjoint languages. A fusion of T1 and
T2 is a complete theory T |= T1 ∪ T2 in a language L(T ) ⊇ L(T1) ∪ L(T2) such that rank in
T satisfies the following condition.

(Generic intersections) Whenever M |= T , φi(x,y) ∈ L(Ti) for i = 1, 2, and a ∈ M , we
have

RMT (φ1(x, a) ∧ φ2(x, a)) = v1 RMT1(φ1(x, a)) + v2 RMT2(φ2(x, a))−N |x|,

where N = lcm(N1, N2) and vi := N/Ni.

A theorem of Ziegler [38] states that any two theories T1 and T2 in disjoint languages
with finite definable rank and degree such that dM(T1) = dM(T2) admit a fusion. This is
an extension of Hrushovski [25], who fused strongly minimal sets with definable rank and
degree.

4.1.3 Interpretation

Recall that a theory T1 is interpretable in a theory T2 if there are structures M1 |= T1

and M2 |= T2 and an injective map τ : M1 → Mk
2 , such that the image of every definable

subset in M l
1 for l > 0 is a definable subset of Mkl

2 . If M1 and M2 are countably saturated
and the map τ preserves the Morley rank of definable sets, we say that the interpretation is
rank preserving. The following result allows us to focus on fusion constructions instead of
rank-preserving itnerpretations.

Theorem 4.1.1 (Ziegler [38]). If T has finite rank and admits a fusion with any theory T2

with definable rank and degree such that dM(T ) = dM(T2), then T has a rank-preserving
interpretation in a strongly minimal set.

4.1.4 Hasson’s example

Hasson [20] proved that any theory with finite definable rank and degree admits a rank-
preserving interpretation in a strongly minimal theory. As a test case for the necessity of
definable degree, he proposed the following example. Let

M := (M,E,A,Bi, Ci,+A,+i, Si, π)i∈N,

be a structure with the following properties.

1. E is an equivalence relation on M with infinitely many infinite classes.

2. A,Bi, Ci are 1-ary and pick out distinct classes of E.
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3. +A and +i are 3-ary and satisfy (A,+A) ≡ (Bi,+i) ≡ (Q,+).

4. Si is 1-ary and divides Ci into two infinite sets.

5. π is 2-ary and defines a bijection π : M/E → A that maps {A} ∪ {Bi} ∪ {Ci} to an
indiscernible set in (A,+A).

It is routine to check that Th(M) has finite definable rank and definably bounded degree.
What makes M interesting is that it has no rank-preserving expansion with definable degree.
Indeed, recall that a rank preserving expansion of (Q,+) is necessarily degree 1. In particular,
if N ⊇M is a rank-preserving expansion, then dMN(A) = dMN(Bi) = 1 and dMN(Ci) ≥ 2.
If N had definable degree, then there would be a definable set D ⊆ A such that π(Bi) ∈ D
and π(Ci) ∈ A \D, contradicting our observation that dMN(A) = 1.

Thus, if τ : M → Sk is an interpretation of M in a strongly minimal set S, then S can
not have definable degree.

4.2 A new fusion construction

In this section, we prove the following theorem.

Theorem 4.2.1. If T1 and T2 have finite definable Morley rank, the same degree, and nice
codes, then T1 and T2 admit a fusion.

The definition of nice codes appears in Section 4.2.5. For now, we remark that Theorem
4.2.1 applies to Hasson’s example.

Our proof follows the standard outline of any Hrushovski construction. We first compute
the Fraisse limit of a large class of finite structures and obtain a theory T∞ of infinite rank.
By carefully analyzing the finite-rank types in T∞, we are able to collapse them to algebraic
types by restricting the finite structures in our Fraisse limit. This yields a new theory Tµ
with the desired properties.

The principal difficulty lies in keeping the restricted class of finite structures definable.
This was handled elegantly in [38], when definable degree was available. In our case, we need
some additional machinery.

4.2.1 Free fusion

In this section, we recall the free fusion construction described in [38, 22]. We stop short
of building T∞, describing only the amalgamation class (K∞,≤s) that T∞ is the Fraisse limit
of. We assume throughout that T1 and T2 have degree 1 and finite definable rank and that
L(T1) ∩ L(T2) = ∅.

We consider L(T1) ∪ L(T2)-structures A |= T ∀1 ∪ T ∀2 . Recall that for any such structure
we can find an ω-saturated model M |= T1 ∪ T2 such that A ⊆ M . Given such an M , we
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can compute RMM
T1

(A) and RMM
T2

(A) in the reducts M |L(T1) and M |L(T2). However, by
quantifier elimination, the ranks we compute do not depend on the choice of M . Indeed,
they depend only on qftp(A). Thus we can safely talk about RMTi(A) without selecting an
ambient model M . Similarly we can make sense of acleqTi(A), although we must be careful
about the automorphisms over dcleqTi(A). Alternatively, we could assume everything we do
takes place inside some λ-saturated and λ-homogeneous M |= T1 ∪ T2 for some huge λ > 0.

The amalgamation class (K∞,≤s) is given by the following definition.

Definition 4.2.2. Let K, v1, v2 be integers so that

K = v1 RM(T1) = v2 RM(T2)

For A ⊆ B |= T ∀1 ∪ T ∀2 with B \ A finite, we define the prerank of B over A to be

δ(B/A) := v1 RMT1(B/A) + v2 RMT2(B/A)−K|B \ A|.

Using δ, we define the class of structures

K∞ := {A |= T ∀1 ∪ T ∀2 : δ(B) ≥ 0 for all finite B ⊆ A}.

If A ⊆ B ∈ K∞ and
δ(A ∪ C/A) ≥ 0 for all finite C ⊆ B,

then we say that A is a strong substructure of B and write A ≤s B.

The notions of prerank and strong substructure in K∞ enjoy the following nice properties.
All of these are easy consequences of the fact that rank is additive and submodular in T1

and T2.

Lemma 4.2.3 ([38, 22]). The following properties hold for all A,B,C ∈ K∞.

1. If A ⊆ B ⊆ C, then δ(C/A) = δ(C/B) + δ(B/A).

2. If A,B ⊆ C, then δ(A/A ∩B) ≥ δ(A ∪B/B).

3. If A ≤s B ≤s C, then A ≤s C.

4. If A,B ≤s C, then A ∩B ≤s C.

5. If A ⊆ B, then

clB(A) :=
⋂
{A′ ≤s B : A′ ⊇ A} ≤s B.

We call clB(A) the strong closure of A in B.

In the sequel we need an approximation of strong substructure that is first-order definable.
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Definition 4.2.4. If A ⊆ B ∈ K∞, m > 0, and δ(A∪C/A) ≥ 0 for all C ⊆ B with |C| < m,
then we write A ≤s,m B.

Lemma 4.2.5. If A ⊆ B ∈ K∞, then there is a clB,m(A) ≤s,m B such that A ⊆ clB,m(A)
and clB,m ⊆ C whenever A ⊆ C ≤s,m B.

Proof. Call A′ ⊆ A′′ an m-step if |A′′ \ A| < m, δ(A′′/A′) < 0, and δ(A∗/A′) ≥ 0 whenever
A′ ⊆ A∗ ( A′′. Choose some maximal chain A = A0 ( A1 ( · · · ( An of m-steps. Set
clB,m(A) := An and note that clB,m ≤s,m B.

Now, suppose A ⊆ C ≤s,m B and clB,m * C. Let i < n be least so that Ai+1 * C. Then
0 > δ(Ai+1/C ∩Ai) ≥ δ(Ai+1 ∪C/C), which contradicts our assumption that C ≤s,m B.

We extend δ and ≤s,m to imaginary elements as follows.

Definition 4.2.6. If A ∈ K∞, we define

acleq∞(A) := acleqT1
(A)× acleqT2

(A)

and include A ⊆ acleq∞(A) via a 7→ (a, a). If Σ is the home sort shared by T1 and T2 then for
X ⊆ Y ⊆ acleq∞(C) define

δ(Y/X) := v1 RMT1(π1(Y )/π1(X)) + v2 RMT2(π2(Y )/π2(X))−N |(Y \X) ∩ Σ|.

For A ⊆ B and X ⊆ acleq∞(B), write X ≤s,m A if X ∩Σ ⊆ A and δ(X ∪C/X) ≥ 0 whenever
C ⊆ X and |C| < m.

Lemma 4.2.7. If A ⊆ B ∈ K∞ and X ⊆ acleq∞(B), then there is a clA,m(X) ⊆ A such that
X ∪ clA,m(X) ≤s,m A and clA,m(X) ⊆ C whenever C ⊆ A and X ∪ C ≤s,m A.

Proof. Same as the proof of Lemma 4.2.5.

The first step in our analysis of finite rank types in T∞ is given by the following lemma.
The ideas is that any extension A ≤s B ∈ K∞ where B \ A is finite can be decomposed
as a sequence of minimal extensions A ≤s C1 ≤s · · · ≤s Ck ≤s B, whose types are easy to
analyze.

Definition 4.2.8. An extension A ≤s B ∈ K∞ is minimal if there is no C with A ≤s C ≤s B,
A 6= C, and C 6= B.

Lemma 4.2.9 ([38, 22]). If the extension A ≤s B ∈ K∞ is minimal, then B \ A is finite
and one of the following holds.

1. The extension is algebraic, that is, δ(B/A) = 0, B = A ∪ {b}, and for some i = 1, 2,
tpTi(b/A) is algebraic and tpT2−i(b/A) generic.

2. The extension is prealgebraic, that is, δ(B/A) = 0 and tpTi(b/A) is not algebraic for
any b ∈ B \ A and i = 1, 2.

3. The extension is transcendental, that is, N ≥ δ(B/A) > 0 and tpTi(b/A) is not alge-
braic for any b ∈ B \ A and i = 1, 2.
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4.2.2 Codes

In order to definably analyze types in T∞, we need a special notion of normal formula,
called a code. In this section we will repeat the code construction of [38] and make a few
minor adjustments. We fix a theory T with finite rank and the definably bounded degree
for the rest of this section.

Definition 4.2.10. A code c is a parameter-free formula φc(x; y) with the following prop-
erties.

1. x is a tuple of real variables, |x| = nc, and y ∈ T eq.

2. Consistent φc(x; a) have rank kc and degree at most Dc. If b |= φc(x; a) then the
elements of b are distinct and for each S ( {1, ..., nc}

RM(b/abS) ≤ kc,S

with equality for generic b. If a is generic in ∃xφc(x; y) then φc(x; a) has degree 1.
Finally, kc,{i} < kc for all i.

3. If RM(φc(x; a) ∧ φc(x; a′)) = kc then a = a′.

4. There is a Gc ≤ Sym(nc) such that for each consistent φc(x; a) and σ ∈ Sym(nc),

(a) σ ∈ Gc implies φc(x; a) ≡ φc(x
σ; a).

(b) σ /∈ Gc implies RM(φc(x; a) ∧ φc(xσ; a′)) < kc for all a′.

This definition of codes differs from the definable rank case in one critical way. The
degree of consistent instances φc(x; a) is not always 1. In fact, if Dc = 1, then the two
definitions coincide.

A formula ψ(x; d) is simple if it has degree 1, the components of its realizations are
distinct, and the components of any generic realization lie outside acl(d). For any two
formulas ψ1(x; d1) and ψ2(x; d2) with the same free variables, we write

ψ1(x; d1) ∼ ψ2(x; d2)

when
RM(ψ1(x; d1)4ψ2(x; d2)) < RM(ψ1(x; d1)) = RM(ψ2(x; d2)).

If ψ(x; d) is simple and φc(x; a) ∼ ψ(x; d), then we say that c encodes ψ(x; d). If ψ(x; d) is
simple and RM(φc(x; a) ∧ ψ(x; d)) = kc = RM(ψ(x; d)), then we say that c covers ψ(x; d).

Lemma 4.2.11. Every simple ψ(x; d) is encoded by some code c.
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Proof. Let a be the canonical base of the global type isolated by ψ(x; d) and let φc(x; y) be
parameter-free so that φc(x; a) ∼ ψ(x; d). We will strengthen φc(x; y) to meet the require-
ments above.

Let b be a generic realization of φc(x; a). Let kc,S = RM(b/abS) for S ( {1, ..., nc}.
Strengthening φc(x; y), we may assume

RM(φc(x; a) ∧ xS = bS) = kc,S

for all S. Let θ(y) isolate tp(a) in its rank. Replace φc(x; y) with

φc(x; y) ∧ θ(y) ∧
∧
S

RMz(φc(z; y) ∧ zS = xS) = kc,S.

Now, the wDMP implies the existence of Dc, the choice of θ(y) forces φc(x; a′) to have degree
1 for any a′ generic in ∃xφc(x; y), and kc,{i} < kc follows from the simplicity of ψ(x; d). Thus
we have (2).

Let p(y) = tp(a) and note that since a is a canonical base,

p(y) ∧ p(y′) ∧ RMx(φc(x; y) ∧ φc(x; y′)) = kc → y = y′.

By compactness there is some θ(y) ∈ p(y) which works in place of p(y) above. If we replace
φc(x; y) with φc(x; y) ∧ θ(y) we get (3).

To achieve (4), first note that the collection of all σ ∈ Sym(nc) such that φc(x; a) ∼
φc(x

σ; aσ) for some aσ ≡ a forms a subgroup Gc ≤ Sym(nc). Replacing φ(x; y) with

∧
σ∈Gc

φc(x
σ; y) ∧ RMx

( ∧
σ∈Gc

φc(x
σ; y)

)
= kc,

we have (4a). Since, for σ ∈ Sym(nc) \Gc,

p(y) ∧ p(y′)→ RMx(φ(x; y) ∧ φc(xσ; y′)) < kc,

there is (by compactness) a θ(y) ∈ p(y) such that

φc(x; y) ∧ θ(y)

satisfies (4b) as well.

Lemma 4.2.12. There exists a set of codes C such that

1. Every simple formula is covered by a unique c ∈ C.

2. If c ∈ C and σ ∈ Sym(nc) there is a unique cσ ∈ C with φc(x
σ; y) ≡ φcσ(x; y).



48

Proof. We will build C as a limit of finite sets, starting with C = ∅ and inductively main-
taining (1)’ and (2), where

(1)’ Every simple formula is covered by at most one c ∈ C.

Suppose ψ(x; d) is a simple formula not covered by some code in C. Choose c which
encodes ψ(x; d). Replace φc(x; y) with

φc(x; y) ∧
∧
c′∈C′
∀y′ RMx(φc′(x; y′) ∧ φc(x; y)) < kc,

where C ′ := {c′ ∈ C : nc = nc′ and kc = kc′}, and note that this is still a code.
Choose representatives σ1, ..., σm of the right cosets of Gc and define, for σ ∈ Sym(nc),

cσ to be the code with φcσ(x; y) := φc(x
σ; y). Now C ∪{cσ1 , ..., cσm} satisfies (1)’ and (2) and

covers ψ(x; d).

We call a collection of codes C satisfying the conclusion of the lemma above a system of
codes for T .

Lemma 4.2.13. For every code c there is a constant mc and a ∅-definable partial function
fc so that if b1, ...,bmc are independent realizations of φc(x; a), then a = fc(b1, ...,bmc).

Proof. This is a standard stability fact. See Remark 2.26 of [35].

4.2.3 Prealgebraic Codes

We are now ready to definably analyze types in T∞. We once again assume that T1 and
T2 have degree 1 and finite definable rank and that L(T1) ∩ L(T2) = ∅. We fix a system of
codes Ci for each Ti.

Definition 4.2.14. A prealgebraic code is a pair c = (c1, c2) ∈ C1 × C2 so that

1. nc := nc1 = nc2 ,

2. v1kc1 + v2kc2 −Knc = 0,

3. v1kc1,S + v2kc2,S −K(nc − |S|) < 0 for ∅ ( S ( {1, ..., nc},

4. φc(x; y) := φc1(x; y1) ∧ φc2(x; y2),

5. Dc := Dc1 ·Dc2 ,

6. Gc := Gc1 ∩Gc2 .

We say a prealgebraic code instance φc(x; a) is over A ∈ K∞ if a ∈ acleq∞(A); i.e., if a =
(a1, a2) ∈ acleqT1

(A)× acleqT2
(A).
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Definition 4.2.15. Suppose φc(x; a) is over A ∈ cK∞ and B,b ⊆ A. We say that b |=
φc(x; a) is B-generic if RMTi(b/Bai) = kci for i = 1, 2. We say that a sequence of realizations
b1, ...,bN of φc(x; a) is independent if and only if it is independent over ai in each Ti.

The following lemma is proved in [38], but we include a proof here because it helps explain
the purpose of prealgebraic codes.

Lemma 4.2.16 (Ziegler [38]). If A ≤s A ∪ {b} ∈ K∞ is prealgebraic there is a unique
prealgebraic code c and parameter a ∈ acleq(A) such that b is an A-generic realization of
φc(x; a).

On the other hand, if b * A, a ∈ acleq(A), and b |= φc(x; a) then δ(b/A) ≤ 0. Moreover
δ(b/A) = 0 if and only if A ≤s A ∪ {b} is prealgebraic if and only if b is an A-generic
realization of φc(x; a).

Proof. Suppose A ≤s A ∪ {b} is prealgebraic. Since tpTi(b/A) is not algebraic, there is a
simple ψi(x; di) ∈ Li such that di ∈ acleqTi(A) and b is an A generic realization of ψi(x; di).
Now choose ci ∈ Ci and ai ∈ acleqTi(A) such that

RMTi(ψi(x; di) ∧ φci(x; a)) = RMTi(ψi(x; di)) = kc.

Because A ≤s A ∪ {b} is prealgebraic, δ(b/A) = 0 and δ(b/Abs) < 0 whenever ∅ ( S (
{1, ..., nc}. It follows that v1kc1 + v2kc2 −Knc = 0 and v1kc1,S + v2kc2,S −K(nc − |S|) < 0
whenever ∅ ( S ( {1, ..., nc}. Thus c = (c1, c2) is a prealgebraic code and b is an A-generic
realization of φc(x; a) where a = (a1, a2) ∈ acleq(A).

For the second part, note that if A ∩ {b} 6= ∅, then δ(b/A) ≤ v1kc1,S + v2kc2,S −K(nc −
|S|) < 0, where S = {i | bi ∈ A}. Furthermore, if A ∩ {b} = ∅, then δ(b/A) ≤ v1kc1 +
v2kc2 −Knc = 0.

Lemma 4.2.17. For each prealgebraic code c we can find an integer mc ≥ nc so that if
A ≤s,mc B, a ∈ acleq(B), and a /∈ dcleq(A), then fewer than mc distinct realizations of
φc(x; a) intersect A. Moreover, for any distinct b1, ..,bmc there is at most one parameter a
such that bi |= φc(x; a) for all i ≤ mc.

Proof. It suffices to prove the lemma for set-wise distinct realizations.
Suppose b1, ...,bm |= φc(x; a) and bi *

⋃
j<i bj for all i < m. By the additivity of δ,

δ(b1...bm) ≤ δ(a) +
∑
i≤m

δ(bi/ab1...bi−1).

By Lemma 4.2.16, bi is a non-generic realization of φc(x; a) over ab1...bi−1 if and only if
δ(bi/ab1...bi−1) < 0. Since δ(b1...bN) ≥ 0, bi must be ab1...bi−1-generic for all but at most
δ(a) of the i < m. Moreover, δ(a) is bounded uniformly in c.

The above paragraph shows that given a sufficiently long sequences b1, ...,bm of set-wise
distinct realizations of φc(x; a), more than half of the length mci (i = 1, 2) subsequences are
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independent. Thus given a sufficiently long sequence, ai is the consensus value of fci on the
length mci subsequences. Hence a is uniquely determined.

Suppose A ≤s,mc B, a ∈ acleq(B), and a /∈ dcl(A). Since | clB,2nc(a)| < 2ncδ(a) there is a
finite bound Mc on the number of b |= φc(x; a) with b ⊆ A or b ⊆ clB,2nc(a). By Lemma
4.2.16, any two set-wise distinct realizations of φc(x; a) which are not contained in clB,2nc(a)
are disjoint. Thus if b1, ...,bm are set-wise distinct realizations of φc(x; a) with bi ∩ A 6= ∅,
then

0 ≤ δ(b1...bka/A) ≤ δ(a/A)− (m−Mc).

Thus we can increase m to the desired mc.

Definition 4.2.18. We say that a prealgebraic code instance φc(x; a) is strongly based on a
set A if A contains at least mc distinct realizations of φc(x; a).

Choose an injective function c 7→ sc on the prealgebraic codes such that

sc > (mcnc + 1)! + 2mcδ(a)

for all consistent φc(x; a).

Definition 4.2.19. We say a prealgebraic code instance φc(x; a) over A is long in A if
and there are more than sc distinct realizations of φc(x; a) in A. If b1, ...,bN are distinct
realizations of some φc(x; a) and N > sc, then we say that {bi} is a long sequence in φc(x; a).

We now give the main combinatorial argument in our construction. We call this the
Decomposition Lemma. This lemma allows us to definably analyze almost orthogonality of
prealgebraic codes in T∞.

Lemma 4.2.20. Suppose A ≤s B ∈ K∞ and B \ A is finite. We can find

A ≤s X ( B

such that if

Z := {b ⊆ B | b * X is an element of a long sequence strongly based on X},

then

1. δ(bb′/X) = 0 for all b,b′ ∈ Z.

2. For every long φc(x; a) either

(a) φc(x; a) is strongly based on X and clB,mc(a) ⊆ X,

or (b) there is a b ∈ Z such that X ∪ {b} contains every realization of φc(x; a).
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Proof. We will build X in stages starting with X = A and inductively maintaining the
following conditions.

• δ(bb′/X) = 0 for all b,b′ ∈ Z.

• If (2) fails for φc(x; a), then X ≤s,mc B, X ∪ {b} ≤s,mc B for all b ∈ Z, and ||Z|| >
2mcδ(X/A) where ||Z|| is the number of set-wise distinct elements in Z.

Choose a φc(x; a) that witnesses the failure of (2). Since X ≤s,mc B, it can not be the case
that φc(x; a) is strongly based on X. In fact, fewer than mc realizations of φc(x; a) intersect
X by Lemma 4.2.17. Since c 7→ sc is injective, we may choose φc(x; a) which maximizes mc.

If there is a b ∈ Z with φc(x; a) is strongly based on X ∪ {b}, then set X̃ := X ∪ {b}.
Otherwise, choose b1, ...,bmc |= φc(x; a) and set X̃ := X ∪

⋃
i{bi}. By the proof of Lemma

4.2.17, we can select the bi which include all the realizations of φc(x; a) which intersect
X. Moreover, we can select the bi such that set-wise distinct realizations of φc(x; a) not
contained in X̃ are pairwise disjoint.

Define
Ỹ := {b ∈ Z̃ | b ∈ Z or b |= φc(x; a)}

and note that ||Ỹ || > 2mcδ(X̃/A), because sc > (mcnc + 1)! + 2mcδ(a).
Now, close X̃ under the following three operations.

• If X̃ �s,mc B then set X̃ := clB,mc(X̃).

• If X̃ ∪ {b} �s,mc B for some b ∈ Z̃ then set X̃ := clB,mc(X̃ ∪ {b}).

• If there are b,b′ ∈ Z̃ with δ(bb′/X) < 0 then set X̃ := X̃ ∪ {b,b′}.

By the maximality of mc and induction, each closure step reduces ||Ỹ || by at most 2mc

and reduces δ(X̃/A) by at least 1. It follows that after closing, we have

||Z̃|| ≥ ||Ỹ || > 2mcδ(X̃/A)

and the rest of the induction hypothesis. Moreover, φc(x; a) no longer witnesses the failure
of (2).

Iteration of this process must stop because B \ A is finite. Once finished, (1) and (2)
must hold and ||Z|| > 0 implies X ( B.

4.2.4 Weak Closure

We need one final ingredient to definably analyze prealgebraic codes in T∞. Given pre-
algebraic code instance φc(x; a) over some A ∈ K∞, we need a first-order approximation or
clA(a).



52

For each prealgebraic code c, define

Φc(x1, ...,xmc+1) :=
∧
i<j

xi 6= xj ∧
∧
i

φc(xi; y),

and
Γc := {Φc′ : sc > sc′}.

Lemma 4.2.21. We may assume that if φc(x; a) is over A and b,b′ |= φc(x; a) are A-
generic, then qftpΓc(b/A) = qftpΓc(b

′/A).

Proof. The easiest way to obtain this is to redo the code constructions in each Ti. Make sure
that the lemma is true in Ti for Γci := {Φc′i

: nci > mc′i
· nc′i}. Now, since sc > sc′ implies

nci > mc′i
· nc′i for i = 1, 2, the lemma follows.

Lemma 4.2.22. For any prealgebraic code instance φc(x; a) over A, there is a unique min-
imal subset W ⊆ A with the following properties.

1. Suppose for some A-generic b |= φc(x; a) there is a φc′(x
′; a′) with a long sequence in

b. If
Y := {b′ ⊆ A ∪ {b} | b′ |= φc′(x

′; a′)},

then A ∩
⋃
Y ⊆ W .

2. If b ⊆ A, b |= φc(x; a), and qftpΓc(b/W ) is not generic, then b ⊆ W .

Moreover, W is contained in clA,nc(a), and first-order definable.

Proof. First we show clA,nc(a) satisfies (1) and (2).
Condition (2) is easy, because if qftpΓc(b/ clA,nc(a)) fails to be generic, then δ(b/ clA,nc(a)) <

0. This contradicts the assumption clA,nc(a) ≤s,nc A.
For condition (1), suppose b |= φc(x; a), φc′(x

′; a′) is long in b, b′ ⊆ A∪{b}, b′ * b, and
b′ |= φc′(x

′; a′). Since A ∩ {b′} ↓Tia a′ and a′ /∈ acleq(a), we have b′ ⊆ clA,nc(a) by Lemma
4.2.16.

The class of sets satisfying (1) and (2) is closed under intersection. Thus uniqueness
and containment in clA,nc(a) follows from the fact that clA,nc(a) is finite (recall | clA,nc(a)| <
ncδ(a)).

Since checking condition (1) and (2) is first-order for a set of fixed size and we have a
bound on the size of W , W is first-order definable.

Definition 4.2.23. With W as in the lemma above, we define

wclA(φc(x; a)) := W,

and call it the weak closure of φc(x; a) in A.
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Lemma 4.2.24. If φc(x; a) is over A, b |= φc(x; a) is A-generic and φc′(x
′; a′) is long in b,

then wclA∪{b}(φc′(x
′; a′)) ⊆ wclA(φc(x; a)) ∪ {b}.

Proof. Note that by Lemma 4.2.21, we can restrict condition (1) above to a single generic
realization.

Because φc′(x
′; a′) is long in b, there is a b′ ⊆ b such that b′ |= φc′(x

′; a′) is wclA∪{b}(φc′(x
′; a′))-

generic. Since Γc′ ⊆ Γc, wclA(φc(x; a))∪{b} satisfies conditions (1) and (2) for wclA∪{b}(φc′(x
′; a′)).

4.2.5 Nice Codes

In this subsection, we temporarily move back to the context of a single theory T with
finite definable rank and definably bounded degree. We need to make additional assumptions
about the codes in T in order to progress further. We find these assumptions by looking
more closely at our intended application.

Hasson’s example is rank and degree preserving biinterpretable with a theory T that has
an equivalence relation E such that:

1. T/E is strongly minimal with definable rank and degree.

2. The structure of each E-class has rank 1, degree ≤ D, and definable rank and degree,

3. Distinct E-classes are orthogonal.

4. Generic E-classes are pure sets.

For the rest of this section, fix such a theory T . We write [a] for the equivalence class
coded by an imaginary a ∈ T/E. Thus, we write Th([a]) for the induced structure on the
equivalence class a represents. We assume acleq(∅) = dcleq(∅).

Let {an} enumerate dcleq(∅) ∩ (T/E). For each n let dn := dM([an]) and add predicates
{Pn,k : k ≤ dn} which partition [an] into strongly minimal sets.

Lemma 4.2.25. There is a system of codes C with the following two properties.

1. If ψ(x; d) is simple and covered by c ∈ C, there is a parameter a and a conjuction θ(x)
of atoms Pn,k(xi) such that ψ(x; d) ∼ φc(x; a) ∧ θ(x).

2. If φc(x; a) is over A, b |= φc(x; a) is A-generic, bi ∈ Pn,k, and φc(x; a) 6|= Pn,k(xi),
then φc(x; a) |=

∨
j≤dn Pn,j(xi) and for any j ≤ dn we can change bi so that bi ∈ Pn,j

while maintaining that b |= φc(x; a) is A-generic.

Proof. Suppose we are building a code for the simple formula ψ(x; d). Since ψ(x; d) is simple,
we may assume it implies a complete atomic E-type ξ(x). Let S1 ∪ · · · ∪ Sm = {1, ..., |x|}
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be a partition such that ξ(x) implies xiExj if and only if i, j ∈ Sk for some k. By the
orthogonality condition (3),

ψ(x; d) ∼
∧
k

∃x{1,...,|x|}\Skψ(x; d).

If we choose codes ck which encode ∃x{1,...,|x|}\Skψ(x; d), then

φc(x; y) := ξ(x) ∧
∧
k

φck(xSk ; yk)

is a code which encodes ψ(x; d). Thus we may assume ψ(x; d)→
∧
i<j xiExj.

Case 1: If b1/E is generic over d for generic b |= ψ(x; d), then, since generic E-classes are
pure sets, we must have ψ(x; d) ∼

∧
i<j xiExj. In this case, φc(x) :=

∧
i<j xiExj ∧ xi 6= xj

is a code which encodes ψ(x; d). Since φc(x) has degree 1, properties (1) and (2) are trivial.
Case 2: If b1/E ∈ acl(d) for generic b |= ψ(x; d), then we can strengthen ψ(x; d) such

that ψ(x; d)→ x ⊆ [a] for some a ∈ (T/E) ∩ acl(d).
Case 2a: If RM(a) = 0, then we may assume a ∈ dcl(∅) and choose a Th([a])-code

φc(x; y) which encodes ψ(x; d). Since Th([a]) has definable rank and degree, all instances of
φc have degree 1. Thus (1) and (2) are again trivial.

Case 2b: If RM(a) = 1, then [a] is a pure set and ψ(x; d) ∼ x ⊆ [a]. Thus the code
φc(x; y) ≡ x ⊆ [y] ∧

∧
i<j xi 6= xj works. Note that dM(φc(x; a)) = dM([a])nc . In particular,

φc(x; an) is partitioned into (dn)nc degree 1 sets by the formulas

{φc(x; an) ∧
∧
i≤nc

Pn,ki(xi) : k ∈ {1, ..., dn}nc}.

From this (1) and (2) follow.

Definition 4.2.26. If C is a system of codes and there are disjoint predicates {Pn,k | k ≤ dn}
which make the above lemma true, we say that C is a nice system of codes. Note that any
system of codes for a theory with definable rank and degree is nice via dn = 1 and Pn,1 = ∅.

Suppose C is a nice system of codes. Write Σn for the set of complete {Pm,k : m < n, k ≤
dn}-formulas. Given a code c ∈ C and θ(x) ∈ Σn with |x| = nc, let c ∧ θ be the code with

φc∧θ(x; y) ≡ φc(x; y) ∧ θ(x) ∧ RMx(φc(x; y) ∧ θ(x)) = kc.

We will call c∧ θ a Σn-specialization of c. Note that by Lemma 4.2.25, c∧ θ ∈ C if and only
if φc(x; y) |= θ(x) already.
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4.2.6 The Class Kµ

We now have everything we need to describe the restricted amalgamation class Kµ. We
assume that each theory Ti has a nice system of code Ci via the predicates {P i

n,k : n ∈
N and k ≤ din}.

We write Σn := Σ1
n × Σ2

n. For a prealgebraic code c and a θ ∈ Σn, write c ∧ θ for the
Σn-specialized prealgebraic code (c1 ∧ θ1, c2 ∧ θ2). Note that specializations c ∧ θ still code
prealgebraic extensions in the sense of Lemma 4.2.16.

We define a class Kµ ⊆ K∞ by saying that A ∈ Kµ when

dimA(φc∧θ(x; a)) ≤ µA(φc∧θ(x; a))

for all specialized prealgebraic codes c∧ θ and a ∈ acleq(A). Of course, we have yet to define
dimA and µA.

If φc∧θ(x; a)) a specialized prealgebraic instance over A, then let dimA(φc∧θ(x; a)) be the
cardinality of the set

{b ⊆ A : b * wclA(φc(x; a)) and b |= φc∧θ(x; a)};

that is, the number of realizations outside of the weak closure.
For unspecialized prealgebraic codes c, let

µA(φc(x; a)) = (Dc!)
Dc · (sc +mc + 1).

For Σn-specializations c ∧ θ, we will simultaneously define µA(φc∧θ(x; a)) and first-order
approximations Kc,n ⊆ K∞ to the final Kµ.

Suppose c∧ θ is a Σn-specialization of c. We inductively assume µA has been defined for
instances of specialized prealgebraic codes c′ ∧ θ′ whenever sc′ < sc or θ′ ∈ Σn−1. Using the
induction hypothesis, let Kc,n be the class of all A ∈ K∞ such that

dimA(φc′∧θ′(x
′; a′)) ≤ µA(φc′∧θ′(x

′; a′))

for φc′∧θ′(x
′; a′) over A with sc′ < sc and θ′ ∈ Σn. If A ∈ Kc,n and φc∧θ(x; a) is over A,

we say that φc∧θ(x; a) extendible over A when there is an A-generic b |= φc∧θ(x; a) so that
A ∪ {b} ∈ Kc,n. For A-extendible φc∧θ(x; a) define

µA(φc∧θ(x; a)) := µA(φc∧θ−(x; a))/D,

where θ− ∈ Σn−1, θ → θ−, and D is the number of θ′ ∈ Σn with θ′ → θ− and φc∧θ′(x; a)
extendible over A. For non-A-extendible φc∧θ(x; a) define

µA(φc∧θ(x; a)) := 0.

Lemma 4.2.27. If A ∈ Kc,n and φc∧θ(x; a) is A-extendible, then µA(φc∧θ(x; a)) > sc +mc.
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Proof. The degree of any prealgebraic code instance φc(x; a) is bounded by Dc. Thus each
time we divide by D in the definition of µA, we have D ≤ Dc. Moreover, we divide by a
number greater than 1 at most Dc times.

Lemma 4.2.28. If A ∈ Kc,n, φc∧θ(x; a) is over A, and θ ∈ Σn then µA(φc∧θ(x; a)) depends
only on qftpΣn∪Γc(wclA(φc(x; a)) ∪ {b}) for A-generic b |= φc∧θ(x; a).

Proof. The quantifier-free type above is uniquely determined by Lemma 4.2.21.
Suppose b |= φc∧θ(x; a) is A-generic and φc′∧θ′(x

′; a′) witnesses A∪{b} /∈ Kc,n. Note that
all of the realizations of φc′∧θ′(x

′; a′) are contained in wclA(φc(x; a))∪{b}. By induction, we
know that µA∪{b}(φc′∧θ′(x

′; a′)) is completely determined by qftpΣn∪Γc(wclA∪{b}(φc′(x
′; a′))∪

{b′}) for some (any) A ∪ {b}-generic b′ |= φc′∧θ′(x
′; a′).

Note that wclA∪{b}(φc′(x
′; a′)) ⊆ wclA(φc(x; a)) ∪ {b}, every realization of φc′∧θ′(x

′; a′)
is contained in wclA(φc(x; a)) ∪ {b}, and wclA(φc(x; a)) ∪ {b} computes the same value
for µc′∧θ′(x

′; a′)) as A ∪ {b}. It follows that the failure A ∪ {b} /∈ Kc,n is encoded in
qftpΣn∪Γc(wclA(φc(x; a)) ∪ {b}) and that φc∧θ(x; a) is not A-extendible.

Thus the A-extendibility of φc∧θ(x; a) is encoded in qftpΣn∪Γc(wclA(φc(x; a))∪{b}). Un-
rolling the definition of µA(φc∧θ(x; a)) we see that it too is encoded.

Lemma 4.2.29. If A ∈ Kc,n, θ ∈ Σn, b ⊆ A, b |= φc∧θ(x; a), and b * wclA(φc(x; a)) then
φc∧θ(x; a) is extendible over A.

Proof. Note that b has the same quantifier-free Σn ∪ Γc type over wclA(φc(x; a)) as any
A-generic b′ |= φc∧θ(x; a). Since wclA(φc(x; a)) ∪ {b} ⊆ A ∈ Kc,n we can apply the proof of
the previous lemma to get A ∪ {b′} ∈ Kc,n.

Lemma 4.2.30. For all prealgebraic codes c and n ∈ N, Kc,n+1 ⊆ Kc,n.

Proof. This an easy consequence of the previous lemma and the definition of µA.

In the following lemma we use the Decomposition Lemma and nice code assumption to
show that our first order approximations Kc,n ⊇ Kµ are well-behaved.

Lemma 4.2.31. Suppose A ∈ Kc,n+1, φc∧θ(x; a) is A-extendible, and θ ∈ Σn. There is a
θ∗ ∈ Σn+1 such that θ∗ → θ and φc∧θ∗(x; a) is A-extendible.

Proof. We induct on S ⊆ {1, ..., nc} to prove the following claim.

Claim. There exists an A-generic b |= φc∧θ(x; a) such that A ∪ {bS} ∈ Kc,n+1.

Suppose b |= φc∧θ(x; a) is A-generic and S ⊆ {1, ..., nc}. Applying the Decomposition
Lemma to A ≤s B = A∪{bS}, we get A ≤s X ( B and Z at stated there. Since b |= φc(x; a)
being A-generic completely determines qftpΓc(b/A) and the values of δ on subsets of A∪{b},
the decomposition is the same for all A-generic b |= φc∧θ(x; a). Thus we may assume that
X ∈ Kc,n+1 by induction.
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If b′ ∈ Z, then b′ is an X-generic realization of some Σn-specialized prealgebraic code
instance φc′∧θ′(x

′; a′) strongly based on X. Since X ∈ Kc,n+1 and X ∪ {b′} ∈ Kc,n, we know
that φc′∧θ′(x

′; a′) is extendible over X. Because sc′ < sc we can use this lemma to find a
θ′′ ∈ Σn+1 so that θ′′ → θ and φc′∧θ′′(x

′; a′) is X-extendible. By Lemma 4.2.25, we may
assume that b′ |= φc′∧θ′′(x

′; a′). Because wclB(φc′(x; a′)) ⊆ X and b′ is X-generic we have
X ∪ {b′} ∈ Kc,n+1.

Since the set-wise distinct elements of Z are pairwise disjoint, we can do this for all
b′ ∈ Z simultaneously.

Now, if B /∈ Kc,n+1 it must be because some Σn-specialized prealgebraic code instance
φc′∧θ′(x

′; a′) has a further Σn+1-specialization with too many realizations. By the above, we
must have φc′∧θ′(x

′; a′) strongly based on X.
Let c′∧ θ1, ..., c

′∧ θD enumerate the X-extendible Σn+1-specializations of c′ which further
specialize c′ ∧ θ′. We may assume

dimB(φc′∧θ1(x
′; a′)) > µB(φc′∧θ1(x

′; a′)) = µX(φc′∧θ1(x
′; a′)).

Since φc′∧θ′(x
′; a′) doesn’t have too many realizations in B, we may assume that

dimB(φc′∧θ2(x
′; a′)) < µB(φc′∧θ2(x

′; a′)) = µX(φc′∧θ2(x
′; a′)).

Since X ∈ Kc,n+1, there is a b′ ∈ Z realizing φc′∧θ1(x
′; a′). Using Lemma 4.2.25 we can

change b′ into a realization of φc′∧θ2(x
′; a′).

If φc′′∧θ′′(x
′′; a′′) is any other Σn+1-specialized prealgebraic code instance over X, then its

dimension is unchanged by this operation unless

φc′′∧θ′′(x
′; a′′) ≡ φc′∧θi((x

′)σ; a′)

for some σ ∈ Sym(nc) and i = 1, 2. If this latter condition holds, then |x′′| = |x′| and

µX(φc′′∧θ′′(x
′; a′′)) = µX(φc′∧θi(x

′; a′)).

Thus the net effect of changing b′ is to reduce the total number of violations to the
multiplicity rules. Iterating this process, we eventually get B ∈ Kc,n+1.

Lemma 4.2.32. Suppose A ∈ Kµ, φc∧θ(x; a) is A-extendible, and dimA(φc∧θ(x; a)) < µA(φc∧θ(x; a)).
There is an A-generic b |= φc∧θ(x; a) such that A ∪ {b} ∈ Kµ.

Proof. Suppose θ ∈ Σn. By the previous lemma, there is at least one θ∗ ∈ Σn+1 so that
θ∗ → θ and φc∧θ∗(x; a) is A-extendible. Since µA(φc∧θ(x; a)) is divided evenly amongst these
θ∗, we can choose θ∗ such that dimA(φc∧θ∗(x; a)) < µA(φc∧θ∗(x; a)). Iterating this process,
we can find an A-generic b |= φc∧θ(x; a) so that A ∪ {b} ∈ Kc,n′ for all n′ > n.

If A ∪ {b} /∈ Kµ, then it must be the case that

dimA∪{b}(φc∧θ∗(x; a)) > µA∪{b}(φc∧θ∗(x; a))

for some θ∗ ∈ Σn′ with n′ > n and b |= φc∧θ∗(x; a). But µA∪{b}(φc∧θ∗(x; a)) = µA(φc∧θ∗(x; a))
and we constructed b so that µA(φc∧θ∗(x; a)) > dimA(φc∧θ∗(x; a)). Thus dimA(φc∧θ∗(x; a)) =
µA(φc∧θ∗(x; a)), a contradiction.
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4.2.7 The Theory Tµ

We now argue that the Fraisse limit of (Kµ,≤s) is the fustion we are looking for.

Lemma 4.2.33. If A ≤s A ∪ {b} is algebraic or transcendental, then A ∈ Kµ implies
A ∪ {b} ∈ Kµ.

Proof. Suppose b1, ...,bN |= φc∧θ(x; a) witnesses A ∪ {b} /∈ Kµ. Since a ∈ acleq(A), A and
A ∪ {b} compute the same value for µ(φc∧θ(x; a)). Thus it can not be the case that bi ⊆ A
for all i ≤ N , so we may assume b ∈ b1. This contradicts Lemma 4.2.16 and the assumption
that A ≤s A ∪ {b} is not prealgebraic.

Lemma 4.2.34. The class Kµ has the amalgamation property with respect to ≤s.

Proof. Suppose A ≤s B,C ∈ Kµ. We need to find a D ∈ Kµ with A ≤s C ≤s D and a
B′ ≤s D such that B′ ≡A B. By induction, we may assume that both A ≤s B and A ≤s C
are minimal.

Suppose A ≤s B is algebraic, say because B = A ∪ {b} and tpT1
(b/A) is algebraic. If

tpT1
(b/A) is realized by c ∈ C \ A, then B ≡A C. Otherwise, we may assume tpT1

(b/C) is
some extension of tpT1

(b/C) which implies b /∈ C and tpT2
(b/C) is generic. It is then easy

to check C ≤s C ∪ {b}, so D = C ∪ {b} works by the previous lemma.
Thus we may assume neither A ≤s B nor A ≤s C are algebraic. We compute the free

fusion of B and C over A by assuming tpTi(B/C) is some non-forking extension of tpTi(B/A)
and letting D = B ∪ C. By the submodularity of δ, we have B,C ≤s D.

Suppose D /∈ Kµ is witnessed by distinct b1, ...,bN |= φc∧θ(x; a) with N too large. We
may assume φc∧θ(x; a) has degree 1.

By Lemma 4.2.17, we may assume that a ∈ acleq(B) and thus clD(a) ⊆ B. It follows
that B and D compute the same value for µ(φc∧θ(x; a)). Since B ∈ Kµ, we may assume
b1 * B. By Lemma 4.2.16, C = A ∪ {b1}. Since B ↓TiA C, we must have a ∈ acleq(A) and
thus clD(a) ⊆ A. By repeating the argument just given, we may assume B = A ∪ {b2}.

Since b1 and b2 are both A-generic realizations of a degree 1 prealgebraic code instance
over A, we must have b1 ≡A b2. Thus B ≡A C.

We call an M ∈ Kµ rich if for all finite A ≤s M and finite A ≤s B ∈ Kµ there is a
C ≤s M with B ≡A C. The amalgamation property shows that for every A ∈ Kµ we can
find a rich M ∈ Kµ with A ≤s M .

Assumption 4.2.35. If K > 1, then RM(T1) ≤ RM(T2), in T1 every element is interal-
gebraic with infinitely many elements, and in T2 there are infinitely many disjoint unary
predicates of rank RM(T2)− 1.

Let Tµ be the theory which says, for M |= Tµ, that

1. M ∈ Kµ,
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2. M � Li |= Ti for i = 1, 2,

3. there is no prealgebraic extension M ≤s N ∈ Kµ.

Note that axiom (3) is first order by Lemma 4.2.32.

Theorem 4.2.36. The theory Tµ is consistent, complete, and the ω-saturated models of Tµ
are exactly the rich structures on Kµ. Moreover, Tµ has rank K, nice codes, and

RMT (φ(x; a)) = vi RMTi(φ(x; a)) and dMT (φ(x; a)) = dMTi(φ(x; a))

for all φ(x; y) ∈ L(T eqi ) and i = 1, 2.

Proof. We have set up the machinery required to run the proof of the corresponding theorem
in [38]. The only thing that needs mention is that the pairs of predicates P 1

n,k∧P 2
n′,k′ provide

nice codes for Tµ.

Proof of Theorem 4.2.1. This has the same proof as the corresponding theorem in [38]. The
main point is that if we are willing to expand the language, i.e., L(T ) ) L(T1)∪L(T2), then
we can obtain assumption 4.2.35 and apply Theorem 4.2.36.
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