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Executive Summary 
 
The primary goal of this project was to test the feasibility of using high-spatial 

resolution, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to identify and 
assess riparian vegetation over an area with complex topography and land use. In particular, 
our goals were to use ecological field data to 1) provide a priori expectations of vegetation 
classifications, 2) serve as verification for spectral classification, and 3) to form a basis from 
which to nest the classification results within ongoing ecological research. The second 
aspect of this research was the use of watershed analytical methods to develop a 
classification of stream segments based on their macro-scale geomorphic properties. In 
particular, we used terrain-based algorithms to cluster stream segments to describe their 
geomorphic confinement. Lastly, to benefit longer-term and more broad scale vegetation 
mapping efforts throughout the region, we compared two vegetation data, the AVIRIS 
Riparian classification and CALVEG 2000, to determine which, if any, conclusions could be 
drawn from the examination. 

 
The following entities contributed to 

this study in the form of project funding and 
material support: North Coast Regional Water 
Quality Control Board, California Department 
of Forestry and Fire Protection, USDA-Forest 
Service, , California Department of 
Transportation, Center for Spatial 
Technologies and Remote Sensing, NASA — Jet 
Propulsion Laboratory, John Muir Institute of 
the Environment, and the Information Center 
for the Environment at the University of 
California, Davis. 
 

The Navarro watershed is a coastal 
watershed located in southern Mendocino 
County, California and approximately 820 km2 
in area. A combination of redwood and mixed 
conifer forests, mixed hardwoods, annual 
grasslands, and agricultural areas provides an 
array of land uses from which to analyze 
interactions with aquatic and riparian 
habitats. The watershed is the focal point of 
many ongoing, multidisciplinary investigations concerning anthropogenic disturbance of 
watershed processes, such as logging, road building, and land conversion to vineyards and 
other agriculture, and resulting ecological responses. These studies have focused on the role 
that land use activities play in perturbing aquatic habitat and key populations of threatened 
anadromous salmonids. Riparian vegetation is a critical habitat parameter in that it 
regulates many of the ecosystem components necessary for salmon reproduction, rearing, 
and migration through its effect on stream shading, contribution of large woody debris, and 
allochthonous inputs to the stream system. The Navarro River system provides habitat for 
two Evolutionarily Significant Units of salmon fisheries in the state of California.  
Sustainability of these fisheries, and others throughout the state, will be facilitated by the 
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conservation and restoration of riparian forests, which not only provide shade to the 
streams, but also contribute Large Woody Debris (LWD). LWD is a vital component 
contributing to the success of salmonid survival by providing habitat and facilitating the 
development of pools during the winter months. 
  

This project used high-spatial resolution, 
hyperspectral data from the NASA-JPL AVIRIS 2000 
campaign to distinguish and classify vegetation 
cover within a riparian zone. For this aspect of the 
study, a single source of hyperspectral information 
was used. The AVIRIS instrument is unique in that 
it has 224 contiguous, spectral channels with a 10-
nanometer sampling interval across the spectral 
wavelength region of 374 to 2500 nanometers. In 
contrast, the Enhanced Landsat Thematic Mapper 
Plus (ETM+) covers the same spectral region but 
uses only six broad channels and one thermal 
channel. Of the 26 total flightlines, we selected 
Flightline 18 as the focal area of this research 
because it contains the Anderson Valley and is 
representative of the Navarro River watershed and 
other coastal watersheds in the region. Most 
notably, it includes areas under viticultural, 
timber, and pastoral management. The watershed includes several dominant types of 
vegetation and it also has an extant riparian corridor throughout most of its spatial domain.   
 

Preprocessing of the flightlines included orthorectifying the images to account for the 
highly variable topography present in most flightlines and atmospheric correction to account 
for strong water absorption features, aerosols and other atmospheric constituents.  The 
riparian vegetation classification procedure used a combination of DEM-derived “riparian 
zone” masks, along with a vegetation mask derived by thresholding the Tasseled Cap 
transformation, to restrict the analysis to pixels within the riparian zone.  Flightline 18 was 
transformed using the Minimum Noise Fraction (MNF) method, a type of Principal 
Components Analysis. We restricted the number of analysis bands to the top twenty MNF 
residuals, which captured a majority of the variance from the original spectral reflectance 
data. This downselection process decreased the computational time needed for the 
classification procedures and still provided a robust data set from which to base our 
analyses. 
 

Three broad vegetation classes were identified from the field data using minimum 
criteria for TWINSPAN (Two-Way Indicator Species Analysis) classification. Two classes are 
typically considered upland vegetation; however, they are well represented in the riparian 
zone (Class A & B). These two classes have three species that are ubiquitous and 
representative: California bay laurel (Umbellularia californica), Douglas-fir (Pseudotsuga 
menziesii), and tanoak (Lithocarpus densiflorus). These two classes are separated by two 
diagnostic species: coast redwood (Sequoia sempervirens), and big-leaf maple (Acer 
macrophyllum); representing wetter and drier climes respectively. The riparian class (Class 
C) is represented by a heterogeneous mixture of species; however, arroyo willow (Salix 
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lasiolepis), Himalayan blackberry (Rubus discolor), and white alder (Alnus rhombifolia) 
emerged as diagnostic species. 

 
The results of the K-Means unsupervised classification of the Minimum Noise Fraction 

transformed flightline 18 showed an overall accuracy of 71.77% and a Kappa Coefficient of 
0.58 when using post-classification verification field plots. Class A (Sequoia) had a 
Producer’s / User’s Accuracy of 66.7% / 86.5%. Class B (Umbellularia) had a Producer’s / 
User’s Accuracy of 71.1% / 63.4%. Class C (Salix) had a Producer’s / User’s Accuracy of 78.9% 
/ 72.3%. A Spectral Angle Mapper (SAM) classification was performed on the same data array 
to spectrally isolate species specific pixels identified from field data as indicator species 
diagnostic of the riparian vegetation class. 
 

For the supervised SAM classification, California bay laurel (Umbellularia californica) 
was the only indicator species to not represent more than 50% of its associated Class pixels; 
it represented only 28.84% of Class B. Without additional fieldwork, it is difficult to 
determine if the SAM classification performed poorly for bay laurel or if the incorporation of 
other diagnostic species, such as big leaf maple (Acer macrophyllum), would be more 
appropriate for this class. Class B is considered a “mixed hardwood” community and, as 
such, would naturally have a great number of possible species in its class. The other 
indicator species represented the majority of pixels within its associated K-Means class. 
Coastal redwood (Sequoia sp.) performed the best at 70.72% of its SAM pixels in Class A. 
Furthermore, it is also apparent that traditional riparian vegetation, as represented by 
willow (Salix spp.) for example, are true to their ecological form in terms of being generally 
interspersed within other vegetation communities; this is evidenced by each of the three K-
Means riparian classes having more than 20% of its pixels classified as arroyo willow (S. 
lasiolepis) by SAM. Arroyo willow represented 53.43% of Class C. In the case of true riparian 
vegetation, additional diagnostic species will need to be incorporated into future SAM 
classification efforts if the identification of species will be used as a surrogate for classifying 
vegetation communities. The overall accuracy of this comparison was 97.82%. These results 
indicate that the cross-comparison of individual species to classes was accurate in both field 
and spectral settings. 
 

The second aspect of this research was the use of watershed analytical methods to 
develop a classification of stream segments based on their macro-scale geomorphic 
properties and to determine if there is any correlation with observed vegetation types. We 
used terrain-based algorithms to cluster stream segments based on their geomorphic 
confinement. This is an automated procedure to classify streams as “Source”, “Transport”, 
or “Response” categories, each defined in terms of net sediment movement. We used three 
primary variables to drive a K-Means clustering of segments: stream gradient, upstream 
accumulative area, and cross-valley gradient. These results were then used to examine the 
distribution of riparian vegetation within AVIRIS Flightline 18 by confinement cluster. Our 
examination of Flightline 18 showed that Transport reaches are largely composed of Riparian 
with moderate Conifer and low Hardwood. Response reaches are moderate compositions of 
all three Conifer, Hardwood, and Riparian classes. The dominance of Riparian vegetation in 
Transport reaches is as expected given the dynamic nature of these reaches and the 
responsiveness of Riparian vegetation. 
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The third phase of the study was to compare the results of the AVIRIS classification 
exercise to other data products. Specifically, we examined the vegetation composition for 
Flightline 18 depicted by the CALVEG2000 data set produced by the California Department of 
Forestry and Fire Protection. CALVEG2000 now has classified vegetation into 191 vegetation 
types for much of California, including all portions of the Navarro River watershed, and was 
created by an exhaustive system of data acquisition, calibration, classification, and 
verification. The underlying basis for these data is a combination of satellite imagery 
(ETM+), reconnaissance (ground and air), and processing techniques. A cross-comparison of 
CALVEG and the FL 18 classification is confounded by the different spectral and spatial 
resolution of the their respective instruments. The high-spatial resolution of AVIRIS was 
better for discriminating riparian vegetation. This was most striking for narrow corridors of 
riparian vegetation interspersed within barren (gravel and cobble river beds), annual 
grasslands, and agriculture. Conceivably, comparable classification accuracy would be 
possible with a high spatial resolution multispectral sensor, such as IKONOS, but this has yet 
to be validated with multispectral simulations from the AVIRIS data set. 
 

Finally, we offer a brief analysis of the level of effort required for similar research 
and the continuation of this research. The incorporation of different data, produced at 
various spatial and spectral resolutions, would be an advantageous undertaking. Many of the 
newer technologies provide both the spatial and spectral resolution necessary to 
discriminate resources limited in distribution at increasingly reduced costs. However, the 
computing and personnel capabilities necessary to undertake research efforts over large 
spatial areas using the methods outlined here is enormous. Multiple software packages were 
used in generating the data: ArcGIS v. 8.1; ERDAS Imagine v. 8.5; ENVI v. 3.5; IDL v. 5.5, 
PARGE v. 1.3; ATCOR4 v. 2.0, and PC ORD v. 4.14. Not only is it costly to acquire the 
imagery, but purchasing software and licensing adds a considerable amount to the overall 
cost of the project. Data production for research into the uses of hyperspectral data and 
watershed analysis methodologies was challenging. It required focused effort on behalf of 
the researchers, a substantial monetary investment by collaborators, and flexibility to follow 
important discoveries as they arose.  The volume of data became an obstacle at some steps 
of the processing because of the time it took to transfer the data and the amount of disc 
space required to house them. At over 400GB, the imagery had to be spread across four 
different servers. 
 

One of the caveats of using hyperspectral imagery is the sheer volume of a full image 
cube. A typical flightline in this data set averages 1.5 Gigabytes, while the transformed 
image cube can be almost twice the size of the original image. Additionally, a Minimum 
Noise Fraction Transformation can take several hours on a desktop with only slightly better 
performance on a mutli-processor supercomputer. Finding homogenous training sites for 
supervised classification purposes can be difficult and labor intensive in such a varied 
landscape.  In this study, field crews had worked in the area areas for several years, 
simplifying the selection of appropriate training and verification sites. Theoretically, a 
higher resolution DEM or surface model would have improved our calibration efforts by 
accounting for the height of the conifers, in particular the redwoods.   
 

In conclusion, the high-spectral and spatial resolution of AVIRIS makes it useful for 
mapping riparian vegetation, however, it comes at the price of large images (1.5GB+), high 
acquisition costs, labor intensive preprocessing and increased computational time. 
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Overview and Synopsis 
 

 
The research presented in the following report represents the results of several ongoing 
projects to develop next generation methods for the identification, cataloging, and 
monitoring of watershed resources.  This report, in particular, examines two primary 
methodologies used in the identification and cataloging of resources within selected portions 
of the Navarro River watershed. The report also examines two data in a comparison of 
vegetation typing within a selected portion of the Navarro River watershed. Collectively, this 
research supports a broad program of developing remote methodologies of watershed 
analysis and its application to the conservation and restoration of anadromous salmonids and 
their freshwater habitats. 
 
The first methodology used in this research is the use of high-spatial resolution, 
hyperspectral data to distinguish and classify vegetation cover within a riparian zone. For 
this particular aspect of the study, a single source of hyperspectral information – Airborne 
Visible Infrared Imaging Spectrometer data – was used for one acquired flightline of the 
NASA-JPL AVIRIS 2000 campaign. We selected Flightline 18 as the focal area of this research 
because it is typical of the Anderson Valley, in particular, and of the Navarro River 
watershed, in general. Most notably, it includes areas under viticultural, timbering, and 
pastoral enterprises; it also includes several types of vegetation and it has an extant riparian 
corridor throughout most of its spatial domain.  
 
We employed a hybrid methodology to delineate both riparian extent and vegetation within 
that extent. The riparian extent is essentially terrain-based analysis, in which a digital 
elevation model is used to calculate a maximum Euclidean distance from streams and an 
envelope of least-cost accumulation over valley side slope. The discrimination of vegetation 
within the riparian envelope was handled by bisecting a Greenness data plane, developed 
from a Tasseled Cap transformation of the AVIRIS hyperspectral data, to limit further 
analyses to vegetation pixels solely. Using an unsupervised K-Means classification on 
Minimum Noise Fraction transformed hyperspectral data, we classified pixels within the 
riparian-vegetation spatial array. Additionally, we employed a Spectral Angle Mapper routine 
to identify individual species on a pixel probability basis. Overall results of each routine 
were generally favorable when compared to field verification data; a comparison of both the 
K-Means cover type classes to Spectral Angle Mapper species classes showed positive 
outcomes and confirmed a priori expectations.  
 
The second aspect of this research was the use of watershed analytical methods to develop a 
classification of stream segments based on their macro-scale geomorphic properties. In 
particular, we used terrain-based algorithms to cluster stream segments based on their 
geomorphic confinement. In essence, this is an automated procedure to classify streams as 
Source, Transport, or Response categories in relation to sediment movement, as described 
by authors Montgomery and Buffington (1997). We used three primary variables to drive a K-
Means clustering of segments: stream gradient, upstream accumulative area, and cross-
valley gradient. A robust classification of stream segments resulted from this new method; 
these results were then used to examine the distribution of riparian vegetation within AVIRIS 
Flightline 18 by confinement cluster. Our examination of Flightline 18 showed that much of 
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the Source stream reaches are predominated by hardwoods with Response reaches showing a 
greater homogeneity in vegetation cover within the riparian zone. 
 
To benefit longer-term and more broad scale vegetation mapping efforts throughout the 
region, we compared two vegetation data, the AVIRIS Riparian classification and the CALVEG 
2000 digital spatial data, to determine which, if any, conclusions could be drawn from the 
examination. These two data are vastly different in several respects; notably, they are 
different in their scale of resolution, their methods of generation and classification, and 
their intended uses. Subsequently, the results of their comparison are mixed. Furthermore, 
we examined specific vegetation typing of CALVEG 2000, selected for identified species of 
importance, in comparison to the AVIRIS Riparian classification. For these data comparisons, 
we show both statistical and visual evaluations of their comparability; acknowledging the 
aforementioned caveats of this directed research, the results of these comparisons suggest 
that the identification and cataloging of riparian vegetation communities requires both a 
fine scale of analysis and a robust method of discrimination within heterogeneous stands of 
vegetation.  
 
Lastly, we offer a brief analysis of the level of effort required for similar research and the 
continuation of this research. The incorporation of different data, produced at various 
spatial and spectral resolutions, would be an advantageous course of direction. Many of the 
newer technologies are providing both the spatial and spectral resolution necessary to 
discriminate resources limited in distribution at increasingly reduced costs. However, the 
infrastructure, both in terms of computing and personnel capabilities, necessary to 
undertake research efforts over large spatial areas using the methods outlined here is 
considerably prodigious. These insights are coupled with a brief overview of selected 
scientific papers related to hyperspectral data analysis and other noteworthy topics. This 
body of work, as presented, constitutes a fulfillment of portions of an agreement between 
the Information Center for the Environment and the California Department of Forestry and 
Fire Protection. 
 
Indeed, much of the research presented is original work pursued by Joshua H. Viers in 
support of his doctoral studies at the University of California, Davis, and, as such, it may not 
reflect the views, philosophies, or policy positions of the University, the California Resources 
Agency, or the United States Department of Agriculture.



 7 

Introduction and Background 
 
The Information Center for the Environment and the John Muir Institute of the 

Environment, at the University of California, Davis, have been assisting state and federal 
agencies, as well as international governments and non-governmental organizations, with 
resource management decision-making through environmental information brokerage and 
research. These activities are global; however, intensive studies have largely focused on the 
state of California and California’s watersheds and coastal resources in particular. From the 
inception of the California Rivers Assessment (Viers et al. 1998), our research has refined the 
methods in which resource inventories and monitoring are carried out by regulatory 
agencies. This is particularly true in the case of the federal Clean Water Act and, most 
importantly, the provisions from Section 303(d) that articulate the development of total 
maximum daily loads (TMDLs) for impaired waterbodies. These TMDLs are currently being 
applied to non-point source pollutants in large, rural watersheds throughout northern 
California (see Pacific Coast Federation of Fishermen’s Associations, et al. v. Marcus, No. 
95-4474 MHP, March 11, 1997).  

 
The listing of the Navarro River watershed in southern Mendocino County, California, 

for the impairments of temperature and sediment, has prompted a number of agencies to 
collaborate with the University of California, Davis, in the development of surrogate 
measures of “loads” for non-point source pollutants, such as shade as a surrogate for water 
temperature. The development of next-generation methods for the cataloging and 
inventorying of resources of interest is another such example. Riparian habitats are now at 
the forefront of managerial interest for a number of reasons, but most particularly because 
they are one of the few ecosystem components that humans have the ability to manage 
effectively — as evidenced by the many riparian restoration activities now taking place 
throughout the western United States. Also, and perhaps more importantly, many waterbody 
impairments in northern California’s coastal watersheds are borne out of their decreasing 
ability to support anadromous salmonid fisheries. It is the relationship between land use, 
aquatic and riparian habitat, and the decline of anadromous salmonids that warrants 
investigation and is the focus of our research. In essence, environmental policy is being 
driven by declines in salmonid populations; however, watershed processes are the primary 
drivers of salmonid population health and aquatic habitability. Thus, a significant effort is 
underway across state and federal governmental agencies to develop watershed assessment 
methods that are scientifically sound and, due to timeliness and cost considerations, 
pervasive in manner. As such, remote methods of habitat assessment are required to fill 
existing knowledge and data gaps to forestall future salmonid population declines and 
potential extinction. 

 
The Navarro River watershed is located in southern Mendocino County, California, 

USA. This watershed, 820 km2 in size, drains into the Pacific Ocean and provides a unique 
opportunity to investigate a closed hydrologic system (Figure 1).  A mixture of redwood and 
mixed conifer forests, oak woodlands, open grasslands, and agricultural areas provides an 
array of land uses from which to analyze interactions with aquatic and riparian habitats. The 
Navarro River watershed supports a resource-based economy; timbering, grazing, and 
limited cropping are the primary land use activities in the watershed. However, recent 
changes in the California economy have resulted in increased viticultural activities and an 
increase in the local human population (ca. 3500) within this watershed. These combined 
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factors have resulted in pervasive land use change in the last 150 years, from which 
researchers have sought to inventory, catalogue, and provide a synopsis of the ecological 
state of the watershed. 

 
Thus, the Navarro River watershed is the focal point of many ongoing, 

multidisciplinary investigations concerning anthropogenic disturbance of watershed 
processes, such as logging, road building, and land conversion to vineyards and other 
agriculture, and resulting ecological responses. Namely, these studies have focused on the 
role that land use activities play in perturbing anadromous salmonid populations and habitat. 
Riparian vegetation is a key habitat parameter in that it regulates many of the ecosystem 
components necessary for salmon reproduction, rearing, and migration through its effect on 
stream shading, contribution of large woody debris, and allochthonous inputs to the stream 
system — none of which can be assessed comprehensively from ground studies due both to 
the size of the area and limited access to private lands. Ultimately, however, it is the 
population decline of several Evolutionarily Significant Units of anadromous salmonids that 
serves to anchor activities within the watershed. 

 
The decline and subsequent listings, as part of the federal Endangered Species Act, of 

both coho salmon and steelhead throughout their native range in California, and therefore 
the Navarro River, is not without precedent. Indeed, population declines of native fishes 
have been well documented for decades (see Nehlsen et al. 1991 and Moyle and Williams 
1990 for examples). Reasons for these declines are many, but they have been best qualified 
for anadromous salmonids and, thus, provide only a subset of the many issues related to 
declining populations of aquatic vertebrates in California. Specifically, Nehlson et al. (1991), 
Brown et al. (1994), and Yoshiyama et al. (1998) discuss the reasons contributing to the 
decline of anadromous salmonids, both natural and anthropogenic. The anthropogenic 
factors are many, but primarily reflect unsustainable economies of natural resource 
exploitation: over-fishing and habitat destruction. Habitat destruction comes in many forms; 
migration route blocking and spawning area inundation by dams; spawning area 
sedimentation by road-building and timber harvest practices; increased water temperatures 
due to reduced canopy cover and sedimentation by timber harvesting and riparian grazing; 
and the reduction in coarse woody debris used for juvenile cover due to timber removal. The 
natural factors contributing to the population decline of anadromous salmonids are oceanic 
conditions, such as abnormally warm sea surface temperatures during El Niño events, and 
sporadic precipitation, such as droughts. These natural factors, as Brown et al. (1994) point 
out, are catastrophic events that salmon have experienced throughout their evolutionary 
existence. Therefore, it is the concerted and or cumulative effect of these many factors that 
are responsible for the decline in salmonid populations. Furthermore, it is the anthropogenic 
stress on the aquatic systems that make salmonids and other aquatic and riparian dependent 
organisms more susceptible to perturbations by natural disturbance regimes. 
 

The factors associated with disturbance, natural or otherwise, are often dynamic in 
both space and time. The ability to quantify changes in landscape use and configuration, and 
their relationship to changes in habitat structure, is key to understanding spatio-temporal 
dynamics within a watershed. As Naiman et al. (1992) acknowledge, watershed processes at 
a macro scale regulate fluvial features and riparian vegetation at lesser scales; this 
regulation has reinforced the need to include spatial and temporal dynamics when 
considering aquatic ecosystem structure and function at a meso- or micro scale. Therefore, 
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conservation measures that focus on patterns and processes provide an opportunity to act 
effectively at many spatial scales and ensure long-term viability (Ligon et al. 1999). Thus the 
detection and quantification of land use patterns, even if macroscopic, is paramount to 
elucidating the potential impacts on and recovery of habitats and their associated biota 
(Montgomery and Buffington 1993). 
 

Instream limiting factors to anadromous salmonids, such as stream temperature, are 
often a function of riparian cover and can be characterized by the riparian vegetation 
composition and structure. Riparian habitats are one of the most ecologically productive 
systems in temperate biomes, owing to the land-water interface and the diversity of physical 
factors affecting their formation and distribution (Naiman et al. 1992). Riparian vegetation 
largely affects fish populations by providing canopy cover induced shade (reducing water 
temperature), contributing organic matter directly to the stream, and forming coarse woody 
debris (Naiman et al. 1992, Murphy 1995). Coarse woody debris is important for salmonid 
spawning because it increases the trapping of substrate in gravel poor streams and scours silt 
in sediment filled streams, while also providing heterogeneous stream morphology in the 
form of pools, channels, and backwaters (Naiman et al. 1992, Murphy 1995).  
 

Due to its biological importance and susceptibility to disturbance, riparian habitats 
are the cornerstone of most aquatic conservation and restoration scenarios. As such, our 
research has focused on next generation methods for the detection and delineation of 
riparian habitat in California’s north, coastal watersheds. Currently, many policy questions 
regarding riparian forests and associated channel conditions are based on limited, coarse-
scale spatial data. This research investigates the use of fine-scale, high spectral resolution 
data to identify and map vegetation in different geomorphic reaches within the riparian 
zone. In essence, it is an attempt to bridge contemporary macroscopic assessments to meso-
level entities by assessing riparian vegetation within a cataloging framework of geomorphic 
reaches. 

 
Understanding and accounting for geomorphic characteristics of streams is critical to 

any conservation or restoration scenario for stream segments, especially those that provide 
habitats for anadromous salmonids. This critical nature is largely marked by the capacity of 
a stream to move sediment through the fluvial system, sediments whose quality and quantity 
help define in-stream habitat. Obviously, there are several components that drive the 
geomorphic properties of streams; however, most scientific analyses have focused on 
sediment budgets and sediment delivery to streams, transport capacity of streams, and the 
retention of sediment within the system. Additional research has investigated the role of 
stream structure, whether it is the presence of coarse woody debris or bedrock 
constrictions, in trapping fine sediments, creating plunge pools, or stratifying substrates; all 
of which is under the pretense of understanding and accounting for geomorphic 
characteristics of streams. Most foci for conservation and restoration activities take the 
view, albeit a macroscopic one, that most issues in habitat loss stem from pervasive habitat 
changes that can only be remedied at the formation, or geomorphic channel type, level. 
However, actual implementation of conservation or restoration activities for salmonids is 
restricted to site-specific instances, such as migration barrier removal or anchoring inputs of 
coarse woody debris.  
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Therefore it is the ability to scale from site to segment to watershed, whether it is 
within the confines of riparian habitat or in-stream habitat or some other sphere of interest, 
which has restricted meaningful watershed assessment and analysis. In our research, we 
focus on the development of methods that provide spatial scaling and the ability to account 
for processes and implementation at a variety of scales. This report examines the use of 
AVIRIS imagery to map and characterize riparian vegetation, evaluate riparian vegetation 
along different geomorphic reaches and explore the similarities and differences between the 
AVIRIS riparian classification and CALVEG 2000. 

 
 
Part  1. Hyperspectral Data Analysis 

 
Part 1.1. Hyperspectral Data Analysis Background 

 
In July of 2000, the Information Center for the Environment (ICE) and Center for Spatial 
Technologies and Remote Sensing (CSTARS) collaborated with National Aeronautics and 
Space Administration - Jet Propulsion Laboratory (NASA – JPL) to obtain Airborne 
Visible/InfraRed Imaging Spectrometer (AVIRIS) data of the Navarro River watershed.  AVIRIS 
records data over 224 contiguous, spectral channels with a ~10-nanometer sampling interval 
across the spectral wavelength region of 374 to 2500 nanometers (VNIR to SWIR). The data 
received at ICE consisted of the uncorrected, calibrated radiance images. The geo-
ortherectification of each flightlines was accomplished with the Parametric Geocoding 
(PARGE) program (Schläpfer 2000). Atmospheric correction was performed to remove the 
influence of atmospheric water vapor and aerosols using ATCOR4 (Richter 2000).  For a more 
detailed explanation of the preprocessing sequence for the AVIRIS data see Viers et al. 
(2002).  Using this large area, high spatial resolution collection of AVIRIS data for the 
Navarro River watershed, a classification of riparian vegetation was initiated using a 
combination of traditional ecological assessment techniques and hyperspectral data analysis.  

 
 
The primary goal of this project was to test the suitability of hyperspectral analytical 

techniques to identify and assess riparian vegetation over an area with complex topography 
and land use. In particular, our goals were to use ecological field data to 1) provide a priori 
expectations of vegetation classifications, 2) serve as verification for spectral classification, 
and 3) to serve as a basis from which to nest the classification results within ongoing, 
national efforts of cataloging vegetation. 
 

A series of traditional vegetation classification methods were employed on field data 
to determine the expected species composition of vegetation communities within the 
riparian zone. The traditional methods of vegetation classification from field collections are 
based on clustering algorithms and factor analyses, in this case TWINSPAN (Hill 1979), and 
these methods were used to establish an expected distribution of species for the watershed. 
Subsequently, we spatially delineated a riparian zone by using topographic features 
generated from a digital elevation model of the watershed; this topographic mask serves to 
limit spectral feature extraction of possible riparian vegetation to locations near waterways. 
The process results in a hierarchical framework with expected species distributions that 
represent field conditions; this framework was then integrated with hyperspectral feature 
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extraction methods, such as endmember selection and spectral classification, to 
discriminate different vegetation communities within the riparian zone. 
 
 Efforts to bridge vegetation community ecology and spectral technologies are not 
new; however, the use of hyperspectral data analysis to elucidate both specific constituents 
of vegetation communities and intra-community differences is a dynamic, adaptive science 
(Roberts et al. 1998). Techniques of both vegetation ecologists and spectrometrists are 
directed toward pattern detection. Vegetation ecologists typically do not test a priori 
hypotheses – studies are far more often observational or descriptive, with a focus on 
inductive, multivariate methodologies. Similarly, spectrometry relies on the multi-, or 
hyper-, variate differences among materials to effectively discriminate and identify classes 
of objects. In this research, we engage in methods to identify physical relationships that are 
evident in both ecological and spectral space. Namely, riparian plant species were identified 
and categorized into communities on the ground. AVIRIS data were used to both classify 
vegetation communities within the riparian zone and to identify diagnostic species 
spectrally. The results of our study indicate that the composition of species within 
vegetation communities is reflected in both variable spaces: ecological and spectral. 
 
Part 1.2. Hyperspectral Data Analysis Methods 

 
The following software packages were necessary for the procedures detailed below: 

Environmental Systems Research Institute Inc. ArcInfo v. 8.1 (Redlands, CA); ERDAS Imagine 
v. 8.5 (Leica Geosystems -- Atlanta, GA); Research Systems Incorporated ENVI v. 3.5 
(Boulder, CO); Research Systems Incorporated IDL v. 5.5, PARGE v. 1.3 (Schläpfer ReSe – 
Switzerland) and ATCOR4 v. 2.0 (Schläpfer ReSe – Switzerland), and PC ORD v 4.14 (MjM 
Software Design – Gleneden Beach, OR).  

 
In all, NASA flew 26 of the 29 proposed flightlines over a period of three days in late 

July of 2000. For this preliminary hybrid classification analysis, we have chosen one 
representative flightline from the collection to process: AVIRIS Flightline 18 (Figure 1). 
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Figure 1. Map of the Navarro River Watershed with the proposed AVIRIS flightlines and 
primary hydrographic features. All but flightlines 1-3 were flown in July 2000. Flightline 18 is 
the focus of this study. Inset Map shows position of watershed in Mendocino County, 
California.  

  
NASA – JPL supplied the Navarro River AVIRIS data in radiometrically corrected format 

on 8mm tape. Tape contents were uncompressed to a common file space on a sixteen-
processor SGI Origin 2000 supercomputer; each flightline totals approximately 1.5 – 2.5 
Gigabytes. To geometrically correct flightline data, a terrain correction software package, 
Parametric Geocoding (PARGE) (Schläpfer 2000), was used. PARGE integrates the inertial 
navigation unit readings, flight GPS positions, and ground control points (GCPs) to correct for 
pitch, roll, heading, and yaw. This procedure also incorporates a Digital Elevation Model to 
adjust for topographic effects. Prior to initiating PARGE, each frame was mosaicked in ENVI 
to create a seamless flightline. AVIRIS data were converted from BIP to BSQ in ENVI. GCPs 
were collected by using a combination of ENVI and Imagine tool sets and Digital Orthophoto 
Quarter Quadrangles as a visual anchor. GCPs were systematically eliminated based on their 
X and Y coordinate offsets until the GCP Residual (RMSE) was less than 5.0 m. A 10m USGS 
Digital Elevation Model of the watershed was resampled to 5m cell resolution using bilinear 
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interpolation and converted in ArcInfo from a grid to a DEM in USGS format (ESRI 2001). The 
USGS format DEM was imported into ENVI to be used with PARGE, along with the GCPs.  

 
The final AVIRIS data were resampled to 5m from the native 3.3m - 4.2m spatial 

resolution. The geo-corrected results from PARGE were incorporated into ATCOR4, an 
atmospheric correction software package (Richter 2000). ATCOR4 corrects for sun angle, 
atmospheric moisture and particulates, topography, off-nadir viewing angles, and shadows. 
Once the flightlines were geometrically and atmospherically corrected, "noisy" bands were 
eliminated. Bands were visually inspected and dropped from the analysis if their respective 
response signatures for a known material deviated from the expected response. The 
following bands were chosen as acceptable for further analysis: 2-104, 116-152, 168-220 
(384.46nm - 1324.15nm, 1443.79nm - 1802.45nm, 1950.66nm - 2469.24nm respectively) and 
resulted in a final spectral product. 
 

The process for isolating riparian vegetation relies on a hybrid methodology, which 
incorporates an intersection of two masks, an ecological field data classification, a field-
integrated spectral classification, an ecological field data indicator species analysis, and a 
final spectral comparison of indicator species within classes (see Figure 2 for Process Flow 
Diagram). The dual masking procedure is part terrain analysis and part spectral 
transformation. The spectral masking involved the transformation of the spectral array into 
three data planes using the Tasseled Cap transformation (Jackson 1983, Richards and Jia 
1999). A processing script was developed in Interactive Data Language (IDL) to extract data 
planes via the Tasseled Cap procedure for soil brightness, vegetation greenness, and water 
saturation (Jackson 1983, Richards and Jia 1999). The IDL script uses Regions of Interest 
(ROIs) as inputs for each data plane and the spectral downselected bands are used in the 
input array. To develop a series of ROIs, FL 18 was transformed using Boardman and Kruse’s 
(1994) Minimum Noise Fraction (MNF) routine to collapse the input data array into the 
twenty dimensions with the highest eigenvalues. ROIs were defined in part by pixels encoded 
by the Pure Pixel Index (1000 iterations) (Boardman et al 1995) on the MNF transformed 
arrays. ROIs, in this case, were selected to represent soil brightness, vegetation greenness, 
and water saturation to seed the Tasseled Cap transformation. Flightline 18 was examined 
for the distribution of values from the three-band transform array and each plane was 
bisected to separate materials based on its modal distribution. Vegetation was determined 
to have a “greenness” array value greater than the least first standard deviation from the 
mean.  
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Figure 2. Processing flow diagram for the hybrid methodology to discriminate 
riparian vegetation. 

 
To reduce spectral variability and errant classification of riparian vegetation in upland 

vegetation communities, the vegetation pixels were further segmented with a Riparian 
Extent Mask. The Riparian Extent data grid was created as a combination of two inputs. The 
first input is a Euclidean distance from streams data grid that was natural log transformed 
and rescaled from 1-100. A break point of 37.4 was chosen; it represents one standard 
deviation less than the mean. The second input represents the least cost path away from 
streams where Degree Slope is the cost. The results were natural log transformed and 
rescaled 1-100. A break point of 76.6 was chosen; it represents one standard deviation less 
than the mean. The Riparian Extent Mask represents the intersection of these two grids. This 
Riparian Extent Mask was then used to limit the influence of upslope vegetation on the 
spectral classification of the AVIRIS data and the Tasseled Cap Greenness plane was used as 
a mask to restrict the spectral classification to vegetation solely.  

 
The hyperspectral classification incorporated the results of ecological data analysis of 

fieldwork conducted in the summer of 2000. The initial riparian fieldwork consisted of 6 - 
10m x 10m quadrats randomly placed along each study reach at sixteen study sites 
throughout the watershed (Figure 3). Study sites were stratified to represent major 
tributaries in the watershed and position in the watershed, in terms of upstream 
accumulative drainage area. This stratification also recognizes differences in elevation, 
geologic substrates, and distance to the Pacific Ocean – a primary climatic determinant. We 
identified all woody species, estimated percent cover of each woody species, measured all 
stems greater than 10cm at diameter breast height, measured tree heights with a LaserTech 
Impulse 2000 Rangefinder, and located quadrat boundaries with a Trimble ProXRS 
Differential Global Positioning System (DGPS). Additional field verification plots and 
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individual species locations were geographically located with DGPS as well; these sites were 
located throughout Flightline 18. 

 
 

 
Figure 3. Map of Field Vegetation Plot Sites in the Navarro River watershed depicts a 
stratification based on major tributaries and watershed position. Study plots are 10m 
x 10m and are in clusters of six plots per site, as shown in the inset map. 
 
The species cover data were analyzed using Two-Way Indicator Species Analysis (Hill 

1979, McCune and Mefford 1999). TWINSPAN can be described as dichotomized ordination 
analysis, in that an iterative character weighting is used to separate species affinities based 
on the incorporation of pseudo-species to represent differences in abundance for each 
observed species (van Tongeren 1995). Similarly, sample sites are dichotomized and, 
ultimately, added to a species-by-site matrix. The result of this ordination is a fidelity 
matrix with an approximate positive diagonal, from upper-left to lower-right, which can be 
used to characterize un-sampled sites (van Tongeren 1995); in this exercise, it is used as an 
a priori guide to vegetation communities within the riparian zone and resulted in three 
broad classes (Appendix I). Lastly, in terms of the ecological field data analysis, an Indicator 
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Species Analysis was performed using the three Riparian Vegetation classes derived from 
TWINSPAN (Dufrene and Legendre 1997). Indicator Species Analysis is a method that 
combines information on the concentration of species abundance for a particular group and 
the faithfulness of occurrence of a species in that group, as a function of frequency (McCune 
and Mefford 1999). It produces indicator values for each species in each group, reflecting 
abundance and frequency, and this score is tested for statistical significance using a Monte 
Carlo technique (McCune and Mefford 1999).  

 
Two classification methods were performed on the AVIRIS data to accomplish two 

separate, but related, objectives: 1) an unsupervised classification to establish vegetation 
communities within the riparian extent; and 2) a supervised classification of Indicator 
Species reference spectra to establish distributions of plant species indicative of vegetation 
communities. The purpose of this two-staged approach is to determine if hyperspectral data 
analysis can be used to identify patterns of species indicative of vegetation communities 
observed in the field; essentially, this two-stage method tries to establish whether 
vegetation communities observed in the field, in terms of composition and constancy, are 
reflected in the spectral characteristics of AVIRIS. A Spectral Angle Mapper (SAM) supervised 
classification was performed in ENVI using ROIs defined by the field quadrat boundaries and 
ancillary field identifications. The SAM classification (Kruse et al 1993) was seeded to 
represent Indicator Species from the TWINSPAN classification using ROI endmembers for 
coast redwood, California bay laurel, and arroyo willow with a 0.1 radian deviance threshold 
from the reference spectra for classification. For each diagnostic species, a series of ROIs 
were identified, mean and standard deviation spectra were collected, and spectral libraries 
created to be used in the SAM classification. Additionally, a K-Means unsupervised 
classification was implemented on the twenty-band MNF in ENVI to classify vegetation 
communities within the riparian extent (Figure 4.1). A total of four classes were chosen to 
represent vegetation within the riparian extent (Figure 4.2); three classes are described in 
field plot results, and one class represents cultivated crops. The K-Means classification was 
performed with five hundred iterations and a 2% class deviance. Field plots and individual 
species’ locations were geographically located with a Trimble ProXRS GPS unit, differentially 
corrected, and brought into ENVI as vector data for verification. These verification vectors 
are shown in Figure 4.3 with white outlines. 
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Figure 4.1. Navarro River AVIRIS Image Minimum Noise Fraction Transform (Planes 14, 7, 8)  
Figure 4.2. Navarro River AVIRIS Riparian Vegetation Classification (Class A in Red, Class B in Green, 

Class C in Yellow, and Cultivated Crops in Blue);  
Figure 4.3. Navarro River AVIRIS Image of Hendy Woods State Park (Bands 183, 104, 195) with GPS 

Verification Overlay (White Polygons) targeting Class C pixels.   
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Part 1.3. Hyperspectral Data Analysis Results 

 
Using minimum criteria for TWINSPAN classification of field data, three broad classes 

of vegetation emerged. Two classes are typically considered upland vegetation; however, 
they are well represented in the riparian zone (Class A & B). These two classes have three 
species that are ubiquitous and representative: California bay laurel (Umbellularia 
californica), Douglas-fir (Pseudotsuga menziesii), and tanoak (Lithocarpus densiflorus). 
These two classes are separated by two diagnostic species: coast redwood (Sequoia 
sempervirens), and big-leaf maple (Acer macrophyllum); representing wetter and drier 
climes respectively. Other species that are marginally diagnostic are Pacific madrone 
(Arbutus menziesii) for wetter environments and coast live oak (Quercus agrifolia) for drier 
environments. The riparian class (Class C) is represented by a heterogeneous mixture of 
species; however, arroyo willow (Salix lasiolepis), Himalayan blackberry (Rubus discolor), 
and white alder (Alnus rhombifolia) emerged as diagnostic species. Although Himalayan 
blackberry only occurs in a small percentage of the sampled quadrats, it is dominate where 
present and is reflected by the high indicator value. Other indicator species in this riparian 
class are: California blackberry (Rubus vitifolius), Pacific dogwood (Cornus nuttallii), and 
white willow (Salix alba). Furthermore, many of these species have significant Indicator 
Values in determining riparian class as determined by Indicator Species Analysis (Table 1), 
which determines a species Indicator Value as a function of abundance and frequency 
(Dufrene and Legendre 1997). For Class A, redwood had the highest Indicator Value. For 
Class B, California bay laurel was the best indicator species. Arroyo willow had the highest 
Indicator Value for Class C.   

 
The results of the K-Means classification of the MNF transformed flightline 18 showed 

an overall accuracy of 71.77% and a Kappa Coefficient of 0.58 when using post-classification 
verification field plots.  Class A (Sequoia) had a Producer’s / User’s Accuracy of 66.7% / 
86.5%. Class B (Umbellularia) had a Producer’s / User’s Accuracy of 71.1% / 63.4%. Class C 
(Salix) had a Producer’s / User’s Accuracy of 78.9% / 72.3%. The results of the Spectral 
Angle Mapper classification for the three class diagnostic species (Table 1, in bold), 
determined from Indicator Species Analysis (results in Table 2), describe the relationship 
between vegetation community class, as defined by K-Means, and spectral libraries 
developed from field observation ROIs. The comparison of the SAM Indicator Species 
classification to the K-Means Community classification had overall accuracy 97.82% of and a 
Kappa Coefficient of 0.7471. These results are further detailed in Table 1. 

 
Class Indicator Species No. SAM Pixels No. Class Pixels Pct. Indication by SAM 

A Sequoia sempervirens 46551 65822 70.72 
B Sequoia sempervirens 17745 46766 37.94  
C Sequoia sempervirens 4849 38890 12.47 
A Umbellularia californica 531 65822 0.81 
B Umbellularia californica 13486 46766 28.84 
C Umbellularia californica 1801 38890 4.63 
A Salix lasiolepis 15589 65822 23.68 
B Salix lasiolepis 13892 46766 29.71 
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C Salix lasiolepis 20777 38890 53.43 
 
Table 1. Results of Spectral Angle Mapper Classification on Discriminated Riparian 
Vegetation using field mean and standard deviation spectra for selected Indicator 
Species defined by K-Means Classification. 

 
Part 1.4. Hyperspectral Data Analysis Discussion 

 
Riparian vegetation communities identified in the field were identified spectrally via 

a restricted K-Means classification on MNF transformed AVIRIS data. The results of this 
classification, with an overall accuracy of 71.77%, suggest that the three vegetation classes 
within the riparian extent largely represent field observations (Figure 4.3) and the 
association with the field plots, classified by TWINSPAN to cluster communities of plant 
species, was generally correct. Thus, each spectral class had a representative surrogate field 
class that was verified via cluster analysis of field data plots. Additionally, and perhaps more 
significantly, SAM classification of AVIRIS data for selected species shows similar patterns of 
species associations observed in the field. In particular, Indicator Species Analysis, a method 
using species’ observed abundance and frequency in relation to developed classes or 
communities, produced three diagnostic species for the three observed riparian 
communities. Spectral libraries of these diagnostic species were used in the SAM 
classification, which in turn were compared to the K-Means classified riparian communities. 
The overall accuracy of this comparison was 97.82%. Ultimately, these results indicate that 
the cross-comparison of individual species to classes was accurate in both field and spectral 
settings.  

 
Comparatively, California bay laurel (Umbellularia californica) was the only Indicator 

Species to not represent more than 50% of its associated Class pixels; it represented only 
28.84% of Class B. Without additional fieldwork, it is difficult to determine if the SAM 
performed poorly for bay laurel or if the incorporation of other diagnostic species, such as 
big leaf maple (Acer macrophyllum ), would be more appropriate for this class. Class B must 
also be considered a “mixed hardwood” community and, as such, would naturally have a 
great number of possible species in its class. Regardless, each Indicator Species had the 
predominate percent of its pixels within its associated K-Means class. Coastal redwood 
(Sequoia sp.) performed the best at 70.72% of its SAM pixels in Class A. Furthermore, it is 
also apparent that traditional riparian vegetation, as represented by willow (Salix spp.) for 
example, are true to their ecological form in terms of being generally interspersed within 
other vegetation communities; this is evidenced by each of the three K-Means riparian 
classes having more than 20% of its pixels classified as arroyo willow (S. lasiolepis) by SAM. 
Arroyo willow represented 53.43% of Class C. In the case of true riparian vegetation, 
additional diagnostic species will need to be incorporated into future SAM classification 
efforts if the identification of species will be used as a surrogate for classifying vegetation 
communities. 

 
These results are for a limited portion of the watershed and could change with the 

incorporation of other flightlines and other field plots. Some considerations for addressing 
possible error include: 1) the mixed composition of vegetation communities are difficult to 
separate spectrally by species; 2) the “ribbon” forest nature of riparian vegetation can be 
overwhelmed by upland species; and 3) canopy structure, especially with 80-100m tall 
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coastal redwood trees, can obscure other vegetation features. The preliminary results of this 
effort indicate that hybrid methods of feature extraction work best in this varied landscape 
of topography, climate, and vegetation communities. Additional research will be focused on 
assessing other discriminatory methods for feature extraction within the riparian zone and 
other feature types. However, assessing the distribution and composition of riparian 
vegetation at a watershed scale is essential to protecting salmonid habitat and guiding 
restoration efforts. The methods outlined here, as they are improved, will aid land use 
managers in their ability to inventory, restore, and monitor riparian ecosystems. This is 
particularly true for north, coastal California watersheds where recent policy determinations 
under the federal Clean Water Act and Endangered Species Act require regulatory agencies 
to assess ecosystem integrity in a comprehensive and timely manner. 
 
 Table 2. Indicator Species Analysis Results 

 Taxon Name Common Name Class 
Indicator 

Value p* 

1 Salix lasiolepis arroyo willow C 53.7 0.001 
2 Acer macrophyllum big-leaf maple B 30.7 0.015 
3 Umbellularia californica California bay B 68.1 0.001 

4 Quercus kelloggii 
California black 
oak B 13.2 0.069 

5 Rubus ursinus 
California 
blackberry C 20.8 0.121 

6 Aesculus californica California buckeye B 2.4 1 

7 Rhamnus californica 
California 
coffeeberry A 10.8 0.109 

8 
Corylus cornuta var. 
californica California hazelnut A 11.9 0.225 

9 Torreya californica California nutmeg B 7.1 0.481 

10 Vitis californica 
California wild 
grape B 7.3 0.415 

11 Quercus chrysolepis canyon live oak B 10.5 0.159 
12 Quercus agrifolia coast live oak B 17 0.069 
13 Sequoia sempervirens coast redwood A 83.4 0.001 
14 Ceanothus incanus coast whitethorn B 7.9 0.189 
15 Salix hookeriana coastal willow C 6.6 0.327 

16 Arctostaphylos manzanita 
Common 
manzanita B 2.6 1 

17 Baccharis pilularis coyote brush C 14.3 0.023 

18 
Pseudotsuga menziesii var. 
menziesii Douglas-fir A 45.4 0.005 

19 Abies grandis grand fir A 10.7 0.143 

20 Rubus discolor 
Himalayan 
blackberry C 70.4 0.001 

21 Arbutus menziesii Madrone A 9 0.587 
22 Fraxinus latifolia Oregon ash B 3.4 0.762 
23 Cornus nuttallii Pacific dogwood C 15.4 0.021 
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24 Taxus brevifolia Pacific yew B 5.1 0.579 
25 Toxicodendron diversilobum poison oak B 13.8 0.119 
26 Alnus rubra red alder B 4.7 0.662 
27 Salix laevigata red willow C 7.7 0.139 
28 Rubus spectabilis salmon berry B 5.3 0.498 
29 Salix sessilifolia sandbar willow B 2.6 1 
30 Salix sitchensis Sitka willow C 7.7 0.15 
31 Lithocarpus densiflorus Tanoak A 63.2 0.001 
32 Heteromeles arbutifolia Toyon C 5.1 0.447 
33 Quercus lobata valley oak B 10.5 0.103 
34 Myrica californica wax-myrtle A 5.4 0.311 
35 Rhododendron occidentale western azalea A 15.4 0.038 
36 Plantanus racemosa western sycamore C 7.7 0.135 
37 Alnus rhombifolia white alder C 51 0.001 
38 Salix alba white willow C 23.1 0.006 
      

* proportion of randomized trials with indicator value equal 
to or exceeding the observed indicator value (Dufrene and 

Legendre 1997).   
      

P = (1 + number of runs >= observed)/(1 + number of 
randomized runs)    
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Part 2. Techniques for Geomorphic Stream Typing 
 
Part 2.1. Geomorphic Typing Background 

 
The approach detailed here, in the context of the hyperspectral data analysis 

and the delineation of riparian vegetation within the Navarro River watershed, is the 
development of a landscape scale approach to classify streams by their geomorphic 
type. This geomorphic typing is then used to determine which types of streams are 
associated with which types of riparian vegetation. Discussed in detail below, we 
use the classified AVIRIS data for Flightline 18 to comparatively examine the 
vegetation composition of geomorphically different stream segments.  

 
Previous efforts have been made in Oregon and Washington to map source, 

transport and response reaches, however, they have been strongly qualitative and 
have relied on visual interpretation of elevation contours. To classify stream 
segments based on geomorphic properties, three primary variables were used to 
cluster stream segments with other segments with similar properties. These 
variables are upstream accumulative area, stream gradient, and latitudinal profile 
gradient. Much of the background for the determination of stream segment 
geomorphic type can be found in Montgomery and Buffington (1997), but is also 
qualitatively expressed by other authors (e.g., Rosgen 1994); Montgomery and 
Buffington (1997) argue that stream channel morphology and response are a direct 
outcome of the interaction between sediment supply, transport capacity, and 
vegetation. As stream morphology regulates, to a great degree, the availability of 
salmonid habitat in the form of spawning gravels, rearing pools, and migration 
corridors, its identification and description is important for all aspects of 
management. Montgomery and Buffington (1997) continue to classify stream 
segment networks as either source, transport, or response reaches, based on the 
variables listed above. The primary variable in their matrix is valley confinement or 
latitudinal profile gradient – the rapidity for which side slope increases away from 
the stream channel. Although the more strict definition of channel confinement is 
the ratio of channel width to valley width, a generally accepted assessment of 
confinement considers the steepness of valley walls (Montgomery and Buffington 
1993) 

 
Established techniques in watershed based GIS computing were used to 

delineate stream segments and to calculate variables of interest for each segment 
(e.g., upstream accumulative area) (Tarboten 1991, Viers et al. 1999); to define 
riparian extent of stream segments (Viers et al. 2002); and to segregate stream 
segments based on their geomorphic homogeneity (Viers et al. 2002). In the end, we 
believe these methods can be used to help resource managers determine areas for 
riparian habitat conservation and restoration.  
 
Part 2.2. Geomorphic Typing Methods 

 
The vehicle for this research is the use of terrain-based analysis within a 

geographic information system (GIS). All GIS work was performed in ArcGIS 8.1 (ESRI 
– Redlands, CA) using many modules, but the raster-based GRID module was 
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predominately used. All statistical computations were carried out in JMP5.0 (SAS 
Institute Inc. – Cary, NC).  

 
In this portion of the study, we used several GRID algorithms on a Digital 

Elevation Model (10m) produced by the United States Geological Survey to generate 
a stream segment network and assign upstream accumulative area and stream 
gradient to each segment. Stream gradient was calculated by using a zonal mean of 
masked streams cells converted to percent slope in which each stream segment was 
considered a separate zone. Furthermore, we used the FOCALRANGE algorithm at 
20m intervals (30m – 190m) in a circular pattern to determine the mean majority 
elevation range for each stream segment. This analytical product, in essence, 
determines the confinement of each stream segment by iteratively expanding away 
from the stream center to define the parameters of side-slope: rise, majority 
elevation range, and run, radius of focal circle, where intervals are collectively 
averaged for each stream segment. A K-Means clustering algorithm was used in 
JMP5.0 to develop a sense of the distribution of valley confinement within the 
watershed by examining linear and quadratic regressions between elevation range 
and distance from stream channel. Furthermore, accumulative area and stream 
gradient, each natural log transformed, were combined with the mean majority 
elevation range and used to develop three final clusters of stream segments by using 
the K-Means clustering algorithm in JMP5.0.  

 
The second phase of the geomorphic typing analysis was to determine the 

distribution of riparian vegetation classes among the geomorphic types. The riparian 
classes were outcomes of the previous hyperspectral data analysis procedure in 
which the Riparian Extent, a combination of distance from stream and cross-
sectional slope, was used to limit the spatial extent of the AVIRIS vegetation pixels 
being classified; thus, the procedure limited the amount of “noise” from upland 
vegetation communities. The Riparian Extent was also used in determining the 
spatial area used to calculate the percent of a stream segment attributed to 
riparian vegetation communities. The AVIRIS riparian vegetation classes were 
examined as a function of geomorphic class: source, transport, and response. This 
stream segment clustering procedure elucidates patterns of riparian vegetation 
within the context of a geomorphic framework. In the end, classified vegetation 
pixels within the riparian extent were examined as a percent vegetation type by 
geomorphic confinement type. 

 
Part 2.3. Geomorphic Typing Results 
 

The analysis of vegetation classes within the geomorphic confinement clusters 
was restricted to Flightline 18 solely. The geomorphic confinement analysis as 
whole, however, was computed for the entire Navarro River watershed. The 
distributions of stream segment mean majority elevation range, as a function of 
distance from stream, were normal; moments for each unit are presented in Table 3 
and overall distribution is presented in Figure 5.1. Distributions of stream gradient 
and upstream accumulative area were not normally distributed and thus natural log 
transformed for further analysis; their distributions are presented in Figures 5.2 and 
5.3, respectively. K-Means clustering of stream segments was for three groups, to 



24 

represent source, transport, and response reaches (Montgomery and Buffington 
1997), and resulted in a robust classification from nineteen iterations (Table 4) and 
an intuitive map of stream segments (Figure 6).  

 
 
 

 
 
Distance from Stream 
(m) 30 50 70 90 110 130 150 170 190 
Mean Majority  
Elevation Range (m) 13.54 26.29 37.42 49.91 61.17 72.48 83.14 92.87 102.50 

Std Dev 7.71 12.67 16.43 20.36 23.65 27.09 30.16 33.00 35.92 

Upper 95% Mean 13.70 26.56 37.77 50.35 61.68 73.06 83.78 93.57 103.27 

lower 95% Mean 13.37 26.02 37.07 49.47 60.66 71.90 82.49 92.16 101.74 
 
 
Table 3. Distribution of Side Slope (Cross-Valley) Elevation Range Values for 
the Navarro River watershed.  
 

 
 

Cluster Summary 
Step Criterion 

19 0 
 

Cluster Count Max Dist Prior Dist 
1 1413 3.21272433 3.90536163 
2 2885 2.57270968 3.71814347 
3 3477 3.43994531 3.66760957 

 
Cluster Means 
Cluster Natural Log Percent 

Stream Gradient 
Natural Log Maximum Accumulative 

Area (100m^2) 
Averaged Mean 

Majority Side Slope 

1 0.47343201 13.2755961 37.1641435 
2 1.30922018 9.02096074 41.3697642 
3 2.3703203 8.15335163 70.3444611 

 
Cluster Standard Deviations 
Cluster Natural Log Percent 

Stream Gradient 
Natural Log Maximum Accumulative 

Area (100m^2) 
Averaged Mean 

Majority Side Slope 
1 0.43282151 1.50191044 15.9575819 
2 0.50079762 1.23640695 14.5450165 
3 0.39305451 1.0848862 13.1580471 

 
 
 
Table 4. K-Means Clustering Output for Stream Confinement Criteria in 
Montgomery and Buffington (1997). Confinement Clusters 1-3 represent 
Response, Transport, and Source Reaches, respectively. 
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Figure 5.1. Averaged Mean Majority 
Side Slope Gradient by Stream 
Segment 
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 Normal(53.563,20.7884) 

Moments 
   
Mean 53.563009 
Std Dev 20.788431 
Std Err Mean 0.2357608 
upper 95% Mean 54.025164 
lower 95% Mean 53.100855 
N 7775 

Figure 5.2. Natural Log 
Transformed Stream Segment 
Mean Gradient  
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 Normal(1.63185,0.85005) 

Moments 
   
Mean 1.6318538 
Std Dev 0.8500536 
Std Err Mean 0.0096404 
upper 95% Mean 1.6507516 
lower 95% Mean 1.612956 
N 7775 
 

Figure 5.3. Natural Log Transformed 
Maximum Upstream Accumulative Area 
by Stream Segment 
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 LogNormal(2.21633,0.21784) 

Moments 
   
Mean 9.4061855 
Std Dev 2.2319385 
Std Err Mean 0.0253123 
upper 95% Mean 9.4558045 
lower 95% Mean 9.3565666 
N 7775 
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Figure 6. Close-Up Map of Confinement Clusters for the Navarro River 

Watershed, Single Cell Area equals 100m2. 
 
 

 
Confinement 

Cluster 
Category Linear Model 

Linear Model 
Fit (r2) Polynomial Model with Zeroed Intercept 

Response  -6.757248 + 0.4568701 Distance 0.571865 0 + 0.4174833 Distance - 0.0005512 (Distance-110)^2 

Transport  -3.180633 + 0.4566623 Distance 0.619368 0 + 0.4435071 Distance - 0.0005305 (Distance-110)^2 

Source 2.3917929 + 0.6803434 Distance 0.808389 0 + 0.7076774 Distance - 0.0004791 (Distance-110)^2 

Table 5. Fitted model comparison for Confinement Clusters. 
 
Table 5 shows fitted models, linear and polynomial, for the three Confinement Cluster 

categories and a stylized graph of the polynomial fitted models for each category is shown in 
Figure 7. An analysis of side slope gradient by Confinement Cluster resulted in expected 
distributions; linear regressions of elevation range against distance from stream are 
presented with quantile density contours in Figures 8-10.  
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Polynomial Model Fit

Distance from Stream Center

E
le

va
ti

o
n

 R
an

g
e

Response Transport Source

 
Figure 7. Stylized graph of polynomial fitted models for Response, 
Transport, and Source stream segments from Confinement Cluster 
regressions of Elevation Range against Distance from Stream Center. 

 
 
Figure 8 shows the distribution of stream segments clustered as Response reaches. 

The linear regression of elevation range against distance from stream center is significant (F 
Ratio = 16983.55; Prob. > F = 0.0000); the moderate beta parameter (0. 4568701 Distance), 
negative intercept, and lower polynomial coefficients suggest that these are wide-bodied 
streams with moderate and variable (r2 = 0.571831) cross-valley gradients. The lack of 
geomorphic confinement is somewhat similar to that of the Transport Reach cluster; 
however, the Response Reaches are also characterized by higher upstream accumulative 
areas and by stream gradients near one percent. Similarly, Figure 9 diagrams model fits of 
elevation range against distance from stream center, but for Transport Reaches. Again, the 
linear regression is significant (F Ratio = 42247.29; Prob. > F = 0.000) with a moderate beta 
coefficient (0.4566623 Distance) and a negative intercept; however, this stream segment 
cluster is characterized by slightly less variability (r2 = 0.619354) and a steeper polynomial 
fitted cross-valley gradient than the Response Reach cluster. Figure 10 diagrams the Source 
Reach stream segment cluster; it has a much higher beta coefficient (0.6803434 Distance), 
thus steeper cross-valley gradient, and better fitting of the linear regression of elevation 
range against distance from stream center (r2 = 0.808382; F Ratio = 132013.4; Prob. > F = 
0.000). In summary, examinations of the K-Means clustering of stream segments in relation 
to elevation range and distance from stream center resulted in two similar fitted models 
(Transport and Response Reaches) and one very different model (Source Reach). The 
differences between Transport and Response Reaches are in the two other clustering 
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parameters, upstream accumulative area and stream gradient, which are in accordance with 
observations of Montgomery and Buffington (1993). 

 
We also examined the distribution of classified AVIRIS Riparian Vegetation for the 

three Confinement Clusters to determine which, if any, relationships exist. The results of 
this analysis show that vegetation classes are distributed differently in each confinement 
cluster. Only pixels containing forested classes were considered in this analysis, thus each 
stream segment was characterized by a total of 100% classified pixels parceled among the 
three AVIRIS classes. Each forested class was evaluated as a percent of each stream 
segment; stream segments were subsequently treated to a one-way analysis of variance to 
determine if variability differences among confinement clusters were greater than 
variability within clusters. The results for all treatments are statistically significant, 
including tests using non-parametric assumptions. Comparisons of all pairs were also 
considered using the Tukey-Kramer HSD (honestly significant difference) method, which is 
conservative under non-parametric assumptions (Zar 1999). 

 
The results of comparing AVIRIS Riparian Vegetation classes a function of Confinement 

Clusters are presented in Figures 11-13. Each forest class is presented separately, with 
Figure 11 providing results for the Conifer class. Transport reaches had a mean of 56% 
Conifer, as opposed to Source and Response reaches with 43% and 26%, respectively. This 
distributional difference is significant (F Ratio = 16.8483; Prob. > F < 0.0001; DF = 331) for 
the single factor ANOVA; non-parametric tests (Prob. > Chi2 < 0.0001) and group comparisons 
(a = 0.05) are also significant. The separation of Source and Response reaches is most 
pronounced, with Transport reaches more closely resembling the distribution of Conifer in 
Source reaches. Figure 12 presents a comparative analysis for the distribution of true 
Riparian vegetation within Confinement Clusters. The percent of classified stream segment 
AVIRIS pixels considered Riparian were lowest in Source reaches (24%), highest in Transport 
reaches (50%), and intermediate in Response reaches (39%). A single factor ANOVA was 
statistically significant (F Ratio = 15.1525; Prob. > F < 0.0001; DF = 306), as were all non-
parametric tests (Prob. > Chi2 = 0.0002) and group comparisons (a = 0.05). Response and 
Transport reaches were more closely allied than the Source reaches in Riparian vegetation 
composition. Lastly, Figure 13 presents the examination of the AVIRIS Hardwood class 
distribution within Confinement Clusters. Source and Response reach clusters showed high 
percent distributions with 76% and 61% Hardwood, respectively. Transport reaches were 
markedly lower at 47% Hardwood. Again, tests of confinement were statistically significant 
for single factor ANOVA (F Ratio = 23.4285; Prob. > F < 0.0001; DF = 478), non-parametric 
Chi2 approximations (Prob. > Chi2 < 0.0001), and all group comparisons using Tukey-Kramer 
HSD (a = 0.05). 
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Confinement Cluster: Response Reach 
Bivariate Fit of Elevation Range By Distance 
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.1 .2 .3 .4 .5 .6 .7 .8 .9 Quantile Density Contours 
Linear Fit
Polynomial Fit Degree=2

 
Linear Fit Elevation Range = -6.757248 + 0.4568701 Distance 
Summary of Fit 
  
Rsquare 0.571865 
RSquare Adj 0.571831 
Root Mean Square Error 20.41528 
Mean of Response 43.49847 
Observations (or Sum Wgts) 12717 
Source DF Sum of Squares Mean Square F Ratio 
Model 1 7078463 7078463 16983.55 
Error 12715 5299403 417 Prob > F 
C. Total 12716 12377865  0.0000 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  -6.757248 0.42601 -15.86 <.0001 
Distance  0.4568701 0.003506 130.32 0.0000 
 
Polynomial Fit Degree=2 
Elevation Range = 0 + 0.4174833 Distance - 0.0005512 (Distance-110)^2 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  Zeroed 0 0 . . 
Distance  0.4174833 0.002048 203.86 0.0000 
(Distance-110)^2  -0.000551 0.00007 -7.86 <.0001 

 
Figure 8. Linear and Polynomial Fit of Elevation Range as a Function of Distance 
from Stream for Confinement Cluster: Response Reach.  
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Confinement Cluster: Transport Reach 
Bivariate Fit of Elevation Range By Distance 
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.1 .2 .3 .4 .5 .6 .7 .8 .9 Quantile Density Contours 
Linear Fit
Polynomial Fit Degree=2

 
Linear Fit Elevation Range = -3.180633 + 0.4566623 Distance 
Summary of Fit 
   
Rsquare 0.619368 
RSquare Adj 0.619354 
Root Mean Square Error 18.48733 
Mean of Response 47.05222 
Observations (or Sum Wgts) 25965 
Source DF Sum of Squares Mean Square F Ratio 
Model 1 14439343 14439343 42247.29 
Error 25963 8873674 341.78153 Prob > F 
C. Total 25964 23313017  0.0000 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  -3.180633 0.269983 -11.78 <.0001 
Distance  0.4566623 0.002222 205.54 0.0000 
 
Polynomial Fit Degree=2 
Elevation Range = 0 + 0.4435071 Distance - 0.0005305 (Distance-110)^2 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  Zeroed 0 0 . . 
Distance  0.4435071 0.001288 344.29 0.0000 
(Distance-110)^2  -0.00053 0.000044 -12.02 <.0001 

 
Figure 9. Linear and Polynomial Fit of Elevation Range as a Function of Distance 
from Stream for Confinement Cluster: Transport Reach. 
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Confinement Cluster: Source Reach 
Bivariate Fit of Elevation Range By Distance 
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Linear Fit
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Linear Fit Elevation Range = 2.3917929 + 0.6803434 Distance 
Summary of Fit 
   
Rsquare 0.808389 
RSquare Adj 0.808382 
Root Mean Square Error 17.10516 
Mean of Response 77.22957 
Observations (or Sum Wgts) 31293 
Source DF Sum of Squares Mean Square F Ratio 
Model 1 38625343 38625343 132013.4 
Error 31291 9155322 292.58643 Prob > F 
C. Total 31292 47780665  0.0000 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  2.3917929 0.227541 10.51 <.0001 
Distance  0.6803434 0.001872 363.34 0.0000 
 
Polynomial Fit Degree=2 
Elevation Range = 0 + 0.7076774 Distance - 0.0004791 (Distance-110)^2 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  Zeroed 0 0 . . 
Distance  0.7076774 0.001085 652.33 0.0000 
(Distance-110)^2  -0.000479 0.000037 -12.89 <.0001 

 
Figure 10. Linear and Polynomial Fit of Elevation Range as a Function of 
Distance from Stream for Confinement Cluster: Source Reach. 
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Oneway Analysis of Percent Conifer By Confinement 
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Oneway Anova 
Summary of Fit 
   
Rsquare 0.092906 
Adj Rsquare 0.087392 
Root Mean Square Error 34.99306 
Mean of Response 41.87338 
Observations (or Sum Wgts) 332 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Confinement 2 41262.00 20631.0 16.8483 <.0001 
Error 329 402865.17 1224.5   
C. Total 331 444127.18    
Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 
1: Response 96 26.3334 3.5715 19.308 33.359 
2: Transport 91 55.8362 3.6683 48.620 63.052 
3: Source 145 43.3990 2.9060 37.682 49.116 
Std Error uses a pooled estimate of error variance 
Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 
Level Count Score Sum Score Mean (Mean-Mean0)/Std0 
1: Response 96 12880.5 134.172 -3.915 
2: Transport 91 17999.5 197.797 3.652 
3: Source 145 24398 168.262 0.294 
1-way Test, ChiSquare Approximation 

ChiSquare DF Prob>ChiSq 
20.6323 2 <.0001 

Means Comparisons 
Dif=Mean[i]-Mean[j] 2: Transport 3: Source 1: Response 
2: Transport 0.000 12.437 29.503 
3: Source -12.437 0.000 17.066 
1: Response -29.503 -17.066 0.000 
Alpha=0.05 Comparisons for all pairs using Tukey-Kramer HSD 

q* Alpha 
2.35437 0.05 

Abs(Dif)-LSD 2: Transport 3: Source 1: Response 
2: Transport -12.214 1.419 17.449 
3: Source 1.419 -9.676 6.225 
1: Response 17.449 6.225 -11.891 
 
 
 
 
 

Figure 11. Analysis of AVIRIS Conifer Vegetation as Percent of Classified Pixels for 
Confinement Clusters. 
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Oneway Analysis of Percent Riparian By Confinement 
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Oneway Anova 
Summary of Fit 
   
Rsquare 0.090651 
Adj Rsquare 0.084668 
Root Mean Square Error 33.74809 
Mean of Response 37.14095 
Observations (or Sum Wgts) 307 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Confinement 2 34515.45 17257.7 15.1525 <.0001 
Error 304 346235.87 1138.9   
C. Total 306 380751.32    
Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 
1: Response 108 38.9598 3.2474 32.570 45.350 
2: Transport 91 50.3862 3.5378 43.425 57.348 
3: Source 108 24.1618 3.2474 17.772 30.552 
Std Error uses a pooled estimate of error variance 
Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 
Level Count Score Sum Score Mean (Mean-Mean0)/Std0 
1: Response 108 17287 160.065 0.881 
2: Transport 91 16236 178.418 3.128 
3: Source 108 13755 127.361 -3.874 
1-way Test, ChiSquare Approximation 

ChiSquare DF Prob>ChiSq 
17.1254 2 0.0002 

Means Comparisons 
Dif=Mean[i]-Mean[j] 2: Transport 1: Response 3: Source 
2: Transport 0.000 11.426 26.224 
1: Response -11.426 0.000 14.798 
3: Source -26.224 -14.798 0.000 
Alpha=0.05 Comparisons for all pairs using Tukey-Kramer HSD 

q* Alpha 
2.35533 0.05 

Abs(Dif)-LSD 2: Transport 1: Response 3: Source 
2: Transport -11.784 0.116 14.914 
1: Response 0.116 -10.817 3.981 
3: Source 14.914 3.981 -10.817 
 
 
 
 
 

Figure 12. Analysis of AVIRIS Riparian Vegetation as Percent of Classified Pixels for 
Confinement Clusters. 
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Oneway Analysis of Percent Hardwood By Confinement 
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Oneway Anova 
Summary of Fit 
   
Rsquare 0.089617 
Adj Rsquare 0.085792 
Root Mean Square Error 34.93665 
Mean of Response 67.42331 
Observations (or Sum Wgts) 479 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio Prob > F 
Confinement 2 57192.34 28596.2 23.4285 <.0001 
Error 476 580991.21 1220.6   
C. Total 478 638183.56    
Means for Oneway Anova 
Level Number Mean Std Error Lower 95% Upper 95% 
1: Response 110 61.4939 3.3311 54.948 68.039 
2: Transport 85 47.4561 3.7894 40.010 54.902 
3: Source 284 75.6960 2.0731 71.622 79.770 
Std Error uses a pooled estimate of error variance 
Wilcoxon / Kruskal-Wallis Tests (Rank Sums) 
Level Count Score Sum Score Mean (Mean-Mean0)/Std0 
1: Response 110 21784.5 198.041 -3.671 
2: Transport 85 14391.5 169.312 -5.261 
3: Source 284 78784 277.408 7.235 
1-way Test, ChiSquare Approximation 

ChiSquare DF Prob>ChiSq 
54.4670 2 <.0001 

Means Comparisons 
Dif=Mean[i]-Mean[j] 3: Source 1: Response 2: Transport 
3: Source 0.000 14.202 28.240 
1: Response -14.202 0.000 14.038 
2: Transport -28.240 -14.038 0.000 
 Alpha=0.05 Comparisons for all pairs using Tukey-Kramer HSD 

q* Alpha 
2.35107 0.05 

Abs(Dif)-LSD 3: Source 1: Response 2: Transport 
3: Source -6.893 4.978 18.085 
1: Response 4.978 -11.076 2.176 
2: Transport 18.085 2.176 -12.599 
 
 

 
Figure 13. Analysis of AVIRIS Hardwood Vegetation as Percent of Classified Pixels 
for Confinement Clusters. 
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Part 2.4. Geomorphic Typing Discussion 
 

Notably, the geomorphic classification promoted by Montgomery and Buffington 
(1997) is used by resource managers to assign regulatory status for various activities, such as 
timber harvesting, stream restoration, and critical habitat for fisheries. Here we use a 
surrogate approximation of their geomorphic classification in developing Confinement 
Clusters, in which we examine the distribution of riparian vegetation cover types – 
determined by an unsupervised classification of AVIRIS hyperspectral data – as a function of 
geomorphic confinement. 

 
An analysis of the Confinement Clusters developed from the K-Means classification 

had intuitive results. For example, the role of stream gradient and upstream accumulative 
areas is pronounced, as evidenced by Figure 5 in which segments downstream with little 
gradient are classified differently than segments upstream with high relief. However, side 
slope gradient, and thus measures of confinement, is also critical to assigning a categorical 
cluster response, thus we implemented an innovative spatial analysis technique to 
incorporate this important variable. An additional intuitive result from this analysis is that 
segments with high side slope gradient are clustered with the same Source confinement 
clusters and those with less side slope gradient are Response reaches. The remainder or 
intermediate segments are also clustered. It is worth noting that the separation of Transport 
and Response reaches is predicated on upstream accumulative area, which in turn is a prime 
predictor of flow and channel volume, and stream gradient, which regulates transport 
capacity.  

 
Examinations of riparian vegetation, determined from classified AVIRIS hyperspectral 

data, as a function of Confinement Clusters discussed above, yielded compelling findings. 
Source reaches are dominated by Hardwood, with moderate Conifer and low Riparian class 
distributions. Transport reaches are largely composed of Riparian with moderate Conifer and 
low Hardwood. Response reaches are moderate compositions of all three Conifer, Hardwood, 
and Riparian classes. Visual examinations of the distributions of Conifer and Hardwood 
suggest that non-considered factors such as aspect have a non-random effect on the 
distribution of these vegetation types; therefore, the elevated percentage values for 
Hardwood and Conifer in Source reaches is tenable. Moreover, the dynamic fluvial nature of 
Transport reaches, including both deposition and erosion, is reflected by the elevated 
proportion of true Riparian vegetation, a vegetation type that is often more tolerant and 
responsive to dynamic growing conditions. The consideration of Response reach composition 
is one that is perhaps more difficult to explain; these stream segments are heterogeneous in 
many respects, thus a heterogeneous vegetation composition is just reflective of the 
environmental conditions. However, it must be noted that the vegetation distributions 
presented here reflect current conditions, undoubtedly altered by land use practices; 
therefore, additional causal conclusions should not be drawn from these observations.  

 
Part 3. Comparison of Vegetation Data 
 
Part 3.1. Vegetation Data Comparison Background 

The final phase of the research presented here is to compare the results of the AVIRIS 
classification exercise to other data products. Specifically, we examined the vegetation 
composition for Flightline 18 depicted by the CALVEG2000 data set produced by the 
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California Department of Forestry and Fire Protection and the United States Department of 
Agriculture - Forest Service. CALVEG2000 data are comprehensive in both spatial domain and 
attribution for much of California, including all portions of the Navarro River watershed, and 
was created by an exhaustive system of data acquisition, calibration, classification, and 
verification. The underlying basis for these data is a combination of satellite imagery 
(Landsat 7 Thematic Mapper Plus), reconnaissance (ground and air), and processing 
technique. 

 
Although CALVEG 2000 covers all of the Navarro River watershed, AVIRIS Flightline 18 

is spread across two data tiles: 11 & 12 (see http://frap.ca.gov/ for metadata). These two 
data tiles straddle the counties of Humboldt, Trinity, Mendocino, Lake, and Sonoma; the 
Navarro River watershed is wholly within Mendocino County (Figure 14).   

 
Figure 14. Map of CALVEG 2000 Eco-Tile boundaries relative to the Navarro River 

watershed and counties of north, coastal California. 
 
It is this difference in base data resolution, aggregated 5m pixels versus 1 hectare minimum 
mapping unit; area of coverage or extent; and intended use that requires further mention. 
The straddling of data products for Flightline 18, and the Navarro River watershed, and 
general differences required an investigation as to the composition of attributes for the two 
tiles. This additional analysis was necessary because any inferences drawn from the 
comparison of these two very different data should be couched within the understanding of 
their respective limitations. As such, the attribute composition was compared at two levels: 
tile and watershed, for the vegetation type attribute. The results of this investigation are 
presented here as to not interfere with the direct comparison of the two data themselves, 
CALVEG2000 and AVIRIS Riparian Vegetation Classification, presented later, at the watershed 
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and flightline level. It should be noted that while CALVEG2000 uses a stand-based approach 
and the AVIRIS classification uses a pixel-based approach but that both methods are based 
on “mixed” pixels; the usefulness of comparing these different methods is subject to 
interpretation. 
 

Table 6 shows the relative contributions of vegetation types, considered to be riparian 
in nature, to data tiles 11 & 12. Because each tile represents different environmental 
conditions, whether they climatic or otherwise, the distributions of vegetation types are not 
uniform across both tiles. Table 7 shows all vegetation types within the Navarro River 
watershed for the combined tiles 11 & 12 of CALVEG2000 and notes which types are also 
considered riparian in Table 6. Of the twelve vegetation types considered riparian, only two 
are represented in the Navarro River watershed in the combination of tiles. The two riparian 
types common at both levels are Coyote Brush and Red Alder and they constitute less than 
0.25% of the watershed as depicted in CALVEG2000. 
 

CALVEG 
Data Tile 

Number of 
Polygons 

CALVEG 
Vegetation Type 

Code 
CALVEG Vegetation Type 

Description 
Total Area in 

Tile (ha) 
Percent Riparian 

Type in Tile 
11 278 CK Coyote Brush 3305.07 32.29 
11 2 HJ Wet Grass/Herbs 83.52 0.82 
11 2 HT Tule-Cattail 43.47 0.42 
11 9 QE White Alder 40.14 0.39 
11 23 QM Bigleaf Maple 51.57 0.50 
11 81 QO Willow 225.45 2.20 
11 1521 QR Red Alder 4202.10 41.05 
11 821 QY Willow-Alder 2207.70 21.57 
11 30 QZ Eucalyptus 77.04 0.75 
12 4 CK Coyote Brush 5.22 0.20 
12 10 HJ Wet Grass/Herbs 44.37 1.73 
12 3 QE White Alder 5.58 0.22 
12 219 QF Fremont Cottonwood 585.54 22.77 
12 10 QI California Buckeye 19.08 0.74 
12 517 QL Valley Oak 1538.19 59.81 
12 2 QM Bigleaf Maple 6.21 0.24 
12 32 QO Willow 118.26 4.60 
12 2 QR Red Alder 7.29 0.28 
12 118 QY Willow-Alder 242.10 9.41 

Table 6. Distribution of CALVEG Vegetation Types within Data Tiles considered 
“riparian” in nature and their respective contributions in area and by percent. 
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Number of Polygons 

CALVEG 
Vegetatio

n Type 
Code Vegetation Type Description Area (ha) Percent Area 

Average 
Polygon 

Area 
(ha) * Riparian 

28 AG General Agriculture 1520.77 1.86 54.3133 FALSE 
2 AN Mendocino Manzanita 7.81 0.01 3.908 FALSE 

29 BA General Barren 82.45 0.10 2.8432 FALSE 
45 CA Chamise 219.27 0.27 4.8728 FALSE 
5 CK Coyote Brush 114.22 0.14 22.8445 TRUE 

80 CQ Northern Mixed Shrub 1319.42 1.62 16.4929 FALSE 
33 CS Scrub Oak 220.99 0.27 6.6969 FALSE 

2994 DF Pacific Douglas-fir 8719.31 10.68 2.9123 FALSE 
45 GF Grand Fir 96.15 0.12 2.1367 FALSE 

725 HG Dry Grass/Herbs 12343.31 15.12 17.0253 FALSE 
9 MM Monterey Cypress 31.89 0.04 3.5443 FALSE 

27 MU Ultramafic Mixed Conifer 69.43 0.09 2.5715 FALSE 

3192 NX 
Non-productive Mixed 
Hardwood 10161.32 12.44 3.1834 FALSE 

4 PM Bishop Pine 7.21 0.01 1.8046 FALSE 
154 QB California Bay 406.32 0.50 2.6385 FALSE 
115 QC Canyon Live Oak 257.95 0.32 2.2431 FALSE 
11 QD Blue Oak 22.83 0.03 2.076 FALSE 

744 QG Oregon White Oak 2149.19 2.63 2.8887 FALSE 
244 QK California Black Oak 681.09 0.83 2.7914 FALSE 
31 QR Red Alder 74.73 0.09 2.4108 TRUE 

1418 QT Tanoak 3854.72 4.72 2.7184 FALSE 
323 QW Interior Live Oak 839.47 1.03 2.599 FALSE 

10944 RD Redwood-Douglas-Fir 37914.71 46.44 3.4644 FALSE 
26 RW Redwood 89.57 0.11 3.4453 FALSE 
58 SC Blueblossom Ceanothus 215.74 0.26 3.7197 FALSE 
10 SD Manzanita Chaparral 29.74 0.04 2.975 FALSE 
3 UB General Urban 85.61 0.10 28.5382 FALSE 

30 WA General Water 115.57 0.14 3.8526 FALSE 
Table 7. Distribution of Vegetation Types within Navarro River watershed by 
CALVEG2000. *Riparian field indicates if vegetation type was used in selection of 
“riparian” type polygons used in comparative analysis. 
 
Although it appears that the Navarro River watershed is atypical in its distribution of 
vegetation types, compared to both data tiles in CALVEG2000, at least in terms of riparian 
vegetation, much of this discrepancy reflects the aforementioned challenges in scale; in this 
case from regional approximations to watershed parcel. Comparability of two disparate data 
in restricted space, as presented below, must be viewed with the same limitations and 
challenges of scale. 
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Part 3.2. Vegetation Data Comparison Methods 
 

We employed the following methods to explore the comparability of the classified 
AVIRIS riparian spatial data for Flightline 18 to the CALVEG2000 spatial data. All data 
comparisons are restricted to the classified AVIRIS pixels within the Riparian Extent 
discussed above and do not include upland areas. Flightline 18 classified riparian data was 
converted to Arc/Info GRID format using the same 5 m raster resolution as the ENVI-based 
image and maintaining its UTM Zone 10 projection and analysis window. Although there are 
specific protocols for the development of CALVEG2000, in practicality, its use of the lifeform 
at the VEGTYPE level is implied. Furthermore, the value attribute table of the converted 
AVIRIS data uses the following codes to develop a numeric equivalent of the AVIRIS Classes 
described above: 

0 – Null [these data were later converted to ‘No Data’ or –9999 in GRID] 
1 – Conifer [Sequoia sp. predominate & known as Class A from above] 
2 – Agriculture 
3 – Riparian [Salix spp. predominate & known as Class C from above] 
4 – Hardwood [Umbellarium sp. et Quercus spp. predominate & known as Class B from 

above] 
 
 

These data were converted in the following matter to match the analytical properties 
of AVIRIS Flightline 18. CALVEG Tiles 11 and 12 (Figure 14) were clipped to the boundary of 
the Navarro River watershed. Clipped coverages were edited to include a new attribute 
[CODE] used to convert the character field of [COVERTYPE] to numeric, using an Arc Macro 
Language (AML) crosswalk in ESRI ArcEdit (Table 8.) 
 
 

CALVEG Cover Type Code Cover Type Description Assigned Numeric 
Code 

CON Conifer 1 
SHB Shrub 2 
HDW Hardwood 3 
HEB Herbaceous 4 
WAT General Water 5 
MIX Mixed Forest 6 
AGR General Agriculture 7 
URB General Urban 8 
NNA Ornamental Vegetation 8 
BAR Barren 9 

Table 8.  Cross-walk of CALVEG Cover Types to Numeric Code. 
 
Clipped coverages were dissolved on the numeric code and converted to raster format in 
GRID using the 5 meter resolution and spatial analysis window set for Flightline18. The field 
[CODE] attribute was converted to the field [VALUE] attribute in this process, as per normal 
rasterization routines in GRID. Furthermore, these two, separate raster grids were combined 
to form one seamless set of CALVEG cover type values for Flightline 18. Pair wise 
combinations of values were extracted for each cell, using the SAMPLE request in GRID, to 
develop tabular data of each cell-by-cell record. Lastly, each raster input was resampled to 
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the following cell dimensions: 10m, 30m, 90m, and analyzed to determine if data resolution 
altered their comparability. 
 

Data were analyzed in JMP5.0 for statistical relationships and examined in ArcMap for 
visual spatial agreement. Statistical tests were limited to Contingency Analysis comparisons 
of the categorical values outlined above and a diagnostic Correspondence Analysis of the 
same.  
 
Part 3.3. Vegetation Data Comparison Results 
 

The cell-by-cell comparison of AVIRIS FL18 and CALVEG2000 cover types resulted in 
very little correspondence in direct evaluation. This lack of agreement, of course, is not 
unexpected; however, it is valuable to examine the categorical comparisons to gain insight 
to each set of classified information. Namely, the differences in spatial resolution, 
classification methods, and ultimate uses limit functional comparisons; that being said, 
certain patterns do emerge from their nominal comparison. The following Figure 15 of 
Contingency Analysis shows the general comparison of data in which association are 
significantly different from random pairings; however, the contingency model only accounts 
for 17% of the variation in the data comparison (P > Chi2 = 0.0000, r2 = 0.1734). 
 

Table 9 shows that Agriculture was the best agreement category between the two 
data; indeed, this cover type represents approximately 5.2% of each data set and correspond 
roughly 49% of the time. The AVIRIS Agriculture class is comparable to the CALVEG cover 
types in additional ways. For example, the Water cover type occurs in the AVIRIS Agriculture 
class 10.58%; given the proximity of water storage ponds to agricultural enterprises and the 
potential overestimation of water bearing pixels in a coarse-level image classification 
routine, this cross contamination is not unexpected. Also, the 14.92% of Herbaceous cover 
within the AVIRIS Agriculture class is not unexpected; this is particularly relevant considering 
the conversion of annual grasslands to vineyards in the Anderson Valley in particular and 
north, coastal California in general. 
  

The difficulty of comparing the two data is most evident when examining the three 
general forest cover types: Conifer, Hardwood, and Mixed Forest. The specificity of the 
AVIRIS classes of Conifer and Hardwood make incorporation of mixed conifer and hardwood 
forest equivocal; in fact, the ubiquity of the Mixed Forest cover type throughout the AVIRIS 
classes, representing the majority of CALVEG cover types at 34.67% of the elements 
analyzed, makes meaningful analyses difficult. An example of this is its similar distribution 
in both the AVIRIS Conifer and the AVIRIS Hardwood classes at 46.07% and 40.97% 
respectively; these Mixed Forest pixels represent a contribution of 39.93% to AVIRIS Conifer 
and 55.58% to AVIRIS Hardwood, showing a slight tendency toward a higher hardwood 
component.  An alternate but unexplored method of comparison would be to use field level 
data in independent analyses and compare the results.  Due to time constraints no such 
analyses were performed. 
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Figure 15. Contingency Analysis of AVIRIS Cover Type By EVeg Cover Type Mosaic Plot.  
This plot emphasizes the cross contamination between cover types  
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Table 9. 
Analysis of AVIRIS Cover Type By CALVEG Cover Type Contingency Table 
(CALVEG Cover Type in Bold By AVIRIS Cover Type in Italics) 
Count 
Total % 
Col % 
Row % 
Cell Chi2 

Agriculture Conifer Hardwood Riparian  

Agriculture 5601 
2.56 

49.31 
49.47 

42829.9 

398 
0.18 
0.60 
3.51 

2652.25 

498 
0.23 
0.48 
4.40 

4375.07 

4826 
2.20 

12.41 
42.62 

3945.97 

11323 
5.17 

Barren 1 
0.00 
0.01 
0.68 

5.7517 

3 
0.00 
0.00 
2.04 

38.3659 

0 
0.00 
0.00 
0.00 

69.1248 

143 
0.07 
0.37 

97.28 
523.802 

147 
0.07 

Conifer 691 
0.32 
6.08 
1.33 

1485.86 

19239 
8.78 

29.23 
37.07 

853.388 

27711 
12.65 
26.90 
53.40 

448.028 

4257 
1.94 

10.95 
8.20 

2665.16 

51898 
23.69 

Hardwood 764 
0.35 
6.73 
1.48 

1362.29 

12150 
5.55 

18.46 
23.57 

717.79 

27149 
12.39 
26.35 
52.68 

350.118 

11477 
5.24 

29.51 
22.27 

592.728 

51540 
23.52 

Herbaceous 4068 
1.86 

35.82 
14.92 

4984.18 

3699 
1.69 
5.62 

13.56 
2464.42 

4612 
2.10 
4.48 

16.91 
5257.69 

14890 
6.80 

38.29 
54.60 

20866.1 

27269 
12.45 

Mixed Forest 222 
0.10 
1.95 
0.29 

3506.06 

30327 
13.84 
46.07 
39.93 

2470.39 

42213 
19.27 
40.97 
55.58 

1181.33 

3194 
1.46 
8.21 
4.21 

7850.9 

75956 
34.67 

Shrub 0 
0.00 
0.00 
0.00 

44.6341 

6 
0.00 
0.01 
0.70 

246.803 

842 
0.38 
0.82 

97.79 
471.947 

13 
0.01 
0.03 
1.51 

127.934 

861 
0.39 

Water 11 
0.01 
0.10 

10.58 
5.8347 

0 
0.00 
0.00 
0.00 

31.2440 

3 
0.00 
0.00 
2.88 

43.0887 

90 
0.04 
0.23 

86.54 
277.245 

104 
0.05 

 11358 
5.18 

65822 
30.04 

103028 
47.02 

38890 
17.75 

219098 
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The cross contamination between forest cover data types is even more evident when 
strictly examining the common conifer and hardwood elements. The AVIRIS classes show 
Conifer at 30.04% and Hardwood at 47.02% of the classified image. This same spatial domain 
shows a more equal distribution of cover types within CALVEG; conifers and hardwoods are 
both ~24% of the data domain each. When examining the coincidence of cover types within 
the conifer and hardwood domain, the differences in data are more striking. For example, 
only 21% of the spatial domain is represented by pixels where both AVIRIS and CALVEG are in 
agreement for both conifers (8.78%) and hardwoods (12.39%). While although 52.68% of the 
CALVEG Hardwood pixels agree with the AVIRIS Hardwood class, a similar percentage 
(53.40%) of CALVEG Conifer pixels are crossed with the AVIRIS Hardwood class. Variability in 
agreement is obviously confounded by the aforementioned issues in data resolution, method 
of generation, and intent of use; however, in the realm of forested land cover, there is less 
agreement than for other cover types. 
 

There is no equivalent cover type in CALVEG to match the AVIRIS Riparian cover type 
(Class C); therefore, it is not a prime candidate for comparative examination. What the 
Riparian cover type is useful for, however, is the examination of the distribution of CALVEG 
cover types within the Riparian class (Table 9). This examination is a diagnostic approach to 
determining general patterns of coarse vegetation data within a fine scale spatial 
framework. Riparian areas are of interest for the many aforementioned reasons and coarse 
vegetation data do not adequately represent riparian habitats; therefore, this diagnostic 
approach examines the distribution of coarse vegetation cover types within this restricted 
area of interest. In essence, observed patterns from this comparison will help diagnose 
patterns of vegetation distribution for other spatial locations.   

 
The following CALVEG cover types fall within the AVIRIS Riparian class by percent of 

each cover type category: Agriculture 42.62%, Barren 97.28%, Conifer 8.20%, Hardwood 
22.27%, Herbaceous 54.60%, Mixed Forest 4.21%, Shrub 1.51%, and Water 86.54%. These 
documented distributions of CALVEG data are notable for the following reasons:  

1) Most agriculture in the Anderson Valley is restricted to the alluvial bottomlands 
(Viers, personal observation) adjacent to riparian vegetation, thus 92% of the CALVEG 
Agriculture cover type is captured in either the AVIRIS Agriculture or AVIRIS Riparian 
class (49.47% and 42.62% respectively). 

2) The Barren cover type in CALVEG is predominately (97.28%) in the AVIRIS Riparian 
class, which upon visual examination appears to be largely exposed substrate from 
streams; thus, the existing riparian vegetation, often in narrow corridors, could be 
considered to be obscured at coarser scales of analysis, such as 30m. 

3) Similarly, 86.54% of the CALVEG Water cover type was in the AVIRIS Riparian class and 
consists largely of water diversions and water storage ponds constructed in ephemeral 
drainages. The proximity of this cover type to riparian vegetation is not without 
expectation. 

4) The Herbaceous cover type in CALVEG, 54.60% of which is in the AVIRIS Riparian class, 
is strongly associated with cleared lands used for animal grazing; as such, many of the 
small, ribbon-like riparian stands identified in the AVIRIS classification would be 
indiscernible at coarser scales when surrounded by annual grasslands.  

5) Forested cover types in CALVEG, in this case Hardwood, Conifer, and Mixed Forest, 
are each represented in the AVIRIS Riparian class. The Conifer and Mixed Forest cover 
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types, contributing 8.20% and 4.21% respectively, represent far less than the 
Hardwood cover type at 22.27% of its cells falling within riparian vegetation. 

6) Lastly, the Shrub cover type in CALVEG has only 1.51% of its contribution within the 
AVIRIS Riparian class; the mesic site requirements for riparian vegetation preclude 
association with most shrubs and thus this minor cross association is predictable. 

 
Three additional comparisons were completed at varying resolutions to help discern 

which, if any, qualities of the two data sources are comparable as a function of decreasing 
resolution – or increasing coarseness. Each data set was resampled at 10m, 30m, and 90m 
cell size resolutions and compared on a cell-by-cell basis, as performed previously. Results 
of these contingency analysis comparisons are similar to the results reported for the initial 
5m examination (Figure 16). Notably, the coefficient of determination for each coarser 
comparison is ~0.14, as compared to the 5m comparison in which r2 = 0.17, and thus the 
overall comparative analysis does not improve. Although each test is statistically significant 
in terms of both Likelihood Ratio and Pearson Chi2 tests, the model Chi2 values decrease as 
data become coarser (Figures 17-19). Moreover, correspondence analysis shows three 
resonant factors across all levels of resolution (Figures 20-23). One, the agricultural class in 
both the AVIRIS Riparian classification and the CALVEG classification routinely correspond to 
each other positively. Two, the forested land uses, as defined by Mixed Forest, Coniferous, 
and Shrub in the CALVEG classification and Coniferous and Hardwood in the AVIRIS Riparian 
classification, all correspond tightly with each other at each level of comparison. The 
CALVEG Hardwood class can be considered a non-corresponding factor to all of the AVIRIS 
classes, as it sits at near right angles to all considered classes except agriculture. Lastly, the 
Barren, Water, and Herbaceous CALVEG classes correspond with the true riparian class from 
the AVIRIS Riparian classification. This last factor condenses with increasing data coarseness 
as the Barren and Water classes essentially drop from the analysis and the AVIRIS Riparian 
class corresponds to the CALVEG Herbaceous class at the coarsest resolution. 

 
Figure 16. 5m Data Comparison Contingency Test 

Source DF -LogLike RSquare (U) 
Model 21 44703.40 0.1734 
Error 219074 213035.78  
C. Total 219095 257739.18  
N 219098   

 
Test ChiSquare Prob>ChiSq 
Likelihood 
Ratio 

89406.8 0.0000 

Pearson 112745.3 0.0000 
 
Figure 17. 10m Data Comparison Contingency Test 

Source DF -LogLike RSquare (U) 
Model 21 11191.163 0.1370 
Error 54672 70498.452  
C. Total 54693 81689.615  
N 54700   

 
Test ChiSquare Prob>ChiSq 
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Test ChiSquare Prob>ChiSq 
Likelihood 
Ratio 

22382.33 0.0000 

Pearson 28223.64 0.0000 
 
 
 
Figure 18. 30m Data Comparison Contingency Test 

Source DF -LogLike RSquare (U) 
Model 21 1253.4665 0.1386 
Error 6012 7787.0983  
C. Total 6033 9040.5648  
N 6040   

 
Test ChiSquare Prob>ChiSq 
Likelihood 
Ratio 

2506.933 0.0000 

Pearson 3114.246 0.0000 
 
 
 
 
Figure 19. 90m Data Comparison Contingency Test 

Source DF -LogLike RSquare (U) 
Model 15 130.13545 0.1330 
Error 635 848.24146  
C. Total 650 978.37691  
N 655   

 
Test ChiSquare Prob>ChiSq 
Likelihood 
Ratio 

260.271 <.0001 

Pearson 331.430 <.0001 
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Figure 20. 5m Correspondence Analysis  

AVIRIS Cover Type CALVEG Cover Type 
  

 

Figure 21. 10m Correspondence Analysis  

AVIRIS Cover Type CALVEG Cover Type 
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Figure 22. 30m Correspondence Analysis  

AVIRIS Cover Type CALVEG Cover Type 
 
 

Figure 23. 90m Correspondence Analysis  

AVIRIS Cover Type CALVEG Cover Type 
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When examining the frequency distribution of CALVEG cover types within the AVIRIS 
Riparian class, it is notable that there are significant differences between the observed 
CALVEG frequencies within the AVIRIS Riparian Extent of Flightline 18 (Figure 24) and the 
general frequency of CALVEG cover types within the spatial domain of all pixels in Flightline 
18 (Figure 25; P > Chi2 = 0.0000). Thus, one can reject the hypothesis that observations of 
CALVEG cover types within the Flightline 18 Riparian Extent are random distributions; in 
essence, the observed increased probability of incidence for Agriculture, Herbaceous, and 
Water and the observed decreased probability of incidence for Conifer and Mixed Forest 
cover types within the Riparian Extent are non-random. This relationship also holds when the 
observed probability distributions of cover types within the Riparian Extent of Flightline 18 
are tested against the general distribution of CALVEG cover types for the Navarro River 
watershed as a whole (Figure 26; P > Chi2 = 0.0000). 
 

Frequencies 

Level  Count Prob 
Agriculture 4826 0.12409 
Barren 143 0.00368 
Conifer 4257 0.10946 
Hardwood 11477 0.29511 
Herbaceous 14890 0.38287 
Mixed Forest 3194 0.08213 
Shrub 13 0.00033 
Water 90 0.00231 
Total 38890 1.00000 

 

Agriculture

Barren

Conifer

Hardwood

Herbaceous

Mixed Forest

Shrub

Water

5000 10000 15000

Count Axis

Agriculture

Barren
Conifer

Hardwood

Herbaceous

Mixed Forest
Shrub Water

Agriculture

Barren

Conifer

Hardwood

Herbaceous

Mixed Forest

Shrub

Water

5000 10000 15000

Count Axis

Agriculture

Barren
Conifer

Hardwood

Herbaceous

Mixed Forest
Shrub Water



49 

Figure 24. Distribution of CALVEG Cover Types within Riparian Extent of AVIRIS Flightline 
18. 
 

Test Probabilities 
Level  Estim Prob Hypoth Prob 
Agriculture 0.12409 0.03152 
Barren 0.00368 0.00139 
Conifer 0.10946 0.15330 
Hardwood 0.29511 0.22202 
Herbaceous 0.38287 0.19406 
Mixed Forest 0.08213 0.36013 
Shrub 0.00033 0.03598 
Water 0.00231 0.00160 

 
Test ChiSquare DF Prob>Chisq 
Likelihood Ratio 27908.82 7 0.0000 
Pearson 29017.84 7 0.0000 

 
Figure 25. Testing of Distribution of CALVEG Cover Types within Riparian Extent to 
CALVEG Cover Types within AVIRIS Flightline 18. 
 
  Test Probabilities 

Level  Estim Prob Hypoth Prob 
Agriculture 0.12409 0.01862 
Barren 0.00368 0.00100 
Conifer 0.10946 0.18869 
Hardwood 0.29511 0.22613 
Herbaceous 0.38287 0.15135 
Mixed Forest 0.08213 0.38669 
Shrub 0.00033 0.02613 
Water 0.00231 0.00140 

 
Test ChiSquare DF Prob>Chisq 
Likelihood Ratio 37875.53 7 0.0000 
Pearson 49743.31 7 0.0000 

 
Figure 26. Testing of Distribution of CALVEG Cover Types within Riparian Extent to 
CALVEG Cover Types within Navarro River Watershed. 
  
 
The last phase of the comparison of AVIRIS Riparian Vegetation classes and the CALVEG data 
is a visual one. Namely, a series of images are contained in Appendix II. Narrative 
descriptions of the images are contained in Table 10 below and indexed to the Figures in 
Appendix II. These images show a selected set of locations in Flightline 18, which serve as a 
diagnostic approach to examining the similarities and differences between the two data 
sources. Furthermore, Appendix II also contains sample images showing both the Riparian 
Extent and Confinement Clusters to provide a better context as to their spatial coverage. In 
all, the many factors limiting comparability mentioned above are also evident in the visual 
examination. Where there is good agreement, it is largely in homogenous areas of 
vegetation. The scale and methodology for the regional approach taken by CALVEG2000 
precludes its inclusion of small, intermittent vegetation stands, especially the true riparian 
vegetation.   
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Table 10. Table of Images in Appendix II with Notations. 
Image Description 
Figure II-1 The spatial extent of Flightline 18 is shown over 

portions of the Navarro River watershed. The 
Riparian Extent is the non-black portion of Flightline 
18. 

Figure II-2 CALVEG2000 Cover Types are shown clipped to the 
spatial extent of the intersection of Flightline 18 and 
the Navarro River watershed. 

Figure II-3 Three Focal Areas are shown over CALVEG and DOQQs 
for Flightline 18. The Focal Areas will serve for more 
in-depth comparative investigations. 

Figure II-4 Indian Creek Focal Area showing DOQQ and streams. 
Figure II-5 Indian Creek Focal Area showing CALVEG Cover 

Types. A DOQQ is the backdrop. 
Figure II-6 Indian Creek Focal Area showing the AVIRIS Riparian 

Vegetation classes within the Riparian Extent. 
Figure II-7 Indian Creek Focal Area showing Confinement Cluster 

stream segments restricted to Riparian Extent. 
Figure II-8 Indian Creek Focal Area showing two Insets (A & B) 

that are used for detailed visual comaparisons. 
Figure II-9 Inset A of Indian Creek Focal Area showing CALVEG. 
Figure II-10 Inset A of Indian Creek Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-11 Inset A of Indian Creek Focal Area showing both data 

overlaid. Target points indicate mutual agreement. In 
this example, the headwater areas of 1st order 
streams with true riparian from AVIRIS are masked by 
the coarser CALVEG. 

Figure II-12 Inset B of Indian Creek Focal Area showing CALVEG. 
Figure II-13 Inset B of Indian Creek Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-14 Inset B of Indian Creek Focal Area showing both data 

overlaid. Target points indicate mutual agreement. In 
this example, the headwater areas of 1st order 
streams with conifer agree in both AVIRIS and 
CALVEG. Additionally, the Hardwood classes also 
agree. Note, this example exemplifies differences in 
aspect. 

Figure II-15 Anderson Valley Focal Area showing DOQQ and 
streams. 

Figure II-16 Anderson Valley Focal Area showing CALVEG Cover 
Types. A DOQQ is the backdrop. 

Figure II-17 Anderson Valley Focal Area showing the AVIRIS 
Riparian Vegetation classes within the Riparian 
Extent. Note, Agriculture class is shown in pink. 

Figure II-18 Anderson Valley Focal Area showing Confinement 
Cluster stream segments restricted to Riparian 
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Cluster stream segments restricted to Riparian 
Extent. 

Figure II-19 Anderson Valley Focal Area showing two Insets (C - F) 
that are used for detailed visual comaparisons. 

Figure II-20 Inset C of Anderson Valley Focal Area showing DOQQ. 
Figure II-21 Inset C of Anderson Valley Focal Area showing 

CALVEG. 
Figure II-22 Inset C of Anderson Valley Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-23 Inset C of Anderson Valley Focal Area showing both 

data overlaid. Target points indicate mutual 
agreement. In this example, CALVEG correctly 
identifies the water storage pond and the surrounding 
viticultural areas. Areas of agreement include the 
viticulture on the margins of the streams segments 
and a small patch of Hardwoods.  

Figure II-24 Inset D of Anderson Valley Focal Area showing DOQQ. 
Figure II-25 Inset D of Anderson Valley Focal Area showing 

CALVEG. 
Figure II-26 Inset D of Anderson Valley Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-27 Inset D of Anderson Valley Focal Area showing both 

data overlaid. Target points indicate mutual 
agreement. In this example, CALVEG and AVIRIS 
agree for the Hardwoods class. CALVEG does, 
however, miss the ribbon stands of AVIRIS true 
riparian by coding them as annual grasslands. CALVEG 
does pick up the small stands of Shrubs on the margin 
of the Riparian Extent. 

Figure II-28 Inset E of Anderson Valley Focal Area showing DOQQ. 
Figure II-29 Inset E of Anderson Valley Focal Area showing 

CALVEG. 
Figure II-30 Inset E of Anderson Valley Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-31 Inset E of Anderson Valley Focal Area showing both 

data overlaid. Target points indicate mutual 
agreement. In this example, CALVEG and AVIRIS 
agree for the agricultural areas on the margins of the 
Riparian Extent. CALVEG misses the true riparian 
along the stream segments. 

Figure II-32 Inset F of Anderson Valley Focal Area showing DOQQ. 
Figure II-33 Inset F of Anderson Valley Focal Area showing 

CALVEG. 
Figure II-34 Inset F of Anderson Valley Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-35 Inset F of Anderson Valley Focal Area showing both 

data overlaid. Target points indicate mutual 
agreement. In this example, CALVEG and AVIRIS 
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agreement. In this example, CALVEG and AVIRIS 
agree for Conifer (in this case the boundary of Hendy 
Woods State Park). The Herbaceous class of CALVEG 
encompassed within this Inset is errant; based on 
field observations, this classified area is 
predominately viticulture and alluvial gravels. 
Although CALVEG picks up some gravels, coded as 
Barren, it misses much of the true riparian class 
found in the AVIRIS. 

Figure II-36 Gut Creek Focal Area showing DOQQ and streams. 
Figure II-37 Gut Creek Focal Area showing CALVEG Cover Types. A 

DOQQ is the backdrop. 
Figure II-38 Gut Creek Focal Area showing the AVIRIS Riparian 

Vegetation classes within the Riparian Extent.  
Figure II-39 Gut Creek Focal Area showing Confinement Cluster 

stream segments restricted to Riparian Extent. 
Figure II-40 Inset G of Gut Creek Focal Area showing DOQQ. 
Figure II-41 Inset G of Gut Creek Focal Area showing CALVEG. 
Figure II-42 Inset G of Gut Creek Focal Area showing AVIRIS 

Riparian Vegetation classes. 
Figure II-43 Inset G of Gut Creek Focal Area showing both data 

overlaid. Target points indicate mutual agreement. In 
this example, CALVEG and AVIRIS agree for selected 
areas of the Hardwood class. The AVIRIS data are 
classified as predominately Hardwood, with only 
intermittent patches of Conifer. CALVEG shows large 
blocks of either Harwood or Conifer, thus there is 
only marginal agreement. 
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Part 4. Data Production Analysis 
 
Part 4.1. Data Production Analysis Rationale 
 

The production of large research projects is not without monetary costs. The use of 
hyperspectral data in resource inventories is no exception. The benefits of high-resolution 
data are many, but the costs, when applied over large geographical areas, can be 
prohibitive. To this end, a brief analysis is provided to summarize some of the costs, in 
terms of employee hours and infrastructure investment, involved in the acquisition, 
processing, classifying, analyzing, and verifying the AVIRIS data collected for the Navarro 
River watershed. It is not exhaustive, and many additional facets of the research are not 
summarized in this report; therefore, it should serve only as a guide to what similar projects 
may incur in terms of costs. Also, other data sources and other sensor options are provided 
with notes as to their resolution and availability. 
 
Part 4.2. Data Production Analysis Methods 
 

An estimate of time spent, in total, by several researchers was calculated through the 
use of time accounting software developed by ICE. Because this project was funded by many 
state and federal agencies, this estimate does not partition among those entities; rather, it 
is a block estimate of actual task time adjusted to full time employee equivalents. The 
synopsis of different data product attributes and availability is an augmentation of 
information held by the Center for Spatial Technologies and Remote Sensing (CSTARS) at UC 
Davis. 

 
Part 4.3. Data Production Analysis Results 

 
A sum of over 5000 hours has been spent on the myriad of tasks and activities 

required in this research project, equivalent to 2.5 person years or 2.5 FTE for one year. 
These tasks and activities have included all phases of the project from initial scoping to 
report writing. A detailed breakdown of activities by percent of total allocation is as follows: 
Data Acquisition & Processing represented 35.6% of total time; Data Analysis represented 
45.2% of the total time; and the remainder, 19.2%, was Data Development/Dissemination, 
Publications and Report Writing, and Client Communications, among other types of 
activities. 

 
Major infrastructure investments included hardware, software, training, and data 

acquisition. NASA-JPL uses a recharge amount of approximately $45,000 per day of AVIRIS 
acquisition; the Navarro River over-flight took the better part of four days. Because images 
are several Gigabytes each, and each modification or transformation compounds these 
figures, total data storage is estimated to be in the 400Gb range and requires storage on 
several, separate storage devices. The use of ATCOR4 and PARGE software for data 
correction required a substantial investment for both software licensure and in-house 
training. The software also required upgrades to Interactive Data Language and MODTRAN, 
which was unanticipated. Other unanticipated events included the receipt of data on 8mm 
tape; this data storage format is cumbersome, far from failsafe, and considerably slow in 
data transmission. Data were also received partially corrected for terrain effects. The use of 
ATCOR4 required unaltered imagery for its correction algorithms to work properly, 
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prompting an additional round of data transmission. Lastly, hyperspectral data analysis is 
best handled by ENVI, developed expressly for hyperspectral feature extraction and 
modeling, and, as such, required additional training for staff, both in-house and externally. 

 
Other hyperspectral sensors are available for contract use and, coupled with multi-

data-type options such as multi-spectral or radio sensing, these other options might provide 
other researchers with a more cost-effective means of pursuing similar lines of work. 
Although the AVIRIS sensor was airborne and implemented at low-altitudes, other, newer 
platforms are often space-borne. A partial listing of sensors and their characteristics are 
presented in Appendix III. 
 
Part 4.4. Data Production Analysis Discussion 
 

In summary, data production for research into the uses of hyperspectral data and 
watershed analysis methodologies was prodigious. It required focused effort on behalf of the 
researchers, a substantial monetary investment by collaborators, and flexibility to follow 
important discoveries as they arose. Although these data are well positioned for further 
analyses, and the production of a complete riparian representation for the watershed is 
foreseeable, it is the initial bulk processing of the AVIRIS data that can be prohibitive to 
initiating projects of this scope. It is this reason that many hyperspectral data analysis 
research projects focus on constrained areas; however, it is difficult to pursue research 
within a watershed context if the breadth of the analysis is restricted to small geographical 
area. 
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    Appendix I     Field Plot Samples                                                                                           
                 1222222233333333444444555666666677778    1111111112223344445556667778888888     55557778 
                 9012346812345678235679189123456913673578901234567857909014856707805901245671234602342488 
       Species   
    3  Umb_cal   -1--1-2-1------12--113-1-1-----21-11-222-4113113332233-121221-3311212-12--11------------  00 
    4  Que_kel   --------------------------------------21--1------1------------------1-------------------  00 
    7  Rha_cal   ---------111-1--------------------------------------------------------------------------  00 
    8  Cor_cor   -11-------2------------1-----------1--------------------1--1----------1-----------------  00 
    9  Tor_cal   --------1--1---------------------1-------------------------1--1---2---------------------  00 
   11  Que_wiz   ------------------------------------------1-212-----------------------------------------  00 
   12  Que_agr   ----------------------12------------1--1-32----------------21------1--11----------------  00 
   13  Seq_sem   43143332432214123343433-2-2-332423314-------1-----111---1-11---21------3----------1-----  00 
   14  Cea_inc   -------------------------------------------------------2----11--------------------------  00 
   16  Arc_man   --------------------------------------------------------------------------1-------------  00 
   18  Pse_men   -2-432--334342111--11--11131-22--221--11-12-21212--12-111--111----33--1-111----------1--  00 
   19  Abi_gra   3-4--2-------------------1----------------------------------------1---------------------  00 
   24  Tax_bre   -------------------------1-------------11-----------------------------------------------  00 
   26  Aln_rub   ------------------------------------1-------1-------------------------1-----------------  00 
   28  Rub_spe   ----------------------------------------------------------------------11----------------  00 
   29  Sal_ses   -----------------------------------------------------------------3----------------------  00 
   31  Lit_den   -31332--1223422233-1---313242121-2221--1-121-21--1-2--111--1--1---2-2-11----------------  00 
   33  Que_lob   -----------------------------------------------------------11------------31-------------  00 
   34  Myr_cal   -1--2-----------------------------------------------------------------------------------  00 
   35  Rho_occ   ---------111-2------------------2-1---------------1-------------------------------------  00 
    2  Ace_mac   --------------12------1-----------1--1--1----11-1-----112-1-111---2--3-22-------1----1--  01 
   10  Vit_cal   -------------------------------1-----1-------------------------11--11------1------------  01 
   21  Arb_men   --------------1----1---1-11-11---------------1------------1--1-----------1------------1-  01 
   22  Fra_lat   -----------------------------------------------------------------2--4------------------1  01 
    5  Rub_urs   -----111------------------------1------------1----1121---------12111--11---1-11-----21--  10 
   25  Tox_div   ---------------------------------------1-----1111--------1-----------------1--1---------  10 
    1  Sal_las   -------1--------------1------11----2-1---------1--11------------------1----212--211--12-  11 
    6  Aes_cal   -----------------------------------------------1----------------------------1-----------  11 
   15  Sal_hoo   -------1------------------------1---------------------------------------------------2---  11 
   17  Bac_pil   -----------------------------------1-------------------------------------------------12-  11 
   20  Rub_dis   --1-------------------1-------------1---------1--1-1---------------111-----1321-213311--  11 
   23  Cor_nut   ---------------------------------------------------------------------------1--1---------  11 
   27  Sal_lae   ------------------------------------------------------------------------------4---------  11 
   30  Sal_sit   -----------------------------------------------------------------------------------3----  11 
   32  Het_arb   --------------1--------------------------------1--------------------------------------1-  11 
   36  Pla_rac   ----------------------------------------------------------------------------1-----------  11 
   37  Aln_rho   -11321--------1----1------1--11----111------1-1--1--1--------------2--211--131-413--111-  11 
   38  Sal_alb   ---------------------------------------------------------------------------22------1----  11 
                               Class A                            Class B                      Class C 
                 0000000000000000000000000000000000000000000000000000000000000000000000000001111111111111 
                 0000000000000000000000000000000000000111111111111111111111111111111111111110000000000000 
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Appendix II 

 
Figure II-1. Position of AVIRIS Flightline 18 showing spatial delineation of Riparian Extent and AVIRIS Riparian Classified Vegetation. 

Legend is embedded in image; scale is 1:100000. 
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Figure II-2. Position of AVIRIS Flightline 18 showing spatial delineation of CALVEG2000 by cover types. Legend is embedded in 

image; scale is 1:100000. 
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Focal Areas for AVIRIS FL 18 Comparison:  
Anderson Valley, Indian Creek, & Gut Creek 

 
Figure II-3. AVIRIS Flightline 18 showing spatial position of Focal Areas used in comparison. 
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Figure II-4. Indian Creek Focal Area showing Digital Orthophotograph Quarter Quadrangle image. 
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Figure II-5. Indian Creek Focal Area showing CALVEG2000 cover types. 
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Figure II-6. Indian Creek Focal Area showing AVIRIS Riparian cover types. 
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Figure II-7. Indian Creek Focal Area showing stream segment Confinement Clusters. 
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Figure II-8. Indian Creek Focal Area showing position of Insets used in visual comparison. 
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Figure II-9. Indian Creek Focal Area Inset A showing CALVEG2000 cover types. 
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Figure II-10. Indian Creek Focal Area Inset A showing AVIRIS Riparian cover types. 
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Figure II-11. Indian Creek Focal Area Inset A showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate 

mutual agreement between data. 
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Figure II-12. Indian Creek Focal Area showing Digital Orthophotograph Quarter Quadrangle image for Inset B. 
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Figure II-13. Indian Creek Focal Area Inset B showing CALVEG2000 cover types. 
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Figure II-13. Indian Creek Focal Area Inset B showing AVIRIS Riparian cover types. 
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Figure II-14. Indian Creek Focal Area Inset B showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate 

mutual agreement between data. 
. 
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Figure II-15. Anderson Valley Focal Area showing Digital Orthophotograph Quarter Quadrangle image. 
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Figure II-16. Anderson Valley Focal Area showing CALVEG2000 cover types. 
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Figure II-17. Anderson Valley Focal Area showing AVIRIS Riparian cover types. 
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Figure 11-18. Anderson Valley Focal Area showing stream segment Confinement Clusters. 
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Figure II-19. Anderson Valley Focal Area showing position of Insets used in visual comparison. 
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Figure II-20. Anderson Valley Focal Area showing Digital Orthophotograph Quarter Quadrangle image for Inset C. 
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Figure II-21. Anderson Valley Focal Area Inset C showing CALVEG2000 cover types. 



78 

 
Figure II-22. Anderson Valley Focal Area Inset C showing AVIRIS Riparian cover types. 
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Figure II-23. Anderson Valley Focal Area Inset C showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate 

mutual agreement between data. 
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Figure II-24. Anderson Valley Focal Area showing Digital Orthophotograph Quarter Quadrangle image for Inset D. 
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Figure II-25. Anderson Valley Focal Area Inset D showing CALVEG2000 cover types. 
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Figure II-26. Anderson Valley Focal Area Inset D showing AVIRIS Riparian cover types. 
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Figure II-27. Anderson Valley Focal Area Inset C showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate 

mutual agreement between data. 
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Figure II-28. Anderson Valley Focal Area showing Digital Orthophotograph Quarter Quadrangle image for Inset E. 
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Figure II-29. Anderson Valley Focal Area Inset E showing CALVEG2000 cover types. 
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Figure II-30. Anderson Valley Focal Area Inset E showing AVIRIS Riparian cover types. 
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Figure II-31. Anderson Valley Focal Area Inset E showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate 

mutual agreement between data. 
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Figure II-32. Anderson Valley Focal Area showing Digital Orthophotograph Quarter Quadrangle image for Inset F. 
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Figure II-33. Anderson Valley Focal Area Inset F showing CALVEG2000 cover types. 
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Figure II-34. Anderson Valley Focal Area Inset F showing AVIRIS Riparian cover types. 
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Figure II-35. Anderson Valley Focal Area Inset F showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate 

mutual agreement between data. 
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Figure II-36. Gut Creek Focal Area showing position of Inset used in visual comparison. 
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Figure II-37 Gut Creek Focal Area showing CALVEG2000 cover types. 
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Figure II-38. Gut Creek Focal Area showing AVIRIS Riparian Vegetation. 
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Figure II-39. Gut Creek Focal Area showing Confinement Clusters. 
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Figure II-40. Gut Creek Focal Area showing Digital Orthophotograph Quarter Quadrangle image for Inset G. 
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Figure II-41. Gut Creek Focal Area Inset G showing CALVEG2000 cover types. 
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Figure II-42. Gut Creek Focal Area Inset G showing AVIRIS Riparian cover types. 
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Figure II-43. Gut Creek Focal Area Inset G showing both CALVEG2000 and AVIRIS Riparian cover types. Target points indicate mutual 

agreement between data. 
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Appendix III. Current Sensors and their Characteristics 
 

COUNTRY SENSOR PROGRAM        INSTRUMENT(S) LAUNCH SENSOR RESOLUTION IN METERS STEREO SW GLOBAL COST 
 OWNER    Date TYPES             THEMATIC MAPPER BANDS Type KM COVER OF  
       PAN VNIR SWIR TIR RADAR     REPEAT ACQUISITION 
         1 2 3 4 5 7 6 res,band       days  
FREQUENT GLOBAL COVERAGE, LANDSAT LIKE CLASSIFICATION CAPABILITY                
INDIA Gov. IRS-1 C,D LISS-3, PAN, (WIFS)  '95 M&P 6   23 23 23 70         C/T 148 22   
JAPAN Gov. ADEOS-2 AVNIR 01 M&P 8 16 16 16 16           C/T 80 41   
CHINA-BRAZIL Gov. CBERS CCD, IRMSS  '97 M&P 20, 80 20 20 20 20 80 80 160     C/T 120 26   

FRANCE Gov. Spot 4 HRVIR, (VEGETATION)  '97 M&P 10   20 20 20 20         C/T 120* 26 
2.5 m Pan $6500 / scene; 5.0 m Pan $3250 / scene; 10 m 
multi-spectral $3250 / scene 

INDIA Gov. IRS-P5 LISS 4, LISS-3'  '98 M     <10 <10 <10 70         C/T 148 22   
U.S. Com. OSC SeaWIFS (OrbView3) 97 M   3bands 2b 1b 2 b  3           2801 1   
U.S. Gov. Landsat 7 ETM+  '99 M&P 15 30 30 30 30 30 30 60       185 16 $600 / Scene (Radiometrically Corrected) 
INDIA Gov. IRS-2A LISS 4', LISS-3', (WIFS)  '00 M     5 5 5 70         F/A 148 22   
HIGH RESOLUTION, SMALL AREA COVERAGE (PAN  & VNIR ONLY)                 
RUSSIA Gov. SPIN-2 KVR-1000, TK-350  '96 P(f) 2,10                   F/A 40,300     
U.S. Com. EarthWatch EarlyBird -- M&P 3   15 15 15           F/A 36 120   

U.S. Com. SpaceImaging Ikonos  '98 M&P 1 4 4 4 4           F/A 12 247 
Precision-1m & 4m @ $55/sq km; 1m color @ $60.50/sq km; 
bundled $82.50 sq km  

U.S.  Com. EarthWatch QuickBird ? M&P 1 4 4 4 4           F/A 20 148 Pan $6120 / scene; Multi $6800 / scence; bundle $8160 
U.S. Com Orbimage OrbView  '98 M&P 1&2 8 8 8 8           F/A 4&8 740,370   
RUSSIA Gov. Almaz 1B 1 SLR, 3 SARs, 4 SCANNERS***  '98 M&P&R 2.5   4,10 4,10 4,10       5,40 S F/A 20,170     
U.S. Com. GDE XXX  '99 P 1                   F/A       
INDIA Gov. IRS-P6 PAN  '99 P 2.5                   F/A 10 296   

France Gov. SPOT 5 PAN 02 M&P 2.5   10 10 10 20         C/T     
2.5 m Pan $6500 / scene; 5.0 m Pan $3250 / scene; 10 m 
multi-spectral $3250 / scene 

MULTISPECTRAL, HYPERSPECTRAL APPLICATION TESTS                 
U.S. Gov. TRW Lewis HSI  '96 H&P 5 128 bands @ 30 256 bands @ 30         8 370   
U.S./JAPAN Gov. EOS ASTER 98 M   15 15 15 15 6 bands @ 30 5@90     1@A/CT 60 49   
U.S. Gov. EOS MODIS 98 M       250 250           2330 1 or 2   
      MODIS 98 M   500 500   500 2bands @500               
      MODIS 98 M   7   5bands 1km 16bands             
U.S. Gov. EO-1 Hyperion 00 H   220 bands @ 30m 0.4-2.5um         7.5 16 ~$500 / archived scene; ~$2000 / requested scene 
U.S. Gov. Warfighter 1 Mil/Commercial (OrbView4) 01 H   128 bands @ 30 256 bands @ 30         24 16   
U.S. Gov. Warfighter 1 Mil/Commercial (OrbView4) 01 H   Minimum of 60 bands from  0.4 to 5 µm @ <10                 TBD 5 to >25 TBD   
U.S. Gov. NEMO Mil/Commercial (ESSI) 02 H                             
Australia Gov. AIRES Gov/Commercial 02 H&P                             
RUSSIA Gov. Resurs F1 KFA-1000, KATE-200  '94 M(f)                     F/A 80     
RUSSIA Gov. Resurs F2 MK-4 Frame MS  '94 M(f)                     F/A 150     
RUSSIA Gov. Resurs FT KFA-3000  '94 P(f) 3                   F/A 30 N/A   
RUSSIA Gov. Resours-02 MCY-2, (MCY-CK)  '95 M                       90*     
U.S. Gov. MTI  (DOE) MTI  '96 M                     C/T 12 247   
AIRBORNE MULTI- AND HYPERSPECTRAL                   
U.S. Gov. AVIRIS 87 H   224 bands, 374 to 2500 nm  @ ~1.5 to 20 m, bandwidths ~10 nm ~$45,000 / day 
Canada ITRES CASI 2   H   288 bands @ sub-meter to 10 m   
Australia Integrated Spectronics   HYMAP   H   100 - 200 bands @ 2-10 m, bandwidths of 10 - 20 nm   
U.S. Space Imaging DAIS   M   B 450-530 nm, G 520-610 nm, R 640-720 nm, Near IR 770-880 nm @ 0.5, 1 or 2 meters   
Germany DLR-German Aerospace Center   DAIS 7915   H   79 bands, 400-12600 nm @ 5-20 m   
U.S. Earth Search Sciences, Inc.   Probe-1   H   128 bands, 440 to 2500 nm @ 5 to 10 m, bandwidths ~ 15 nm   
Multispectral  M                   
Hyperspectral  H  All satellites in polar sun synchronous orbits except SPIN-2 (65 Deg), ALMAZ 1B (73 Deg), QuickBird (> 52 Deg) and TBD Warfighter 1 (>45 Deg)  
Panchromatic   P  F/A = fore/aft stereo, C/T = side to side stereo.  All stereo satellites have 2 to 3 day site repeat capabilities        
Radar  R  (XXX) = Wide swath, lower resolution inst. used for near daily, large area vegetation mapping         
Film  (f)  * =  Swath is achieved by two side by side instruments             
IR Infrared   ** =  4 satellites are planned to provide 3.5 to 4 day global repeat coverage.          
VNIR Visible and near IR  *** =   SLR-3, SAR-3, SAR-10, SAR-70, OES, MSU-E, (MSU-SK, SROSM)           
SWIR Short wave IR                   
TIR Thermal IR                    
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