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USING DEEP NEURAL NETWORKS FOR RADIOGENOMIC 
ANALYSIS

Nova F. Smedley and William Hsu [Member, IEEE]
Medical Imaging Informatics, Departments of Radiological Sciences and Bioengineering, 
University of California, Los Angeles

Abstract

Radiogenomic studies have suggested that biological heterogeneity of tumors is reflected 

radiographically through visible features on magnetic resonance (MR) images. We apply deep 

learning techniques to map between tumor gene expression profiles and tumor morphology in pre-

operative MR studies of glioblastoma patients. A deep autoencoder was trained on 528 patients, 

each with 12,042 gene expressions. Then, the autoencoder’s weights were used to initialize a 

supervised deep neural network. The supervised model was trained using a subset of 109 patients 

with both gene and MR data. For each patient, 20 morphological image features were extracted 

from contrast-enhancing and peritumoral edema regions. We found that neural network pre-trained 

with an autoencoder and dropout had lower errors than linear regression in predicting tumor 

morphology features by an average of 16.98% mean absolute percent error and 0.0114 mean 

absolute error, where several features were significantly different (adjusted p-value < 0.05). These 

results indicate neural networks, which can incorporate nonlinear, hierarchical relationships 

between gene expressions, may have the representational power to find more predictive 

radiogenomic associations than pairwise or linear methods.

Index Terms

radiogenomics; deep neural networks; magnetic resonance imaging; gene expression; glioblastoma

1. INTRODUCTION

Molecular profiling of aggressive tumors such as glioblastoma (GBM) require invasive 

surgery that is not always possible when tumors are near eloquent areas. Medical imaging, 

which is routinely collected, may provide an alternative approach to infer underlying 

molecular traits from imaging alone. Radiogenomic studies have suggested that biological 

heterogeneity is reflected radiographically through visible features on magnetic resonance 

(MR) imaging as enhancement patterns, margin characteristics, and shapes in GBM [1–4], 

liver [5], lung [6], and breast [7,8] cancer. These works show it may be possible to identify 

imaging-derived features that provide information about the underlying tumor biology. 

However, current radiogenomic studies use methods that do not fully represent the nonlinear 

relationships in gene expression [7]. Studies may also limit the scope of features to consider 

due to the high-dimensionality of radiogenomic data. For example, studies often perform 

feature selection [1, 4] or dimension reduction [3] prior to modeling. Neural networks such 

as multilayer perceptrons support hierarchical, nonlinear relationships and facilitates 
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generation of complex features from high-dimensional input. Recently, the development of 

deep learning has enabled the training of deep neural networks that are scalable and have 

outperformed other methods in several common machine learning tasks [9] due to recent 

improvements in hardware and training procedures [10].

In -omics, various deep learning techniques have recently been applied to biological tasks, 

including convolutional neural networks [11], restricted Boltzmann machines and deep 

belief networks [12, 13], general deep neural networks [14], and autoencoders [15]. The 

motivation for using deep learning has been due to their ability to interpret low-level, high-

dimensional data into features relevant for some prediction task.

In this work, we explore the use of deep neural network models to generate radiogenomic 

association maps between tumor gene expression profiles and their morphological 

appearance in MR images of GBM patients. Given their representational capacity, we 

hypothesize that neural networks may discover more predictive radiogenomic associations 

than current pairwise association or linear methods [1–4, 6–8].

2. METHODS

2.1. Datasets

2.1.1. Tumor gene expression—The GBM cohort contained 528 patients with 

untreated, primary tumor samples from The Cancer Genome Atlas (TCGA). The cohort’s 

gene expression profiles were produced by the Broad Institute using Affymetrix 

microarrays. Level 3 data were obtained from National Cancer Institute’s Genomic Data 

Commons; quantile normalization and background correction were already performed. Each 

expression profile had 12,042 genes, where each gene was standardized by subtracting its 

mean and dividing by its range.

2.1.2. Pre-operative imaging—Of the 528 patients, 109 had pre-operative MR imaging 

consisting of T1-weighted with contrast (T1WI+c), fluid-attenuated inversion recovery 

(FLAIR), and/or T2-weighted images (T2WI). Of these, 90 were segmented by raters from 

the Multimodal Brain Tumor Segmentation Challenge [16]. Briefly, images were co-

registered to each patient’s T1WI+c, linearly interpolated to 1 mm3, and skull-stripped. 

Region-of-interests (ROIs) were manually segmented by 1–4 raters and approved by board-

certified neuroradiologists. ROIs represent 3-dimensional volumes of two regions: contrast-

enhancement from T1W1+c and peritumoral edema from FLAIR or T2WI. We segmented 

ROIs following a similar process via 1–4 trained raters for 19 cases, see Figure 1a.

For each ROI, 10 image-derived features were calculated and taken from [17–19], see Table 

1. Morphological traits are commonly recognized as clinically indicative of tumor 

aggressiveness and are similar to previous radiogenomic studies [1–4, 6]. Features were 

calculated from the largest contiguously segmented area for each ROI using Matlab R2015b. 

Since image features had different ranges and units (e.g., volume versus sphericity), each 

feature was scaled by dividing by its maximum value.
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2.2. Radiogenomic neural network

2.2.1. Overall approach—The radiogenomic neural network, shown in Figure 1b, was 

trained in two phases: 1) pre-training with a deep autoencoder and 2) supervised learning 

with a deep neural network. All neural networks were fully connected, feed-forward models. 

We tuned the following hyperparameters: learning rate, decay, momentum, type of loss 

function, type of nonlinear activation function, and dropout [10]. Batch size was set to 10 

and number of epochs to 200 for all models. Neural networks were optimized with 

stochastic gradient descent and trained using Keras [20] and Tensorflow [21] on a Nvidia 

GRID K520 GPU on Amazon Web Services. Implementation details, e.g., loss function and 

dropout, are defined in [20,21].

2.2.2. Deep autoencoder—An autoencoder is a neural network that is commonly used to 

compress data into smaller representations [22]. Here, each gene expression profile was an 

input. Both the input and output layers had 12,042 units. The model contained five 

sequential hidden layers with 2000, 1000, 500, 1000, and 2000 units, respectively. The 

model was trained using 528 gene expression profiles. The following hyperparameters were 

considered: five learning rates from 0.001 to 0.25; four decay factors from 0.01 to 1e−5; 0.2 

momentum; mean squared error as the loss; and hyperbolic tangent and sigmoid activations.

2.2.3. Deep neural network—To learn radiogenomic associations, a deep neural network 

was trained using 109 patients with gene expression data and pre-operative MR studies. The 

model contained 12,042 input units, 20 output units, and four hidden layers, see Figure 1b. 

The first three hidden layers were initialized with the weights of the encoding layers 

transferred from the trained deep autoencoder. The following hyperparameters were 

considered: eighteen learning rates from 0.005 to 0.35; five decay factors from 0.01 to 1e−5; 

0.5 momentum; dropout of 0.25 in the input and first three hidden layers; mean absolute 

error as the loss; and rectifier linear unit as the activation function. Network weights and 

biases were further constrained to be nonnegative to ensure predictions were also 

nonnegative.

2.2.4. Image feature prediction—Given a tumor’s gene expression profile (a vector of 

12,042 genes), the deep neural network was given the task to simultaneously predict 20 

image features corresponding to the tumor morphology of the enhancing and edema regions.

2.3. Linear regression

Regularized linear regression with L1 and/or L2 was used to predict a single image feature 

from gene expression data. Thus, 20 regression models were created. For each model, a 

combination of 4000 λ values and 21 α values were searched using the R package glmnet 

[23].

2.4. Evaluation

Models were evaluated using 10-fold cross-validation, which was repeated for the selection 

of hyperparameters when multiple values were considered. The hyperaparameters with the 

lowest average validation loss was selected.
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For the deep autoencoder, its selected hyperparameters were used to retrained on all 528 

gene expression profiles prior to being transferred to the deep radiogenomic neural network. 

In addition to the deep radiogenomic neural network that included the deep autoencoder 

(pre-training) and dropout, its selected hyperparameters were also used to train two more 

neural networks for comparison: 1) a neural network without pre-training and 2) a neural 

network with pre-training. For linear regression, λ and α were selected via R2 in validation 

folds and intercept-only models were ignored.

Performance errors were calculated as the difference between the reference value of an 

image feature, yi (e.g., measured volume of edema) and the predicted value by a model, yi

(e.g., predicted volume of edema) in the 10 validation folds. Error was averaged over all N 
patients using mean absolute error (MAE) and mean absolute percent error (MAPE):

MAE = 1
N ∑

i = 1

N
yi − yi , (1)

MAPE = 100%
N ∑

i = 1

N yi − yi
yi

. (2)

Statistical differences in prediction errors between neural network and linear regression 

models were obtained using a paired Wilcoxon signed-rank test with continuity correction 

and an α level of 0.05. The test was carried out for each image feature in R, where p-values 

were adjusted using the Bonferroni correction method ( p.adjust).

3. RESULTS

3.1. Overall performance

The deep autoencoder achieved optimal performance with the selected hyperparameters of 

0.2 learning rate, 1e−5 decay, and the hyperbolic tangent as the activation function, 

producing 0.014 loss (mean squared error) after retraining. The deep neural network with 

pre-training and dropout was optimal when learning rate was 0.3 and decay was 5e−5; the 

mean training and validation losses (mean absolute error) were respectively 0.107 and 0.134, 

see Figure 2. Similarly, the mean training and validation losses were 0.021 and 0.143 for the 

neural network without pre-training and 0.022 and 0.146 for the neural network with pre-

training.

On average, all neural networks had lower error than linear regression as measured by MAE 

and MAPE (see Table 2), where some features were significantly different, see Figure 3. A 

neural network pre-trained with a deep autoencoder and dropout had the lowest average 

MAE and the lowest average MAPE. This model was able to predict 80% and 100% more 

features at lower MAE and MAPE and had lower error than linear regression by 16.98% 

MAPE and 0.0114 MAE.
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3.2. Mean absolute error analysis

To interpret MAE in real physical dimensions, MAE was converted back to each image 

features’ original units in mm or cm in Table 3. The neural networks achieved the lowest 

MAE in 0, 2, and 15 features for models with no pre-training, with pre-training, and with 

pre-training and dropout, respectively. Linear regression outperformed neural networks in 3 

features.

Some differences were small between the two types of models. For example, predictions for 

the enhancing ROI’s maximum diameter differ by about 1 mm. On the other hand, neural 

networks were able to predict edema volume by an average of 7.5 cm3 more accurately than 

linear regression. However, the two models’ errors were only significantly different from 

each other when predicting the major axis of the enhanced ROI, also see Figure 3.

Several image features were challenging to predict by either model types. For example, 

linear regression had lower MAE in predicting enhancing volume but was still off by an 

average of 16.2 cm3 from the measured value. Note that the mean enhancing volume was 

29.3 cm3.

3.3. Mean absolute percent error analysis

Neural networks achieved the lowest MAPE in predicting 0, 0, and 20 of the image features 

for the neural networks with no pre-training, with pre-training, and with pre-training and 

dropout, respectively (see Table 4). Linear regression under-performed neural networks in 

predicting all 20 features, where the enhancing ROI’s major axis and compactness 2 and the 

edema ROI’s volume were found to be significantly different, also see Figure 3.

Neural networks were able to predict the maximum diameter most accurately, achieving on 

average an error of just under 20% from the measured values. In analyzing the most 

incorrect predictions, neural networks had a MAPE over 100% for 3 features (both ROI’s 

compactness 2, and enhancing ROI’s volume), indicating that its prediction was often over- 

or underestimated. The linear regression model had a MAPE over 100% in 5 features.

4. DISCUSSION

We presented a novel approach to radiogenomic analysis utilizing autoencoders and deep 

neural networks, comparing their prediction error against linear regression. On average, 

neural networks had lower error than linear regression in predicting the morphology of 

enhancing and peritumoral edema in pre-operative MR images. A neural network pre-trained 

with a deep autoencoder and dropout was able to predict 16 image features with lower 

absolute error, where 1 feature was significantly different (adjusted p < 0.05) from linear 

regression’s predictions. This neural network also predicted all image features with lower 

absolute percent error, where 3 features were significantly different. We plan to apply 

activation maximization on our trained neural network models to identify specific gene 

expressions that were influential in the change of an image feature. Once these associations 

are found, image features can act as suggorates to infer the pattern of gene expressions that 

may be present in a tumor.
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Our experiments indicated neural networks were better at determining the relative magnitude 

of an image feature, where the neural network’s MAPE was consistently the lowest. For 

example, neural networks was able to predict on average 8.5% closer to each patient’s 

measured enhancing ROI’s major axis length than linear regression, where differences were 

significant. Thus, neural networks can better differentiate small major axis lengths from 

large ones. Additionally, the inclusion of dropout always produced lower MAPE compared 

to the other two neural networks, suggesting their continued use in radiogenomic neural 

networks.

Previous radiogenomic studies utilized general linear models [3, 7, 8]. [3] used a similar 

dataset as ours to performed pair-wise association analysis between gene modules and MR 

features of 55 GBM patients. The MR features were based on 2-dimensional ROIs from a 

single slice, while the gene modules were co-expressed genes created from multiple types of 

molecular data. The authors reported the length measurements (size and minor axis) of the 

enhanced and edema ROIs as significantly correlated a gene module. In [1], the authors also 

reported a significant association between tumors with high enhancement and a gene module 

containing genes related to hypoxia in 22 GBM patients. A direct comparison between these 

findings and our model’s radiogenomic associations found via activation maximization is a 

part of future work. In comparison, we applied deep neural networks to perform both 

genomic feature generation and image feature prediction in one model.

A major limitation of this work was the sample size due to the small number of annotated 

pre-operative imaging studies with microarray data. Increasing the sample size with the 

added 19 patients segmented by our lab improved MAE by about a third in neural networks 

and a half in linear regressions. We also did not assess whether pre-training with an 

autoencoder was better than other types of dimensionality reduction methods (e.g., principal 

component analysis or gene module creation); this is part of future work. Similarly, we 

selected the hyperparameters based on the neural network with pre-training and dropout; 

there may have been other optimal hyperparameter for the later two models. While this study 

focuses on morphological features, other image features (e.g., radiomics) or ROIs (e.g., 

necrosis) could have been used. This study was also limited to comparing prediction 

performance between two different models. Other models, such as gradient boost trees 

should be evaluated.
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Fig. 1. 
Modeling radiogenomics with a deep neural network. MR studies were segmented into two 

3-dimensional ROIs.

Smedley and Hsu Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2018 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Neural network learning curves from 10-fold cross-validation using selected 

hyperparameters.
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Fig. 3. 
Predicting image features (dots) from gene expressions. The diagonal line indicates equal 

error. Dots above the line occur when neural network (with pre-training and dropout) error 

was lower than linear regression error.
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Table 1

Image features.

feature description

volume (V) volume by [18]

surface area (SA) surface area by [18]

SA:V ratio SA to V ratio: SA/V

sphericity

proximity to a sphere: 
π3/2(6V)2/3

SA  has values (0,1], where 1 is a perfect sphere

spherical disproportion
proximity from a sphere: 

SA

4π[(3V /4π)1/3]2
 has values ≥ 1, where 1 is a perfect sphere

max diameter max distance between any two voxels

major axis largest major axis on axial slices

minor axis minor axis to the major axis

compactness 1

proximity to the compactness of a perfect sphere: V / πSA3, has values (0, 0.053]

compactness 2 proximity to the compactness of a perfect sphere: 36πV2/SA3, has values (0, 1]
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Table 2

Overall performance.

pre-train:

neural network

linear regressionno yes yes+drop

average MAE 0.1427 0.1455 0.1342 0.1456

average MAPE 68.32 69.47 52.53 69.51

features MAE† 11 (55%) 10 (50%) 16 (80%) reference

features MAPE† 8 (40%) 7 (35%) 20 (100%) reference

†
denotes the number (percent) of image features with lower error than linear regression.
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