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Abstract

On the infinity Laplacian and Hrushovski’s fusion
by
Charles Krug Smart
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Lawrence C. Evans, Co-chair

Professor Leo A. Harrington, Co-chair

We study viscosity solutions of the partial differential equation
—Aju=f inU,

where U C R” is bounded and open, f € C(U) N L>®(U), and

Asou := |Du|™? Z U Uy Uy,

ij

is the infinity Laplacian.
Our first result is the Max-Ball Theorem, which states that if w € USC(U) is a viscosity
subsolution of
—Apu<f inU

and € > 0, then the function v(r) := maxp, . u satisfies

2v(x) — max v — min v < max f,

B(z,) B(z,) B(z,2¢)

for all z € Uy, := {x € U : dist(x,0U) > 2¢}. The left-hand side of this latter inequality
is a monotone finite difference scheme that is comparatively easy to analyze. The Max-Ball
Theorem allows us to lift results for this finite difference scheme to the continuum equation.
In particular, we obtain a new proof of uniqueness of viscosity solutions to the Dirichlet
problem when f =0, inf f > 0, or sup f < 0. The results mentioned so far are joint work
with S. Armstrong.

The Max-Ball Theorem is also useful in the analysis of numerical methods for the infinity
Laplacian. We obtain a rate of convergence for the numerical method of Oberman [32]. We
also present a new adaptive finite difference scheme.



We also prove some results in Model Theory. We study rank-preserving interpretations
of theories of finite Morley rank in strongly minimal sets. In particular, we partially answer
a question posed by Hasson [20], showing that definable degree is not necessary for such
interpretations. We generalize Ziegler’s fusion of structures of finite Morley rank [38] to a
class of theories without definable degree. Our main combinatorial lemma also allows us to
repair a mistake in [23].
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Chapter 1

Overview

This thesis comprises two disjoint parts. Chapters 2 and 3 study a problem in nonlinear
partial differential equations and Chapter 4 studies a problem mathematical logic. This
strange state of affairs reflects the unusual path of the author in graduate school. He initially
studied model theory with Leo Harrington, but then switched to studying partial differential
equations with Lawrence C. Evans. As both stages were important to the author’s career,
they are both represented here.

1.1 The infinity Laplacian

The archetypical problem in the L*° Calculus of Variations is to find a minimizer of the
functional
Lip(u,U) := sup u(w) — uly)

z,yelU |ZL‘ - y| 7
zFY

subject to u = g on OU, where U C R" is bounded and open and g € C(9U) satisfies
Lip(g,0U) < oo. A classical theorem of Kirszbraun [28] implies that g has a least one
extension v € C(U) that satisfies

Lip(u, U) = Lip(g,0U).

In fact, there are infinitely many such extensions in general [30, 36]. To obtain a uniquely

optimal extension, we look for an extension u € C'(U) that is absolutely minimizing Lipschitz.
That is, it satisfies

Lip(u, V) = Lip(u,dV) for every open V CC U.

It is known [10] that a function v € C(U) is absolutely minimizing Lipschitz if and only if it
is infinity harmonic. That is, a viscosity solution (see Chapter 2) of the partial differential
equation

—Ayu=0 inU,



where
Agou := |Du|™? Z Uy, Uy Uy
ij

is the infinity Laplacian.

Infinity harmonic extensions were first studied by Aronsson [5]. Existence and uniqueness
appeared ten years later in a famous paper of Jensen [27]. Aronsson’s famous example,

u(z,y) = | — [y|*?,

of an infinity harmonic function on R? showed that C'* is the best regularity one could
hope for. Evans and Savin [17] proved that every infinity harmonic function on R? is C..
Recently, Evans and the author [15, 14] showed everywhere differentiability in higher dimen-
sions.

Chapters 2 and 3 concern new techniques for the basic existence and uniqueness theory
of infinity harmonic functions. The most significant is the Max-Ball Theorem, which states
that if u € C(U) is a subsolution of

(1.1.1) ~Au<0 inU
and we define
v(x) := max u(y),
ly—z|<e
then
(1.1.2) 2v(z) — max v(y) — min v(y) <0,
ly—=z|<e ly—z|<e

for all z € Uy, := {z € U : dist(x,0U) > 2¢}. Informally, subsolutions of (1.1.1) perturb to
subsolutions of the finite difference scheme (1.1.2). The idea for this theorem was derived
from a paper by Peres, Schramm, Sheffield, and Wilson [34], who studied a two-player
random-turn game called tug-of-war.

We use the Max-Ball Theorem in several applications. Among these are a new proof of
uniqueness of infinity harmonic extensions, a rate-of-convergence analysis for Oberman’s [32]
numerical scheme for the infinity Laplacian, and a new adaptive finite difference scheme.

We remark that the results in Chapter 2, with the exception of the graph-theoretic
interpretation in Section 2.6 and Proposition 2.7.2 are joint work with S. Armstrong. Indeed,
the author has collaborated with a number people on “max-ball” projects [3, 4, 1]. We give
here a new presentation of the highlights of [2] together with a number of new applications.

1.2 Rank preserving interpretations

A great deal of the progress in model theory in the last thirty years was made in an
attempt to classify all strongly minimal theories. It was famously conjectured by Zilber



that there were only three kinds of strongly minimal theories: trivial, vector space-like, and
field-like. This idea was put to rest by Hrushovski [26], who constructed a strongly minimal
theory that did not fit into the above classification. Since then, Hrushovski’s proof technique
has been adapted to produce more theories with a host of interesting properties [21].

Using Hrushovski’s techniques, Hasson proved [20] that every complete first-order theory
with finite definable Morley rank and Morley degree has a rank preserving interpretation in
a strongly minimal set. He also proved a partial converse, showing that every theory that
admits an interpretation (not necessarily rank preserving) in a strongly minimal set has finite
definable Morley rank and definably bounded Morley degree. This left open the question of
how much definable degree one needs to build a rank-preserving interpretation in a strongly
minimal theory.

In Chapter 4, we show that definable degree is not necessary. Unfortunately, we do not
show that definably bounded degree is sufficient. Instead, we show that a class of theories
derived from a test case proposed by Hasson [20] admit such interpretations. We actually
prove something slightly more general. We show that every pair of theories in our class
have a fusion. A result of Ziegler [38] then implies that all theories in our class have a rank
preserving interpretation in a strongly minimal set.

We also correct an error in the amalgamation construction of [23]. There, Remark 1.7
states that there are 2°°(5"/4) atomic types extending atpg(B’, A) Uatpr(A’). This is indeed
the case. However, some may conflict with the earlier multiplicity rules and therefore are
not admissible. Worse, the total number of admissible extensions may not be a power of 2.
In particular, the theory 7}, defined by Hasson and Hrushovski is not consistent. Fixing this
requires a definable way of detecting the number of admissible extensions. This is provided
by the main combinatorial lemma in Chapter 4.



Chapter 2

The Max-Ball Theorem and some
applications

This chapter concerns viscosity solutions of the boundary value problem

{—Aoou =f inU,

(2.0.1)
u=gq on OU,

where U C R” is a bounded and open set, f € C(U)NL>*(U), g € C(0U), and

Au = |Du|™? Z U U Uz
(4]
is the infinity Laplacian. See Crandall [10] for an introduction to the theory of this equation.

Our main result is the Max-Ball Theorem, which states that subsolutions of (2.0.1)
perturb to subsolutions of a certain finite difference scheme. The finite difference scheme is
comparatively easy to analyze, and we use the Max-Ball Theorem to transfer the results of
this analysis back to the continuum equation. Notably, we obtain a new proof of uniqueness
of viscosity solutions of (2.0.1) when f < 0, f > 0, or f = 0. Our proof is remarkable
in that it is completely elementary. In particular, it avoids Alexandrov’s theorem on the
almost everywhere twice differentiability of convex functions used in [7, 6, 27, 11] and the
probabilistic arguments of [34].

Using additional analysis of the finite difference scheme, we obtain an estimate on how
the solution of (2.0.1) changes as the right-hand side varies. We also obtain a proof of
convergence for the finite difference scheme that is stronger than what the famous theorem
of Barles and Souganidis [8] on monotone schemes provides.

Also important is our graph-theoretic interpretation of the finite difference scheme in
Section 2.6. Here we translate the ideas of [34] and [2] into a language suitable for the analysis
of finite difference schemes in Chapter 3. These graph-theoretic ideas and Proposition 2.7.2
are the only parts of this chapter that are not joint work with S. Armstrong.



2.1 Preliminaries

Throughout this chapter U, f, and g will be as above unless otherwise stated. We let
Ck(U), USC(U), LSC(U) and L*°(U) denote respectively the k-times continuously differ-
entiable, upper semiconintuous, lower semincontinuous, and bounded measurable functions
on U. We write U for the closure of U and U := U \ U for the boundary of U. We write
|z| for the Euclidean norm of a point z € R™. If u € C'(U) and z € U, then Du(z) € R"
denotes the gradient of u at x. If u € C?(U), then D?u(z) € S,, denotes the n X n symmetric
matrix of second derivatives at .

We recall the notion of viscosity solution [12]. Given an upper semicontinuous function
u € USC(U) and a function f: U — R, we say that the differential inequality

(2.1.1) —Au<f inU
holds in the wviscosity sense if and only if the following condition holds.

If p € C*(U) and = — (u — ¢)(x) has a strict local

Here we have used the notation

A% () = {Amwx) if Dp(x) # 0,

(2.1.3) maxj,|=1 (D%p(x)v,v) if Dp(z) =

which is necessary since A, ¢ may not be everywhere defined.

We call a function v € USC(U) that satisfies (2.1.1) a subsolution of —Au = f.
Negating u and f, we obtain the dual notion of supersolution. That is, v € LSC(U) is a
supersolution of —A, v = f if and only if u := —v is a subsolution of —A_u = f.

A wiscosity solution of (2.0.1) is a function u € C'(U) that satisfies v = g on OU and is
both a viscosity subsolution and a viscosity supersolution of —Au = f in U.

Remark 2.1.1. We drop the word viscosity in the sequel and assume that differential in-
equalities are to be interpreted in the viscosity sense. We also note that the symmetry
between the notion of subsolution and supersolution allows the transfer of many results. We
often use the symmetric versions of results without further comment in the sequel.

2.2 The Max-Ball Theorem

2.2.1 The finite difference infinity Laplacian

Given a bounded function v : U — R and ¢ > 0, we define the functions T°u : U, — R
and T.u : U. — R by

(2.2.1) T u(x) :== sup u



and

2.2.2 T.u(x) := inf u,
(222) ) =
where

U, :={z € U : dist(x,0U) > €}.
We then define SFu, ST u, AZ u: U, — R by

1
Si = - - TE )
“u= (u T
1
Stu = E(Tsu —u),
and
1 1
— A€ = — U — + = — — Cu —
(2.2.3) A u: 8(S8 u— S u) > (2u — Tu — Tou).

We call AZ the finite difference infinity Laplacian.

2.2.2 Comparison with cones

The first step in the proof of the Max-Ball Theorem is the following comparison with
cones lemma. The idea, originating in [27], is that one can restrict the test functions in
the definition of viscosity solution to cones. We prove something slightly stronger than
is necessary for the sequel. The proof is elementary and uses an interesting perturbation
argument to handle the gradient zero case.

Lemma 2.2.1. Suppose U C R" is bounded and open, c € R, and u € USC(U) satisfies
—Aju<c inU.
If p € C(U)NC>®(U) is given by
¢ 2
(2.2.4) o(x) = alr — x| — §|x — xo]°,
for some a € R and xq € R, then

(2.2.5) mgx(u —p) = I%%X(U — ).



Proof. Suppose first that o € U. In this case ¢ € C*°(U) implies that a = 0. If (2.2.5)
fails, then by continuity we may select a small € > 0 and a yg € U such that

(1 =) o) = max(u — ) > max(u — ),

where -
U(w) = pla) — Sl — a0l

The definition of subsolution then yields
c+e=-At(y) <c,

a contradiction.

Now suppose o ¢ U and (2.2.5) fails. We may again select ¢ > 0, yo € U, and ¢ as
above. We may assume that ¢ < |¢| if ¢ # 0. Now, if ¢ < 0 or Dy(yy) # 0, then we again
compute

— At u(yy) > —max{0,c+¢e} > c.

Thus we need only worry about the case ¢ > 0 and Di(yy) = 0. Note that Di(yy) = 0
implies that |yg — zo| =7 :=a/(c+¢) > 0.
Consider the functions

i(z) = ¥(x) —ellz — zo| =,
and
Ya(z) = Y(z) — gl|lr — x| — 1 — €| + ac®.

Assuming € > 0 is small enough, we still have

mgx(u — ) > I%%X(U — i),

for 1 = 1,2. Observe that ¢y < 19 and that ¢4 (x) = 1hg(x) when |z — zo| < 7.
Select yo € U such that (u — ¢1)(yo) = maxg(u — ). If |yo — xo| # 7, then we again
compute
cte=—-Axth(y) <c

On the other hand, if |yy — x| = r, then we in fact have (u — 19)(yo) = maxy(u — 1¥y) and
compute
c+e=—Axa(yp) <c

Thus we have a contradiction in either case. O



2.2.3 Slope estimates

The next step in the proof the max-ball theorem is the following slope estimates. Again,
we prove more than is strictly necessary. These are a natural generalization of the slope
estimates in [9, 10], adapted to the case of non-zero right-hand side.

If a function u : U — R is locally Lipschitz and z € U, we define Lu : U — R by

Lu(x) == info Lip(u, B(0,1)).

Observe that if u € C'(U), then Lu = |Du|. We use Lu instead of |Du| because it is upper
semicontinuous and everywhere defined. In fact, the two are equal by a new result of the
Evans and the author [15].

Lemma 2.2.2. Suppose uw € USC(U) satisfies
Ay u<c inU,

for some c € R. If B(x,e) CU and y € B(x,¢) satisfies u(y) = maxp, . u, then

(2.2.6) Lu(z) < Stu(z) + gg
and
(2.2.7) Lu(y) > SFu(z) — ge.

In particular, u is locally Lipschitz.

Proof. Given z € B(x,¢), define
eolw) i) + (MU S o= 2D - 51 Sl - 5P,

and observe by Lemma 2.2.1 that ¢, > u on B(x,¢). In particular, if w € B(z,¢), then
w(w) < u(z) + (% + g(é + |z — z|)) lw—z| — g]w — 2|2

This rearranges to

o) 2ue) () -l

o= 2 +E(5+|x—z|)) — —|w — z|.

e—lr—2z 2

Now, if z € B(z,£/2), then u(z) < ¢.(x) and u(z) < u(y) together imply that |u(z)| < C
for some constant C' > 0. Thus

uly) —u(z) _ uly) —u(z)
e—lx—z ~

+ Clz — z| = Stu(z) + Clz — 2|.



Thus we obtain

u(w) — u(z) c

< Stu(z) +

s = 2€+Cmax{]w—x\,|z—x\},

for all w, z € B(x,e/2). This implies

Lip(u, B(x,9)) < Stu(z) + gs + C6,

for all 6 > 0. Sending § — 0 gives (2.2.6).

To prove (2.2.7), we may assume that the right-hand side is positive. In particular,
z — (2) is increasing in |z| when |z| = 1.

We claim that y € dB(x,e). If ¢ > 0 this is obvious because u(y) = ¢.(z) implies
|z — 2| =e. When ¢ < 0, use Lemma 2.2.1 to obtain

max (u(z) + E|z —z/?) = max (u(z) + E|z — ).
|z—x|<e 2 |z—x|=¢ 2

From this it follows that u(2) < maxpp(.q u for all z € B(x,¢).
Now consider the maps f, g : (0, dist(z,0U)) — R given by

ft) :=u(x+et(y—2)t) and g(t):= oz +ec y—x)t).

Since f(t) < g(t) on (0,¢] and f(g) = g(e), we have

Lu(y) > Lf(e) > Lg(e) = S ul(x) —

13 €7

c
2
which is precisely (2.2.7). O

2.2.4 Statement and proof of the Max-Ball Theorem

We are now ready to state and prove the max-ball theorem. The proof is a nearly trivial
consequence of the slope estimates above.

Theorem 2.2.3 (Max-Ball Theorem). If U C R" is bounded open, f : U — R is bounded,
and u € USC(U) satisfies
—Apu<f inU,

then u® € USC(U.) satisfies

~AETu<T*f inU,..
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Proof. Choose and arbitrary x € Us. and then select y € B(z,¢) and z € B(x,¢) such that
u(y) = T*u(x) and u(z) = T°u(y). The slope estimates (2.2.6) and (2.2.7) give

uly) —u() < eLuly) — ST*f(x)

and

()~ uly) 2 eLaly) + ST1(@),

Since T.T*u(z) > u(z), we compute

—&?Af_Tu(x) = (T°u(z) — T.T%u(z)) — (T*u(z) — Tu(x))

< (u(y) = u(@)) = (u(2) - u(y))
= ’T* f(x).

Now divide by 2. O

2.3 Le Gruyer’s comparison argument

Part of what gives the Max-Ball theorem its power is that the finite difference infinity
Laplacian is a particularly easy to analyze. As a first example of this phenomenon, we give an
easy proof of comparison. This proof technique is originally due to Le Gruyer [29], although
our comparison result is stronger.

If U C R" is bounded and open and u € USC(U), then an e-thick local mazimum of u
in U is a closed set F' C U, such that v is constant on F' and

(2.3.1) u(y) < u(F) for every y € U \ F such that dist(y, F') < e.

Symmetrically, an e-thick local minimum of a function v € LSC(U) is an e-thick local
maximum of —uv.

Lemma 2.3.1. Suppose € > 0 and u,—v € USC(U) satisfy
(2.3.2) Al u<-Alv inU..
If u has no e-thick local maximum in U, then

(2.3.3) sup(u — v) = sup (u — v).
U U\U:

Proof. Suppose for contradiction that (2.3.3) fails. In this case, supy (u — v) < 0o. Define

E={zxecU:(u—v)(zx)= Slép(u — )},
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and
F:={zeFE:ux)= m}gxu}.

Observe that E' C U. is closed and non-empty by the upper semicontinuity of u—wv. Therefore
the definition of F' makes sense. We claim that F' is an e-thick local maximum of u in U.
To check (2.3.1), suppose for condradiction that there is ay € U\ F such that |y — x| < e
for some z € F and u(y) > u(F). Observe that if 2 € B(z,¢) and u(z) > u(y) then z ¢ F.
Thus, possibly selecting a different y, we may assume that
eStu(z) = uly) — u(x).

Since u(y) > maxgpu and y ¢ F, we must have y ¢ E. Thus u(y) — v(y) < u(z) — v(y) and
we compute
eStu(r) = u(y) —u(x) < v(y) —v(z) <eSto(x).
However, the definition of x € E implies that
S-ule) > Sz ola),
so we have —AS u(z) > —AS v(x), contradicting (2.3.2). O

It is useful to state a weaker comparison result that avoids the additional distraction of
the e-thick local maxima.

Lemma 2.3.2. Ife >0, u,—v € USC(U), and either

—Alu< —-Al v inU,

or

—A° u <min{0,-AS v} in U,
then
(2.3.4) sup(u — v) = sup (u — v).

U U\U-
Proof. In the case of strict inequality, suppose there is an x € U, such that
(u—v)(x) = sup(u — v).
U
The above equality immediately implies
Stu(z) < SFv(z) and S-u(z) > S-v(x),

which contradicts —AS u(z) < —AS v(x).
Otherwise, we note that u can not have an e-thick local maximum and apply Lemma
2.3.1. Indeed, if FF C U, were an e-thick local maximum and x € 0F, then we would have

Stu(x) =0 and S u(x) >0,
and therefore —AS u(z) > 0. O
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2.4 Uniqueness of viscosity solutions

Using the max-ball theorem together with Le Gruyer’s argument, we easily obtain a
comparison result for viscosity solutions.

Theorem 2.4.1. Suppose u, —v € USC(U) satisfy
(2.4.1) —Aju< f<g<—-Ayv inU,
for some f,g € C(U)NL>®U). If either f <g, f=0, f <0, or g >0, then

(2.4.2) sup(u — v) = sup(u — v).
U ou

Proof. First observe that if (2.4.2) fails, then by the upper semicontinuity of u — v it still

fails if we replace U with U, for some small € > 0. In particular, we may assume that f and g

are uniformly continuous and that either sup, (f —¢g) <0, f =0, sup; f <0, or infy g > 0.
If sup, (f — g) <0, then Theorem 2.2.3 gives

AT u<T*f in Us,,

and
_AOOTE/U Z T259 in U257

By uniform continuity, we have
T*f < Tsg in Us.,
for all sufficiently small € > 0. Thus Lemma 2.3.2 implies that

sup(T°u — T.v) = sup (T°u — T.v),
Ug Us\U2s

for all sufficiently small € > 0. Sending ¢ — 0 yields (2.4.2).
When f = 0, then Theorem 2.2.3 gives

AT u <0< A T.v in Us..
Thus Lemma 2.3.2 yields

sup(Tu — T.v) = sup (T°u — T.v),
U. Uc\U2e
and sending ¢ — 0 yields (2.4.2).
When sup;, f < 0, we replace u with (1 + €)u for some small € > 0. Since the infinity
Laplacian is 1-homogeneous, we obtain —A((1+¢&)u) < (1+¢)f < g. Thus (2.4.2) follows
as above. When inf;; g > 0 we replace v with (1 + ¢)w. O

Corollary 2.4.2. If satisfies either f =0, sup f <0, orinf f > 0, then (2.0.1) has at most
one viscosity solution.
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2.5 Convergence

As a second application of the max-ball theorem, we prove a convergence result. This
result is interesting because it works in the absence of a comparison principal for the lim-
iting equation. In particular, this result is not implied by the famous result of Barles and
Souganidis [8] on monotone finite difference schemes for second-order equations. In fact,
one can use this result to prove existence and stability of solutions for (2.0.1) for arbitrary
feC(U)nL>U), although we do not do that here. See [2] for more details.

The proof uses a perturbed test function argument [16]. That is, when u — ¢ attains its
maximum at xy, we use the Max-Ball Theorem to deduce things about T.¢ and then send
e —0.

Theorem 2.5.1. Suppose for each n > 0 that €, > 0 and u, : U — R are bounded and

satisfy

for some f e C(U)NL*U). Ife, — 0 and u,, — u € C(U) as n — oo, then
—Apu< f inU.
Proof. Suppose ¢ € C*(U) is a smooth test function and the map = — (u — ¢)(z) has a

strict maximum in U at some point y € U.
Since ¢ is smooth, we have

—Ap>—ALp inU,
in the sense of viscosity. Therefore Theorem 2.2.3 implies
A Top > To. (—ALp) in Us,,

for every ¢ > 0.

Since u — ¢ has a strict maximum at y, we know that the function w, — 7% ¢ attains its
maximum on U, near y for all sufficiently large n. Thus we may select points y,, € U, such
that

(Un — T2, 0)(Yn) = sup(u, — 1t ).

&n

This equality immediately implies that
— A un(yn) = —AZT, 0 (Yn)-

Note also that v, — y as n — .
Stringing our inequalities together, we obtain

TQa(_A:_ogpxyn) < f(yn)>

for all large n > 0. Since y,, — y and —AZT ¢ is lower semicontinuous, we may send n — oo
and obtain —AT p(y) < f(y). O
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2.6 Graph-theoretic results

A graph-theoretic abstraction of the finite difference infinity Laplacian (2.2.3) is useful
for the purposes of numerical approximation. It permits a certain uniformity of presentation
in the sequel. We remark that this section is an analytic translation of the game-theoretic
ideas of Peres, Schramm, Sheffield, and Wilson [34]. In particular, none of these results are
new. It is the presentation and language that is different. Most interesting is Lemma 2.6.3
which makes clear the fact that the patching theorem of Crandall, Gunnarsson and Wang
[11] and the backtracking strategy of [34] are actually the same idea.

Let G := (X, E,Y) denote a finite diameter graph with vertex set X, edge set E, and
a distinguished non-empty set of boundary vertices Y C X. Recall that a path of length m
in G is a tuple of vertices (2g, ..., 2m) € X™ such that z; ~g 2,41 for i =0,...,m — 1. Our
assumption that G has finite diameter means that there is an M < oo such that for every
pair of vertices x,y € X there a path (x, 21, ..., Zm_1,¥y) in G of length m < M.

Given a bounded function u : X — R, we define the functions Sgu, Squ, ASu: X\Y —
R by

(2.6.1) Seu(z) = ySB%(U(y) —u(z)),
(2.6.2) Sgu(x) = ysllpx(u(x) —u(y)),
and

(2.6.3) ~A%u(z) = Sgu(r) — SHu(w).

We call AS the discrete infinity Laplacian on G.

Remark 2.6.1. The finite difference infinity Laplacian AZ_ for U C R" is a rescaling of the
discrete infinity Laplacian A for the graph

G:= (U EU\U.),

where
E={{zr,y} CU:z€U.and 0 < |z —y| <e}.

Indeed, if u : U — R is bounded, then
2A° u=ASu.

We need the following gradient estimate for our numerical results in Chapter 4. Its proof
uses a “marching” argument.



15

Lemma 2.6.2. Ifu: X — R is bounded and satisfies
~A%u=0 onX\Y,
then

2.6.4 sup Stu < su M
( ) X\E “ _m,ygf d(r,y)

Proof. Suppose {xg, 5} € E and u(wg) — u(yo) = k > 0. Using —AS%u =0on X \ Y, we
may iteratively select z1, xo, ..., T, such that u(x;,1) — u(z;) > k and z,, € Y. Similarly, we
may select y1, Yo, ..., y, such that u(y;) — u(y;11) > k and y,, € Y. Thus

() = ulyn) - ulrm) = uln)
d(Tm,yn) — n+m+1

>k,

and (2.6.4). O

The next lemma is a patching lemma for infinity subharmonic functions on graphs. It
shows that we can always perturb to the positive gradient case.

Lemma 2.6.3. Ifu: X — R is bounded from above and
~ASu<0 onX\Y,

and k > 0, there is a function v : X — R that satisfies

(2.6.5) u>wv>u—2kdist(-,Y),
(2.6.6) Stv >k,

and

(2.6.7) ~A%v <0,

on X \Y.

Proof. 1. Consider the set
Z:={Stu<k} CX\Y,

and let P denote the set of paths (xo, ..., Z,,) such that m > 0, zg,...,x;,—1 € Z and z,, €
X\ Z. Define w: Z — R by

w(z) = sup{u(zy,) — km : (z,21,...,2,) € P},
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and then define v : X — R by

(2) = u(z) ifrxeX\Z
= w(z) ifxeZ.

We claim that v satisfies (2.6.5), (2.6.6), and (2.6.7).
2. Given (xg, 21, ..., Ty) € P, compute

L

S+U($i_1)

w(zy) — km < u(z,) —

7

< u(ry,) —

(u(wi) — u(zi-1))

M

=1

= u(x).

Thus w < w on Z. For the other half of (2.6.5), fix and arbitrary zy € Z and select a path
(g, ...y Ty) € P such that m < dist(xg, Y). Compute

w(zo) > u(zy,) — km

= u(wg) + Z(U(%) —u(z;1)) — km
> u(xg) — Z Squ(zi—1) — km

> u(xg) — Z Stu(z;_1) — km
i=1

(x0) — sz
(xo) — 2k dist(xo, Y).

3. To prove (2.6.6), suppose first that zy € Z. Given € > 0, select (zo, ..., ) € P such
that

> U
>u

v(xo) < ulxy,) —km+e.
Observe that

Stv(zo) > v(zy) — v(wg) > [u(wy) — k(m —1)] — [u(zy,) — km +e] =k —e.

Sending ¢ — 0, we see that STv >k in Z.
Next, suppose 29 € X \ (Y UZ). Suppose ¢ € (0,k/4) and (xo, ..., x,,) is a path such that

w(wip1) — u(z;) > Sgu(z;) — 50
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and z; € X \ 'Y for i =0,...,m — 1. Since

19
Su(wipr) > Sgu(@ipr) > u(wip) — u(a;) > Shu(x;) — o0

we see that
Sgu(z;) > u(wivr) — ulz;) > Shu(zg) — 2e.

Since u is bounded from above and & < Sfu(zg)/4, we have m < M for some constant
M > 0 independent of . Selecting a maximal path, we obtain x,, € Y. If z; ¢ Z, then

SEv(xo) > u(wr) — u(xo) > SEu(zy) — 2e.
Otherwise, since x,, € Y, there is an { < m such that (x1,...,x;) € P and we have
Stu(zo) > u(xy) — u(ao)

> u(xy) — u(wg) — (I — 1)SEu(zo)

> 1(Sgu(zg) — 2¢) — (I — 1)SEu(z)

= Stu(xg) — 2e M.
Sending € — 0, we obtain
(2.6.8) S*o(xe) > STu(xy),

and therefore (2.6.6).
4. To prove (2.6.7), suppose first that z € X \ (ZUY'). The definition of w guarantees
that
Sqvu(x) < max{k, Sgu(x)}.

Since Shv(x) > Sgu(x) > k by (2.6.8), we see that (2.6.7) holds at z.

Next, suppose that x € Z. We claim that S;v(z) < k. For contradiction, suppose
u(z) —u(y) > kand y ~g x. If y € Z, then v(y) > v(z) — k by the definition of w. Thus
y € X \ Z, and we may compute

k< o(2) - o(y) < u(z) — uly) < Szulx) < Stulx),

contradicting the definition of Z. Thus S;u < k on Z and (2.6.6) implies that (2.6.7) holds
at x. [

The following lemma is a “strictness” transformation for the discrete infinity Laplacian.
It shows that, when the gradient is positive, subsolutions perturb to strict subsolutions.

Lemma 2.6.4. Suppose u : X — R is bounded and satisfies u > 0 and
~A%u<0 onX\Y.

For every k > 0, the function v := u + ku? satisfies

(2.6.9) ~A%v < —A%u—k(Siu)? on X \Y.
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Proof. Fix x € X \ 'Y and suppose there are y, z ~p x such that
Stu(z) =u(y) —u(xr) and S u(z) = u(x) —u(z).
Since the map t — t + kt? is monotone on the range of u, we compute
S*o(a) = o(y) — o)
= STu(z) + kv(y)?* — kv(z)?

= Stu(z) + kSTu(z)(v(y) + v(z)))
= S*u(z) + kST u(z)(2v(x) + STu(x)),

and
S7u(z) = v(x) — v(2)
= S7u(z) + kv(x)? — kv(z)?

= S u(z) + kS u(x)(v(z) +v(z2))
< S7u(z) + kStu(z)(2u(z)).

Combining these inequalities gives (2.6.9).
In general, there are no y, 2 ~p z that achieve Su(z) and Sgu(x). Instead, we fix e > 0,
and choose y and z such that

Stu(z) <u(y) —u(x)+e and S~ u(z) <u(z) —u(z) +e.

Going through the above calculation again, we obtain
~A%v(z) < —AZu(z) — k(SHu)*(z) + O(e).
Now, sending ¢ — 0 gives (2.6.9). ]

Putting the patching and strictness lemmas together, we obtain a general comparison
result on graphs. Note that the Theorem below is strictly weaker than what the Le Gruyer
argument yielded in Lemma 2.3.1. This is because we no longer have the topology of R™ at
our disposal.

Theorem 2.6.5. Suppose u,v : X — R are bounded and satisfy
—Afoug f<g< —Afofu on X \Y,

for some f,g: X \Y — R. Ifsupx\y(f —g) <0, f =0, supx\y f <0, orinfx\y f >0,
then

(2.6.10) sg{p(u —v) = sgp(u — ).
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Proof. 1. We first consider the case supx\y (f — g) < 0. Assume that

sup(u — v) > sup(u — v).
X Y

Thus, given € > 0, we may select a vertex x € X \ Y such that
(1= v)(z) > sup(u — v)(z) — /2.
X

Observe that
Stu(z) = sup (u(y) — u(z)) < sup (u(y) —v(z) +£/2) = Stv(z) +¢/2,

Y~gr Y~ET

and similarly
Squ(z) > Sgv(zr) —e/2,

Thus
flz) > =ASu(z) > —ASu(z) — /2 > g(z) —e.

Since € > 0 was arbitrary, we obtain

sup(f — g) = 0.
X\Y

2. Next we suppse that sup xy f < 0. Since —A%u = Sgu—SZEu, we obtain infx\y STu >
0. Thus Lemma 2.6.4 gives

A (u+ku?) < f<g—6 on X\Y,
for some 0 > 0 and all £ > 0. Now part one of the proof gives
sup(u + ku® —v) = sup(u + ku® — v),
X %
for all £ > 0. Sending k — 0 gives (2.6.10).

3. The case infx\y g > 0 is symmetric to supy\y f < 0, so we may assume f = 0. In this
case, Lemma 2.6.3 gives a family of functions u; : X — Y such that

inf STuy, >k,
X\Y

—Agur <0 on X \Y,

and
sup |u — u,| < O(k),
X

for every k > 0. Since infx\y STug > 0, the argument in part two of the proof gives
sup(ug — v) = sup(ug, — v).
X Y

Sending k& — 0, we obtain (2.6.10). O



20

Finally, we prove existence of solution for the graph-theoretic boundary value problem.

Theorem 2.6.6. If g : Y — R and f : X \Y — R are bounded, then there is a unique
bounded function u : X — R such that

(2.6.11) {_Agi“: Joon XAY,

u=gq on'Y.
Proof. Let d := diam(G) and ¢ := 2supy [g[+supy\y |f|. Giveny € Y, consider the function
(2.6.12) v(x) := g(y) — c(1 + d*) dist(y, v) + cdist(y, z)*.

We claim that v satisfies
~A%v<c on X\Y,
u<gyg onY.

Indeed, if k := dist(z,y) > 1, then
v(z) < vly) — e < vly) - 2supg| < g(x).
If, in addition x € X \ Y, then

[g(y) — c(1 4+ d*)k + ck*] — [g(y) — c(1 + d*)(k 4+ 1) + c(k + 1)
c(1+d*) — c(2k + 1).

Moreover, since there is a z € X such that z ~g 2 and dist(z,y) = k — 1, we have

(x)
(1 4+ d*k + ck?] — [g(y) — c(1 +d*)(k — 1) + c(k — 1)

Stu(z) > u(z) —u
= (14 d*) + c(2k — 1).

Thus
~A%u(z) = Sgu(r) — Stu(z) < —2c<c.

Similarly, the function
w(x) := gly) + c(1 + d?) dist(y, ) — cdist(y, z)*.
satisfies

~A%w > X\Y,
(2.6.13) { oWz e on XAY,

w>g onY.
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Now, let u : X — R be the supremum of all functions v : X — R satisfying

—A%u < X\Y,
(2.6.14) { oSS oon XY,
u<g on Y.

Using the function v constructed above, we see that the supremum is non-empty. Using the
function w and Theorem 2.6.5, we see that u < co. By varying the vertex y used to define
v, we see that u =g on Y. Thus we need only show —A%u = fon X \VY.

That —ASwu < f on X \ Y is trivial from the observation that

—A% max{uy,us} < max{—A%u;, —A%u,},

for any bounded functions uy, us : X — R.
Suppose for contradiction that —AS u(zy) = f(xg) + & for some § > 0 and 79 € X \ Y.
Consider @ : X — R given by

(2) = u(x) if © # xo,
| u(z) +6/2 if o= a.

Since Sgu < Sgu and Sga > Shuon X\ (Y U{xe}) and —Atu(xe) = f(xo), we see that
@ satisfies (2.6.14). As u(xg) > u(xg), this contradicts the definition of u. In particular, u
solves (2.6.11). O

Remark 2.6.7. Suppose each edge {z,y} € E has a weight d(z,y) € (0,00). If we have
d”~ = infprx\y2d > 0 and d* 1= supgqx\yp2 d < 0, then the above results easily generalize
when we incorporate the weights. That is, when we define

and
Squ(z) = ysNupr —u(z)(?;;b)(y)’

and define the length of a path (o, .., ) to be Y. d(z;, x;11). The only difference in the
results is that the constants in the estimates (2.6.5) and (2.6.9) now depend on the ratio
d" /d~ and that diam(G) must be measured using the weights.

2.7 Continuous dependence

For the purposes of building numerical approximations, it is useful to know how the
solution of (2.0.1) varies as one changes the right-hand side. In this section we prove two
continuous dependence estimates. The first works for arbitrary boundary data while the
second only works in some special cases. We suspect that the second estimate is in fact true
for arbitrary boundary data.
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Theorem 2.7.1. Suppose uy, € C(U) solves
—Ajur =k in U,
Uy =g on OU,

for every k € R. There is a constant C' > 0 depending only on diam(U) and | g|| vy such
that
luo — k]| ooy < ClR[V?,

for all sufficiently small k € R.

Proof. We may assume that £ € (—1,0) and 2diam(U) < u < 2diam(U) + 1. Fix ¢ > 0.
Theorem 2.2.3 implies that
—A;Ta’lto S 0 in UQa.

Using Lemma 2.6.3, select a v : U, — R such that
~A° v <0, Sfo> kY3, and TCug>wv > T uy — 2|k[Y3 dist(-, U. \ Use),

in Us.. Since v > 0, we may set
wi=v — k'3,

and conclude by Lemma 2.6.4 that
Al w <k in U,..

and
w — T |y < CH.

we compute

sup(Tuo — Touy) < sup(w — Teuy,) + C|k['/?

Ue Ue
= sup (w — Teug) + C|k|V?
UE\UQS
< sup (Tug — Touy) + 2C|E[Y3.
US\U25
Since uy, < ug by Theorem 2.4.1, sending & — 0 yields |lug — up|| (o) < C|k|'3. O

We can improve the power in the above estimate from 1/3 to 1 in some special cases.
That it can be improved when the magnitude of the gradient is bounded away from 0
is trivial. However, it is new and unexpected for the Aronsson function. Moreover, this
strongly suggests that the improvement is possible for arbitrary boundary data. Indeed, the
Aronsson function has historically served as a “universal” counterexample for conjectures
about infinity harmonic functions.

We remark that this improvement is also possible whenever u € C%(U), as a result of Yu
[37] implies that the magnitude of the gradient is bounded away from zero in this case.
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Proposition 2.7.2. Suppose the uy, are as in the previous theorem. If infy |Dug| > 0 or
U CR? and ug(x,y) = x*/% — y*/3, then

for some constant C' > 0.

Proof. If infy |Dug| = o > 0, then we have STuy > « for all € > 0 by (2.2.7). Thus the
proof of Theorem 2.7.1 yields (2.7.1). Indeed, in this case we can avoid the application of
Lemma 2.6.3 and apply 2.6.4 with the parameter 2a~2|k| instead of 2|k|'/3.

Now suppose U C R? and ug(z,y) = |z|*3 — |y|*/3. Consider

4
w = uy — gk]u0|3/2,
for k < 0. Assume temporarily that uy and w are smooth. Compute
Dw = (1 — 2k|uo|"?) Dus,

D*w = (1 — 2ku(1)/2)D2u0 - k:ual/QDuo ® Duy,

and thus
— Ao = —(1 — 2k|uo|"?) Asetig + kug ?| Dug|?.

Since |Dug| > |ul*/* in R?, we have
(2.7.2) Aw <k,

where ug and w are smooth.

In particular, the inequality (2.7.2) holds in the viscosity sense in R™ \ {u = 0}. That
it holds on all of {u = 0} follows because w can not be touched from above by a smooth
function on the set {u = 0} \ {0} and that w > |z|* on the set {y = 0}.

Thus, it follows from Theorem 2.4.1 that ug > uy > ug + C'k for some constant C' > 0
independent of k£ < 0. O
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Chapter 3

Numerical methods for the infinity
Laplacian

This chapter concerns the numerical approximation of the unique solution of

(3.0.1) {—Aoou =0 inU,

u=gq on JU.

where U C R" is bounded and open and g € C(9U) is Lipschitz.

Using the Max-Ball Theorem and the results of Section 2.6, we give an error analysis for
the finite difference scheme of Oberman [32]. We prove that Oberman’s scheme converges
at a rate of O(h'/®) in general and O(h'/3) in some interesting special cases.

These rates are slow, but this is not terribly unusual for schemes approximating viscosity
solutions. They reflect that fact that large stencil sizes are required for consistency when
the solutions are not smooth. Indeed, it appears to be difficult to construct fast numeri-
cal methods that are capable of resolving non-smooth viscosity solutions of fully nonlinear
operators [13, 31, 33].

To address the problem of large stencils, we introduce a new adaptive grid method.
The Max-Ball Thoerem and continuous dependence estimates from Chapter 3 provide an
easily computed a posteriori error estimate for approximate solutions of (3.0.1). We use this
estimate to automatically concentrate grid points near the non-smooth parts of solutions.

We point out two examples of related work. The first is the master’s thesis of Hansson
[19], who used FEMLAB to approximate p-harmonic extensions for large p. Hansson used
this analysis to investigate the concentration of gradient flow-lines as p — oo. The second
is the vanishing moment method of Feng and Neilan [18], who used a finite element method
together with a fourth-order regularlization term. The results of these two papers are in a
different direction from what we present here. Indeed, we are interested in methods with
explicit rates of convergence and error estimates. It is still unknown how quickly the p-
harmonic and vanishing-moment approximations converge to infinity harmonic extensions.
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3.1 Oberman’s scheme
While discussing Oberman’s scheme, we assume that
U = {max{|z1], |z} < 1} C R,

This is not much of a restriction, since the generalization to arbitrary bounded and open
sets U C R" is trivial. However, when n > 2 the scheme is computationally intractable.
Indeed, the stencils we define below have D™ points in them, where n is the dimension of
the ambient space and D an integer. To obtain accurate solutions, we need to choose fairly
large D. When n > 2, the stencils are too large for reasonable study on a laptop (in 2010).

3.1.1 Definition of the scheme
Select integers N > D > 0 and define the grid points

X :={(i/N,j/N):i,j€Zand — N <i,57 <N},
and the boundary points
Y :={(i/N,j/N) :1,j € Z and max{li],|j[} = N}.

Put a graph structure on X by letting the edge set £ C [X]? be such that {z,y} € F if and

only if x € X and either
D
max{|z1 — y1|, [z2 — yol} = N
or

D
max{|z; — y1|, |x2 — y2|} < N and yeY.

The following picture shows two neighbor sets in the case N =8 and D = 3.
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Note that when a point is near the boundary its stencil has a different shape. The purpose
of this is to make path distance in the graph between any two points on the boundary close to
the Euclidean distance between the two points. This has the effect of making affine functions
close to being solutions of the finite difference scheme. This seems to improve the accuracy
of the scheme by a large constant factor.

Given g € C(9U), there is a unique function u : X — R such that

(3.1.1) —ANPy =0 on X\Y,
B u=4g onY,
where
(3.1.2) _ANDy(3) = max WD 0 L wy) —ul@)
ype |y — v~pr |y — o

for € X \ Y. Observe that AV is exactly AS for the graph
G:=(X,E)Y),

with edge weights d(x,y) = | — y| by Remark 2.6.7.
Oberman [32] proved the following convergence result.

Theorem 3.1.1 (Oberman). If Dy — oo and Ny /Dy — oo as k — oo and the uy, solve
(3.1.1) for Ny and Dy, then u — u the unique solution of (3.0.1) as k — oc.

This follows from Barles and Souganidis [8], using the fact that (3.1.1) is monotone and
consistent. This result leaves open two important questions. It says nothing about the rate
of convergence nor how to choose the ratio N/D.
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3.1.2 Circular stencils

Using the max-ball theorem to analyze the scheme (3.1.1) is complicated by the fact that
the stencils are square-shaped. While it is possible to carry this out, the extra effort does
not yield anything interesting. Instead, we redefine the edge set E to be

D 1 D 1
— 2. &z 4 _
E = {{x,y}e[X] xeXandN 2N<|q; y|<_N+2N}

The following picture shows the new stencils in the case N =8 and D = 3.
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The advantage of this modification is made clear in the rate of convergence proof below. For
now, we simply observe that as D — oo and N/D — oo, the stencils converge to circles.
Since the max-ball theorem operates on disks, this is a good sign.

We remark that Oberman’s convergence theorem [32] still applies in this case.

3.1.3 Rate of convergence

The first step in our convergence analysis is to estimate the error from the discretization
of A% by AY. The reader may find it strange that we only compute the discretization error
for subsolutions. This assumption allows guarantees the maxg, o) u is attained on 0B(z,¢)
for all z € U.. We need this because our stencils approximate the boundary of a ball and do
not contain interior points.

Lemma 3.1.2. Ifu € C(U) satisfies

—Au <0 inU,
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and e = D/N, then

(3.1.3) ~ASu < —®A° u+ CLip(u, UYN™* on X NU,
where C' > 0 1s a universal constant.

Proof. Since —A,, > 0, Lemma 2.2.1 implies that

max u = max u for every x € Us,.
B(z,e) OB(z,e)

Observe that if x € X N Uy and y € 0B(z,¢), then there is a z € X such that z ~g x and
ly — 2| < CN~L Thus, if z € X N U,., we compute

—A% < |2 — min u— C Lip(u, U)N !
Sule) < |2u(0) = gmin u— max ul + CLip(u.V)

< |2u(x) — min v — max u| + C Lip(u, U)N~!
B(z,) B(z,e)

= —e’ A u(x) + C Lip(u, U)N . O

Using Theorem 2.7.1, it is now fairly easy to obtain an O(h'/®) rate of convergence for
arbitrary boundary data.

Theorem 3.1.3. If D = [N*/°], u solves (3.0.1), and @ solves (3.1.1), then

(3.1.4) max u — i < CN~Y® Lip(g,0U),

for some universal constant C' > 0. Here [z] denotes the least integer larger than z.

Proof. Define € := D/N ~ N~/ and observe that for any z € X N Us. and y € dB(x, ¢),
there is a z € X such that |y—z| < Ce®. For each k > 0, Theorem 2.7.1 provides a u;, € C(U)
such that

—Ajui >k in U,

and
sup |u — uy| < Ck'\/3.
U

Since —A, Tuy, > k in Uy, the inequality (3.1.3) gives
— A% Touy > ke? + CLip(uy, U)e®  on X N Us..
Thus if we set k := C Lip(ug, U)e?, we obtain

_AoGoTauk: 2 0 onXnN UQE,
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and
sup |u — TLuy| < Ce.
U

Now, Lemma 2.6.10 implies that

sup(ﬂ - Tsuk) = Ssup (ﬂ - Tauk)7
X X\UQs

and Lemma 2.6.2 implies

sup |u —u| < C'Lip(g,0U)e.
X\Uze

The last three inequalities together imply that
@ <u+ CLip(g,0U)e on X.
The other half of (3.1.4) is symmetric. O

Using Proposition 2.7.2 in place of Theorem 2.7.1, we obtain an O(h'/3) rate of conver-
gence for certain examples. As is the case for Proposition 2.7.2, we suspect that this rate is
attained for all boundary data.

Proposition 3.1.4. Suppose u solves (3.0.1) and either infy Lu > 0 or u(w,y) = a2 —y*/3.
If D = [N?3] and @ solves (3.1.1), then

(3.1.5) max lu— | < ON~Y3,

for some constant C' > 0 depending on w.

Proof. Using € := D/N ~ N~ and Proposition 2.7.2 in place of Theorem 2.7.1 in the
proof of the above theorem, we obtain the estimates

sup |u — ug| < Ck
U

and

—Agnguk > ke? — Ce3,
instead of

sup |u — uy| < Ck'\/3.
U

and

—AOGOTEUIC Z k‘€2 — 085.
Thus we can set k := Ce and the rest of the proof goes through as before. O]

Remark 3.1.5. We suspect that even the faster rate (3.1.5) is pessimistic on account of
the following heuristic calculation. Suppose T.u and T°u happen to be C2. In this case, the
discretization error (3.1.3) would be

~A%u < —e*A°_u+ C Lip(u, U)N 2.

If we also assume linear continuous dependence (2.7.2), then we could set D := [N/?] and
obtain an O(h%*?®) rate of convergence.
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3.1.4 Implementation notes

To solve the scheme (3.1.1), one typically computes the fixed point of the operator F,
where if v : X — R then Fu: X — R is the unique function satisfying

Fu(x) = u(x) ifrey,
Fu(x)—u u(y)—Fu(x .
MaXy~ 0 w = MaXy .z % ifre X\Y.

One must use a relaxation parameter o € (0,1) and iterate
u— ou+ (1 —a)Fu,

in order to achieve convergence. Any parameter o > 0 will do, although the optimal choice
of av seems to be problem-dependent.

Whether there is a faster solution method is an interesting open problem, as (3.1.1) is
highly non-linear. The other standard algorithm is to iteratively fill in the steepest path.
That is, to iterate the following process.

Select a path (zg,...,x;) in X such that zg,z,, € Y, x1,., 2,1 € X\ Y,
and s = (u(xy,) — w(x))/ >, d(z;, x;41) is as large as possible. Set u(xy) =
u(zo) + st:_Ol d(x;,xiq) for k=1,...,m —1 and add z1, .., 2,1 to Y.

The naive implementation of this has worst-case time complexity O(N*D?1og(N)?), and is
much slower than the iterative process described above.

We remark that while increasing D increases the cost of computing F, it reduces the
number of iterations required to converge. In practice, increasing D actually reduces the
total computation time. This is due to the fact that a large D means information travels
farther during each iteration. Thus, when considering how to choose the optimal D for a
particular NV, we can safely focus on accuracy alone.

3.2 Adapting the grid

The large stencil sizes in Oberman’s scheme are required for consistency. Indeed, large
stencils appear to be principal obstacle in developing fast numerical methods capable of
resolving of non-smooth viscosity solutions of fully nonlinear equations [13, 31, 33]. To get
around this, we design a scheme that resorts to large stencil sizes only when necessary.

3.2.1 An a posteriori error estimate

Using the Max-Ball Theorem and the continuous dependence estimates from Chapter 2,
we obtain the following a posteriori error estimate.
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Theorem 3.2.1. If u solves (3.0.1) and v € C(U) is Lipschitz and satisfies v = g on OU,
then

(3.2.1) sup |u — v| < C(e Lip(v, U) + sup | A v|'/?),
U

U2 €

for any e € (0,1) and a constant C' > 0 that depends only on diam(U) and Lip(g,0U). If in
addition infyy Lu > 0 or U C R? and u(x,y) = 23 — y*/3, then

(3.2.2) sup |u — v| < C(e Lip(v, U) + sup |AS v|).
U 2e

Proof. Let k := supy;, |AS v|. Theorem 2.7.1 provides a function w € C'(U) such that
—Asw >k in U,
Lip(w,U) < C(1 + k),

and
sup |w — u| < CkY3.
U

The Max-Ball Theorem implies that
—AS Tow >k in Uy,
and thus Lemma 2.3.1 implies that

sup(v —w) = sup (v — w).
Ue Ug\UQE

On the other hand,

sup |u — v| < 2(Lip(v, U) + Lip(g, 0U))e.
U\Uze

Stringing these inequalities together, we obtain

v < u+ C(eLip(v,U) + k/?) in U.
A symmetric argument yields

v >u— C(eLip(v,U) + kY3) in U,

and thus (3.2.1).
In the special case that inf;y Lu > 0 or u(z,y) = 2*/3 —y*/3, Proposition (2.7.2) gives the
better estimate
sup |w — u| < Ck.
U

This gives (3.2.2). O
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3.2.2 Boundary modification

To construct our scheme, we extending the definition of A% _u to all of U. This is analogous
the stencil modifications near the boundary in Oberman’s scheme. Given a bounded function
u:U — R and x € U, we define

L () ()
° U(x) o |y—xF§a pa(x7y>

Stu(z) := sup uly) —u

y) — u(z)
ly—z|<e  Pe (ZE, y) 7

and 1
—A° u(z) = E(S;U(I) — STu(z)),

where

|z — y if x € OU or y € OU,
pe,y) = .
max{|r —y|,e} ifx,yeU.

Observe that these new definitions coincide with the old definitions on U..
The corresponding boundary value problem is

“AE 4 — ]
(3.2.3) xu=0 b,
u=gq on OU.

Existence and comparison of solutions for (3.2.3) follows by Remark 2.6.7.

3.2.3 A linearly interpolating finite difference scheme

Of course, the computer can not directly approximate (3.2.3). Instead, we suppose that
(H,V) is a triangulation of U given by a finite set of vertices V C U and triangles H C [V]3.
Given a function u : V — R, we define Hu : U — R to be the piecewise linear interpolation
of won U.

Theorem 3.2.2. Given e > 0 and g : VNOU — R, there is a unique function v : )V — R
satisfying

(3.2.4) {u:g on VN oU,

—AfHu=0 onVNU,

Proof. For uniqueness, we follow Le Gruyer’s argument and patch it to work for linear
interpolation on triangulations. Suppose u,v : ¥V — R and

AL Hu <0< —-AS Hv onVNU.
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Suppose, for contradiction, that

k= mgx(u —v) > g}g){}(u — ).
Define

E={zeV:(u—0)(z) =k},
and

F:={ze€FE:ux)= mgxu}.

Since maxy(Hu — Hv) = k, we conclude as in the proof of Lemma 2.3.1 that
STHu=SHv and S-Hu=S_Hv onU.

Now, suppose * € F and S+ Hu(x) > 0 is realized at some point y € t N B(x,¢) with t € H.
Since u(z) — v(z) < k for each vertex z of t and necessarily Hu(y) — Hv(y) = k for some
y € t, we must have u(z) — v(z) = k for each vertex z of . Thus, there is a vertex z € E
with u(z) > u(z), contradicting the definition of F.

Thus STHu(x) = 0 for every x € F. Since SZ Hu(x) < STHu(x), we conclude that Hu
is constant on {z € U : dist(z, F) < ¢}. However, as Hu is the linear interpolation of u on
a triangulation, this implies u is constant on V. Similarly, v is constant on V. O]

The boundary value problem (3.2.4) comprises one half of our new numerical scheme.
Missing is a good method for choosing the triangulation (H, V). If we apply this method to
regular triangulations like the one shown here,
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this scheme has performance roughly equivalent to that of Oberman’s scheme (3.1.1). While
the scheme incurs are large per-vertex penalty for linear interpolation, some additional accu-
racy is obtained by making affine functions exact solutions. These two effects seem to offset
one another.
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3.2.4 Minimizing the residual

Using Theorem 3.2.1, we can estimate how close a solution of (3.2.4) is to the solution of
(3.0.1). In fact, Theorem 3.2.1 suggests that we should look for triangulations that minimize

the residual.
If one knows in advance the shock structure of the solutions, then one can easily find

such triangulations. For example, the Aronsson function
u(z,y) = ** -y,

fails to be twice differentiable on the coordinate axes. Thus, we want more triangles near
the coordinate axes. If we fix in advance the total number of triangles and try to minimize

max 4 sup |AS_ T¢u|, sup |AZ Tul ¢,
Ue Ue

we obtain a triangulations like the following.
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The scheme (3.2.4) performs well on such triangulations. Of course, we do not usually know
in advance the shock structure of the solutions.

3.2.5 Automatic refinement

Theorem 3.2.1 suggest a natural way to generate good triangulations automatically. We
select € > 0, a residual threshold n > 0, and an initial triangulation (Ho,Vy) of U with
approximate spacing €. At stage k, we compute the unique wuy : Vi — R that solves

Uy =g on V, NAOU,
—A;Hkuk =0 on Vk NnU.
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If supy |AS Hrux| < n, then we stop. Otherwise, we construct Vi, from Vy by including
the circumcenter of every triangle ¢t € Hy such that sup, |AZ Hyug| > 1. Then we let Hyyq
be the Delaunay triangulation of V.

Using Theorem 3.2.1, this algorithm can guarantee any desired accuracy. Indeed, the
constant in the estimate (3.2.1) can be computed explicitly, and this will tell us how small
g,n > 0 need to be in order to meet any accuracy requirement.

Below we give five examples of generated triangulations. In each case, we use the domain
U = B(0, 1) and the parameters ¢ = n = 0.1. The automatically generated triangulations are
significantly rougher than the one we hand-made for the Aronsson function above. This is
intentional. The scheme (3.2.4) does not care about element quality, so we sacrificed quality
for speed in our refinement algorithm.

Observe that the mesh refinement algorithm appears to uncover the “hidden” shock
structure of the solutions. The third and fourth examples make this particularly clear.

A careful implementation of our adaptive method seems to outperform Oberman’s scheme
in tests. However, neither method is particularly fast. The principal advantage of Oberman’s
scheme is its relatively simple formulation. It is easily implemented in an afternoon. Our
adaptive method is significantly more complicated. However, it succeeds in avoiding large
stencils in regions where the solutions are smooth.
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Example 1
g(z,y) = 2" —y*?,

we obtain the following sequence of triangulations and computed solut

When the boundary data is the Aronsson function,
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Example 2

When the boundary data is a cone,

g(x,y) = |(‘T7y> - (170)|7

we obtain the following sequence of triangulations and computed solution contour lines.
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Example 3
When the boundary data is the infimum of two cones,

g(x,y) = min{|(z,y) — (1,0)[,[(z,y) — (0, 1)[},

we obtain the following sequence of triangulations and computed solution contour lines.
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Example 4

When the boundary data is given by

we obtain the following sequence of triangulations and computed solution contour lines.
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Note the complicated shock structure being revealed as the mesh is refined. The contour
wiggles near the boundary are artifacts of the coarse boundary discretization.
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Example 5

When the boundary data is the argument function,

g(z,y) = tan" ' (y/(x + 2)),

we obtain the following sequence of triangulations and computed solution contour lines.
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Note in this case that the mesh converges after one iteration.
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Chapter 4

Interpreting Hasson’s example

4.1 Introduction

We assume familiarity with basic model theory [24] and stability theory [35]. In partic-
ular, we assume the reader is familiar with Morley rank, forking dependence, imaginaries,
and canonical bases. Unless otherwise specified, we assume that theories T are complete
and eliminate quantifiers in a countable and relational language L(T"). We drop the qualifier
Morley from Morley rank and Morley degree.

4.1.1 Definable rank and degree

Recall that a theory T has definable rank if for every ¢(x,y) € L(T) and r € N, there is
a 0(y) € L(T) such that

RM(¢(x,a)) =r if and only if M [=6(a),

whenever M |= T and a € M. Similarly, 7" has definable degree if for ¢(x,y) € L(T') and
d € N, there is a 0(y) € L(T') such that

dM(¢(x,a)) =d if and only if M = 6(a),

whenever M =T and a € M.
A theory T with definable rank has definably bounded degree if for every ¢(x,y) € L(T)
there is a d € N such that
AM((x, a)) < d.

whenever M =T and a € M. By compactness, any theory with definable rank and degree
has definably bounded degree.

In the literature, definable rank and degree is usually called the definable multiplicity
property (DMP), and Hrushovski and Hasson [23] call definable rank and definably bounded
degree the weak definable multiplicity property (wDMP). We use definable rank and definable
and definably bounded degree here, as we believe it to be more clear.
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4.1.2 Fusion

Suppose T} and Ty are theories of finite rank in disjoint languages. A fusion of T; and
T5 is a complete theory T |= Ty UT; in a language L(T') O L(T}) U L(T5) such that rank in
T satisfies the following condition.

(Generic intersections) Whenever M = T, ¢;(x,y) € L(T;) fori = 1,2, and a € M, we
have

RMr(o1(x,a) A ¢2(x,a)) = vi RMr, (¢1(x, @) + va RMr, (¢2(x,a)) — N|x],
where N = lem(Ny, No) and v; :== N/N;.

A theorem of Ziegler [38] states that any two theories 77 and T3 in disjoint languages
with finite definable rank and degree such that dM(7}) = dM(73) admit a fusion. This is
an extension of Hrushovski [25], who fused strongly minimal sets with definable rank and
degree.

4.1.3 Interpretation

Recall that a theory T} is interpretable in a theory Ty if there are structures M; = Ty
and M, = Ty and an injective map 7 : M; — MJ, such that the image of every definable
subset in M! for [ > 0 is a definable subset of M}, If M; and M, are countably saturated
and the map 7 preserves the Morley rank of definable sets, we say that the interpretation is
rank preserving. The following result allows us to focus on fusion constructions instead of
rank-preserving itnerpretations.

Theorem 4.1.1 (Ziegler [38]). If T has finite rank and admits a fusion with any theory Ty
with definable rank and degree such that AM(T) = dM(Ty), then T has a rank-preserving
interpretation in a strongly minimal set.

4.1.4 Hasson’s example

Hasson [20] proved that any theory with finite definable rank and degree admits a rank-
preserving interpretation in a strongly minimal theory. As a test case for the necessity of
definable degree, he proposed the following example. Let

M = <M7 Ea A> Bi> Ci7 +A4, T, Si> 7T)i€N7
be a structure with the following properties.
1. F is an equivalence relation on M with infinitely many infinite classes.

2. A, B;,C; are 1-ary and pick out distinct classes of E.
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3. +4 and +; are 3-ary and satisfy (4, +4) = (B;, +;) = (Q, +).
4. S; is l-ary and divides C; into two infinite sets.

5. m is 2-ary and defines a bijection 7 : M/E — A that maps {A} U {B;} U{C;} to an
indiscernible set in (A, +4).

It is routine to check that Th(M) has finite definable rank and definably bounded degree.
What makes M interesting is that it has no rank-preserving expansion with definable degree.
Indeed, recall that a rank preserving expansion of (Q, +) is necessarily degree 1. In particular,
if N D M is a rank-preserving expansion, then dM™ (A) = dM"(B;) = 1 and dM™(C;) > 2.
If N had definable degree, then there would be a definable set D C A such that n(B;) € D
and 7(C;) € A\ D, contradicting our observation that dM™(A) = 1.

Thus, if 7 : M — S* is an interpretation of M in a strongly minimal set S, then S can
not have definable degree.

4.2 A new fusion construction

In this section, we prove the following theorem.

Theorem 4.2.1. If Ty and Ty have finite definable Morley rank, the same degree, and nice
codes, then Ty and Ty admit a fusion.

The definition of nice codes appears in Section 4.2.5. For now, we remark that Theorem
4.2.1 applies to Hasson’s example.

Our proof follows the standard outline of any Hrushovski construction. We first compute
the Fraisse limit of a large class of finite structures and obtain a theory T, of infinite rank.
By carefully analyzing the finite-rank types in T, we are able to collapse them to algebraic
types by restricting the finite structures in our Fraisse limit. This yields a new theory 7},
with the desired properties.

The principal difficulty lies in keeping the restricted class of finite structures definable.
This was handled elegantly in [38], when definable degree was available. In our case, we need
some additional machinery.

4.2.1 Free fusion

In this section, we recall the free fusion construction described in [38, 22]. We stop short
of building T}, describing only the amalgamation class (K., <;) that T, is the Fraisse limit
of. We assume throughout that 7} and 75 have degree 1 and finite definable rank and that
L(Ty) N L(Ty) = 0.

We consider L(T}) U L(Ty)-structures A = TY U Ty. Recall that for any such structure
we can find an w-saturated model M |= T U T, such that A C M. Given such an M, we
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can compute RM7 (A) and RMJ](A) in the reducts M|L(Ty) and M|L(Ty). However, by

quantifier elimination, the ranks we compute do not depend on the choice of M. Indeed,

they depend only on gftp(A). Thus we can safely talk about RMy, (A) without selecting an

ambient model M. Similarly we can make sense of acly!(A), although we must be careful

about the automorphisms over dcleTg (A). Alternatively, we could assume everything we do

takes place inside some A-saturated and A\-homogeneous M = T7 U T; for some huge A > 0.
The amalgamation class (K, <y) is given by the following definition.

Definition 4.2.2. Let K, v, vy be integers so that
K = v RM(T7) = v RM(T3)
For A C B | TY UTy with B\ A finite, we define the prerank of B over A to be
d(B/A) :=v; RMp, (B/A) + vo RMp,(B/A) — K|B \ Al
Using 9, we define the class of structures
Koo = {AET/UTY : §(B) >0 for all finite B C A}.

IfACBeK, and
S(AUC/A) >0 for all finite C C B,

then we say that A is a strong substructure of B and write A <, B.

The notions of prerank and strong substructure in K, enjoy the following nice properties.
All of these are easy consequences of the fact that rank is additive and submodular in 7T}
and TQ.

Lemma 4.2.3 ([38, 22]). The following properties hold for all A, B,C € K.
1. If AC BCC, then 6(C/A) =6(C/B) + 6(B/A).

If A,B C C, then 6(A/JAN B) > §(AU B/B).

IfA<,B<,C, then A <, C.

If A,B <,C, then ANB <, C.

If A C B, then
clp(A) =A<, B: A DA} <, B.

We call clg(A) the strong closure of A in B.

In the sequel we need an approximation of strong substructure that is first-order definable.
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Definition 4.2.4. If AC B € Ky, m >0, and 6(AUC/A) > 0 for all C C B with |C] < m,
then we write A <,,, B.

Lemma 4.2.5. If A C B € K, then there is a clp,u(A) <sm B such that A C clp,(A)
and clp,, C C whenever A C C <, B.
Proof. Call A" C A” an m-step if |A” \ A| < m, §(A"/A’") <0, and §(A*/A’) > 0 whenever
A" C A* C A”. Choose some maximal chain A = Ay C A; C --- C A, of m-steps. Set
clgm(A) := A, and note that clg,, <, B.

Now, suppose A C C' <;,, B and clg,,, € C. Let i < n be least so that A, € C. Then
0>0(Ais1/CNA;) > (A1 UC/C), which contradicts our assumption that C' <, B. O

We extend 6 and <j,, to imaginary elements as follows.
Definition 4.2.6. If A € K, we define
aclg (A) := acly! (A) x acly] (A)
and include A C acl?(A) via a — (a,a). If ¥ is the home sort shared by 7} and 75, then for
X CY Cacld(C) define
I(Y/X) = v RMp (m(Y) /71 (X)) + va RMqp, (ma(Y) /7 (X)) — N|(Y \ X) N X
For A C B and X C aclZ(B), write X <;,, Aif XN¥ C Aand 6(XUC/X) > 0 whenever
C C X and |C] < m.

Lemma 4.2.7. [f AC B e Ky and X C aclll(B), then there is a clym(X) C A such that
X Uclam(X) <gm A and clgm(X) C C whenever C C A and X UC <, A.

Proof. Same as the proof of Lemma 4.2.5. O

The first step in our analysis of finite rank types in T, is given by the following lemma.
The ideas is that any extension A <; B € K. where B\ A is finite can be decomposed
as a sequence of minimal extensions A <, C] <, --- <, C} <, B, whose types are easy to
analyze.

Definition 4.2.8. An extension A <, B € K, is minimal if there isno C' with A <, C' <, B,
A#C,and C # B.
Lemma 4.2.9 ([38, 22]). If the extension A <, B € Ko is minimal, then B\ A is finite
and one of the following holds.
1. The extension is algebraic, that is, 6(B/A) =0, B = AU {b}, and for some i = 1,2,
tpg, (b/A) is algebraic and tpy, . (b/A) generic.

2. The extension is prealgebraic, that is, 6(B/A) = 0 and tpy,(b/A) is not algebraic for
anybe€ B\ A andi=1,2.

3. The extension is transcendental, that is, N > §(B/A) > 0 and tpy,(b/A) is not alge-
braic for anyb € B\ A andi=1,2.
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4.2.2 Codes

In order to definably analyze types in T,,, we need a special notion of normal formula,
called a code. In this section we will repeat the code construction of [38] and make a few
minor adjustments. We fix a theory 7" with finite rank and the definably bounded degree
for the rest of this section.

Definition 4.2.10. A code c is a parameter-free formula ¢.(x;y) with the following prop-
erties.

1. x is a tuple of real variables, |x| = n,, and y € 7.

2. Consistent ¢.(x;a) have rank k. and degree at most D.. If b = ¢.(x;a) then the
elements of b are distinct and for each S C {1,...,n.}

RM(b/CLbS) S kcﬂg

with equality for generic b. If a is generic in Ix¢.(x;y) then ¢.(x;a) has degree 1.
Finally, k. y < ke for all <.

3. If RM(oe(x;a) A ¢e(x;a")) = ke then a = a'.
4. There is a G, < Sym(n.) such that for each consistent ¢.(x;a) and o € Sym(n..),

(a) 0 € G. implies ¢.(x;a) = ¢.(x7;a).
(b) o ¢ G, implies RM(¢.(x;a) A ¢.(x7;a")) < k. for all o’

This definition of codes differs from the definable rank case in one critical way. The
degree of consistent instances ¢.(x;a) is not always 1. In fact, if D. = 1, then the two
definitions coincide.

A formula ¥ (x;d) is simple if it has degree 1, the components of its realizations are
distinct, and the components of any generic realization lie outside acl(d). For any two
formulas v (x;dy) and 1(x; ds) with the same free variables, we write

Y1(x;dy) ~ a(x; da)

when

RM (¢ (x5 d1) Atha(x; da)) < RM(¢1(x;dy)) = RM(the(x; dz)).
If ¢ (x;d) is simple and ¢.(x;a) ~ 1(x;d), then we say that ¢ encodes ¥ (x;d). If ¥(x;d) is
simple and RM(¢.(x;a) A ¥(x;d)) = k. = RM(1(x;d)), then we say that ¢ covers ¥ (x;d).

Lemma 4.2.11. FEvery simple 1¥(x;d) is encoded by some code c.
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Proof. Let a be the canonical base of the global type isolated by ¥(x;d) and let ¢.(x;y) be
parameter-free so that ¢.(x;a) ~ ¥(x;d). We will strengthen ¢.(x;y) to meet the require-

ments above.
Let b be a generic realization of ¢.(x;a). Let k.s = RM(b/abg) for S C {1,...,n.}.
Strengthening ¢.(X;y), we may assume

M(¢e(x;a) Axg =bg) = ke s

for all S. Let 6(y) isolate tp(a) in its rank. Replace ¢.(x;y) with

de(x;y) N Oy A/\RM (fe(ziy) A zs = xs5) = kes.

Now, the wDMP implies the existence of D,, the choice of 8(y) forces ¢.(x; a’) to have degree
1 for any @’ generic in Ix¢.(x;y), and ke 3 < ke follows from the simplicity of 1(x;d). Thus
we have (2).

Let p(y) = tp(a) and note that since a is a canonical base,

p(y) Ap(Y') ARM(9e(x59) A de(359') = ke =y =y,

By compactness there is some 6(y) € p(y) which works in place of p(y) above. If we replace

$e(x;y) with ¢o(x;9) A 0(y) we get (3).
To achieve (4), first note that the collection of all o € Sym(n.) such that ¢.(x;a) ~
®e(x7;a”%) for some a” = a forms a subgroup G. < Sym(n.). Replacing ¢(x;y) with

N\ ¢e(x7;y) ARM, (/\ de(x ,y>— .
o€, oeG
we have (4a). Since, for o € Sym(n.) \ G,
p(y) Ap(y') = RMx(o(x;9) A ¢e(x75y)) < ke,
there is (by compactness) a 8(y) € p(y) such that
Pe(x3y) N O(y)

satisfies (4b) as well. O
Lemma 4.2.12. There exists a set of codes C such that

1. Ewvery simple formula is covered by a unique ¢ € C.

2. If c € C and o € Sym(n,.) there is a unique ¢ € C with ¢.(X7;y) = Per (X Y).
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Proof. We will build C as a limit of finite sets, starting with C = () and inductively main-
taining (1)’ and (2), where

(1)’ Every simple formula is covered by at most one ¢ € C.

Suppose ¥(x;d) is a simple formula not covered by some code in C. Choose ¢ which
encodes ¥(x;d). Replace ¢.(x;y) with

S y) A\ VY RM(de (x59) A ¢el3y)) < e,

cel’

where C' := {¢’ € C : n. = ny and k. = ko }, and note that this is still a code.

Choose representatives o7, ..., o, of the right cosets of G, and define, for o € Sym(n.),
¢” to be the code with ¢.- (x;y) := ¢.(x7;y). Now CU{c?, ..., 7™} satisfies (1)’ and (2) and
covers Y (x; d). O

We call a collection of codes C satisfying the conclusion of the lemma above a system of
codes for T

Lemma 4.2.13. For every code c there is a constant m. and a ()-definable partial function
fe so that if by, ..., by, are independent realizations of ¢.(X;a), then a = f.(by,...;by,).

Proof. This is a standard stability fact. See Remark 2.26 of [35]. O

4.2.3 Prealgebraic Codes

We are now ready to definably analyze types in T,,. We once again assume that 77 and
T have degree 1 and finite definable rank and that L(7}) N L(T3) = 0. We fix a system of
codes C; for each T;.

Definition 4.2.14. A prealgebraic code is a pair ¢ = (c1,¢3) € C; X Cy so that
1. ne = ne, = ne,,
2. vke, + voke, — Kn. =0,
3. vike, s + Vokiey.s — K(n. — |S]) <0 for 0 € S C {1,...,n.},
4 de(X5y) 1= dey (X591) N Gey (X5 92),
5. D, := Dy, - D,
6. G.: =G, NG.,.

We say a prealgebraic code instance ¢.(x;a) is over A € K, if a € acl?(A); ie., if a =
(a1,a2) € acly] (A) x acl7] (A).
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Definition 4.2.15. Suppose ¢.(x;a) is over A € cK,, and B,b C A. We say that b =
¢c(x; a) is B-generic if RMr,(b/Ba;) = k., fori = 1,2. We say that a sequence of realizations
by, ...,by of ¢.(x;a) is independent if and only if it is independent over a; in each T;.

The following lemma is proved in [38], but we include a proof here because it helps explain
the purpose of prealgebraic codes.

Lemma 4.2.16 (Ziegler [38]). If A <, AU {b} € K is prealgebraic there is a unique
prealgebraic code ¢ and parameter a € acl®(A) such that b is an A-generic realization of
de(x;0).

On the other hand, if b € A, a € acl®(A), and b = ¢.(x;a) then §(b/A) < 0. Moreover
d(b/A) = 0 if and only if A <, AU {b} is prealgebraic if and only if b is an A-generic
realization of ¢.(X;a).

Proof. Suppose A <, AU {b} is prealgebraic. Since tps,(b/A) is not algebraic, there is a
simple v;(x;d;) € L; such that d; € acly/(A) and b is an A generic realization of v;(x; d;).
Now choose ¢; € C; and a; € acl% (A) such that

RMr, (¢i(x; di) A ¢, (x; @) = RMz, (vi(x; ds)) = ke

Because A <; AU {b} is prealgebraic, §(b/A) = 0 and §(b/Ab;) < 0 whenever ) C S C
{1,...,n.}. It follows that vik., + vok., — Kn. = 0 and vik., s + vokey 5 — K(n. —|S]) < 0
whenever ) C S C {1,...,n.}. Thus ¢ = (¢, ¢a) is a prealgebraic code and b is an A-generic
realization of ¢.(x;a) where a = (ay,as) € acl®(A).

For the second part, note that if AN {b} # 0, then d(b/A) < vik., 5 + vakey 5 — K(n. —
|S|) < 0, where S = {i | b; € A}. Furthermore, if AN {b} = 0, then §(b/A) < vk, +
voke, — Kn. = 0. ]

Lemma 4.2.17. For each prealgebraic code ¢ we can find an integer m. > n. so that if
A <;m. B, a € acl®(B), and a ¢ dcl®/(A), then fewer than m. distinct realizations of
¢e(x;a) intersect A. Moreover, for any distinct by, .., b,,, there is at most one parameter a
such that b; = ¢.(x;a) for all i < m,.

Proof. 1t suffices to prove the lemma for set-wise distinct realizations.
Suppose by, ..., by, = ¢e(x;a) and b; € U< bj for all i <m. By the additivity of 4,

§(b1...by) < (a) + Y _d(b;/aby...b;_y).

<m

By Lemma 4.2.16, b; is a non-generic realization of ¢.(x;a) over aby...b;_; if and only if
d(b;/ab;...b;_1) < 0. Since §(b;...by) > 0, b; must be ab;...b;_;-generic for all but at most
d(a) of the i < m. Moreover, d(a) is bounded uniformly in c.

The above paragraph shows that given a sufficiently long sequences by, ..., b,, of set-wise
distinct realizations of ¢.(x;a), more than half of the length m,, (i = 1,2) subsequences are
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independent. Thus given a sufficiently long sequence, a; is the consensus value of f., on the
length m., subsequences. Hence a is uniquely determined.

Suppose A <;,,. B, a € acl®/(B), and a ¢ dcl(A). Since | clgan, (a)] < 2n.0(a) there is a
finite bound M, on the number of b = ¢.(x;a) with b C A or b C clgs,, (a). By Lemma
4.2.16, any two set-wise distinct realizations of ¢.(x; a) which are not contained in clg 2, (a)
are disjoint. Thus if by, ..., b, are set-wise distinct realizations of ¢.(x;a) with b; N A # (),
then

0 < d(by...bra/A) <é(a/A) — (m — M.).

Thus we can increase m to the desired m.. O

Definition 4.2.18. We say that a prealgebraic code instance ¢.(x;a) is strongly based on a
set A if A contains at least m, distinct realizations of ¢.(x;a).

Choose an injective function ¢ — s. on the prealgebraic codes such that
Se > (mene + 1)1 4+ 2m.0(a)
for all consistent ¢.(x;a).

Definition 4.2.19. We say a prealgebraic code instance ¢.(x;a) over A is long in A if
and there are more than s. distinct realizations of ¢.(x;a) in A. If by, ..., by are distinct
realizations of some ¢.(x;a) and N > s., then we say that {b;} is a long sequence in ¢.(x;a).

We now give the main combinatorial argument in our construction. We call this the
Decomposition Lemma. This lemma allows us to definably analyze almost orthogonality of
prealgebraic codes in T,..

Lemma 4.2.20. Suppose A <; B € K« and B\ A is finite. We can find
A<, XCB
such that if
Z:={bCB|b{¢ X is an element of a long sequence strongly based on X},
then
1. 6(bb'/X) =0 for allb,b’ € Z.
2. For every long ¢.(x;a) either

(a) ¢c(x;a) is strongly based on X and clg . (a) C X,
or (b) there is a b € Z such that X U {b} contains every realization of ¢.(x;a).



ol

Proof. We will build X in stages starting with X = A and inductively maintaining the
following conditions.

e §(bb'/X) =0 for all b,b’ € Z.

o If (2) fails for ¢.(x;a), then X <,,, B, X U{b} <,,, Bforallb e Z, and ||Z]| >
2m.0(X/A) where ||Z|| is the number of set-wise distinct elements in Z.

Choose a ¢.(x; a) that witnesses the failure of (2). Since X <;,,. B, it can not be the case
that ¢.(x;a) is strongly based on X. In fact, fewer than m, realizations of ¢.(x;a) intersect
X by Lemma 4.2.17. Since ¢ +— s, is injective, we may choose ¢.(x;a) which maximizes m..

If there is a b € Z with ¢.(x;a) is strongly based on X U {b}, then set X := X U {b}.
Otherwise, choose by, ..., b, |= ¢.(x;a) and set X := X UJ,{b;}. By the proof of Lemma
4.2.17, we can select the b; which include all the realizations of ¢.(x;a) which intersect
X. Moreover, we can select the b; such that set-wise distinct realizations of ¢.(x;a) not
contained in X are pairwise disjoint.

Define

Y:={beZ|becZorbkEd.(x;a)}

and note that ||~§~/|| > 2m,6(X /A), because s, > (mene + 1)! + 2m.d(a).
Now, close X under the following three operations.

o If X £, B then set X := clg,, (X).
o If XU {b} £, B forsome b € Z then set X := clg,,. (X U{b}).
e If there are b, b’ € Z with 6(bb//X) < 0 then set X := X U {b,b'}.

By the maximality of m,. and induction, each closure step reduces ||Y|| by at most 2m,
and reduces 6(X /A) by at least 1. It follows that after closing, we have

1ZI1 = [IY]] > 2mcd(X /A)

and the rest of the induction hypothesis. Moreover, ¢.(x;a) no longer witnesses the failure

of (2).
Iteration of this process must stop because B\ A is finite. Once finished, (1) and (2)
must hold and ||Z|| > 0 implies X C B. O

4.2.4 Weak Closure

We need one final ingredient to definably analyze prealgebraic codes in T,. Given pre-
algebraic code instance ¢.(x;a) over some A € K, we need a first-order approximation or

ClA(a).



52

For each prealgebraic code ¢, define

®C(X17 "'7ch+1) = /\Xi 7& X A /\¢C(X’Hy)7

1<j %

and
Foi={Py:5.> 50}

Lemma 4.2.21. We may assume that if ¢.(x;a) is over A and b,b’ = ¢.(x;a) are A-
generic, then qftpp_(b/A) = qftpp_(b'/A).

Proof. The easiest way to obtain this is to redo the code constructions in each T;. Make sure
that the lemma is true in 7; for I',, := {@cg P Ne, > M N }. Now, since s. > sy implies
Ne; > Mg - N for © = 1,2, the lemma follows. O

Lemma 4.2.22. For any prealgebraic code instance ¢.(X;a) over A, there is a unique min-
imal subset W C A with the following properties.

1. Suppose for some A-generic b |= ¢.(X;a) there is a ¢ (x';a’) with a long sequence in
b. If
Vi={b'C AU{b} b’ |= ¢ (x;a)},

then ANJY CW.
2. Ifb C A, bk ¢.(x;a), and qftpp_ (b/W) is not generic, then b C W.
Moreover, W is contained in cla, (a), and first-order definable.

Proof. First we show cly , (a) satisfies (1) and (2).

Condition (2) is easy, because if qftpp_(b/ cla . (a)) fails to be generic, then §(b/ cla . (a)) <
0. This contradicts the assumption cla . (a) <s,. A.

For condition (1), suppose b = ¢.(x;a), ¢« (x';a’) islongin b, b’ C AU{b}, b’ b, and
b’ E ¢u(x';a’). Since AN{b'} |7 @’ and a’ ¢ acl®(a), we have b’ C cla,, (a) by Lemma
4.2.16.

The class of sets satisfying (1) and (2) is closed under intersection. Thus uniqueness
and containment in cly ,, (a) follows from the fact that cla . (a) is finite (recall |cla,, (a)| <

n.d(a)).
Since checking condition (1) and (2) is first-order for a set of fixed size and we have a
bound on the size of W, W is first-order definable. O

Definition 4.2.23. With W as in the lemma above, we define
WCIA(d)c(X; a)) =W,

and call it the weak closure of ¢.(x;a) in A.
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Lemma 4.2.24. If ¢.(x;a) is over A, b |= ¢.(x;a) is A-generic and ¢ (X';a’) is long in b,
then welaugpy (0 (x5 a")) C wela(ge(x;a)) U {b}.

Proof. Note that by Lemma 4.2.21, we can restrict condition (1) above to a single generic
realization.
Because ¢ (x'; a’) is long in b, there is a b’ C b such that b’ |= ¢ (x'; a’) is welaupy (o (X5 a))
generic. Since Iy C I, wela(¢q(x; a))U{b} satisfies conditions (1) and (2) for welayqpy (9o (x5 a')).
[

4.2.5 Nice Codes

In this subsection, we temporarily move back to the context of a single theory T" with
finite definable rank and definably bounded degree. We need to make additional assumptions
about the codes in T in order to progress further. We find these assumptions by looking
more closely at our intended application.

Hasson’s example is rank and degree preserving biinterpretable with a theory T that has
an equivalence relation E such that:

1. T/E is strongly minimal with definable rank and degree.

2. The structure of each E-class has rank 1, degree < D, and definable rank and degree,
3. Distinct E-classes are orthogonal.

4. Generic E-classes are pure sets.

For the rest of this section, fix such a theory 7. We write [a] for the equivalence class
coded by an imaginary a € T//E. Thus, we write Th([a]) for the induced structure on the
equivalence class a represents. We assume acl®(0)) = del®(().

Let {a,} enumerate dcl®(() N (T/E). For each n let d,, := dM([a,]) and add predicates
{P,x : k <d,} which partition [a,] into strongly minimal sets.

Lemma 4.2.25. There is a system of codes C with the following two properties.

1. If(x;d) is simple and covered by ¢ € C, there is a parameter a and a conjuction 0(x)
of atoms P, ;(x;) such that 1(x;d) ~ ¢.(x;a) A O(x).

2. If ¢.(x;a) is over A, b = ¢.(x;a) is A-generic, b; € Py, and ¢.(x;a) = P, (),
then ¢c(x;a) = Ve, Prj(xi) and for any j < d, we can change b; so that b; € P, ;
while maintaining that b = ¢.(x; a) is A-generic.

Proof. Suppose we are building a code for the simple formula 1 (x; d). Since 1(x;d) is simple,
we may assume it implies a complete atomic E-type &(x). Let Sy U---U S, = {1,...,|x|}
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be a partition such that {(x) implies z;Fz; if and only if i,j € Sy for some k. By the
orthogonality condition (3),

If we choose codes ¢, which encode Ix¢1_jz1\s,%(X; d), then
¢C(X; y) = g(X) A /\ ¢Ck (XSk; yk)
k

is a code which encodes ¥(x;d). Thus we may assume ¥(x;d) — A,_; z:Ez;.

Case 1: If by / E is generic over d for generic b = ¢(x; d), then, since generic E-classes are
pure sets, we must have ¢ (x;d) ~ A,_; x;Ex;. In this case, ¢c(x) := A\, viExj A\ v # x;
is a code which encodes 9 (x; d). Since ¢.(x) has degree 1, properties (1) and (2) are trivial.

Case 2: If by /E € acl(d) for generic b |= 9 (x;d), then we can strengthen ¢ (x;d) such
that 1(x;d) — x C [a] for some a € (T'/E) Nacl(d).

Case 2a: If RM(a) = 0, then we may assume a € dcl(()) and choose a Th([a])-code
¢c(x;y) which encodes 9(x;d). Since Th([a]) has definable rank and degree, all instances of
¢ have degree 1. Thus (1) and (2) are again trivial.

Case 2b: If RM(a) = 1, then [a] is a pure set and 1(x;d) ~ x C [a]. Thus the code
de(x;y) = x C [y AN\, i # xj works. Note that dM(¢.(x;a)) = dM([a])". In particular,
¢c(X; ay) is partitioned into (d,,)™ degree 1 sets by the formulas

{be(x;an) A [\ Pug(a:) :k € {1,....d,}"}.

i<ne

From this (1) and (2) follow. O

Definition 4.2.26. If C is a system of codes and there are disjoint predicates {P,x | k¥ < d,,}
which make the above lemma true, we say that C is a nice system of codes. Note that any
system of codes for a theory with definable rank and degree is nice via d,, = 1 and P, ; = ().

Suppose C is a nice system of codes. Write %, for the set of complete {P,,; : m <n,k <
dy, }-formulas. Given a code ¢ € C and 0(x) € 3,, with |[x| = n,, let ¢ A 6 be the code with

Pero(X:y) = Pe(X;y) N O(x) ARMx(@e(x;9) AO(x)) = ke

We will call ¢ A 0 a ¥,-specialization of c. Note that by Lemma 4.2.25, ¢ A0 € C if and only
if ¢.(x;y) E 0(x) already.
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4.2.6 The Class K,

We now have everything we need to describe the restricted amalgamation class KC,. We
assume that each theory T; has a nice system of code C; via the predicates {Pka 'n €
Nand k < d'}.

We write X, := X! x 2. For a prealgebraic code ¢ and a 6 € X, write ¢ A 6 for the
Y., -specialized prealgebraic code (¢; A 61,c2 A 63). Note that specializations ¢ A 6 still code
prealgebraic extensions in the sense of Lemma 4.2.16.

We define a class K, C K by saying that A € K, when

dim g (Pepo(X;a)) < pa(dens(x;a))

for all specialized prealgebraic codes ¢ A 6 and a € acl®(A). Of course, we have yet to define
dimy and pa.

If ¢ero(x;a)) a specialized prealgebraic instance over A, then let dima(¢ena(X;a)) be the
cardinality of the set

{bC A:b ¢ wcla(ge(x;a)) and b = geng(x;a)};

that is, the number of realizations outside of the weak closure.
For unspecialized prealgebraic codes ¢, let

pa(@e(x;a)) = (D)o - (sc +me+1).

For ¥,-specializations ¢ A 6, we will simultaneously define p4(¢eno(x;a)) and first-order
approximations K., C K to the final IC,.

Suppose ¢ A 6 is a X,,-specialization of c. We inductively assume p4 has been defined for
instances of specialized prealgebraic codes ¢ A 8" whenever s, < s. or 8’ € ¥, 1. Using the
induction hypothesis, let K., be the class of all A € K, such that

dimA(¢c/A9/ (X/; CLI)) < MA(¢C’/\0’ (X/; CL/))

for ¢pupg(x';a") over A with s < s. and ¢ € X,. If A € K., and ¢.rp(x;a) is over A,
we say that ¢.ng(x;a) extendible over A when there is an A-generic b = ¢.rp(X; a) so that
AU{b} € K.,. For A-extendible ¢.r9(x;a) define

MA(¢CA9(X; Cl)) = /'I’A<¢C/\9_ (X7 CL))/D,

where 0~ € ¥,,_1, 6 — 0, and D is the number of ¢ € X, with ¢ — 6~ and ¢.rg (X;a)
extendible over A. For non-A-extendible ¢.x9(x;a) define

pa(dens(x; a)) = 0.

Lemma 4.2.27. If A € K., and ¢.png(x;a) is A-extendible, then pia(pero(x;a)) > e + me.
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Proof. The degree of any prealgebraic code instance ¢.(x;a) is bounded by D,.. Thus each
time we divide by D in the definition of p4, we have D < D.. Moreover, we divide by a
number greater than 1 at most D, times. O]

Lemma 4.2.28. If A € K., ¢cro(X;0) is over A, and 0 € ¥, then pa(peno(x;a)) depends
only on qftpy, . (wela(de(x;a)) U {b}) for A-generic b |= ¢eno(x;a).

Proof. The quantifier-free type above is uniquely determined by Lemma 4.2.21.

Suppose b = ¢eno(x; a) is A-generic and ¢upg (X'; ') witnesses AU{b} ¢ K.,. Note that
all of the realizations of ¢ g (x';a’) are contained in wela(¢.(x;a)) U {b}. By induction, we
know that jtaugby(@ener (X5 a’)) is completely determined by qftpy, p. (Welaugpy (¢e (x;5a")) U
{b’}) for some (any) AU {b}-generic b’ = ¢ pg (x';d’).

Note that wclaugpy (¢ (x'5a’)) C wela(de(x;a)) U {b}, every realization of ¢ue (x';a’)
is contained in wcla(¢.(x;a)) U {b}, and wcly(¢.(x;a)) U {b} computes the same value
for pene(x'5a’)) as AU {b}. It follows that the failure A U {b} ¢ K., is encoded in
aftpy, ur, (Wela(@e(x;a)) U {b}) and that ¢.ng(x;a) is not A-extendible.

Thus the A-extendibility of ¢eag(x;a) is encoded in qftpy, . (wela(ée(x;a)) U {b}). Un-
rolling the definition of p4(¢erg(x;a)) we see that it too is encoded. O

Lemma 4.2.29. I[f A€ K.,,, 0 € X,, bC A, b = ¢eno(x;a), and b & wela(de(x;a)) then
bero(X; a) is extendible over A.

Proof. Note that b has the same quantifier-free 3, U I, type over wcly(¢.(x;a)) as any
A-generic b’ = ¢eno(x;a). Since wely(¢o(x;a)) U {b} C A € K., we can apply the proof of
the previous lemma to get AU {b'} € K.,,. O

Lemma 4.2.30. For all prealgebraic codes ¢ andn € N, K. 11 C K.
Proof. This an easy consequence of the previous lemma and the definition of 4. O]

In the following lemma we use the Decomposition Lemma and nice code assumption to
show that our first order approximations K., 2 K, are well-behaved.

Lemma 4.2.31. Suppose A € K¢ i1, dero(x;a) is A-extendible, and 6 € X,,. There is a
0* € X,11 such that 0* — 0 and peng+(x;a) is A-extendible.

Proof. We induct on S C {1,...,n.} to prove the following claim.
Claim. There exists an A-generic b |= ¢eno(x;a) such that AU {bg} € K¢ pi1.

Suppose b = ¢.ng(x;a) is A-generic and S C {1,...,n.}. Applying the Decomposition
Lemmato A <, B = AU{bg}, we get A <, X C Band Z at stated there. Since b |= ¢.(x;a)
being A-generic completely determines qgftpp_(b/A) and the values of § on subsets of AU{b},
the decomposition is the same for all A-generic b |= ¢ pg(x;a). Thus we may assume that
X € K¢ pnt1 by induction.
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If b’ € Z, then b’ is an X-generic realization of some X,-specialized prealgebraic code
instance ¢ ng (X';a’) strongly based on X. Since X € K.,41 and X U{b'} € K. ,,, we know
that ¢uag (x';a’) is extendible over X. Because sy < s. we can use this lemma to find a
0" € ¥,41 so that " — 0 and ¢upgr(x';a’) is X-extendible. By Lemma 4.2.25, we may
assume that b’ = ¢uner(x';a’). Because welg(de(x;a’)) € X and b’ is X-generic we have
X U{b'} € Kt

Since the set-wise distinct elements of Z are pairwise disjoint, we can do this for all
b’ € Z simultaneously.

Now, if B ¢ K.,+1 it must be because some 3,,-specialized prealgebraic code instance
dener(X';a") has a further ¥, 1-specialization with too many realizations. By the above, we
must have ¢ ng (X';a’) strongly based on X.

Let ¢ ABy, ..., NOp enumerate the X-extendible ¥, 1-specializations of ¢’ which further
specialize ¢ A 0'. We may assume

dimpg(pe e, (x'50")) > pp(dens, (X'50")) = px (e, (x5 a")).

Since pupg (X';a’) doesn’t have too many realizations in B, we may assume that

dimp (g ne, (X' 0)) < pp(dene, (x5a")) = px(¢ene, (x5 a)).
Since X € K. ,41, there is a b’ € Z realizing ¢ pg, (x';a"). Using Lemma 4.2.25 we can
change b’ into a realization of ¢ ag, (X';a’).
If ¢erpgr(x";a") is any other X, -specialized prealgebraic code instance over X, then its
dimension is unchanged by this operation unless

berpon (X5 0") = dong, ((X')7; ")

for some o € Sym(n,) and i = 1,2. If this latter condition holds, then |z”| = |2’| and

px (Qerper (X'50")) = px (@ene, (X5 a")).

Thus the net effect of changing b’ is to reduce the total number of violations to the
multiplicity rules. Iterating this process, we eventually get B € K. 1. O]

Lemma 4.2.32. Suppose A € K,,, pcno(x; a) is A-extendible, and dim a(pepg(x;a)) < pra(ders(x;a)).
There is an A-generic b = ¢epo(X;a) such that AU{b} € IC,.

Proof. Suppose 6 € ¥,,. By the previous lemma, there is at least one 6* € X, .1 so that
0* — 0 and ¢.np« (x; a) is A-extendible. Since pia(perg(x;a)) is divided evenly amongst these
6*, we can choose 6* such that dim(¢eng+(Xx;a)) < pa(@eno(x;a)). Iterating this process,
we can find an A-generic b = ¢cno(x;a) so that AU{b} € K., for all n’ > n.

If AU{b} ¢ K,, then it must be the case that

dim by (Penos (X5 @) > pravgpy (Peno-(X; a))

for some 6* € ¥, with n’ > n and b |= ¢epne- (x5 a). But praugp) (Peno+ (X5 a)) = pra(Peno+(x; a))
and we constructed b so that pa(pengs (x;a)) > dimy(denp (X5 a)). Thus dima(perp (x;a)) =
ta(@engs(X;a)), a contradiction. O
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4.2.7 The Theory T,

We now argue that the Fraisse limit of (IC,,, <;) is the fustion we are looking for.

Lemma 4.2.33. If A <, AU {b} is algebraic or transcendental, then A € I, implies
AU{b} e K,.

Proof. Suppose by, ....by = ¢ero(x; a) witnesses AU {b} ¢ K. Since a € acl®/(A), A and
AU {b} compute the same value for pi(p.ng(x;a)). Thus it can not be the case that b; C A
for all ¢ < N, so we may assume b € by. This contradicts Lemma 4.2.16 and the assumption
that A <; AU {b} is not prealgebraic. O

Lemma 4.2.34. The class K,, has the amalgamation property with respect to <.

Proof. Suppose A <, B,C € K,. We need to find a D € K, with A <, C <, D and a
B’ <, D such that B’ =4 B. By induction, we may assume that both A <, B and A <, C
are minimal.

Suppose A <, B is algebraic, say because B = AU {b} and tp, (b/A) is algebraic. If
tpr, (b/A) is realized by ¢ € C'\ A, then B =4 C. Otherwise, we may assume tpy, (b/C) is
some extension of tpg, (b/C') which implies b ¢ C' and tpy, (b/C) is generic. It is then easy
to check C' <, C'U{b}, so D = C U {b} works by the previous lemma.

Thus we may assume neither A <; B nor A <, C are algebraic. We compute the free
fusion of B and C over A by assuming tpy. (B/C) is some non-forking extension of tp;. (B/A)
and letting D = B U C'. By the submodularity of ¢, we have B,C <, D.

Suppose D ¢ K, is witnessed by distinct by, ...,by = ¢ero(x;a) with N too large. We
may assume ¢.np(X; a) has degree 1.

By Lemma 4.2.17, we may assume that a € acl®(B) and thus clp(a) C B. It follows
that B and D compute the same value for p(¢eno(x;a)). Since B € K, we may assume
b, ¢ B. By Lemma 4.2.16, C = AU {b;}. Since B |} C, we must have a € acl(4) and
thus clp(a) € A. By repeating the argument just given, we may assume B = AU {b}.

Since b; and by are both A-generic realizations of a degree 1 prealgebraic code instance
over A, we must have by =4 by. Thus B=4 C. O

We call an M € K, rich if for all finite A <; M and finite A <, B € K, there is a
C <; M with B =4 C. The amalgamation property shows that for every A € K, we can
find a rich M € K, with A <, M.

Assumption 4.2.35. If K > 1, then RM(71) < RM(T3), in T3 every element is interal-
gebraic with infinitely many elements, and in 75 there are infinitely many disjoint unary
predicates of rank RM(T3) — 1.

Let T}, be the theory which says, for M =T, that

1. M ek,,
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2. M| L T, fori=1,2,
3. there is no prealgebraic extension M <, N € K,,.
Note that axiom (3) is first order by Lemma 4.2.32.

Theorem 4.2.36. The theory T}, is consistent, complete, and the w-saturated models of T},
are exactly the rich structures on KC,,. Moreover, T,, has rank K, nice codes, and

RMz(¢(x; a)) = vi RMz, (¢(x; a)) and dMz(é(x;a)) = dMz, (¢(x; a))
for all ¢(x;y) € L(TS?) and i = 1,2.

Proof. We have set up the machinery required to run the proof of the corresponding theorem
in [38]. The only thing that needs mention is that the pairs of predicates P, , A P2 ;, provide
nice codes for 7,. O]

Proof of Theorem 4.2.1. This has the same proof as the corresponding theorem in [38]. The
main point is that if we are willing to expand the language, i.e., L(T) 2 L(T) U L(T5), then
we can obtain assumption 4.2.35 and apply Theorem 4.2.36. O
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