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Zika virus (ZIKV) is an emerging arbovirus linked to an increased 

incidence of microcephaly. To study the potential link between ZIKV and 

microcephaly, stem cell-based models must be utilized to understand the effect 
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of ZIKV infection. The objectives of this dissertation are to analyze the somatic 

cell reprogramming to enhance iPSC production, generate human cerebral 

organoids, and utilize these models to study ZIKV-mediated neurodegeneration 

in vitro. 

To study the stochastic nature of somatic cell reprogramming and 

enhance reprogramming yield, microRNAs were profiled in mouse embryonic 

fibroblasts (MEFs) during the early stage of cell fate decisions. miR-135b was 

highly upregulated and repressed expression of extracellular matrix genes 

including Wisp1 and Igfbp5. These data reveal a novel link between microRNA-

mediated regulation of ECM formation and somatic cell reprogramming.  

To investigate the link between ZIKV and microcephaly, human embryonic 

stem cell-derived cerebral organoids were generated and characterized to 

recapitulate first trimester fetal brain development. ZIKV infected organoids 

revealed preferential infection of neural stem cells, attenuated growth and 

activation of innate immune receptor Toll-Like-Receptor 3 (TLR3). Pathway 

analysis of differentially expressed genes during TLR3 activation highlighted 41 

genes also related to neuronal development.  

Lastly, meta-analyses and regulatory interaction networks integrating 

miRNA and mRNA expression profiling data were used to study the role of 

miRNA-mediated repression during ZIKV infection. These analyses identified 

miRNA-mediated repression of cell cycle, metabolism, stem cell maintenance 

and neurogenesis related genes. Moreover, miR-218 was upregulated during 
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ZIKV infection and directly represses a gene network governing stem cell 

maintenance.  
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CHAPTER 1: INTRODUCTION 

Until recently, most of our understanding of the developing human brain 

has come from various animal models and post-mortem tissues. Unfortunately, 

many of these models are unable to fully mimic the cellular architecture and 

molecular mechanisms that are responsible for the uniquely human cognitive and 

behavioral patterns. These substantial morphological, functional and molecular 

differences in human and rodent brains present problems not only in 

understanding fundamental developmental biology but also in modeling 

neurodegenerative diseases, such as Zika virus-mediated microcephaly. Thus, 

alternative models must be developed to model the developing human brain.

 

Chapter 1.1: Brain development 

The development of the human brain is initiated during the third week of 

gestation when the neural tube is formed and the radial glial cell, or neural 

progenitor cell, population has been positioned along the rostral-caudal midline 

(Stiles and Jernigan, 2010). The neural progenitors form a uniform layer around 

the inner side of the neural tube. As the neural progenitors symmetrical divide, 

the brain grows in size and complexity until the ventricular zone is formed. 

Through a series of transcriptomic, epigenomic, and epitranscriptomic changes, 

as well as temporal and spatial intercellular signals, neural progenitors 

differentiate and migrate radially and tangentially. Neural progenitor cells can 

asymmetrically divide into intermediate progenitors, which populate the 
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subventricular zone (SVZ) or migrate to form the various cortical layers. The SVZ 

can then be further subdivided into four distinct layers, each containing a distinct 

set of intermediate progenitor cells more characteristically associated with human 

brains (Fietz et al., 2010; Hansen et al., 2010; Zecevic et al., 2005). Neural 

progenitors differentiate into neurons from the ventricular zone and migrate to 

generate the preplate. From there, neurons transiently split within the PP to form 

the marginal zone, cortical plate and subplate. Finally, as the brain matures, both 

the MZ and SP disappear and six cortical layers will emerge with neurons from 

the CP forming cortical layer 6.  

While many stages of brain development are conserved between human 

and rodent models, several notable aspects differ. In a recent study, Hansen et 

al. showed that the developing human ventricular and subventricular zones are 

composed of more radial glial cells and intermediate progenitor cells which may 

give rise to the enlarged human cerebral cortex and larger outer subventricular 

zone (Hansen et al., 2010). They then hypothesized that this increased 

population of neural progenitors in the ventricular zone may contribute to the 

evolutionary difference between rodent and human brains. However, others have 

postulated that the increased density of neuronal and non-neuronal cells in the 

human brain is responsible for the uniqueness of the human brain (Herculano-

Houzel, 2009). Nevertheless, the molecular mechanisms which distinguish the 

developing human brain from other animals both morphologically and functionally 

have yet to be elucidated. Thus, alternative means of modeling human brain 

development may be required. 
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Chapter 1.2: Somatic Cell Reprogramming 

The fields of developmental biology and disease modeling were 

revolutionized in 1988 when the first human blastocyst-derived embryonic stem 

cells were isolated by Thomson et al. (Thomson et al., 1998) and again in 2006 

when Yamanaka et al. revealed that somatic cells could be reprogrammed into 

an embryonic stem cell-like state, thus establishing the now ubiquitously utilized 

field of induce pluripotent stem cells, or iPSCs (Takahashi and Yamanaka, 2006). 

With the expansion of regenerative medicine, high-throughput sequencing and 

need for advanced disease modeling, the field of iPSCs has experienced 

incredible growth both in terms of basic biology and application in both mouse 

and human modeling (Aoi et al., 2008; Giorgetti et al., 2009; Loh et al., 2009; 

Meissner et al., 2007; Park et al., 2008a; Park et al., 2008b; Takahashi et al., 

2007; Yamanaka, 2012; Yu et al., 2007). Because of their fully reprogrammed 

transcriptomic and epigenetic state through the overexpression of a combination 

of transcription factors, iPSC are restored to an embryonic stem cell-like 

pluripotency state capable of differentiating into virtually any lineage and cell type 

including neuronal cells (Chen et al., 2014; Marchetto et al., 2010), hematopoietic 

cells (Hanna et al., 2007), and cardiac muscle tissue (Itzhaki et al., 2011). Thus, 

iPSC possess the potential to revolutionize the way we study disease 

pathogenesis and develop novel therapeutics. 



	

	

4 

The first iteration of iPSCs generated in Yamanaka et al. utilized a 

combination of core pluripotency transcription factors – octamer-binding protein 4 

(OCT4), sex determining region Y-box 2 (SOX2), Kruppel-like factor 4 (KLF4) 

and MYC proto-oncogene (MYC) – to reprogram mouse fibroblasts (Takahashi 

and Yamanaka, 2006). To identify these four pluripotency factors, Yamanaka et 

al. introduced a βgeo cassette into the Fbx15 gene, a gene specifically 

expressed in embryonic stem cells which would introduce β-galactosidase and 

neomycin resistance, and transduced these cells with 24 hypothesized 

pluripotency-related genes using retroviruses. Cells which were successfully 

reprogrammed to an embryonic-like state were selected using G418. G418 

resistant colonies were clonally selected and RT-qPCR was utilized to identify 

the candidate genes required for reprogramming. From these assays, Yamanaka 

et al. identified Oct4, Sox2, Klf4 and Myc. Pluripotency of reprogrammed MEFs 

by OSKM was confirmed by microarray gene expression analysis, teratoma 

formation in which all three germ layers were observed, and chimeric mouse 

generation.  

Subsequently, it was found that these same four factors (OSKM) could 

also be employed to reprogram a wide range of human cells (Lowry et al., 2008; 

Nakagawa et al., 2008; Park et al., 2008b; Takahashi et al., 2007; Wernig et al., 

2007; Yu et al., 2007). The limiting factor for iPSC generation is low 

reprogramming efficiency. To generate robust reprogramming of somatic cells for 

regenerative medicine and disease modeling applications, studies have shown 

that mRNA (Warren et al., 2010); small molecules (Feng et al., 2009b; Ichida et 



	

	

5 

al., 2009b; Li and Rana, 2012b; Maherali and Hochedlinger, 2009b; Nichols et 

al., 2009; Silva et al., 2008; Yang et al., 2011b; Ying et al., 2008; Zhu et al., 

2011); and miRNAs (Choi et al., 2011b; Judson et al., 2009a; Li and He, 2012; Li 

et al., 2011a; Liao et al., 2011a; Lipchina et al., 2011; Melton et al., 2010; Pfaff et 

al., 2011; Subramanyam et al., 2011b; Yang and Rana, 2013; Yang et al., 2011a) 

can be utilized to enhance reprogramming efficiency. Many of these 

reprogramming enhancers include pluripotency-related genes such as NANOG 

(Feng et al., 2009a; Picanco-Castro et al., 2011) and LIN28 (Yu et al., 2007), cell 

cycle-regulating genes such as those in the p53 pathway (Banito et al., 2009; 

Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; Utikal et al., 2009), and 

epigenetic modifiers (Ang et al., 2011; Kuzmichev et al., 2002; Shinagawa et al., 

2014; Wang et al., 2011). 

Somatic cell reprogramming is a complex and dynamic process in which 

cells undergo dramatic alterations to the transcriptomic, epigenomic and 

epitranscriptomic landscape following the introduction to OSKM core pluripotency 

factors. Somatic cell reprogramming can be theoretically divided into two main 

stages of reprogramming characterized by an initial change in the epigenome 

through ectopic binding of OSKM which leads to a population of partially 

reprogrammed cells, and a maturing later iPSC stage in which cells enter a 

deterministic and hierarchical late stage (Polo et al., 2012; Soufi et al., 2012). 

Despite a decade of research probing the mechanisms by which cells are 

reprogrammed, much is still not known. Several theories have been proposed to 

account for the low efficiency in iPSC induction. Induced pluripotent stem cell 
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reprogramming is considered a stochastic and deterministic reprogramming that 

is dependent on many factors throughout the initial and maturation stages. 

Systematic analysis of the promoters targeted by overexpression of the four 

reprogramming factors has demonstrated that expression of the factor target 

genes is similar in iPSCs and mouse embryonic stem (mES) cells, and is altered 

in some partially reprogrammed cells (Sridharan et al., 2009). Various signaling 

pathways and cascades have been shown to regulate iPSC induction including 

TGFβ signaling (Ichida et al., 2009b) and the mesenchymal-to-epithelial 

transition which occurs during the initial stages of reprogramming (Li et al., 2010; 

Samavarchi-Tehrani et al., 2010). iPSC reprogramming is also dependent on the 

metabolic state (Panopoulos et al., 2012). A recent study revealed that OCT4, 

SOX2 and KLF4 interact with other transcription factors in a stage-specific 

manner to modulate the enhancer landscape by inactivating somatic enhancers 

and binding pluripotency enhancers (Chronis et al., 2017). 

 

Chapter 1.3: Neural Differentiation and Organoids using Pluripotent Stem 

Cells 

Advances in embryonic stem cell and induced pluripotent stem cell 

technology have opened up new avenues of disease modeling in vitro 

(Yamanaka, 2012). To study neurodegenerative disorders, embryonic stem cells 

and human derived iPSC can be differentiated towards forebrain, midbrain and 

hindbrain specific neuron subtypes to model various regions of the brain. A 
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variety of methods have been developed to facilitate neural differentiation of 

pluripotent stem cells. In 2001, Zhang et al. presented the first protocol for the 

derivation of embryonic stem cell-derived human neural rosettes which exhibit 

epithelial characteristics and resemble the formation of the neural tube in two 

dimensions (Zhang et al., 2001). A second advancement in in vitro neural 

differentiation was the introduction of serum free culture to induce spontaneous 

neural induction in embryonic stem cells (Ying et al., 2003). The combination of 

these two approaches introduced the now ubiquitous serum free culture of 

embryoid bodies, or SFEB, method (Watanabe et al., 2005). Addition of SMAD 

inhibitors promoted neural differentiation of embryonic stem cells without the 

formation of embryoid bodies (Chambers et al., 2009). Using these methods, 

researchers have been able to generate in vitro models for various regions of the 

brain including the cerebellum (Muguruma et al., 2015), forerain (Kadoshima et 

al., 2013), hippocampus (Sakaguchi et al., 2015) and retina (Eiraku et al., 2011).  

More recently, stem cells and iPSC have been differentiated into three 

dimensional organoid systems to study the development of the intestine, retina, 

liver, kidney and even the brain (Koehler and Hashino, 2014; Lancaster and 

Knoblich, 2014). These organoid are able to differentiate, self-organize and form 

distinct, complex, biologically relevant structures, thus making them ideal in vitro 

models of development, disease pathogenesis and drug screening. Organoids 

are generated from embryonic stem cells by manipulating and mimicking the 

biochemical and biophysical signals resembling those during embryogenesis. 
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Time dependent addition of signaling molecules and extracellular matrices 

enable temporal and limited spatial control over the differentiation processes. 

Unlike primary cell cultures, ES cell derived cerebral organoids have 

shown the capacity for prolonged survival in culture, reportedly at least 10 

months in a bioreactor (Kadoshima et al., 2013; Lancaster et al., 2013). 

Moreover, the use of a bioreactor enhances the developing cerebral organoids’ 

capacity for growth up to 4mm due to improved diffusion of nutrients, oxygen and 

potentially drugs or small molecule treatments (Lancaster et al., 2013). Thus, 

because of their ability to self-organize and recapitulate many regenerative 

events seen in vivo, organoids present a human relevant, easily accessible, 

scalable model for disease pathogenesis and drug testing. 

The first prominent use of self-organizing organoid formation came in 

2009 when researchers generated three-dimensional intestinal organoids from 

isolated Lgr5+ stem cells which exhibited crypt and villus-like structures (Sato et 

al., 2009). Moreover, these organoids were able to recapitulate both the stem 

cell, progenitor and differentiated cell types within the three-dimensional 

architecture. Using these technologies, van de Wetering et al. generated a “living 

organoid biobank” of colorectal cancer patient-derived Lgr5+ organoids for drug 

screening use (van de Wetering et al., 2015). Similarly, patient-derived organoids 

were utilized to study advanced prostate cancer (Gao et al., 2014). 

Several groups have developed cerebral organoid models that generate 

functional cortical neurons and can recapitulate forebrain, midbrain and hindbrain 

regions with functional electrophysiological properties to probe the mechanisms 
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of neurodevelopment, autism and microcephaly (Camp et al., 2015; Eiraku et al., 

2008; Lancaster et al., 2013; Mariani et al., 2015; Nowakowski et al., 2016). 

Previous studies have shown the use of cerebral organoid models in modeling 

microcephaly resulting from a heterogeneous nonsense mutation in CDK5RAP2 

from patient-derived iPSC (Lancaster et al., 2013). The nonsense mutation 

altered the spindle orientation of radial glial cells causing a severe decrease in 

overall organoid size and premature differentiation of neural progenitors in the 

neuroepithelium. Similarly, Mariani et al. generated autism patient-derived iPSCs 

and cerebral organoids to model autism spectrum disorders in vitro (Mariani et 

al., 2015). Through transcriptomic analyses, they observed an overexpression of 

transcription factor FOXG1 in patient versus proband organoids. Gain and loss of 

function experiments revealed that FOXG1 alters gene expression networks and 

shifts neuronal differentiation towards the GABAergic neuron fate. 

Yet, there are still limitations to the use of organoids, primarily the timing 

and duration of organogenesis and the balance between organoid homogeneity 

and tissue complexity. Stem cell-derived organoid formation, as it relies on self-

organization and differentiation, is typically a long process. Moreover, the tissue 

complexity and maturation of neurons and neuronal subtypes within cerebral 

organoids are highly time dependent. Qian et al. showed that cortical neuronal 

subtypes mimicking the preplate, ventricular zone, cortical plate and 

subventricular zone emerge overtime (Qian et al., 2016). In addition, high-

throughput sequencing of whole organoids 26, 40, 54 and 100 days old showed 

a correlation between organoid age and fetal development (Qian et al., 2016) 
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and the maturation of neuronal subtypes (Dang et al., 2016). While prolonged 

maturation of cerebral organoids can increase complexity and formation of 

cortical layers, the increased heterogeneity of cell types may compromise 

reproducibility between organoids. Nevertheless, organoids present a powerful 

tool for modeling complex human tissues, such as the brain, for regenerative 

medicine, disease modeling and drug screening applications. 

 

Chapter 1.4: Zika virus pathogenesis  

Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family, which 

includes dengue, West Nile (WNV), tickborne encephalitis, Japanese 

encephalitis (JEV), and yellow fever viruses (Lazear and Diamond, 2016). ZIKV 

is a positive single-stranded RNA virus that replicates in the cytoplasm. The 

polyprotein encoded by ZIKV is processed into three structural proteins; the 

capsid, envelope, and precursor of membrane proteins, as well as seven 

nonstructural proteins.  

Zika virus is a mosquito-borne disease transmitted by the Aedes genus 

(Plourde and Bloch, 2016) but may also be transmitted sexually and vertically 

(D'Ortenzio et al., 2016; Moreira et al., 2016). ZIKV was first discovered more 

than 60 years ago in samples taken from a sentinel rhesus monkey in the Zika 

forest of Uganda, and has since been isolated from mosquitoes and humans 

(Dick et al., 1952; Macnamara, 1954). Various epidemiological studies have 

revealed a worldwide spread of ZIKV to geographic areas ranging from Asia and 
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the Pacific to, most recently, the Americas (Hajra et al., 2016). The rapid spread 

of ZIKV from Asia to the Americas has affected more than 30 countries. Due to 

its sporadic nature and mild symptoms, ZIKV infection was initially ignored. 

The recent ZIKV outbreak in the Western hemisphere is associated with 

severe fetal abnormalities, including microcephaly and hydranencephaly, as well 

as placental insufficiency, which may cause intrauterine fetal growth restriction 

(Brasil et al., 2016b; Noronha et al., 2016; Sarno et al., 2016; Ventura et al., 

2016). In adults, ZIKV infection can cause a self-limiting febrile illness, arthralgia, 

rash, and conjunctivitis; however, an estimated 80% of cases are asymptomatic 

(Brasil et al., 2016a; Duffy et al., 2009; Hayes, 2009).  

The molecular mechanisms by which ZIKV causes microcephaly are not 

fully understood, but there is compelling evidence that ZIKV crosses the placenta 

barrier and directly damages the developing fetus (Calvet et al., 2016a; Martines 

et al., 2016; Mlakar et al., 2016; Oliveira Melo et al., 2016; Petersen et al., 

2016b). Several in vitro and in vivo models have been described that facilitate the 

study of ZIKV biology. Current reports indicate that dermal fibroblasts, dendritic 

cells, neural progenitor cells, and epidermal keratinocytes are permissive to ZIKV 

infection while placental trophoblasts are resistant due to constitutive release of 

type III interferon (Bayer et al., 2016; Briant et al., 2014; Dang et al., 2016; Hamel 

et al., 2015; Tang et al., 2016). Mouse models have shown that ZIKV may be 

neurotropic (Cugola et al., 2016; Lazear et al., 2016; Li et al., 2016; Mlakar et al., 

2016; Sarno et al., 2016). However, the pathogenesis of ZIKV infection remains 

poorly understood. 
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Chapter 1.5: Non-coding RNAs and microRNAs  

MicroRNAs (miRNAs) are a class of endogenous small non-coding, 

single-stranded RNAs 18–24 nucleotides long associated with a protein complex 

termed the RNA-induced silencing complex (RISC) first discovered in 

Caenorhabditis elegans. MicroRNAs are a key post-transcriptional regulatory and 

function through imperfectly binding to target mRNAs, thereby facilitating 

degradation or destabilization of the mRNAs (Ambros, 2004a; Li and Rana, 

2012a).  

miRNAs are transcribed by RNA Pol II from introns of coding and non-

coding gene transcripts and function to suppress gene expression by 

translational repression and/or mRNA degradation (Ambros, 2004b; Chu and 

Rana, 2006, 2007; Djuranovic et al., 2011; Huntzinger and Izaurralde, 2011; 

Rana, 2007). After transcription, primary miRNAs, or pri-miRNAs, contain a stem-

loop structure which is cropped by the nuclear RNase III endonuclease Drosha in 

complex with DGCR8 to generate a ~65bp hairpin-shaped RNA known as the 

pre-miRNA (Lee et al., 2003). Pre-miRNAs are then exported into the cytoplasm 

with help from the exportin 5 and RAN-GTP transport complex (Lund et al., 

2004). Within the cytoplasm, pre-miRNAs are cleaved by Dicer to generate a 

small double-stranded RNA duplexes (Hutvagner et al., 2001; Knight and Bass, 

2001). RNA duplexes are then loaded into the RNA-induced silencing complex 

(RISC), during which the RNA duplex is loaded and unwinded (Kawamata and 
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Tomari, 2010). The RISC contains an AGO protein which is the catalytic 

component responsible for target mRNA cleavage (specific to only AGO2), 

translational repression and mRNA decay (Huntzinger and Izaurralde, 2011). 

miRNA-mRNA interactions are governed by many factors including seed 

sequence base pairing, cooperative action between neighboring miRNA binding 

sites, and miRNA binding sequencing within putative mRNA target transcripts 

(Agarwal et al., 2015; Bartel, 2009; Grimson et al., 2007; Lewis et al., 2005) as 

well as non-canonical binding revealed by CLIP, PAR-CLIP and CLASH 

experiments, of which less is understood (Chi et al., 2012; Hafner et al., 2010; 

Loeb et al., 2012). In fact, miRNAs are capable of directly downregulating 

hundreds of target mRNAs to repress translation (Baek et al., 2008; Selbach et 

al., 2008).  

Because miRNAs are able to potentially post-transcriptionally regulate 

hundreds of target transcripts, miRNAs play an important role in many diverse 

biological processes including stem cell biology, somatic cell reprogramming, 

virology, innate immunity and neurogenesis. In fact, knockout of miRNA 

processing components DGCR8 (Chong et al., 2010) and AGO2 (Liu et al., 2004) 

are embryonic lethal in mice and negatively affects stem cell proliferation and 

differentiation (Wang et al., 2007).  

 Furthermore, miRNAs have also been shown to play diverse roles in viral 

infections ranging form pro-viral to anti-viral, generated from RNA virus 

transcripts or dysregulated host miRNAs influenced by viral infection. 

Interestingly, RNAi is a well-known antiviral immunity mechanism in plants and 
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invertebrate. Previous studies have shown that that miRNAs can directly bind to 

the viral genome to modulate viral replication. For instance, human 

immunodeficiency virus (HIV) is targeted by miR-29a to enhance association with 

RISC and is trafficked to P bodies to post-transcriptionally repress viral 

replication (Nathans et al., 2009). On the other hand, the hepatitis C virus (HCV) 

is well known to interact with miR-122 at the 5’ UTR to stabilize viral transcripts 

as well as act as a competitive endogenous RNA (Luna et al., 2015; Shimakami 

et al., 2012). The abundant HCV transcripts effectively sequester miR-122 in a 

sponging effect, thereby de-repressing other miR-122 targets within the host cell. 

Luna et al. proposed that this miR-122 sponge effect of HCV de-repressed 

endogenous miR-122 targets to enhance viral infection and potentiate long-term 

HCV-related oncogenesis (Luna et al., 2015). Thus, viruses may dysregulated 

host cellular miRNAs to in a pro-viral or anti-viral manner. Dengue virus and 

Japanese encephalitis virus, both from the flavivirus genus, for instance, 

upregulate miR-146a to repress the interferon response through downregulation 

of TRAF6 (Sharma et al., 2015; Wu et al., 2013). Thus, miRNAs are an important 

post-transcriptional regulatory mechanism across many biological processes. 

 

Chapter 1.6: Goals of this dissertation 

Because ZIKV is a relatively new, unknown and emerging virus, there are 

many foundational questions that need to be addressed. Namely, despite a 

correlation between ZIKV infected patients and fetal microcephaly, is there a 
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causal relationship? If so, which cells are targeted by ZIKV and what effect does 

ZIKV have on them? And, what are the appropriate model systems to study ZIKV 

pathogenesis? The objectives of this dissertation are to better understand the 

mechanisms governing somatic cell reprogramming and how they may be 

utilized to generate human cerebral organoid models to study Zika virus-

mediated neurodegeneration in vitro. 

The first aim of this dissertation was to study the molecular mechanisms 

which promote and enhance somatic cell reprogramming of mouse embryonic 

fibroblasts to iPSCs. Somatic cell reprogramming is a stochastic process with 

very low yield, thus to develop  robust model systems using iPSCs, it is essential 

that iPSC reprogramming is understood and made more efficient. To do so, we 

hypothesized that miRNAs may regulate barriers which inhibit iPSC maturation, 

thus miRNAs may be used to enhance reprogramming. 

Our second aim was to generate three-dimensional, self-organizing 

cerebral organoid models to recapitulate the developing brain and to study 

neurodegenerative diseases such as, in this case, the relationship between ZIKV 

and microcephaly. The most recent ZIKV epidemic originating in Brazil in late 

2015/early 2016 saw a rise in microcephalic infants in ZIKV infected mothers, a 

phenomena not associated with ZIKV previously. Thus, organoids present a 

physiologically relevant human platform for the developing fetal brain with which 

to study ZIKV infection and pathogenesis. Immunohistochemistry, functional 

electrophysiological assays, RNA-seq, and single cell RNA-seq were utilized to 
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systematically characterize these organoids and study the phenotypic effect of 

ZIKV on brain development.  

 Finally, the last aim of this dissertation is to analyze the dynamic effect of 

ZIKV on the coding and non-coding transcriptome. It is still unclear how ZIKV 

replicates and how it affects cells at the transcriptomic level. We hypothesized 

that gene network analyses and miRNA profile would provide insight into ZIKV-

mediate microcephaly. 
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CHAPTER 2: MicroRNAs regulate ECM during iPSC reprogramming 

Chapter 2.1: Introduction 
 

While significant progress is being made in understanding the intracellular 

signaling pathways governing somatic cell reprogramming, little is known about 

the extracellular events also associated with the reprogramming process. The 

extracellular matrix (ECM) is a multifunctional system that is involved in many 

stages of mammalian development (Adams and Watt, 1993; Rozario and 

DeSimone, 2010; Sanes, 1989) and human disease progressions, including 

tumor formation (Bissell and Hines, 2011; Kessenbrock et al., 2010). ECM is 

made of secreted polysaccharides and proteins that are organized into a well-

defined complex structure surrounding the surface of cells that produce them. A 

variety of proteins and polysaccharides are involved in ECM, which could be 

divided into at least two groups: proteins with structural role, such as fibrous 

proteins and glycosaminoglycans; and proteins with regulatory role, including 

different growth factors (e.g., TGFβ and IGFs), matricellular proteins (CCN family 

proteins, IGFBPs, decorin, and biglycan), enzymes (metalloproteinases) and 

receptors (integrins). ECM plays a crucial role in regulating various cellular 

behaviors and maintaining the identity and normal function of those cells (Bissell 

and Hines, 2011; Kessenbrock et al., 2010).  

For embryonic stem cells, ECM components are essential for establishing 

the proper niche for long term ES cell survival and self-renewal (Bendall et al., 
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2007; Peerani et al., 2007). Moreover, recent studies have shown that culture 

media supplemented with FGF2 can enhance iPSC induction through the 

regulation of collagen gene expression, thus bringing attention to the role of the 

microevironment in reprogramming (Jiao et al., 2013). In fact, given the dramatic 

changes of both cellular morphology and functional characteristics during the 

course of reprogramming, potential iPSCs would need to establish their own 

niche for supporting their growth and colony formation. At the same time, 

successful iPSCs also need to exclude the effects brought by secreted ECM 

proteins from surrounding cells that are not reprogrammed. However, despite 

that iPSCs expressed a different set of ECM proteins from starting fibroblasts 

cells (Sridharan et al., 2009), little is known about the dynamic remodeling of 

ECMs during reprogramming. Understanding the molecular mechanisms that 

govern ECM remodeling during reprogramming would provide fundamental 

knowledge essential in efficiently creating and controlling various states of 

pluripotent stem cells.  

Recent work indicates that ES-specific microRNAs can enhance iPSC 

induction (Judson et al., 2009b) and, specifically, that the hES miR-302 can 

antagonize the senescence response induced by four-factor expression in 

human fibroblasts (Banito et al., 2009). In addition, our recent findings suggest 

that the microRNA biogenesis machinery may be required for efficient 

reprogramming (Li et al., 2011b), and microRNAs induced by OSKM are known 

to regulate several key pathways affecting reprogramming efficiency, including 

cell cycle control, the p53 pathway, TGFβ signaling, and MET (Choi et al., 2011a; 
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Li et al., 2011b; Liao et al., 2011b; Subramanyam et al., 2011a; Yang et al., 

2011a). Moreover, during somatic reprogramming, many microRNAs undergo 

small changes in expression in the early stages while only a select few 

microRNAs undergo large changes in expression in the later stages of 

reprogramming (Henzler et al., 2013; Polo et al., 2012). These data indicate a 

transition from a deterministic to stochastic process and suggest that microRNAs 

are regulated in a highly stage-dependent manner during reprogramming. 

Importantly, expression of microRNAs alone can fully reprogram fibroblasts to 

iPSCs (Anokye-Danso et al., 2011; Henzler et al., 2013; Miyoshi et al., 2011; 

Polo et al., 2012; Salzman, 2016). These findings clearly suggest that 

microRNAs play crucial roles during the reprogramming process by targeting key 

barrier signaling networks. However, most studies to date have focused on 

intracellular signaling networks regulated by microRNAs, and the ability of 

microRNAs to influence critical cellular interactions with the microenvironmental 

niche during reprogramming has not yet been investigated.   

Here, we performed a systematic analysis of expression of microRNAs 

and their potential target genes at an early stage of reprogramming, and 

identified a novel link between microRNAs, ECM formation and reprogramming 

of MEFs. In particular, we found that microRNA-135b is highly induced and 

modulating its expression significantly affected the reprogramming process. 

Using genome-wide mRNA array analysis, we show that miR-135b controls 

expression of Tgfbr2, Igfbp5, and Wisp1, the latter two genes encoding 

components of the MEF ECM. Wisp1 was found to regulate the secretion of 
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several ECM proteins including TGFBI (TGF-beta induced), IGFBP5 (insulin-like 

growth factor binding proteins-5), NOV (nephroblastoma overexpressed gene), 

and DKK2 (dickkopf homolog 2) proteins. Interestingly, the effects of Wisp 1 are 

mediated through biglycan, a glycoprotein that is highly expressed in MEFs and 

is incompletely silenced in reprogramming cells. Notably, knockdown or 

overexpression of biglycan enhanced or suppressed MEF reprogramming, 

respectively. Collectively, our results have identified a novel role for microRNA-

mediated regulation of ECM formation in iPSC generation, and further, 

demonstrate that microRNAs can be powerful tools to dissect and understand the 

intracellular and extracellular molecular mechanisms of somatic cell 

reprogramming. 

 

Chapter 2.2: Results 

Systematic identification of highly regulated microRNAs during the early 

stages of reprogramming 

We hypothesized that at different reprogramming stages, potential iPSCs 

may express unique ‘marker signatures’ of microRNAs that regulate how the 

cells reach a fully reprogrammed stage. Previous findings indicate that 

reprogramming of MEFs is accompanied by sequential modulation of somatic cell 

and stem cell markers at different reprogramming stages (Brambrink et al., 2008; 

Stadtfeld et al., 2008), which can be used to track the process. These markers 

include the cell surface antigen Thy1, the mES markers alkaline phosphatase  
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Figure 2.1: Identification of highly regulated microRNAs during the early 
reprogramming stage 

(A) Scheme of experimental design. MEFs were infected with 4F virus for 5 days, 
and sorted based on expression of the Thy1 surface antigen. Both Thy1- and 
Thy1+ cells were collected for microRNA expression profile analysis.  
(B) Representative gating for day 5 4F-infected MEF sorting. PE-conjugated 
Thy1 antibody was used to detect Thy1- and Thy1+ populations.  
(C) iPSCs were enriched in the Thy1- population of 4F-infected MEFs at day 5. 
Equal numbers of cells (10,000 cells) sorted from 4F-infected MEFs were 
replated into feeder plates and cultured for 14 days, then GFP+ colonies were 
counted.  
(D) AP staining confirmed that iPSCs generated in (C) were enriched in the 
Thy1- population. Cells were harvested for AP staining at day 14 post-infection.  
(E) Representative image of AP+ colonies from replated Thy1- and Thy1+ cells.  
(F) Induced or repressed microRNAs were identified in Thy1- cells. Both Thy1- 
and Thy1+ cells were harvested for microRNA expression profiling. Data from the 
Thy1– population was compared with the original MEFs and microRNAs showing 
a 2-fold change and p<0.05 were identified using a volcano map. Hits are labeled 
as red dots.  
(G) Set of significantly induced microRNAs. MicroRNAs induced by at least 2-fold 
are shown. (H) Set of significantly repressed microRNAs. MicroRNAs repressed 
by at least 2-fold are shown. 
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Figure 2.2: miR-135b enhances reprogramming of MEFs to iPSCs 

 (A) miR-135b enhances Oct4-GFP+ colony formation. The indicated microRNA 
mimics were transfected at a final concentration of 50 nM into MEFs on day 0 
and again on day 5 after 4F transduction. GFP+ colonies were counted at 
day 11-12. Data represents two independent experiments with triplicate wells. 
Let-7a was used as a control. *p<0.05.  
(B) miR-135b increases the percentage of Oct4-GFP+ cells. Cells from the 
indicated treatments were harvested at day 14 post-infection with 4F and 
paraformaldehyde-fixed prior to FACS analysis to determine the percentage of 
GFP+ cells. Data represents two independent experiments with triplicate wells. 
*p<0.05.  
(C) Blocking of miR-135b compromises reprogramming. MicroRNA inhibitors 
were transfected into MEFs on days 0 and 5 post-infection with 4F. GFP+ 
colonies were counted at day 11-12 post-infection. Data represents two 
independent experiments with triplicate wells. *p<0.05.  
(D) miR-135b iPSCs reach a fully reprogrammed state. miR-135b–transfected 
iPSCs were fixed with paraformaldehyde and stained for alkaline phosphatase, 
Nanog, and SSEA1 expression. Endogenous Oct4 expression was monitored by 
GFP expression.  
(E) Teratoma formation confirms the pluripotency of miR-135b iPSCs. 1x106 
iPSCs were injected into athymic nude mice and tumors were harvested for H&E 
staining 3–4 weeks later.  
(F) miR-135b iPSCs show expression profiles similar to mES cells. Total RNA 
from miR-135b iPSCs was used for mRNA expression profile analysis and 
compared with original MEFs and with mES cells. The three tested miR-135b 
iPSC clones (clones 1, 3, and N1) showed similar expression patterns to mES 
cells, which were quite different from the expression profile of the original starting 
MEFs.  
(G) Chimeric mouse from miR-135b iPSC clone 4.  
(H) miR-135b iPSC could contribute to the germline of recipient embryos (miR-
135b iPSC clone 4) 
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(AP) and SSEA1, and the self-renewal genes Nanog and Oct4. Thy1 is highly 

expressed in MEFs but its expression is repressed at the initiation of 

reprogramming. Conversely, AP and SSEA1 expression is upregulated, followed 

by upregulation of Nanog and endogenous Oct4. Thus, MEFs expressing GFP 

under control of Oct4 are often used as the starting somatic cells because GFP 

expression then identifies cells that have been fully reprogrammed to the iPSC 

stage. To identify key microRNAs in reprogramming, we focused on the early 

reprogramming stage in the first 5 days after transduction of MEFs with the four 

factors (4F; OSKM) in what is reported to be the first stage of major 

transcriptional changes in the biphasic reprogramming process (Polo et al., 

2012). To determine whether the fate of 4F-transduced cells is set at that stage, 

Oct4-GFP MEFs were infected with 4F virus and then harvested five days later 

for cell sorting (Figure 2.1A). PE-conjugated Thy1 antibody was used to isolate 

pure Thy1+ and Thy1- populations, with gates set to exclude cells expressing 

intermediate Thy1 levels (Figure 2.1B). Equal numbers (10,000 cells) of Thy1+ 

and Thy1- cells were reseeded in 12-well plates on CF1-MEF feeders and their 

potential for iPSC induction was evaluated based on GFP and marker 

expression. Potential iPSCs were enriched mainly in the Thy1- population, as 

determined by counting of colonies expressing GFP or AP (Figure 2.1C, D). We 

detected no GFP+ colonies and only a few AP+ colonies in the Thy1+ population 

at day14 post 4F infection (Figure 2.1C, E). These results suggest that the fate of 

4F-infected MEFs is determined before day 5 post-infection and that potential 

iPSCs are enriched in the Thy1- population. We therefore collected total RNA 
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from sorted Thy1- cells at day 5 post-transduction to analyze overall microRNA 

expression changes by microarray. To identify microRNAs whose expression is 

significantly altered relative to that seen in starting MEFs, we filtered the data by 

setting a gate of at least a 2-fold change in expression with p<0.05 (Figure 2.1F). 

We identified a set of microRNAs in the Thy1- – population that were significantly 

induced by 4F transduction (Figure 2.1G). Among them, miR-135b was the most 

highly induced and showed a statistically significant change in expression (Table 

2.2, Fig S2.1A), and was thus selected for further analysis of its role, and that of 

its direct gene targets, in the reprogramming process. We observed that other 

microRNAs, such as miR-93 which belongs to miR-25~106b cluster, miR-92a 

which belongs to miR-17~92 cluster, and miR-302b which belongs miR-302 

cluster, were also highly induced at the early stage of reprogramming, confirming 

previous findings (Li et al., 2011b; Liao et al., 2011b; Subramanyam et al., 

2011a). Our analysis also revealed a set of microRNAs that were significantly 

repressed (Figure 2.1H), suggesting that they may serve as reprogramming 

barriers. Of these, we chose to evaluate the potential barrier function of miR-223 

and miR-495, because they are highly expressed in MEFs. 

 

Reprogramming is enhanced by miR-135b and inhibited by miR-223 and 

miR-495 

To determine how miR-135b affects reprogramming, miR-135b microRNA 

mimic was transfected into Oct4-GFP MEFs infected with 4F virus, and GFP+ 

colonies were counted at day 11–12 post-transduction. Transfection of the miR-
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135b mimic increased the number of Oct4-GFP+ colonies by ~ 2-fold, as did 

transfection with miR-93, which was previously characterized as an enhancer of 

reprogramming (Anokye-Danso et al., 2011) (Figure 2.2A). In similar 

experiments, cells were transfected with miR-223 or miR-495 mimics, which had 

minor inhibitory effects on reprogramming (Figure 2.2A). This observation is 

potentially due to the saturation effect of endogenous miRs as these miRs 

already have high expression in MEFs. We then analyzed the percentage of 

GFP+ cells in the miR-transfected reprogrammed cells and found that although 

both miR-93 and miR-135b increased GFP+ colony formation, only miR-135b 

increased the overall percentage of GFP+ cells by ~2 fold (Figure 2.2B, Figure 

S2.1B). In the same assay, miR-223 transfection significantly decreased the 

GFP+ population (Figure 2.2B), supporting the possibility that it serves as a 

reprogramming barrier. To confirm our findings, we used microRNA inhibitors. As 

expected, blocking miR-135b compromised reprogramming efficiency, while 

inhibiting miR-223 resulted in a significant increase in the number of Oct4-GFP+ 

colonies (Figure 2.2C). Following transfection with miR-135b mimics or inhibitors, 

miR-135b expression levels were quantified by RT-qPCR to confirm 

overexpression or downregulation, respectively (Figure S2.2A). Overall, these 

data demonstrate that miR-135b enhances reprogramming, consistent with its 

high induction by the 4F factors, while miR-223, which our analysis showed to be 

the most highly repressed microRNA, serves as a barrier.  

 Because GFP expression by putative iPSC could result from 

inappropriate reactivation of the Oct4 locus, we asked whether miR-135b–
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transfected iPSCs reached a fully reprogrammed state, both phenotypically and 

functionally. Analysis of miR-135b–transfected iPSCs indicated that they 

expressed appropriate markers, including AP, SSEA1, Nanog, and endogenous 

Oct4 (Figure 2.2D). Moreover, these cells had the full capacity to differentiate into 

three germ layers as indicated by marker analysis (Figure S2.2B), and to form 

heterogeneous teratomas when injected into athymic nude mice (Figure 2.2E). 

Genome-wide mRNA profiling also confirmed that gene expression in miR-135b–

transfected iPSCs resembled mES cells and differed significantly from MEFs 

(Figure 2.2F), and these cells contributed to chimeric mice and showed germline 

transmission (Figure 2.2G, H) which clearly indicated that a fully reprogrammed 

state has been achieved in these cells. These data demonstrated that miR-135b 

transfection in iPSCs did not adversely affect their pluripotency. 

 

Identification of miR-135b-regulated genes 

We next sought to identify genes that are directly regulated by miR-135b. 

Initially, microRNAs were thought to simply repress mRNA translation. However, 

recent findings suggest that microRNA-induced degradation of mRNA is a major 

mechanism of mRNA repression in animals (Djuranovic et al., 2011; Huntzinger 

and Izaurralde, 2011). Thus, we performed a genome-wide mRNA expression 

analysis to detect potential miR-135b targets. miR-135b or control siRNA were 

transfected into Oct4-GFP MEFs, and total RNAs were harvested 48 hr later for 

array analysis. The raw data was filtered to detect at least 2-fold changes in gene 

expression, (either increased or decreased) with p<0.05 (Figure 2.3A). Candidate 
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genes were then compared with published mESC, iPSC, and MEF expression 

profiles (Sridharan et al., 2009) and segregated into genes induced (group 1) or 

repressed (group 2) after miR-135b transfection, the latter being considered 

more likely to contain direct targets. Notably, we found that over 80% of the 

genes repressed by miR-135b transfection (group 2) were genes that are 

silenced as MEFs are reprogrammed to iPS/mES cells (correlated) (Figure 2.3B). 

This was not observed in genes that were induced by miR-135b transfection 

(group 1), of which approximately half are normally suppressed during 

reprogramming (uncorrelated), and the other half are increased (correlated). This 

data suggests that miR-135b targets a subset of genes that are normally 

repressed during reprogramming.  

To identify the targets of miR-135b, the “correlated” genes in group 1 

(Figure 2.3C) were analyzed using both miRanda (Enright et al., 2003) and 

Targetscan (Lewis et al., 2005). Potential target sites were identified based on 

seed region matches and overall predicted binding energy. Of 27 genes 

repressed by miR-135b by at least 2-fold, 14 contained at least one predicted 

miR-135b target site (Figure S2.3A and Table 2.1). Among them, Wisp1, Tgfbr2, 

and Igfbp5 showed high expression intensity detected by microarray and 

appeared to have direct miR-135b target sites. Therefore, they were chosen for 

further validation. 
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Figure 2.3: Genome-wide identification of potential miR-135b target genes 

(A) Volcano maps from miR-135b–transfected MEFs. MEFs were transfected 
with siControl and miR-135b for two days and analyzed by mRNA expression 
array. Hits (red dots) were gated for at least 2-fold expression change and 
p<0.05.  
(B) miR-135b–repressed genes are enriched for genes suppressed in ES/iPS 
cells. miR-135b–regulated genes were separated into two groups (induced or 
repressed) and then compared with existing iPS/ES/MEF expression profiles. 
“Correlated genes” indicates that genes changed upon miR-135b transfection 
showed similar changes from MEFs to iPS/mES cells. “Uncorrelated genes” 
indicates a group of genes that were changed upon miR-135b transfection but 
had a different (reversed) change in expression pattern from MEFs to iPS/mES 
cells.  
(C) List of correlated miR-135b–repressed genes.  
(D) Representative miR-135b–regulated genes from microarray.  
(E) Expression of miR-135b–regulated genes was confirmed by RT-qPCR. MEFs 
were transfected with microRNA mimics for two days before harvesting for RT-
qPCR analysis. Error bar represents two independent experiments with duplicate 
samples.  
(F) TGFBR2 protein expression is suppressed by miR-93 and miR-135b. Total 
proteins were harvested for western blotting analysis at day 2 post-transfection 
with miR mimic.  
(G) IGFBP5 protein expression is suppressed by miR-135b. A miR-93-
transfected sample was included as a negative control. RT-qPCR data was 
analyzed using the Wilcoxon rank-sum test. * P<0.05; ** P<0.01; *** P<0.001 
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 To confirm our mRNA microarray analysis, total RNAs were harvested 

from miR-135b-transfected Oct4-GFP MEFs in an independent experiment, and 

RT-qPCR was used to quantify the representative mRNAs. Indeed, we detected 

decreases in mRNA levels upon miR-135b transfection that were in good 

agreement with the mRNA array data (Figure 2.3D, E). Tgfbr2 and Igfbp5 mRNA 

levels were decreased ~70% upon miR-135b transfection, and western analysis 

confirmed that this was accompanied by a dramatic decrease in Tgfbr2 and 

Igfbp5 protein expression (Figure 2.3F, G). Although expression of Wisp1 mRNA 

was also markedly reduced by miR-135b expression (Figure 2.3D, E), no Wisp1 

antibodies are currently available, which prevented us from analyzing Wisp1 

protein expression. We cloned the 3’UTR of these potential targets into the pGL3 

luciferase reporter vector and co-transfected the reporters plus the pRL-TK 

plasmid into HeLa cells. Indeed, miR-135b decreased luciferase activity of Tgfbr2 

and Wisp1 reporters by ~80%, and the Igfbp5 reporter by ~30% (Figure S2.3B). 

We also noticed that the combination of miR-93 and 135b showed additive 

effects on Tgfbr2 repression (Figure S2.3C).  These data strongly suggest that 

Tgfbr2, Wisp1, and Igfbp5 are direct targets of miR-135b, of which the latter two 

are key component of extracellular matrix proteins. To further validate Wisp1 as a 

target of miR-135b, RT-qPCR was utilized to assess the Wisp1 mRNA level after 

transfecting cells with miR-135b mimic, mutant mimic or miR-135b inhibitors.  

Wisp1 mRNA decreased by ~50% during miR mimic transfection, increased by 

~25% upon inhibition and remained consistent with the non-targeting siRNA 

control when transfected with the mutant miR mimic (Figure S2.3D). In 
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conjunction with the dual luciferase reporter assay, this data indicates a direct 

sequence specific interaction between miR-135b and Wisp1.  

 

Wisp1 has dual roles during reprogramming and is a key regulator of ECM 

proteins 

We next asked whether the potential miR-135b targets Tgfbr2, Wisp1, and 

Igfbp5 function as reprogramming barriers. Tgfbr2 was previously reported to be 

a reprogramming barrier and a potential target of miR-93 and its family of 

microRNAs (Li et al., 2011b). In addition to Tgfbr2, Wisp1, and Igfbp5, we chose 

to investigate several other genes that might be indirectly regulated by miR-135b, 

such as Eif4ebp1 and Cxcl14 as they do not have predicted miR-135b target 

sites. Before using siRNAs for these experiments, we confirmed by RT-qPCR 

that each mRNA was efficiently knocked down by at least 60% by its cognate 

siRNA (Figure 2.4A).  

To determine whether knockdown of the candidate barrier genes 

increased reprogramming efficiency, we transfected siRNAs into Oct4-MEFs on 

the same day as 4F transduction (day 0), then again on day 5 post-infection, and 

counted GFP+ iPSC colonies on day 11–12. We detected a significant increase in 

the number of GFP+ colonies after transfection of siRNA targeting Igfbp5 and 

Tgfbr2, consistent with their possible function as barrier genes (Figure 2.4B). 

Interestingly, a dramatic decrease in reprogramming efficiency was observed in 

cells transfected with siWisp1 on days 0 and 5 post-4F infection. However, if  
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Figure 2.4: Wisp1 plays a dual role during reprogramming, while Tgfbr2 and 
Igfbp5 knockdown enhances reprogramming 

(A) Potential target genes are efficiently knocked down by siRNAs. Smartpool 
siRNAs at a final concentration of 50 nM were used to transfect MEFs. Total 
RNAs were harvested at day 2 for RT-qPCR to evaluate knockdown efficiency of 
each siRNA.  
(B) Knockdown of Tgfbr2 or Igfbp5 enhances Oct4-GFP+ colony formation, while 
knockdown of Eif4ebp1 and Cxcl14 had no effect. MEFs were transfected with 
siRNAs on days 0 and 5 at the same time as 4F infection. GFP+ colonies were 
counted at day 11-12 post-infection. Error bars represent three independent 
experiments with triplicate wells. The p value was calculated using Student’s t-
test. **p<0.01.  
(C) Knockdown of Wisp1 shows stage-specific effects on reprogramming. 
Knockdown of Wisp1 on the same days as 4F transduction (day 0) decreased 
the reprogramming efficiency by ~70% percent, while knockdown on day 5 
enhanced reprogramming by ~3 fold. Error bars represent three independent 
experiments with triplicate wells. **p<0.01.  
(D) Wisp1 is efficiently knocked down by siRNAs during both procedures. 
siWisp1 was transfected at a final concentration of 50 nM on day 0 or day 5. 
Total RNAs were harvested at day 2 post-transfection for RT-qPCR analysis of 
Wisp1 expression.  
(E) Knockdown of Wisp1 is able to rescue iPS reprogramming after inhibition of 
miR-135b at day 5. Error bars represent three independent experiments with 
duplicate wells.  
(F) Knockdown of Wisp1 at day 0 inhibits mesenchymal-to-epithelial transition 
(MET). MEFs were infected with 4F and transfected with siRNA on the same day 
(day 0). Total RNAs were harvested 2 days later. Expression of several MET 
markers was evaluated.  
(G) Knockdown of Wisp1 at day 5 does not affect MET. MEFs were transduced 
with 4F at day 0 and transfected with siRNA at day 5 post-4F infection. Total 
RNAs were harvested 2 days after transfection and expression of the MET 
markers was evaluated.  
(H) Overexpression of Wisp1 inhibits iPS induction. MEF were transduced with a 
Wisp1 HA tagged retroviral vector along with OSKM and GFP colonies were 
quantified on day 12-14. RT-qPCR data was analyzed using the Wilcoxon rank-
sum test. * P<0.05; ** P<0.01; *** P<0.001 
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siWisp1 was transfected on day 5 only, there was a 3-fold increase in the number 

of GFP+ colonies (Figure 2.4C), suggesting that Wisp1 can play temporally 

distinct roles during reprogramming. This effect was not due to a difference in 

siRNA transfection efficiency, because Wisp1 mRNA knockdown was equivalent 

under both protocols (Figure 2.4D). We observed that Wisp1 mRNA expression 

was sharply reduced by 4F initially and then maintained at a steady level during 

the rest course of the reprogramming process (Figure S2.4A) while Wisp1 protein 

levels showed a decline between days 4 and 6 (Figure S2.4B).   To analyze the 

significance of Wisp1 in the context of miR-135b reprogramming, MEF were 

reprogrammed while simultaneously knocking down the endogenous Wisp1 and 

inhibiting miR-135b using an antisense oligo five days post OSKM transduction. 

Wisp1 knockdown and miR-135b inhibition at day 5 of iPS reprogramming 

showed an increase and a decrease in GFP+ iPS colonies, respectively. 

However, when both were simultaneously inhibited during reprogramming, a 

rescuing effect in iPS Oct4 GFP positive colonies was observed (Figure 2.4E). 

This data suggests that Wisp1 contributes significantly to miR-135b 

reprogramming and acts as a barrier to iPSC generation. 

To prove this observation further, we next analyzed the effect of Wisp1 

siRNA transfection on markers of MET, which is believed to be the initial step of 

the reprogramming process (Li et al., 2010; Samavarchi-Tehrani et al., 2010). 

Remarkably, knockdown of Wisp1 on day 0 dramatically decreased mRNA 

expression of each of the MET markers tested, suggesting a significant delay or 

suppression of MET by siWisp1 (Figure 2.4F). In contrast, Wisp1 knockdown on 
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day 5 had little effect on MET marker mRNA levels, except a small and 

insignificant decrease in Epcam expression (Figure 2.4G). In addition, constant 

overexpression of HA tagged Wisp1 showed inhibitory effects on reprogramming 

(Figure 2.4H) with HA-tagged Wisp1 overexpression verified by western blot 

(Figure S2.4C). Together, these data show that the role of Wisp1 is temporally 

dependent, and suggests a dual role of Wisp1 in which it acts as a positive 

regulator of reprogramming in the early stages and a negative regulate later.  

To identify the mechanism by which Wisp1 affects reprogramming, we 

next investigated the downstream targets of Wisp1. Wisp1 is a member of CCN 

family proteins, the function of which usually includes two aspects: (1) binding of 

scaffold of extracellular matrix proteins; (2) binding receptors and transcriptionally 

regulating signaling events mediated by biological active molecules such as 

growth factors and cytokines (Jun and Lau, 2011). We reasoned that since 

somatic cell reprogramming is an in vitro process, it is more likely that Wisp1 

functions through transcriptional regulation of downstream genes. To identify the 

downstream targets of Wisp1, we utilized mRNA microarrays to search for genes 

significantly changed upon Wisp1 knockdown in control, non-infected and 4F-

transduced MEFs (Table 2.4). The microarray experiments identified a panel of 

ECM genes, including Dkk2, Igfbp5, Nov, and Tgfbi, that showed profoundly 

decreased expression upon Wisp1 knockdown, which was confirmed by RT-

qPCR (Figure 2.5A). Moreover, expression of Dkk2, Igfbp5, Nov, and Tgfbi was 

suppressed by 4F transduction. In addition, Wisp1 knockdown increased 

expression of Ccl20 (Figure 2.5A), which was also induced in MEFs by 
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Figure 2.5: Wisp1 is a key regulator of extracellular matrix genes 

(A) Wisp1 regulates expression of several ECM genes. Expression of Tgfbi, 
Igfbp5, Dkk2 , Nov, and Ccl20 were dramatically changed upon Wisp1 
knockdown. Uninfected and 4F-infected MEFs were transfected with siWisp1 for 
2 days and total RNAs were harvested for RT-qPCR analysis of different ECM 
genes. Error bars represent two independent experiments with duplicate wells.  
(B) Knockdown of Nov, Dkk2, and Tgfbi significantly enhances iPSC generation. 
MEFs were transduced with 4F at day 0 and transfected with siRNAs at day 5 
post-infection. GFP+ colonies were quantified at around day 11-13. Error bars 
represent three independent experiments with triplicate wells. **p<0.01.  
(C) Overexpression of Wisp1-regulated ECM genes compromises 
reprogramming. The indicated ECM genes were cloned into pMX retroviral 
vectors. MEFs were transduced with 4F plus the indicated ECM genes and GFP+ 
colonies were quantified at around day 11-13. Data was normalized to pMX-
RFP–transduced cells. Error bars represent three independent experiments with 
triplicate wells. **p<0.01.  
(D) Addition of recombinant ECM proteins compromises reprogramming. Purified 
recombinant TGFBI, DKK2, NOV, and CCL20 were added at a final 
concentration of 100 ng/ml to cultures of 4F-MEFs undergoing reprogramming. 
GFP+ colonies were quantified at day 11-13. Error bars represent two 
independent experiments with triplicate wells. *p<0.05.  
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4F transduction alone. To rule out the possibility of off-target effects of the Wisp1 

siRNA, two additional shRNAs were tested. These shRNAs efficiently 

suppressed Wisp1 expression, and had the same inhibitory effects on expression 

of Wisp1 target genes (Figure S2.5A). To confirm that the miR-135b effects on 

MEFs was at least partially mediated through Wisp1, we transfected MEFs with 

an miR-135b mimic, and found decreased expression of Dkk2, Igfbp5, Nov, and 

Tgfbi (Figure S2.5B). We only observed modest upregulation of Wisp1 target 

genes with miR-135b inhibitor transfection (Figure S2.5C), possibly due to 

indirect targeting effects. In addition, overexpression of Wisp1 target genes did 

not affect Wisp1 expression, indicating a lack of feedback regulation (Figure 

S.5D). Together, these data suggest that Wisp1 may serve as a key regulator of 

ECM genes in MEFs. 

To determine if expression of Wisp1-regulated ECM genes could affect 

reprogramming, Oct4-GFP MEFs were infected with 4F and on day 5 were 

transfected with siRNAs targeting Dkk2, Igfbp5, Nov, and Tgfbi. Indeed, 

knockdown of each of these genes at day 5 only significantly increased 

reprogramming efficiency (Figure 2.4B, Figure 2.5B), while similar biphasic 

effects were observed for Tgfbi and Nov when they were knocked down at day 0 

and 5 (Figure S2.6A). We also detected an increase in mES marker gene 

expression in the siRNA-transfected cells (Figure S2.6B). Conversely, 

overexpression of these genes in MEFs strongly reduced GFP+ colony formation, 

particularly with Igfbp5, which reduced reprogramming by ~70% (Figure 2.5C). 

Interestingly, addition of recombinant DKK2, TGFBI, and NOV proteins to the 4F-
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transfected MEF cultures from day5 post infection had similar effects on the cells 

as overexpression of the genes (Figure 2.5D), demonstrating that the effects of 

Wisp1 were mediated by secretion of the protein products of its target genes, and 

confirming that the Wisp1-regulated ECM genes do indeed act as barriers to the 

reprogramming process.  

Based on the results described above, we propose a model of how Wisp1 

may have a biphasic effect on MEF reprogramming (Figure 2.6A). Wisp1 is 

highly and specifically expressed in MEFs compared with iPSCs (Sridharan et 

al., 2009), and through its effects on the downstream ECM genes, plays a crucial 

role in maintaining normal MEF growth. This is supported by our finding that 

persistent knockdown of Wisp1 and NOV (Figure S.7A) by shRNAs in MEFs 

compromises their proliferation (Figure S2.7B). shRNA mediated knockdown of 

Wisp1 also confirms a similar biphasic effect on reprogramming (Figure S.7C). 

siRNA mediated knockdown of Nov also showed impaired cell proliferation 

(Figure S.7E). Upon 4F transduction and reprogramming, infected MEFs would 

have two regulatory networks, one established by the four reprogramming 

factors, and the other being endogenous. The ability of a cell to become fully 

reprogrammed would depend on whether the 4F-induced network could silence 

the existing MEF regulatory network. In these cells, although MEF-specific genes 

such as Wisp1 and its potential receptors are being down-regulated, the 

remaining receptors could still be stimulated by signals secreted by surrounding 

cells that are not reprogrammed. This constant stimulation of original MEF 
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Figure 2.6: Target gene regulation by Wisp1 through biglycan 

(A) Proposed model for Wisp1 dual role during reprogramming. In wild type 
MEFs (fibroblast state), normal proliferation and function of the cells are 
dependent on a MEF-specific regulation network, where Wisp1 is one of the most 
important ECM components and regulates the expression of several other ECM 
genes. In 4F-transduced MEFs (intermediate state), two systems co-exist; one 
from the MEF-specific network and the other from the four transcription factors. 
ECM signals from the MEF-specific network interfere with the cells becoming 
fully reprogrammed. In fully reprogrammed cells (ES cell state), ECM receptors 
are no longer expressed, and the cells are thus resistant to interfering signals 
from surrounding MEFs.  
(B) Biglycan and decorin are specifically expressed in MEFs. Expression of 
biglycan and decorin was analyzed by RT-qPCR in sorted cells.  
(C) Biglycan and decorin are efficiently knocked down by siRNAs. MEFs were 
transfected with siRNAs for 2 days and total RNAs were harvested for RT-qPCR 
analysis.  
(D) Knockdown of biglycan decreases expression of Wisp1-regulated ECM 
genes. Expression of Wisp1-regulated ECM genes was analyzed in MEFs 
subjected to knockdown of biglycan or decorin. Error bars represent two 
independent experiments with duplicate wells. **p<0.01.  
(E) Overexpression of biglycan inhibits reprogramming. Flag-tagged biglycan 
was cloned into pMX vector and transduced into MEFs together with 4F. GFP+ 
colonies were quantified at day 11-13. Error bar represents two independent 
experiments with triplicate wells. *p<0.05.  
(F) Knockdown of biglycan enhances reprogramming. Biglycan siRNAs were 
transfected into MEFs at day 5 post-4F transduction. GFP+ colonies were 
quantified at day 11-13. Error bar represents two independent experiments with 
triplicate wells. RT-qPCR data was analyzed using the Wilcoxon rank-sum test. * 
P<0.05; ** P<0.01; *** P<0.001 
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network would compete with 4F-mediated ES regulatory network and resulted in 

a low efficiency for cells to become fully reprogrammed. Thus, knocking down 

Wisp1 in these cells could reduce the MEF signaling stimulation, significantly 

break the balance and push them toward a fully reprogrammed state. Once the 

cells become mES-like cells, MEF ECM genes and receptors are completely shut 

down and they become resistant to the signals from nearby feeder cells.  

 

Wisp1 may regulate ECM genes through its interaction with biglycan 

To test our model (Figure 2.6A), we searched the literature for known 

factors that could interact with Wisp1. If our model is correct, we predict we will 

see high expression of these genes in the starting population of MEFs, whereas 

cells undergoing reprogramming will downregulate but not extinguish their 

expression, and expression will be silenced in fully reprogrammed iPSCs/mES 

cells. Interestingly, Wisp1 has been reported to bind the proteoglycans decorin 

and biglycan on the surface of human skin fibroblasts (Desnoyers et al., 2001) 

and both are highly expressed in MEFs (Sridharan et al., 2009). To determine if 

decorin and biglycan might be involved in Wisp1 regulation in MEFs, we first 

examined their gene expression in the starting MEFs, the sorted Thy1+/– cells, 

and in mES populations. The two genes were highly expressed in MEFs but 

undetectable in mES cells (Figure 2.6B). They were highly expressed in Thy1+ 

cells and showed strongly reduced but detectable expression in Thy1- cells 

(Figure 2.6B), which are enriched in potential iPSCs (Figure 2.1C-E). We then 

transfected MEFs with siRNAs targeting these two genes and confirmed the 
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knockdown efficiency by RT-qPCR (Figure 2.6C). Of interest, knockdown of 

biglycan also decreased decorin expression, suggesting possible cross 

regulation of the two genes. Knockdown of biglycan also decreased the 

expression of the Wisp1 target genes Dkk2, Igfbp5, Nov, and Tgfbi, to a similar 

level to that seen with Wisp1 knockdown (Figure 2.6D). Consistent with these 

observations, overexpression of biglycan strongly suppressed reprogramming, 

and conversely, knockdown significantly enhanced reprogramming (Figure 2.6E, 

F). In addition, we also observed similar phenotype with decorin knockdown and 

overexpression (Figure S2.8). Therefore, we conclude that biglycan may be an 

intermediate for Wisp1-mediated regulation of its target ECM genes.  

 

Chapter 2.3: Discussion 

Since the discovery that MEFS can be directly reprogrammed to iPSCs, 

considerable effort has been made to understand how the four reprogramming 

transcription factors extinguish endogenous MEF gene expression and gradually 

re-establish mES-like regulatory networks. Understanding the critical barriers to 

reprogramming is essential to allow development of novel technologies and 

compounds to improve the efficiency and to elucidate the underlying 

transcriptional and epigenetic changes associated with the pluripotent state.  

Here, we used microRNAs as powerful tools to dissect the molecular 

mechanisms that elicit successful reprogramming. We analyzed a Thy1– cell 

population enriched in potential iPSCs to identify its microRNA expression profile 
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Figure 2.7: Model for roles of microRNAs during the reprogramming 
process 

MicroRNAs induced by the four factors regulate intracellular and extracellular 
processes involved in cell fate decisions. Intracellularly, microRNAs target 
signaling pathways that are barriers for iPSC generation, such as TGFβ 
signaling, the p53-p21 pathway, and cell cycle control. Meanwhile, some 
microRNAs, such as miR-135b, regulate expression of ECM genes to establish a 
growth environment that promotes the fully reprogrammed state. Both groups of 
microRNAs work collaboratively following 4F transduction to reprogram MEFs to 
iPSCs.  
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during the early stages of reprogramming. From these experiments, we identified 

sets of microRNAs that were induced or repressed during the process, and 

showed that manipulating their expression with miR mimics or inhibitors 

dramatically altered the efficiency of iPSC induction. Among the microRNAs 

analyzed, miR-135b was the most highly induced by the four factors, and was 

shown to enhance iPSC generation. Moreover, by mining genome-wide mRNA 

expression data for potential miR-135b target genes, we showed that Wisp1 and 

its downstream ECM genes could compromise the efficiency of the 

reprogramming process. Therefore, our approach has not only identified a novel 

ECM network that is involved in modulating the reprogramming process, but we 

have also shown that using microRNAs as probes could be an efficient method to 

study both the intracellular and extracellular molecular mechanisms of 

reprogramming. 

Somatic cell reprogramming is believed to be a stochastic process in 

which extensive gene network rewiring happens within the reprogramming cells 

(Hanna et al., 2009). According to the previous report on molecular cornerstones 

of the reprogramming process (Stadtfeld et al. 2008), the reprogramming factors 

are only needed during the initial 8 days for cells to become fully reprogrammed. 

One of the most notable changes in the transition from somatic to embryonic 

stem cell-like identity is the modulated expression of cell surface antigens. 

According to previous reports and our own studies, the transition from Thy1+ to 

Thy1- represents an important early step, where most of the potential iPSCs are 

present in Thy1- population and significant transcriptional changes occur (Polo et 
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al., 2012). In this study, we identified miR-135b to be among the most highly 

induced microRNAs during this key Thy1+ to Thy1- transitional stage and 

showed that its putative extracellular matrix targets, particularly Wisp1, act as 

barriers to the reprogramming process. 

Wisp1 was first described as a Wnt1-inducible protein (Pennica et al., 

1998). It belongs to the CCN gene family that encodes six 30–40 KDa secreted 

proteins (Berschneider and Konigshoff, 2011; Chen and Lau, 2009). CCN 

proteins have four conserved structural domains with sequences homologous to 

insulin-like growth factor binding proteins (IGFBPs), von Willebrand factor type C 

repeat (VWC), thrombospondin type I repeat (TSP), and carboxyl-terminal (CT) 

domain. These domains determine the function of CCN member proteins during 

development and in human diseases. Although Wisp1 has been linked to 

oncogenic transformation (Pennica et al., 1998; Xu et al., 2000), proliferation and 

cell survival (Venkatachalam et al., 2009; Venkatesan et al., 2010), and 

epithelial-to-mesenchymal transition (Konigshoff et al., 2009), little is known 

about its downstream genes or how it regulates their expression. In this study, 

we identified several downstream ECM components that were regulated by 

Wisp1, likely through its interaction with biglycan. These include Tgfbi, Dkk2, 

Igfbp5, and Nov. These findings provide some new insights into Wisp1 function. 

For example, TGFBI is a known downstream gene induced by TGFβ signaling 

and has profound tumor suppressive effects (Ahmed et al., 2007; Zhang et al., 

2009). The TGFβ signaling pathway has itself been identified as a barrier for 

somatic reprogramming (Ichida et al., 2009a; Maherali and Hochedlinger, 
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2009a). Our finding thus indicates there may be crosstalk between Wisp1 and 

TGFβ signaling in regulating expression of the ECM protein TGFBI. Knockdown 

of Wisp1 decreases Tgfbi expression, which might compromise TGFβ signaling 

and allow cells to become fully reprogrammed. Two other Wisp1 target genes we 

identified are DKK2 and IGFBP5. DKK2 is known as a Wnt signaling antagonist 

(Kawano and Kypta, 2003) and IGFBP5 could regulate IGF signaling by binding 

to IGF-1/2 (Beattie et al., 2006). We found that knockdown of Wisp1 decreased 

expression of Dkk2 and Igfbp5, which would derepress Wnt and IGF signaling. 

Consistent with this, previous studies have indicated that Wnt signaling could 

promote somatic reprogramming (Marson et al., 2008). It was recently shown 

that IGFBP5 overexpression induces cell senescence in a p53-dependent 

manner (Kim et al., 2007). This protein is highly expressed in fibroblasts, and its 

expression is further increased upon senescence (Yoon et al., 2004). Thus, 

decreased expression of IGFBP5 and DKK2 is likely to be beneficial to iPSC 

generation. Furthermore, it was recently reported that Wnt signaling also 

regulates iPSC reprogramming in a stage specific manner in which Wnt inhibits 

early stage reprogramming but enhances it later (Ho et al. 2013). Our findings 

are consistent with this biphasic effect and suggest that the Wnt signally pathway 

may be an underlying or overlapping mechanism in our proposed extracellular 

matrix regulated model. 

Over the past few years much progress has been made in understanding 

the molecular mechanisms of somatic reprogramming and several important 

barrier pathways have been discovered. However, these efforts have mainly 
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focused on intracellular signaling networks, and the effect of the extracellular 

environment on reprogramming has not been fully explored. In our study, 

biglycan, a surface glycoprotein that binds Wisp1, is expressed in MEFs but 

decreases in reprogramming cells, as shown in Thy1- cells that are enriched with 

potential iPSCs. These cells will still be stimulated by Wisp1 and presumably 

other ECM proteins secreted by surrounding feeder MEF cells or 

unreprogrammed cells, as they still express the receptors such as biglycan, 

although at much lower level compared with original MEFs. These stimulations 

would prevent the cells from shutting down MEF-specific regulation networks and 

compete with four factors-mediated regulatory networks to determine the fate of 

target cells. Meanwhile, our discovery that microRNAs induced by the four 

factors can regulate ECM genes reveals some new insights into how the four 

factors manage to reprogram a small percentage of cells. Down-regulation of 

MEF-specific ECM proteins seems to be part of the entire reprogramming 

process and is mediated at least in part by 4F-mediated induction of microRNAs 

such as miR-135b. Together with previous findings, it is clear that microRNAs are 

important regulators of reprogramming, both through intracellular and 

extracellular mechanisms (Figure 2.7).  

In summary, we have identified a novel microRNA-mediated pathway of 

ECM gene regulation that is involved in iPSC generation. Our results indicate 

that 4F-induced miR-135b expression in turn regulates expression of Wisp1 and 

Igfbp5. Wisp1 is a key regulator of several ECM proteins, which may be 

mediated through Wisp1 interaction with biglycan. Our findings not only identify a 
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novel role for ECM components in somatic cell reprogramming, but also 

demonstrate that microRNAs can be powerful tools to dissect the intracellular 

and extracellular molecular mechanisms of iPSC generation.  
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Chapter 2.4: Materials and Methods 
 
Cell culture, vectors, and virus transduction 

Oct4-GFP MEFs were derived from mouse embryos harboring an IRES-

EGFP fusion cassette downstream of the stop codon of pou5f1 (Jackson lab, 

Stock#008214) at E13.5. MEFs were cultured in DMEM (Invitrogen, 11995-065) 

with 10% FBS (Invitrogen) plus glutamine and nonessential amino acids (NEAA). 

Only MEFs at passage 0 to 4 were used for iPSC induction. pMXs-Oct4, Sox2, 

Klf4, and cMyc were purchased from Addgene. Tgfbi, Dkk2, Igfbp5, Nov, and 

biglycan overexpression vectors were constructed by inserting cDNA coding 

sequences into the pMX vector. To generate retrovirus, PLAT-E cells were 

seeded in 10 cm plates. The next day, the cells were transfected with 9 µg of 

each vector using Lipofectamine (Invitrogen, 18324-012) and PLUS (Invitrogen, 

11514-015). Viruses were harvested and combined 2 days later. For iPSC 

induction, MEFs were seeded in 12-well plates and the next day were transduced 

with “four factor” (4F) virus with 4 µg/ml Polybrene. One day later, the medium 

was changed to fresh MEF medium, and 3 days later it was changed to mES 

culture medium supplemented with LIF (Millipore, ESG1107). GFP+ colonies 

were picked at day 14 post-transduction, and expanded clones were cultured in 

DMEM with 15% FBS (Hyclone) plus LIF, thioglycerol, glutamine, and NEAA. 

Irradiated CF1 MEFs served as feeder cells to culture mES and derived iPSC 

clones. 



52 
	

	

Recombinant proteins were obtained from commercial sources as follows: mouse 

Dkk2 (R&D systems, 2435DK/CF), human NOV/CCN3 (R&D systems, 1640NV), 

human TGFBI (Prospec, #PRO-568), CCL20 (R&D systems, 760-M3) 

MicroRNAs, siRNAs, and MEF transfection 

microRNA mimics and inhibitory siRNAs were purchased from 

Dharmacon. To transfect MEFs, microRNA mimics were diluted in Opti-MEM 

(Invitrogen, 11058-021) to the desired final concentration. Lipofectamine 2000 

(Invitrogen, 11668-019) (2 µl/well) was added and the mixture was incubated for 

20 min at RT. For 12-well plate transfections, 80 µl of the miR mixture was added 

to each well with 320 µl of Opti-MEM. Three hours later, 0.8 ml of the virus 

mixture (for iPSC) or fresh medium was added to each well, and the medium was 

changed to fresh MEF medium the next day.  

 

Western blotting 

Total cell lysates were prepared using M-PER buffer (PIERCE, 78503), 

incubated on ice for 20 min, and cleared by centrifuging at 13,000 rpm for 

10 min. Equal amounts of lysate were loaded onto 10% SDS-PAGE gels. 

Proteins were transferred to PVDF membranes (Bio-Rad, 1620177) using the 

semi-dry system (Bio-Rad) and then blocked with 5% milk in Tris-buffered 

saline–Tween 20 (TBST: 50mM Tris, 150mM NaCl, 0.05% Tween20) for at least 

1 hr at room temp or overnight at 4°C. The following antibodies were used: anti-

mNanog (R&D Systems, AF2729), anti-h/mSSEA1 (R&D Systems, MAB2156), 
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anti-TGFBR2 (Cell Signaling, #3713), anti-IGFBP5 (R&D Systems, AF578), anti-

actin (Thermo, MS1295P0), anti-AFP (Abcam, ab7751), anti-beta III tubulin (R&D 

Systems, MAB1368), anti-WISP1 (Santa Cruz Biotechnology, sc-25441) and 

anti-alpha actinin (Sigma, A7811). 

 

Expression data analysis  

Illumina Mouse_miRNA-12 v2 and Illumina Mouse-6 v2 Expression 

BeadChips were analyzed using the manufacturers BeadArray Reader and 

primary data was collected using the supplied Scanner software. Data analysis 

was done in three stages. First, expression intensities were calculated for each 

gene probed on the array for all hybridizations using illumina’s Beadstudio3 

software. Second, intensity values were quality controlled and normalized using 

the Illumina Beadstudio detection with a P-value threshold set to <0.05, thus 

removing genes which were effectively absent from the array. The initial 379 

miRNAs were reduced to 368 following this step. All the arrays were then 

normalized using the normalize.quantiles routine from the Affy package in 

Bioconductor. This procedure accounted for any variation in hybridization 

intensity between the individual arrays. An assessment of several different 

normalization techniques using the Bioconductor maCorrPlot routine suggested 

that normalize.quantiles was the most appropriate for the data.  

Finally, these normalized data were imported into GeneSpring and analyzed for 

differentially expressed miRNAs. The groups of biological replicates were 

included in the analysis and significantly differentially expressed genes 
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determined on the basis of t-tests and fold difference changes in expression 

level. 

The initial comparison was between the MEF samples (2 biological 

replicates) and the Thy1- samples (2 biological replicates). Differentially 

expressed miRNAs were determined by searching for miRNAs with statistically 

significant differences between the groups based on the results of the Welch t-

test (parametric test, variances not assumed equal; p-value cutoff 0.05). This 

yielded a list of 9-22 genes out of the initial 379. To find the genes with the most 

robust changes in expression, the data was plotted as a “Volcano Plot” (see 

Figure 1), which allows statistical significance to be measured along with the 

extent of fold change in expression. Hence, the outliers are those genes with the 

highest fold change which is also statistically significant. 

 

mRNA and microRNA RT and quantitative PCR 

Total RNAs were extracted using Trizol (Invitrogen), and then 1 µg total 

RNA was used for RT using Superscript II (Invitrogen). Quantitative PCR was 

performed using a Roche LightCycler480 II and the SYBR Green mixture from 

Abgene (Ab-4166). Mouse Ago2, Dicer, Drosha, Gapdh, and p21 primers are 

defined in Table 2.2. Other primers were described previously (Takahashi and 

Yamanaka, 2006). For microRNA quantitative analysis, total RNA was extracted 

using the method described above. Between ~1.5 and 3 µg of total RNA was 

used for microRNA reverse transcription using QuantiMir kit following the 

manufacturer’s protocol (System BioSciences, RA420A-1). RT products were 
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then used for quantitative PCR using the mature microRNA sequence as a 

forward primer and the universal primer provided with the kit. RT-qPCR data was 

analyzed using the non-parametric Wilcoxon rank-sum test. * P<0.05; ** P<0.01; 

*** P<0.001. 

 

Immunostaining 

Cells were washed twice with PBS and fixed with 4% paraformaldehyde at 

room temperature for 20 min. Fixed cells were permeabilized with 0.1% Triton X-

100 for 5 min, and then blocked in 5% BSA in PBS containing 0.1% Triton X-100 

for 1 hr at room temperature. Primary antibody was diluted at 1:100 to 1:400 in 

2.5% BSA PBS containing 0.1% Triton X-100, according to the manufacturer’s 

protocol. Cells were stained with primary antibody for 1 hr and then washed three 

times with PBS. Secondary antibody was diluted 1:400 and cells were stained for 

45 min at room temperature.  

 

Embryoid body formation and differentiation assay 

iPSCs were trypsinized to a single cell suspension, and the hanging drop 

method was used to generate embryoid bodies (EB). For each drop, 4000 iPSCs 

in 20 µl EB differentiation medium were used. EBs were cultured in hanging 

drops for 3 days before being reseeded onto gelatin-coated plates. After 

reseeding, cells were cultured until day 14, when apparent beating areas could 

be identified.  
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Teratoma formation 

To generate teratomas, iPSCs were trypsinized and resuspended at a 

concentration of 1x107 cells/ml. Athymic nude mice were anesthetized with 

Avertin, and 150 µl of iPSCs were injected into each mouse. Tumors were 

monitored every week for ~3–4 weeks. Tumors were then harvested and fixed in 

Z-Fix solution for 24 hrs at room temperature, before paraffin embedding, 

sectioning, and H&E staining. To further evaluate pluripotency of derived iPSC 

clones, iPSCs were injected into C57BL/6J-Tyr(C-2J)/J (albino) blastocysts. 

Generally, each blastocyst received 12–18 iPSCs. ICR recipient females were 

used for embryo transfer. 

 

Chapter 2 is an adapted version of materials published as MicroRNA-

mediated regulation of extracellular matrix formation modulates somatic cell 

reprogramming. Li Z*, Dang J*, Chang KY, Rana TM.  (2014). RNA. 20(12):1900-

15. doi: 10.1261/rna.043745.113. Epub 2014 Oct 21. PMID: 25336587. The 

dissertation author is the co-first author on this work with Dr. Zhonghan Li. 
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Figure S2.1: miR-135b enhances the overall percentage of Oct4-GFP+ cells 
during reprogramming 

(A) To determine the contribution of Myc to miR-135b induction, RNA was 
collected 6 days post-transduction in OSKM and OSK infected MEFs and 
analyzed by RT-qPCR for miR-135b expression.  
(B) MEFs were transfected with the indicated microRNA mimics 3 hrs before 
infection with 4F, and cells were trypsinized on day 14 for FACS analysis. Single 
cells were collected by filtering through a cell strainer. Non-transduced MEFs 
served as negative controls.  
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Figure S2.2: miR-135b iPSCs show full differentiation capacity 

(A) RT-qPCR analysis of miR-135b levels post-transfection with miR-135b 
inhibitors or mimics. Error bar represents two independent experiments with 
duplicate wells. * p<0.05.  
(B) miR-135b Lineage markers are expressed in differentiated EBs from miR-
135b–induced iPSCs. EBs were formed using the hanging drop method for two 
days and replated onto gelatin-coated plates until day 12-14. Cells were then 
fixed and stained for AFP (endoderm), tubulin III (ectoderm), and α-actin 
(mesoderm) expression. DAPI was used for nuclear staining.  
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Figure S2.3: Tgfbr2, Wisp1, and Igfbp5 are directly regulated by miR-135b 

 (A) List of predicted miR-135b target sites identified by both miRanda software 
and Targetscan in Tgfbr2, Wisp1, and Igfbp5 3’UTRs.  
(B) Dual luciferase assay supported direct regulation by miR-135b. The full 
length Tgfbr2 3’UTR, a Wisp1 fragment, and the Igfbp5 3’UTR were cloned into 
pGL3 luciferase reporters and transfected into HeLa cells together with pRL-TK. 
Relative luciferase activity was calculated by the GL/RL signal and normalized to 
siControl-transfected cells. p values were calculated using Student’s t-test from 
at least two independent experiments with duplicate wells.  
(C) miR-93 and 135b both targets Tgfbr2. Dual luciferase assays were performed 
in Hela cells and microRNAs were transfected at 50nM final concentration.  
(D) MEFs were transfected with non-targeting siRNA control, miR-135b mimic, 
miR-135b inhibitor or mutant miR-135b mimic at a final concentration of 50nM for 
4 days to verify the direct sequence specificity of the miR-135b and Wisp1 
relationship. Total RNAs were extracted for RT-qPCR analysis of Wisp1 mRNA 
level. Error bar represents experiment with triplicate wells.  
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Figure S2.4: Wisp1 kinetics during iPS induction 

(A) RNA was isolated from MEF during iPS induction on days 1, 3, 5, 7, 9 and 
11. RT-qPCR was performed to analyze Wisp1 mRNA over time course.  
(B) Wisp protein levels in MEFs transduced with 4F over the reprogramming time 
course were analyzed by immunoblotting.  
(C) To verify the expression of the HA-tagged Wisp1 construct, immunoblotting 
was performed to analyze Wisp1 protein and HA expression levels. GAPDH 
serves as an internal control. 
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Figure S2.5: Wisp1 regulates ECM gene expression 

(A) Wisp1 regulates expression of several ECM genes. Wisp1 was knocked 
down in MEFs by two shRNAs. Expression of representative ECM genes was 
examined 4 days post-infection. Expression of Tgfbi, Nov, and Dkk2 were 
strongly decreased upon Wisp1 knockdown, similar to results from siRNAs 
transfection (Figure 5A).  
(B) Wisp1 ECM target genes are regulated by miR-135b in MEFs. MEFs were 
transfected with miR-135b mimic at a final concentration of 50 nM for 4 days. 
Total RNAs were harvested for RT-qPCR analysis of the indicated Wisp1-
regulated ECM genes. Error bar represents experiment with duplicate wells.  
(C) miR135b indirectly affects Wisp1 regulated ECM genes. Relative MEF mRNA 
expression of Wisp1, Tgfbi, Igfbp5, Nov and Dkk2 two days after miR-135b 
hairpin inhibitor transfection.  
(D) PCR analysis of Wisp1 mRNA after overexpression of Tgfbi, Igfbp5, Nov, 
Dkk2 and Wisp1 in MEF 
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Figure S2.6: Knockdown of Wisp1 target genes promote reprogramming.  

(A) Dual role of Wisp1 regulated ECM genes. MEF were transfected with siRNAs 
on days 0 and 5, and GFP+ colonies were counted from day 12-14. (B) 
Knockdown of Wisp1 target genes enhances iPSC marker expression. Nov, 
Dkk2, and Tgfbi were knocked down in 4F-transduced MEFs at day 5 post-
transduction. Cells from each well were harvested at around day 14 and total 
RNAs were extracted for RT-qPCR analysis of the representative mES markers, 
E-Ras, Nanog, and Tet1. Error bars represent data from three independent wells. 
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Figure S2.7: Knockdown of Wisp1 compromises proliferation of normal 
MEFs 

(A) Wisp1 was efficiently knocked down by five different shRNAs. Five shRNAs 
targeting mouse Wisp1 were transduced into MEFs. Knockdown efficiency was 
evaluated at day 4 post-transduction.  
(B) Consistent knockdown of Wisp1 compromised proliferation of MEFs. MEFs 
were transduced with shRNAs and then reseeded into 96-well plates. 
Proliferation of MEFs was measured on days 3 and 6 using Celltiter 96 One 
Solution assay (Promega, G3582).  
(C and D) iPSC induction was evaluated for MEFs transduced with shRNAs 
targeting Wisp1 on day 0 (C) or day 5 (D).  
(E) The effect of siRNA mediated knockdown of Wisp1 interacting proteins Nov, 
Dkk2, Igfbp5, Tgfbi, Bgn and Dcn on MEF proliferation was assessed on day 6 
post-transfection by Celltiter 96 One Solution assay. 
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Figure S2.8: Role of decorin knockdown and overexpression in iPS 
induction 
(A) Decorin was knockdown or (B) overexpressed at day 5 and GFP+ colonies 
were counted on day 12-14 post OSKM transduction. 
 

Table 2.1: miR-135b target site analysis 
Genes showing significantly repressed expression upon miR-135b transfection 
were analyzed with miRanda and TargetScan to identify potential miR-135b 
target sites in their 3’UTR regions. Sites with good seed match and significant 
predicted energy are listed. 
 

Table 2.2: Original microRNA expression profile data 
List of microRNAs significantly (2-fold, p<0.05) altered at reprogramming day 5 in 
Thy1- cells. 
 

Table 2.3: mRNA expression profile upon miR-135b transfection 
Significantly altered mRNAs upon miR-135b mimic transfection are listed. 
 

Table 2.4: mRNA microarray data upon Wisp1 knockdown 
Significantly altered mRNAs upon siWisp1 transfection are listed.  
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CHAPTER 3: Modeling ZIKV pathogenesis using cerebral organoids

 

Chapter 3.1: Introduction 

Zika virus (ZIKV) of the Flaviviridae family is an emerging mosquito-borne 

virus originally identified in Uganda in 1947 (Driggers et al., 2016b). Outbreaks of 

the virus have been previously recognized in regions within Asia and Africa, 

including Malaysia, Thailand, Vietnam and as far as Micronesia (Driggers et al., 

2016b; Hamel et al., 2015). ZIKV infects human skin and over 80% of ZIKV 

cases are asymptomatic or go unnoticed while the remaining cases typically 

exhibit mild fever, rash and joint pain for a period of 7 days (Hamel et al., 2015; 

Petersen et al., 2016a). However, with the increased incidence due to the current 

outbreak of ZIKV in Brazil and throughout Latin America, new data suggests a 

positive correlation between cases of infection and the rise of microcephaly, 

characterized by abnormally small brains (Driggers et al., 2016a; Mlakar et al., 

2016; Petersen et al., 2016a).  

In fact, ZIKV was detected by electron microscopy and RT-qPCR in brains 

and amniotic fluid of microcephalic fetuses, strengthening the causal link 

between ZIKV and increased incidence of microcephaly (Calvet et al., 2016b; 

Mlakar et al., 2016). Furthermore, recent studies show that ZIKV can infect 

human iPSC-derived neural progenitors in vitro, resulting in dysregulation of cell 

cycle related pathways and increased cell death (Tang et al., 2016). Evidence 

thus far suggests a strong causal relationship between ZIKV and microcephaly. 
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To investigate the mechanisms by which ZIKV induces microcephaly and 

other neurological disorders, it is essential to use scalable, reproducible in vitro 

models capable of recapitulating complex neurodevelopmental events during 

early embryogenesis. Because of the lack of outer subventricular zone (OSVZ) in 

mice and unknown relevance of ZIKV in mice, here we used human embryonic 

stem cell-derived cerebral organoids to investigate the role of ZIKV in 

microcephaly. Here we show that cerebral organoids generated from human 

embryonic stem cells mimic the developing fetal brain and develop malformations 

and severely inhibited growth following ZIKV inoculation. By analyzing the 

transcriptomic profile of developing organoids, we draw parallels between the 

stunted development of ZIKV infected organoids and TLR3-mediated 

dysregulation of neurogenesis and axon guidance. 

 

Chapter 3.2: Results 

Cerebral Organoids Display Regionalization and Cortical Differentiation 

To model ZIKV infection in vitro in physiologically relevant models, 

cerebral organoids were generated from H9 human embryonic stem cells using 

published protocols (Lancaster et al., 2013) with slight modifications described in 

the Methods section. To generate cerebral organoids, embryoid bodies were 

formed from embryonic stem cells using the hanging drop method and 

differentiated to form neuroectodermal tissue in three-dimensions (Figure 3.1A). 

Cerebral organoids display complex, self-organized internal morphology with  
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Figure 3.1: Characterization of cerebral organoids reveals recapitulation of 
fetal brain regions.  

(A) Bright-field image of representative organoids show development of 
neuroepithelial layer. Scale bar: 250µm.  
(B) DAPI stained organoid shows complex inner morphology including ventricle-
like structures from 30-day-old organoids. Scale bar: 250µm.  
(C) Organoids immunostained for neuronal (TUJ1+) and neural progenitor cells 
(SOX1+) cells. TUJ1 shows generalized neuronal differentiation while neural 
progenitors are localized near inner ventricle-like structures in 30-day-old 
organoids. Immunostaining for forebrain (PAX6), dorsal cortex (EMX1), 
hippocampus (PROX1) and interneurons (CALB2) show differentiation of 
organoids into discrete brain regions 30-day-old organoids. Also see Figure S1. 
Scale bar: 100µm.  
(D) Calcium dye imaging of cerebral organoids using Fluo-4 shows functional 
neural activity.   
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fluid-filled ventricle-like structures similar to the developing cerebral cortex 

(Figure 3.1A, B). Immunohistochemistry for TUJ1 and SOX1 identify regional 

specificity of neuronal and neural progenitor populations, respectively (Figure 

3.1C and S3.1). NESTIN positive cells exhibit elongated morphology around 

cavities. TUJ1 staining shows broad neuronal expression throughout the 

organoid tissue while SOX1 neural progenitors (NPCs) are localized in internal 

cavities, thereby emulating the intricate radially outward migratory pattern of 

differentiating neurons from the inner multiplication zone of the fetal brain. 

 To determine the regionalization and extent of cortical differentiation and 

expansion, organoids were immunostained for markers of early forebrain, 

hippocampus dorsal cortex and interneurons (Figure 3.1C). PAX6 and FOXG1 

expression highlight the discrete organization of early forebrain tissue formation 

and specification to the ventral telencephalon. In addition, EMX1 expression 

shows subregionalization of dorsal cortex regions around cavities and throughout 

the intermediate zone. PROX1 indicates differentiation of a portion of cerebral 

organoid tissue to the hippocampus while CALB2 signifies the maturation of 

organoid neural progenitor cells into hippocampal calretinin expressing 

interneurons. To confirm functional neural activity in cerebral organoids, 

fluctuations in cytosolic calcium content were analyzed by calcium dye imaging in 

response to glutamate (Figure 3.1D). 
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Figure 3.2: RNA map of Cerebral Organoids development  

(A) Heat map of transcriptome analysis from human embryonic stem cells (Group 
1) and cerebral organoids after 1 month (Group 2) and 2 months (Group 3) in 
culture show 3226 and 3357 significantly differentially expressed genes with fold 
change >2, p-value <0.05. See also Figure S2A. See Table 3.1.  
(B) Gene ontology analysis show top 10 more enriched terms for upregulated 
(top) and downregulated (bottom) genes during cerebral organoid differentiation.  
(C) Grouped functional pathway analysis of differentially expressed genes during 
organoid formation.  
(D) Heat map of differentially expressed genes between organoids 1 month 
(Group 2) and 2 months (Group 3) in culture. Group 1 represents human 
embryonic stem cells.  
(E) Gene ontology analysis of differentially expressed genes in organoids 1 and 2 
months old suggest formation of retinal tissue.  
(F-G) Spearman’s correlation heat map of cerebral organoid transcriptomes 
compared with regions of the fetal brain and age post conception weeks (pcw). 
See Table 3.2 for heat map brain region legend. Also see Figure S2B and S2C. 
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Figure 3.3: ZIKV results in attenuated organoid growth in cerebral 
organoids and neurospheres through activation of TLR3  

(A) ZIKV infected Vero cells for virus expansion. Vero cells were seeded and 
infected at MOI of 1 and viral supernatant was collected 48 hours post 
inoculation. Scale bar 100µm.  
(B) Bright-field images of mouse neurospheres at Day 0 and Day 1 post-
inoculation with ZIKV. Scale bar: 250µm.  
(C) Immunohistochemistry shows ZIKV can robustly infect mouse neurospheres. 
Scale bar: 50µm.  
(D) Representative bright-field images of individual human cerebral organoids 
treated with ZIKV over time. Scale bar: 250µm.  
(E) ZIKV viral copy count in organoid supernatant quantified by one-step RT-
qPCR after ZIKV infection shows organoid susceptibility and viral 
permissiveness. *** p-value<0.001, Student’s t-test.  
(F) Quantification of organoid size over time with and without ZIKV infection. Bars 
represent the min, average and max relative organoid size. Individual organoids 
were measured over time relative to their respective Day 0 size from n=5 
organoid samples * p-value<0.05, Student’s t-test.  
(G) Representative images of ZIKV treated organoids stained for ZIKV envelope 
protein and Nestin. Scale bar: 100µm. 
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Cerebral Organoids Recapitulate Early Fetal Brain Development 

 Next, we compared the coding and non-coding transcriptome of H9 

human embryonic stem cells and their derived cerebral organoids to further 

characterize the cerebral organoid models. 3226 and 3357 significantly 

differentially expressed genes with fold change >2 were identified in one month 

and two month old organoids when compared with undifferentiated H9 cells 

(Figure 3.2A and S3.2A). Gene ontology analysis of the 1642 differentially 

upregulated genes between organoids and embryonic stem cells show significant 

enrichment of genes related to neuron differentiation, development, cell 

morphogenesis, cell projection, axonogenesis, pattern specification and 

regionalization, confirming the previously shown immunostaining results (Figure 

3.2B). On the other hand, RNA-seq analysis shows enrichment of cell cycle and 

mitosis related pathways in the 1584 differentially expressed downregulated 

genes during organoid formation, as expected. Pathway analysis of differentially 

expressed genes showed functionally grouped networks of developmental, 

neurogenesis, transcriptional, metabolic, cell cycle and cytoskeletal genes in 

cerebral organoid development (Figure 3.2C). In addition, transcriptome analysis 

of organoids 1 month and 2 months in culture reveal an increase in genes related 

to visual perception, sensory and stimulus perception, phototransduction and 

cognition, indicating the early formation of immature retinal tissue as cerebral 

organoids further develop (Figure 3.2D, E). 

 RNA-seq transcriptome data was then analyzed to contextualize cerebral 

organoids in terms of fetal brain development. Using the BrainSpan database of 



73 
	

	

human brain transcriptomes, we calculated the Spearman’s correlation between 

in vitro differentiated cerebral organoids with post-mortem human fetal brain 

tissues to further assess their age and regionalization (Figure 3.2F, G and S3.2B) 

(Kang et al., 2011). Based on these analyses, organoids showed significant 

correlation great than 0.5 between post-mortem neocortex (temporal, parietal 

and occipital), ganglionic eminence (medial, lateral and caudal), cerebellum, 

primary motor sensory cortex, upper rhombic lip and dorsal thalamus. In addition, 

organoids were correlated with post-mortem fetal tissues ranging in age from 8 

weeks post-conception to 21 weeks post-conception. These data indicate that 

the organoid tissues most resemble early trimester fetal brain tissues 8-9 weeks 

post-conception (Figure 3.2G and S3.2C). In all, immunohistochemistry and 

transcriptome analyses suggest that human embryonic stem cell-derived cerebral 

organoids robustly and reproducibly model early trimester fetal brains. 

 

ZIKV Infection Abrogates Organoid Growth 

To determine the effect of ZIKV on fetal brain tissue in vitro, mouse 

neurospheres and early day 10 human cerebral organoids were infected with the 

prototype MR766 ZIKV strain originating from Uganda, isolated from monkeys 

and expanded in Vero cells (Figure 3.3A). Mouse neurospheres were utilized 

because of the large sample size and previous data suggesting robust reservoirs 

of ZIKV viral infection, ZIKV production in mouse brain tissues and the ability to 

recapitulate neurodegenerative phenotypes in vivo (Lazear et al., 2016; Rossi et 
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al., 2016). ZIKV infected neurospheres exhibited significantly attenuated growth 

relative to control mocked treated samples (Figure 3.3B, C).  

To further confirm the negative effect of ZIKV on neurodevelopment, 

immature day 10 human organoids were utilized for ZIKV infection because it 

coincides with the emergence of the neuroepithelial layer and transition from 

embryoid body to cerebral organoid. Cerebral organoid growth was tracked over 

5 days post-infection to monitor organoid growth and development. At day 5 

post-infection, healthy mock treated cerebral organoids showed an average of 

22.6% increase in growth while ZIKV infected organoids significantly decreased 

by 16%, thus resulting in a net 45.9% difference in size on average (Figure 3.3D, 

F). The viral kinetics indicate a significant increase in viral copy number two days 

post-infection, which is reflected in the rate of change in organoid size after day 2 

post-infection (Figure 3.3E, F).  

To probe the effect of ZIKV in fetal brain development and in neural 

progenitor cells, we cryosectioned and immunostained cerebral organoids for 

markers of neural progenitor cells (NESTIN) and ZIKV envelope (ZIKVE) 

expression. We observed strong co-localization of ZIKVE in NESTIN+ cell 

populations compared to NESTIN- cells indicating that ZIKV infects NPCs in 

organoid models (Figure 3.3G) (Tang et al., 2016). The non-elongated cell 

morphology of ZIKV infected NESTIN+ cells suggests an unhealthy state and 

activation of apoptotic processes. Since neural progenitors and radial glial cells 

may be susceptible to ZIKV and infection, RT-qPCR of organoid supernatant 

reveals ZIKV replication and permissiveness of organoid tissues (Figure 3.3E).  
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Taken together, these results demonstrate that ZIKV abrogates 

neurodevelopment by targeting the neural progenitor population.  

 

ZIKV attenuates organoid growth by TLR3 activation and regulation of 

apoptosis and neurogenesis pathways 

Previous studies have shown that ZIKV and other flaviviruses activate TLR3 in 

human skin fibroblasts (Hamel et al., 2015; Tsai et al., 2009). Interestingly, TLR3 

has been implicated in many neuroinflammatory and neurodegenerative 

disorders, including in NPCs (Cameron et al., 2007; Lathia et al., 2008; Okun et 

al., 2010; Okun et al., 2011). TLR3 is upregulated in cerebral organoids and 

neurospheres after ZIKV infection as shown by RT-qPCR analysis (Figure 3.3E 

and S3.3C). To investigate the link between ZIKV-mediated TLR3 activation and 

dysregulation of neurogenesis and apoptosis, we investigated the effect of TLR3 

agonist poly(I:C) and a thiophenecarboxamidopropionate compound that acts as 

a direct, competitive and high affinity inhibitor of TLR3 inhibitor on mouse 

neurospheres and human organoids. To determine the effect of TLR3 activation, 

neurospheres were challenged with poly(I:C) and exhibited a statistically 

significant decrease in overall neurosphere size relative to mock treated 

organoids (n>100 neurospheres per group) (Figure 3.4A, B and S3.3A). To 

further reinforce the idea that TLR3 plays a key role in ZIKV-mediated 

microcephaly, neurospheres were inoculated with ZIKV with TLR3 competitive 

inhibitor (Figure 3.4B and S3.3B). We observed a statistically significant 

difference between ZIKV treated neurospheres with and without 
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Figure 3.4: ZIKV induces TLR3 and regulates pathways involved in 
apoptosis and neurogenesis  

(A) Bright-field images of mouse neurospheres at Day 0 and Day 1 post-
inoculation with ZIKV with or without TLR3 competitive inhibitor, or TLR3 agonist 
poly(I:C). Scale bar: 250µm.  
(B) Neurospheres show significant change in size 1 day post-inoculation with 
ZIKV with or without TLR3 competitive inhibitor, or TLR3 agonist poly(I:C) as 
quantified by ImageJ. Box and whiskers plot show 10-90 percentile. * p-
value<0.05. *** p-value<0.001. n.s. = not significant, Student’s t-test.  
(C) Representative bright-field images of individual human cerebral organoids 
treated with ZIKV with or without TLR3 competitive inhibitor. Scale bar: 250µm.  
(D) Schematic of target selection for RT-qPCR analyses. Differentially genes 
involved in organoid formation (from Figure 2A) and TLR regulated genes (data 
not shown) were analyzed to identify common pathways activated upon ZIKV 
infection. The two significantly enriched pathways from this dataset were 
“positive regulation of nervous system development” and “regulation of synapse 
structure or activity.”  
(E) RT-qPCR analysis of TLR3 upregulation in organoids mock and ZIKV treated. 
Error bars represent SEM.  
(F) RT-qPCR analysis of differentially expressed genes, NTN1 and EPHB2, 
involved in TLR3 activation and neurogenesis in organoids treated with TLR3 
agonist poly(I:C). Error bars represent SEM. * p-value<0.05. ** p-value<0.01, 
Student’s t-test.  
(G) RT-qPCR analysis of NTN1 and EPHB2 expression in human organoids 
upon ZIKV and ZIKV+ TLR3 competitive inhibitor. * p-value<0.05. *** p-
value<0.001, Student’s t-test.  
(H) Model for ZIKV infection and TLR3 mediated downregulation of regulators of 
neurogenesis and upregulation of pro-apoptotic pathways in NPCs. 
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TLR3 inhibitor but no statistical significance between mock and ZIKV+inhibitor 

groups.  

To validate our hypothesized link between ZIKV-mediated TLR3 activation 

and dysregulation of neurogenesis and apoptosis in an orthogonal human model, 

organoids were treated with TLR3 competitive inhibitor in the presences of ZIKV. 

Although there still appears to be cell death and disruption of the developing 

neuroepithelium characterized by the non-smooth outer surface of the organoid, 

but the TLR3 competitive inhibitor attenuated the severe ZIKV-mediated 

apoptosis and organoid shrinkage see in ZIKV only treated organoids (Figure 

3.4C). These data strongly suggest that TLR3 may play a pivotal role in the ZIKV 

associated phenotype. 

To determine the role of TLR3 activation in neurodegeneration, we 

compared differentially expressed genes involved in cerebral organoid formation 

identified by RNA-seq with differentially expressed genes following poly(I:C)-

challenged TLR3 activation (data not shown) and found 41 genes in common 

(Figure 3.4D). Pathway analysis was performed to identify potential pathways by 

which ZIKV may regulate neurogenesis. Intriguingly, from these 41 genes, only 

networks relating to positive regulation of nervous system development and 

regulation of synapse structure or activity were significantly enriched (Figure 

3.4D). To validate the proposed genes regulated by TLR3 that modulate 

neurogenesis and apoptosis in organoid development, NTN1 and EPHB2 

expression levels were analyzed by RT-qPCR with ZIKV+/-inhibitor or poly(I:C) 

stimulation (Figure 3.4E, F and G). Consistent with ZIKV infection, poly(I:C) 
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treatment of organoids reduced NTN1 and EPHB2 expression (Figure 4F). In 

addition, TLR3 competitive inhibitor reversed the downregulation of NTN1 and 

EPHB2 by ZIKV infection (Figure 3.4G). Altogether, these data suggest that ZIKV 

perturbs a TLR3 regulated network controlling neurogenesis and apoptotic 

pathways (Figure 3.4H). 

 

Chapter 3.3: Discussion 

 Here we report the generation and application of human embryonic stem 

cell-derived cerebral organoids for modeling and analyzing the relationship 

between ZIKV and microcephaly. To properly model the complexities of the fetal 

brain, we employed three-dimensional organoid models capable of recapitulating 

regions of the developing neocortex, ganglionic eminence and retinal tissue as 

evidenced by immunohistochemistry and transcriptomic analyses. These in vitro 

cerebral organoid models present a scalable and reproducible platform for 

neurodevelopmental and neurodegenerative studies. Organoids were then 

treated with prototype MR766 ZIKV to understand the phenotypic and 

transcriptomic response during early stage neural development. Organoids 

treated with ZIKV showed significant decrease in the neuroepithelium and overall 

organoid size.  

Neurological manifestations, such as viral encephalitis, have previously 

been linked to other viruses of the Flaviviruses genus (Sips et al., 2012). TLR3 

has been linked to neurodegenerative disorders and negative regulation of 
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axonogenesis, as well as dengue and ZIKV infection, so we hypothesized that 

ZIKV activates the TLR3 pathway in neural progenitor cells, thereby leading to 

pro-apoptotic pathway activation and/or dysregulation of cell fate decisions 

(Cameron et al., 2007; Hamel et al., 2015; Okun et al., 2010; Okun et al., 2011; 

Tsai et al., 2009; Yaddanapudi et al., 2011). As seen in microcephaly, 

dysregulated cell fate, self-renewal and apoptotic pathways in NPCs may 

contribute to the microcephaly phenotype. TLR3 is highly expressed in early 

brain development and decreases as the NPC population differentiations and the 

brain matures (Lathia et al., 2008). This temporally sensitive expression of TLR3 

during early brain development may contribute to the trimester-specific response 

of fetal brains to ZIKV infection. Induction of TLR3 has been shown to trigger 

apoptosis by inhibiting Sonic Hedgehog and Ras-ERK signaling in NPCs and 

plays a role in retinopathy (Shiose et al., 2011; Yaddanapudi et al., 2011).  

Moreover, TLR3 has been connected to the elevated risk of neuropathological 

dysfunction resulting from maternal infection using TLR3-deficient mouse models 

(De Miranda et al., 2010). Based on these data, TLR3 likely plays a dual role that 

is cell type specific in which potent downstream anti-viral responses are activated 

in addition to tangential dysregulation of signaling networks directing apoptosis 

and neurogenesis. 

By comparing changes in the transcriptomic profiles during cerebral 

organoid formation and after TLR3 activation by poly(I:C), we identified several 

candidate genes (NTN1, EPHA3, ADGRB3, EPHB2, SLITRK5, SYT11 and 

GRIK2) that may be responsible for depletion of the neural progenitor population 
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and the subsequent microcephaly phenotype through pathway analysis. Many of 

these TLR3 activated genes have been implicated in early brain cell fate 

decisions. Netrin1 is a secreted protein that works in conjunction with its 

dependence receptor DCC (Deleted in Colorectal Carcinoma) to regulate various 

pathways involved in axon guidance, apoptosis, neural cell death and cellular 

reprogramming (Bin et al., 2015; Furne et al., 2008; Ozmadenci et al., 2015). The 

role of NTN1 has been shown in vivo in floxed and null NTN1 mice. Complete 

loss of the gene results in severe axon guidance defects and death shortly after 

birth (Bin et al., 2015). Evidence suggests that NTN1 interacts with DCC to limit 

apoptosis but additional data has shown that the absence of NTN1 can also 

upregulate DCC, thus additionally triggering a pro-apoptotic cascade (Bin et al., 

2015). In addition to NTN1, the membrane-bound receptor tyrosine kinase 

EPHB2 has been shown to be integral to fetal brain development by regulating 

angiogenesis, vasculogenesis and neurogenesis. EPHB2 modulates radial 

migration, proliferation and cell fate of neural progenitor cell in the subventricular 

zone (Chumley et al., 2007; Katakowski et al., 2005). Interestingly, NTN1 and 

EPHB2 have been shown to work synergistically through the Src family kinase-

signaling pathway during neural circuit assembly (Poliak et al., 2015). However, 

further mechanistic studies will be required to validate the significance and 

underlying molecular mechanisms by which these putative genes potentially 

cause viral-mediated microcephaly. Nonetheless, our results present evidence 

that TLR3 activation of multiple genetic hubs regulating axonogenesis, cell 

proliferation and anti-apoptotic pathways within NPCs may strongly contribute to 
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the ZIKV mediated microcephaly phenotype using robustly reproducible and 

scalable human cerebral organoid models. 
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Chapter 3.4: Materials and Methods 

Cerebral organoid differentiation 

H9 human embryonic stem cell (hESCs) (WA09) from WiCell was cultured 

on a feeder layer of irradiated mouse embryonic fibroblasts following previously 

established protocols. All studies were conducted in accordance with approved 

IRB protocols by the University of California, San Diego. All animal work was 

approved by the Institutional Review Board at the University of California, San 

Diego and was performed in accordance with Institutional Animal Care and Use 

Committee guidelines. H9 hESCs were detached from their feeder layer using 

1mg/ml collagenase for 15-20 minutes and 0.5mg/ml dispase for an additional 15 

minutes. Wells were washed with media to collect floating undifferentiated 

hESCs and colonies were dissociated using Accumax at 37°C for 10 minutes to 

generate a single cell suspension.  At day 0, embryoid bodies were formed using 

the hanging drop method with 4500 cells/drop in DMEM/F12 media 

supplemented with 20% knockout serum replacement, 4ng/ml bFGF, NEAA and 

glutamine. After 2 days of hanging drop culture, embryoid bodies were 

transferred to sterile petri dishes with refreshed media. After 6 days in culture, 

embryoid bodies were transferred to new petri dishes containing neural induction 

media consisting of DMEM/F12, 1:100 N2 supplement, NEAA, glutamine and 

1ug/ml heparin until day 11. At day 11, organoids were transferred to Matrigel 

droplets and cultured in 1:1 mixture of DMEM/F12 and Neurobasal medium 

supplemented with 1:100 B27 without vitamin A, 1:200 N2, NEAA, insulin, beta-

mercaptoethanol and glutamine. Organoids were then transferred to stir flask 
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bioreactors for long term growth on day 15 in the same differentiation media 

except with the addition of retinoic acid and vitamin A. Media was changed every 

3 days.  

 

ZIKV expansion and infection 

To expand prototype MR766 virus, Vero cells were inoculated with virus at 

MOI of 1 in E-MEM 10% FBS medium. Media was changed 24 hours after 

inoculation and viral supernatant was collected at 48 hours post-inoculation. Viral 

titer was assessed using iScript One Step RT-PCR kit (Bio-Rad) and viral copy 

number was calculated based on a standard curve of in vitro transcribe viral 

transcripts. Organoids were inoculated with ZIKV at MOI of 1. 

 

Neurosphere Culture 

Briefly, hippocampal single cells were plated in 12-well plates in 

suspension at a density of 5x104 cells/well in neurobasal medium containing 

B27, N2, bFGF and EGF. Media was changed following viral inoculation and 

TLR3 inhibition and activation. Images were acquired on a Leica DMI 3000B. 

Neurosphere sizes were estimated using ImageJ to by adjusting the color 

threshold and using the “Analyze Particle” tool. 

 

Immunohistochemistry 

To section and stain organoids, organoids were washed with PBS and 

incubated in cell recovery solution for 30 minutes to dissolve the surrounding 
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Matrigel. Organoids were washed with PBS and then fixed with 4% 

paraformaldehyde for 1 hour. Fixed organoids were washed three times with 

PBS, stained with hematoxylin for 5 minutes and incubated in 30% sucrose 

overnight. Sucrose solution was removed, organoids were washed with PBS and 

embedded in OCT for cryosectioning. Cryosections were blocked in 5% BSA in 

PBS for 1 hours, washed three times with PBS+0.1% Triton X-100, and 

incubated with primary antibody at 4°C overnight. Cryosections were washed 

three times with PBST to remove primary antibody before 1 hour secondary 

antibody incubation. Cryosections were washed three more times to remove 

secondary antibody before being mounted with Vectashield hardset mounting 

medium with DAPI following manufacturer’s instructions. The dilutions for primary 

antibodies are as follows: TUJ1 (1:100, mouse, abcam ab7751-100), SOX1 

(1:100, goat, Santa Cruz Biotechnology sc-17318), PAX6 (1:100, mouse, Santa 

Cruz Biotechnology sc-53106), FOXG1 (1:100, rabbit, abcam ab18259), EMX1 

(1:100, rabbit, Santa Cruz Biotechnology sc-28220), PROX1 (1:100, rabbit, 

abcam ab37128), NESTIN (1:100, mouse, rat, Millipore MAB353), CALB2 (1:100, 

rabbit, abcam ab702) and ZIKVE/Anti-Flavivirus Group Antigen (1:500, mouse, 

Millipore MAB10216). Images were acquired on a Leica DMI 3000B.  

Organoid and neurosphere sizes were estimated using ImageJ to by 

adjusting the color threshold and using the “Analyze Particle” tool. Because of 

the large population of neurospheres, low magnification images of wells 

representative of each condition were taken and analyzed by ImageJ as 

mentioned (n>100 per group). To assess changes in organoids overtime, 
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individual organoids were placed in wells and growth was tracked daily. Organoid 

change was estimated relative to their respective Day 0 measurements. 

 

RNA Extraction and RT-qPCR 

For RT-qPCR, Total RNA was isolated using TRIzol reagent following 

manufacturer’s instructions. cDNA was generated from 500ng total RNA using 

iScript Mastermix according to manufacturer’s instructions. qPCR was performed 

with SYBR Green PCR Master Mix  (Bio-Rad) using a Roche Lightcycler 480.  

 

Transcriptome analysis by RNA-seq 

For RNA-seq analysis, RNA was extracted from 10-20 organoids per 

sample using RNeasy Mini Kit (Qiagen) following manufacturer’s instructions. 

RNA was ribo-depleted and RNA sequencing was performed using an Illumina 

NextSeq 500 with an average of 50M reads per sample at the Scripps Research 

Institute NGS Core. Reads were mapped using BWA to human hg19-Ensembl 

transcripts release 75(Li and Durbin, 2009). Genes with RPKM<=0.5 for all 

samples were removed, data log transformed and normalized (quantile). 

Differentially expressed genes were identified by ANOVA with absolute fold 

change >=2 and adjusted p-value <=0.05. 

Gene ontology analyses on biological processes was performed using The 

Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang 

da et al., 2009). Spearman’s correlation coefficients between transcriptomes of 

organoids and brain regions and ages from the BrainSpan database were 
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calculated between log transformed expression levels with filtered genes having 

a standard deviation greater than 1 across all brain regions or ages (Mariani et 

al., 2015). Grouped functional pathway/gene ontology network analyses were 

performed using Cytoscape with the ClueGo add-on (Bindea et al., 2009; 

Shannon et al., 2003). 

 

Calcium dye imaging 

Calcium dye imaging was performed to assess the functionality of neural 

activity using Fluo-4 AM cell permeant dye following manufacturer’s instructions 

with an incubation of 1 hour at 37°C. Time-lapse images were taken at 15 

second intervals for 20 minutes using a Leica DMI 3000B and fluorescent 

intensity was quantified by ImageJ. 

 

TLR3 activation and inhibition 

To activate TLR3, cells were transfected with poly(I:C) at 5ug/ml using 

Lipofectamine 2000 following manufacturer’s instructions. Media was changed 6 

hours post-transfection. TLR3 competitive inhibitor (EMD-Millipore 614310) was 

reconstituted in DMSO and cells were treated with a final concentration of 10uM 

in media. 

 

ACCESSION NUMBERS 

The GEO accession number for the RNA-seq data reported in this paper 

is GEO number GSE80264.  
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Depletes Neural Progenitors in Human Cerebral Organoids through Activation of 
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Figure S3.1: Characterization of cerebral organoids by 
immunohistochemistry  

SOX1 neural progenitor cells and EMX1 and PAX6 forebrain marker localize 
around cavities while TUJ1 neuronal cells appear radially outward. Scale bar: 
100um. 
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Figure S3.2: Transcriptome analysis of cerebral organoids  

(A) Volcano plot of differentially expressed genes in organoids with fold change 
>2, p-value<0.05 and RPKM>0.5 from organoids 1 month old vs hESC. Also see 
heat map from Figure 2A.  
(B and C) Representative scatter plot of cerebral organoid transcriptome 
compared to various regions of the fetal brain and brain ages, respectively. 
Organoids shows strong correlation with the medial ganglionic eminence (MGE) 
and poor correlation with the primary auditory cortex (A1C). MGE and A1C are 
poorly correlated as well. Also see Figure 2F and G. 
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Figure S3.3: Neurosphere growth is attenuated by TLR3 activation  

(A) Neurosphere treated with TLR3 agonist poly(I:C) show decreased growth 24 
hours post-treatment while addition of TLR3 competitive inhibitor results in a 
rescue effect.  
(B) Bright-field images of neurospheres show dosage dependent (1uM to 50uM) 
rescue effect of TLR3 competitive inhibitor in neurospheres treated with ZIKV.  
(C) RT-qPCR analysis of TLR3 mRNA in mock and ZIKV inoculated 
neurospheres. ** p-value<0.01, Student’s t-test. 
 
Table 3.1: Transcriptomic Analyses of Organoids 
Table shows differentially expressed genes between human embryonic stem 
cells (Group 1) and organoids 1 month (Group 2) and 2 months old (Group 3) 
and gene ontology analyses. 
 
Table 3.2: Legend for Brain Region Acronyms, Related to Figure 2F. 
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CHAPTER 4: Dynamic Transcriptome of ZIKV infected hNSCs 

 

Chapter 4.1: Introduction 

Zika virus (ZIKV) is a re-emerging arbovirus belonging to the Flaviviridae 

family that has recently been linked to severe fetal abnormalities, including 

microcephaly and fetal growth restriction(Brasil et al., 2016b; Lazear and 

Diamond, 2016; Noronha et al., 2016; Sarno et al., 2016; Ventura et al., 2016). In 

vitro and in vivo studies have shown that ZIKV preferentially infects neural 

stem/progenitor cells and immature neurons in the developing brain and 

dysregulates processes involved in cell cycle progression, differentiation, 

apoptosis, autophagy, and immune activation(Cugola et al., 2016; Dang et al., 

2016; Li et al., 2016; Liang et al., 2016; Tang et al., 2016). However, the 

molecular mechanisms by which ZIKV perturbs the transcriptomic landscape and 

leads to microcephaly are not well understood.  

 MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs 

~22 nucleotides in length that play critical roles in regulating protein expression. 

miRNAs act post-transcriptionally by binding to partially complementary sites in 

the 3′-UTR of target messenger RNAs (mRNAs). This sequence-specific 

interaction leads to translational repression or mRNA degradation through 

catalytic Argonaute proteins within the RNA-induced silencing complex, which 

cleave the mRNA and recruit other proteins that repress translation or promote 

degradation. The mRNA targeting specificity of miRNAs is controlled by many 
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factors, including base pairing between the miRNA 5′ seed sequence and mRNA 

3′-UTR sequence, cooperativity between multiple miRNA-binding sites, and the 

position of miRNA-binding sites in the targeted mRNA(Agarwal et al., 2015; 

Bartel, 2009; Grimson et al., 2007; Lewis et al., 2005). This flexibility means that 

individual miRNAs are capable of repressing the translation of hundreds of target 

mRNAs(Baek et al., 2008; Selbach et al., 2008). As a result, miRNAs are known 

to play pivotal roles in post-transcriptional regulation of numerous biological 

processes.  

Given the documented roles of miRNAs in regulating neurodegeneration, 

viral infection, and innate immunity (Eacker et al., 2009; Lanford et al., 2010; Liu 

et al., 2012; O'Connell et al., 2010; Sullivan and Ganem, 2005; Taganov et al., 

2006; Wang et al., 2006), we hypothesized that they may play a significant role in 

ZIKV pathogenesis, particularly the effects on the developing brain. In addition, 

the role of miRNAs in ZIKV pathogenesis and microcephaly remains unknown. 

Here, we report that ZIKV infection dysregulates both coding gene and miRNA 

transcriptomes in a strain specific manner. Meta-analyses and regulatory 

interaction networks integrate miRNA and mRNA expression data to investigate 

the role of miRNA-mediated repression during ZIKV infection. Furthermore, 

validation of two miRNAs, miR-188-3p and miR-218-3p, reveal miRNA-mediated 

suppression of gene networks involved in cell cycle progression and stem cell 

maintenance, respectively. Collectively, our data provide novel insight into 

understanding the importance of miRNA-regulated networks in ZIKV-induced 

pathogenesis, particularly microcephaly. 
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Chapter 4.2: Results 

ZIKV MR766 and Paraiba have strain-specific effects on the mRNA 

transcriptome of neural stem cells 

 To determine whether the effects of ZIKV on the mRNA and miRNA 

transcriptomes of human neural stem cells (hNSCs) are strain specific, we 

employed the two most commonly studied strains, MR766 (African origin) and 

Paraiba (Brazilian origin), which have been shown to differ in their neural 

infectivity profiles(Cugola et al., 2016; Simonin et al., 2016). Consistent with 

these reports, we found that inoculation of hNSCs at a MOI of 1 resulted in ~10-

fold higher infection by strain MR766 than by strain Paraiba, as demonstrated by 

RT-qPCR analysis of ZIKV mRNA (Figure 4.1A) and immunostaining of ZIKV 

envelope protein (ZIKVE) in hNSCs (Figure 4.1B) on the first 3 days post-

infection.  

 To investigate whether ZIKV MR766 and Paraiba also had strain-specific 

effects on hNSC mRNA and miRNA transcriptomes, total RNAs were extracted 

from mock- or ZIKV-infected hNSCs 3 days after infection and analyzed by next-

generation sequencing (Figure 4.1C). As expected, the more infectious MR766 

strain had a greater effect on coding gene expression than did Paraiba (Figure 

4.1D). ZIKV MR766 significantly upregulated 1159 genes and downregulated 

1120 genes (Figure 4.1D, E, Table 4.1) compared with only 112 and 178 genes 

significantly upregulated and downregulated, respectively, in ZIKV Paraiba-

infected hNSCs (Figure 4.1D, F, Table 4.2). In addition, 52 and 52 genes were  
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Figure 4.1: ZIKV modulates the transcriptomic profile of hNSCs in a strain-
specific manner 

(A) RT-qPCR analysis of ZIKV MR766 and ZIKV Paraiba mRNA levels on days 
1, 2, and 3 post-inoculation of hNSCs at a MOI of 1. Mean ± SEM of biological 
triplicates.  
(B) Fluorescence immunostaining of ZIKV envelope protein (ZIKVE) in hNSCs on 
days 1, 2, and 3 post-infection with ZIKV MR766 or Paraiba. Nuclei were stained 
with DAPI. Scale bar, 100 µm. 
(C) Experimental design. hNSCs were infected with ZIKV MR766 or Paraiba for 3 
days at a MOI of 1. Total RNA was analyzed by RNA-seq or miR-seq to identify 
miRNA-regulated networks of genes implicated in ZIKV pathogenesis. DE, 
differentially expressed. 
(D) Venn diagram of differentially expressed genes in ZIKV MR766- and Paraiba-
infected hNSCs. Up, upregulated; down, downregulated. 
(E and F) Volcano plots of differentially expressed coding genes in (e) MR766- 
and (f) Paraiba-infected hNSCs at 3 days post-infection. Blue circles represent 
significantly (adjusted p<0.05) differentially expressed genes. The size of each 
circle is proportional to the square root of the base mean expression of the gene.  
(G) Comparative dot plot of differentially expressed genes in MR766- and 
Paraiba-infected hNSCs. Blue circles represent significantly (adjusted p<0.05) 
differentially expressed genes. The size of each circle is proportional to the 
square root of the base mean expression of the gene. 
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commonly upregulated and downregulated, respectively, in both MR766-infected 

and Paraiba-infected cells (Figure 4.1D, G). 

We next performed gene set enrichment analysis (GSEA) of the 

differentially expressed genes. In ZIKV MR766-infected hNSCs, the upregulated 

genes were enriched in functions related to chromosome organization and cell 

cycle processes (Figure S4.1A), whereas the downregulated genes were 

involved in gene expression, biosynthetic processes, and cell death (Figure 

S4.1B). Overall, the processes in hNSCs most affected by MR766 infection were 

those governing chromosome organization, metabolism, cell cycle, and cell 

stress (Figure S4.1C), which is consistent with previous reports(Tang et al., 

2016). In contrast, both the upregulated and downregulated genes in ZIKV 

Paraiba-infected hNSCs were largely related to metabolism and biosynthetic 

processes, with additional enrichment of genes involved in tissue development 

and neurogenesis (Figure S4.1D–F). Collectively, these data suggest that ZIKV 

MR766 and Paraiba infection of hNSCs cause strain-specific dysregulation of a 

number of pathways likely to contribute to the microcephaly phenotype. 

 

MicroRNAs regulate processes implicated in ZIKV-induced microcephaly 

 Because miRNAs are potent translational regulators, we examined their 

contribution to ZIKV-induced changes in the host transcriptome. We first profiled 

ZIKV-induced changes in miRNAs at 3 days post-infection using miR-seq. 

Interestingly, although ZIKV MR766 induced a more robust change in the mRNA 

transcriptome than did Paraiba infection (as described above), ZIKV Paraiba  
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Figure 4.2: Relationship between differentially expressed miRNAs and 
putative mRNA targets in ZIKV-infected hNSCs 

(A and B) Volcano plots of differentially expressed miRNAs in (a) MR766- and (b) 
Paraiba-infected hNSCs at 3 days post-infection. Blue circles represent 
significantly (adjusted p<0.05) differentially expressed miRNAs. The size of each 
circle is proportional to the square root of the base mean expression of the gene. 
(C) Comparative dot plot of differentially expressed miRNAs in MR766 (MR)- and 
Paraiba (PA)-infected hNSCs. The size of each circle is proportional to the 
square root of the base mean expression of the gene. 
(D) Number of significantly (adjusted p<0.05) differentially expressed coding 
genes (upper) and miRNAs (lower) in ZIKV MR766- and Paraiba-infected 
hNSCs.  
(E) Principal component analyses of significantly (adjusted p<0.05) differentially 
expressed coding genes (upper) and miRNAs (lower) in mock-, MR766- and 
Paraiba-infected hNSC samples in duplicate. X-axis represents PC1 and Y-axis 
represents PC2. 
(F and G) Gene set enrichment analyses (GSEA) of putative miRNA targets 
differentially expressed in hNSCs during MR766 (f) and Paraiba (g) infection. 
Blue represents downregulated mRNAs targeted by upregulated miRNAs, red 
represents upregulated mRNAs targeted by downregulated miRNAs. The size of 
the dot is proportional to the number of genes in that enriched GSEA biological 
category. 
(H) Integrative regulatory network analyses showing upregulated miRNAs (red 
circles) targeting downregulated putative mRNA targets (blue hexagons) based 
on TargetScan, miRANDA, and miRTarBase. The number of edges between 
miRNAs and mRNAs is equal to the number of algorithms predicting the miR–
mRNA interaction. The blue/red color intensity is proportional to the fold change 
in expression during ZIKV infection (darker represents larger change). 
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induced a significantly greater change in miRNAs, in terms of both quantity and 

magnitude (Figure 4.2A–D, Table 4.3). Furthermore, principal component 

analyses revealed that the miRNA transcriptomes of mock-, Paraiba- and 

MR766-infected hNSCs were all markedly different from each other, whereas, as 

noted above, the mRNA transcriptomes of mock- and Paraiba-infected hNSCs 

were relatively similar (Figure 4.2E). These data highlight the strikingly disparate 

strain-specific effects of ZIKV MR766 and Paraiba on the coding and non-coding 

transcriptomes of infected hNSCs.  

To understand the potential mechanistic roles of miRNAs in ZIKV infection 

and the associated neurodegenerative pathology, we utilized the predictive 

algorithms TargetScan (Agarwal et al., 2015), miRANDA (Betel et al., 2008), and 

miRTarBase (Chou et al., 2016) to identify putative mRNA targets of the 

differentially expressed miRNAs in infected hNSCs. These algorithms evaluate 

target seed sequence pairing, site numbers, conservation, and site context 

scores to predict targets with high confidence(Agarwal et al., 2015; Betel et al., 

2008). We then compared the putative mRNA targets of the most differentially 

expressed miRNAs with the mRNAs shown to be most significantly altered by 

ZIKV infection to identify pathways potentially regulated by miRNAs in ZIKV-

infected cells. GSEA of the dataset indicated that the common mRNAs (i.e., were 

directly modulated by ZIKV infection and were putative targets of differentially 

expressed miRNAs) were enriched in functions related to transcriptional 

regulation, metabolism, cellular stress response, cell cycle, tissue development, 

neurogenesis and nervous system development, cell death, and neuron 
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differentiation (Figure 4.2F). Similarly, mRNAs that were directly modulated by 

ZIKV Paraiba infection and were putative targets of differentially expressed 

miRNAs in Paraiba-infected cells were likely to be involved in processes related 

to metabolism, tissue development, and neurogenesis (Figure 4.2G). These data 

indicate that both ZIKV strains dysregulate host miRNA–mRNA networks 

potentially involved in the neurodegenerative phenotype associated with ZIKV 

infection. 

To more precisely identify miRNA-regulated pathways that may contribute 

to ZIKV pathogenesis, we constructed integrative networks of the miRNAs and 

miRNA-regulated mRNAs modulated by ZIKV infection of hNSCs. First, genes 

that were downregulated by ZIKV infection and enriched in annotated gene 

ontology functions related to “cell cycle” and “G1/S transition,” “defense response 

to virus,” and “brain development” (Figure 4.2H, blue hexagons) were cross-

referenced with potential miRNA regulators that were concomitantly upregulated 

upon ZIKV infection (Figure 4.2H, red circles). Likewise, genes that were 

upregulated by ZIKV infection and were enriched in gene ontology terms “viral 

process,” “apoptosis,” “NFKB signaling,” and “cell cycle arrest” were cross-

referenced with potential miRNA regulators that were concomitantly 

downregulated by ZIKV infection (Figure S4.2A). The miRNAs identified from 

these analyses included many that may regulate pathways relevant to the 

pathogenic ZIKV phenotype, including G1/S transition, defense response to 

virus, brain development (Figure 4.2H) viral process, apoptosis, NFKB signaling 

and cell cycle arrest (Figure S4.2A). Conversely, we generated networks of 
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miRNA targets downregulated by ZIKV (Figure S4.2B) and grouped them based 

on gene ontology function (Figure S4.2C). Collectively, these miRNA–mRNA 

interaction networks suggest a relationship between miRNA and mRNA changes 

in expression and emphasize the ability of multiple dysregulated miRNAs 

simultaneously targeting the same transcripts to suppress biologically relevant 

pathways during ZIKV infection. 

 

ZIKV infection upregulates miRNAs involved in control of the cell cycle and 

neuronal differentiation 

 To validate the miR-seq data, we selected the two miRNAs most 

upregulated upon infection of hNSCs with ZIKV Paraiba (miR-188-3p) and 

MR766 (miR-218-3p) for further analysis. RT-qPCR analysis confirmed that 

expression of both miRNAs was upregulated by both strains of ZIKV, but miR-

188-3p was preferentially induced by Paraiba and miR-218-3p by MR766 (Figure 

S4.3A).  

 The miR-188-3p-3p sequence showed high conservation across the 

species examined, strongly suggesting that it has fundamentally important 

functions (Figure S4.3B). To investigate the role of miR-188-3p in ZIKV 

pathogenesis, we transfected hNSCs with either a non-targeting control 

sequence or a miR-188-3p mimic and analyzed their transcriptional profiles by 

RNA-seq (Figure S4.3C, D, E, Table 4.4). hNSCs overexpressing miR-188-3p 

showed significant downregulation of mRNAs predicted by TargetScan to be 

miR-188-3p targets, as evidenced by the divergent distribution (Figure S4.3F)   
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Figure 4.3: miR-218-3p regulates NSC maintenance and induces neuronal 
differentiation 

(A) Volcano plot of differentially expressed mRNAs in miR-218-3p-
overexpressing hNSCs at 3 days post-transfection. Blue circles represent 
significantly (adjusted p<0.05) differentially expressed mRNAs. The size of each 
circle is proportional to the square root of the base mean expression of the gene. 
(B) Gene ontology analysis of significantly downregulated genes in miR-218-3p 
overexpressing hNSCs (from (A)). 
(C) Representative images of neurospheres of NTC or miR-218-3p transfected 
human neurospheres 5 days post-transfection. Scale bar = 250 µm. 
(D) Fluorescence immunostaining of TUJ1+ neurons after hNSC transfection with 
control or miR-218-3p mimics. Nuclei were stained with DAPI. Scale bar, 100 µm. 
(E) RT-qPCR analysis of NESTIN and PAX6 mRNA levels in hNSCs 3 days post-
inoculation with ZIKV MR766 and ZIKV Paraiba at a MOI of 1. Mean ± SEM of 
n=3.  
(F) RT-qPCR analysis of NESTIN and PAX6 mRNA levels in hNSCs 3 days post-
transfection with non-targeting control or miR-218-3p. Mean ± SEM of n=3.  
(G) Distribution plot of log2-fold changes in mRNA expression in hNSCs 
transfected with non-targeting control (red) or miR-218-3p (blue) mimics. The 
blue curve represents putative miR-218-3p target mRNAs with total context 
scores of ≤ −0.1 based on TargetScan prediction, while the red curve represents 
all mRNAs not predicted to be targets of miR-218-3p.  
(H) Cumulative distribution plot of log2-fold changes in mRNA expression in 
hNSCs transfected with non-targeting control (red) or miR-218-3p (blue) mimics. 
The blue curve represents putative miR-218-3p target mRNAs with total context 
scores of ≤ −0.1 based on TargetScan prediction, while the red curve represents 
all mRNAs not predicted to be targets of miR-218-3p. 
(I) Venn diagram of putative miR-218-3p target genes, genes downregulated by 
MR766, genes downregulated by Paraiba and genes downregulated by hNSCs 
overexpressing miR-218-3p. 
(J) Protein–protein interactome of putative miR-218-3p target genes commonly 
downregulated by miR-218-3p overexpression and ZIKV infection. The color 
depth is proportional to the magnitude of the log2-fold change (darker 
representing greater downregulation). The size of the nodes is proportional to the 
TargetScan context score, with larger nodes representing targets with higher 
confidence. 
(K) Gene ontology analysis of the miR-218-3p–target interactome in ZIKV-
infected hNSCs (from (e)). 
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and cumulative distribution curves (Figure S4.3G) of the fold change in 

expression of mRNAs with high context scores. To identify gene networks 

potentially regulated by miR-188-3p during ZIKV infection, we then compared the 

putative mRNA targets of miR-188-3p, the genes downregulated in hNSCs by 

expression of the miR-188-3p mimic, and the genes downregulated by ZIKV 

Paraiba infection (Figure S4.3H). Gene ontology analysis of the resulting 

datasets revealed enrichment of genes associated with cell cycle and cell 

division processes (Figure S4.3I), both of which have previously been implicated 

in ZIKV pathogenesis(Li et al., 2016; Souza et al., 2016; Tang et al., 2016)  

We performed similar analyses to elucidate the function of miR-218-3p, 

another highly conserved miRNA, in ZIKV infection (Figure S4.4A). hNSCs were 

transfected with control or miR-218-3p mimics and total RNA was analyzed by 

RNA-seq (Figure S4.4B, Figure 4.3A, Table 4.5). Gene ontology analysis of all 

significantly downregulated genes during miR-218-3p overexpression showed an 

enrichment of genes related to cell division and cell cycle progression (Figure 

4.3B). To functionally validate the role of miR-218-3p in neural stem cells, miR-

218-3p was overexpressed in neurospheres and neural stem cells in monolayer. 

Upregulation of miR-218-3p attenuated neurosphere formation, consistent with 

the downregulation of cell cycle related genes identified by gene ontology 

analyses (Figure 4.3C). To determine whether miR-218-3p attenuates 

neurosphere growth by perturbing stem cell maintenance processes, as 

suggested by RNA-seq analyses, and promoting neuronal differentiation, hNSCs 

were transfected with miR-218-3p mimic and cultured over 7 days. After 7 days, 
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we observed an increase in expression of TUJ1, a neuronal marker (Figure 

4.3D), indicating that miR-218-3p does indeed promote the differentiation of 

hNSCs to neurons. Moreover, we examined expression of the NSC markers 

NESTIN and Pax6 in hNSCs after infection with ZIKV MR766 or transfection with 

miR-218-3p mimic. Notably, both NESTIN and PAX6 were downregulated in both 

ZIKV-infected and miR-218-3p-overexpressing hNSCs (Figure 4.3E, F). These 

findings are consistent with recent reports that have suggested that ZIKV 

infection may induce premature differentiation of hNSCs to neurons, resulting in 

the depletion of progenitor cells in the ventricular zone and cortical thinning 

(Gabriel et al., 2017; Li et al., 2016).  

Next, to identify the mRNAs which are directly regulated by miR-218-3p, 

we compared next generation sequencing data with putative miRNA target 

prediction algorithms. The distribution (Figure 4.3G) and cumulative distribution 

(Figure 4.3H) of differentially expressed mRNAs validated bioinformatic target 

predictions of miR-218-3p in hNSCs. Comparison of the miR-218-3p targets 

predicted by TargetScan, the genes downregulated by expression of the miR-

218-3p mimic in hNSCs, and the genes downregulated by ZIKV infection, 

identified 67 and 13 miR-218-3p-regulated target mRNAs in hNSCs infected with 

ZIKV MR766 and ZIKV Paraiba, respectively (Figure 4.3I). These findings are 

consistent with the higher expression of miR-218-3p in MR766-infected 

compared with Paraiba-infected hNSCs and strongly suggest that miR-218-3p 

upregulation is causally related to the transcriptional perturbation of the 67 and 
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Figure 4.4: miR-218-3p dysregulates neurogenesis by directly repressing 
TFRC 

(A) RT-qPCR analysis of EPHA4 and TFRC mRNA levels in hNSCs 3 days post-
inoculation with ZIKV MR766 and ZIKV Paraiba at a MOI of 1. Mean ± SEM of 
n=5.  
(B) RT-qPCR analysis of EPHA4 and TFRC mRNA levels in hNSCs 3 days post-
transfection with non-targeting control or miR-218-3p. Mean ± SEM of n=4. 
(C) Dual luciferase assay analyzing direct repression of EPHA4 and TFRC by 
miR-218-3p. 3’UTR fragments containing predicted miR-218-3p target sequence 
with or without mutated seed regions of EPHA4 and TFRC were cloned into 
pGL3 luciferase reporters and transfected into 293FT cells together with pRL-TK. 
Cells were then transfected with either siNTC or miR-218-3p mimic and lysates 
analyzed 48 hrs post-transfection. Relative luciferase activity was calculated by 
the Firefly/Renilla signal and normalized to siNTC-transfected cells. Mean ± SEM 
of n=3. 
(D) AGO2-RIP-qPCR analysis of hNSCs transfected with siNTC or miR-218-3p 
48 hrs post-transfection. Lysates were pulled down by IgG control or anti-AGO2 
and RNAs were analyzed by RT-qPCR. Mean ± SEM of n=2. 
(E) Immunoblot analysis of TFR in hNSCs infected with ZIKV Paraiba, 
overexpressing miR-218-3p or transfected with siTFRC 3 days post-
infection/transfection.  
(F) Heatmap of RT-qPCR analysis of STAT3-FoxM1 downstream target genes in 
hNSCs infected with ZIKV Paraiba, overexpressing miR-218-3p or transfected 
with siTFRC 3 days post-infection/transfection. Mean of n=6. Color bar on right 
represents relative expression to siNT control. 
(G) Immunostaining of neural progenitor marker SOX2 (green) and ZIKV 
envelope flavivirus group antigen (ZIKVE, red) in the hippocampus (top row) and 
SVZ (bottom row) of ZIKV Paraiba-infected Ifnar-/- mice two weeks post-infection. 
Nuclei were stained with DAPI (gray). Right-most column in shows enlargements 
of the regions. SGZ = subgranular zone, DG = dentate gyrus, LV = lateral 
ventricle, STR = striatum. Scale bars, 200 µM (and 50 µM in right panel only) as 
indicated in figure. 
(H) RT-qPCR analysis of Epha4 and Tfrc mRNA levels in brains of uninfected 
and ZIKV Paraiba-infected Ifnar-/- newborn mice. Mean ± SEM of n=3.  
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13 genesets. Network analyses of the 67 genes revealed that miR-218-3p 

suppresses highly connected protein–protein interaction networks related to DNA 

replication, mitotic spindle organization, fasciculation of neurons, and stem cell 

population maintenance (Figure 4.3J, K). 

Based on the gene networks downregulated by ZIKV and miR-218-3p 

overexpression (Figure 4.3J), we selected EPHA4 and TFRC for further 

validation due to their roles in neurogenesis (Khodosevich et al., 2011) and stem 

cell self-renewal (Schonberg et al., 2015), respectively. RT-qPCR confirmed 

downregulation of both EPHA4 and TFRC mRNA in ZIKV and miR-218-3p 

overexpressing hNSCs (Figure 4.4A, B). To assess whether these transcripts are 

directly or indirectly repressed by miR-218-3p, dual luciferase assays were 

utilized to analyze the extent of direct repression of miR-218-3p based on target 

sequence. Fragments of the EPHA4 and TFRC 3’ UTR containing the putative 

miR-218-3p target sequences with or without a mutated seed sequence region 

were cloned into the pGL3 luciferase vector and overexpressed in 293FT cells. 

Overexpression of miR-218-3p reduced luciferase signal in only TFRC 3’ UTR 

expressing samples (Figure 4.4C), thus suggesting that TFRC is directly 

repressed by miR-218-3p while EPHA4 is not. Moreover, AGO2 RNA 

immunopreciptiation was performed in hNSCs expressing either a non-targeting 

control or  miR-218-3p and bound mRNAs were analyzed by RT-qPCR (Figure 

S4.4C). Consistent with the dual luciferase assay results, EPHA4 showed an 

increased affinity to AGO2 relative to the IgG control but no enrichment when 
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miR-218-3p was overexpressed (Figure 4.4D). TFRC mRNAs, however, showed 

greater loading into the AGO2/RISC complex when miR-218-3p was 

overexpressed. Immunoblot analysis of transferrin receptor (TFR) confirmed 

downregulation of TFR in ZIKV infected hNSCs and hNSCs overexpressing miR-

218-3p (Figure 4.4E).  

Recent studies have shown that iron metabolism and TFR regulation play 

a role in neurogenesis and glioblastoma cancer stem cell proliferation and self-

renewal (Schonberg et al., 2015; Silvestroff et al., 2013). In glioblastoma cancer 

stem cells, iron metabolism, regulated by TFR, governs mitotic progression 

through the STAT3-FoxM1 regulatory signaling loop. Attenuated iron uptake 

decreased FoxM1 and STAT3 expression, decreased downstream targets 

involved in cell cycle regulation. Similarly, both ZIKV infection and miR-218-3p 

overexpression in neural stem cells resulted in the downregulation of AURKA, 

CCNB2, CDC25A, CDK1, CENPF, MELK and PLK1 (Figure 4.4F). In all, these 

results suggest that miR-218-3p downregulates TFRC, thus decreasing iron 

uptake and downregulating cell cycle related genes by disrupting the previously 

established STAT3-FoxM1 regulatory axis. 

Lastly, to confirm the in vivo relevance of these findings, pregnant Ifnar1-/- 

mice were inoculated with ZIKV and fetal brains were isolated (Figure 4.4G and 

Figure S4.4D, E). RT-qPCR analysis of these samples confirmed downregulated 

of both EPHA4 and TFRC in infected fetal tissues (Figure 4.4H). Together, these 

results suggest that miR-218-3p regulates neural stem cell proliferation and 
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stemness through direct repression of TFRC and indirect repression of EPHA4. 

Collectively, the results presented here shed light on the functional role of 

miRNAs, particularly miR-188-3p and miR-218-3p, in post-transcriptional 

regulation of ZIKV-infected hNSCs and the associated microcephaly phenotype. 

 

Chapter 4.3: Discussion 

 Our integrative analyses of coding and non-coding transcriptomes in 

hNSCs revealed novel miRNA–mRNA networks that are dysregulated during 

ZIKV infection and may contribute to the microcephaly phenotype. Analysis of the 

dynamic transcriptomic landscape associated with ZIKV infection in hNSCs 

revealed strain-specific dysregulation of genes associated with cell cycle, 

neurogenesis, stem cell population maintenance, and metabolism. Interestingly, 

we found that, while ZIKV MR766 infection had a greater effect on coding gene 

expression, Paraiba had more impact on the miRNA transcriptome.  

To the best of our knowledge, this is the first study to examine the 

miRNA–mRNA interactome in the context of ZIKV pathogenesis. In particular, we 

observed differential expression of miRNAs with targets strongly associated with 

cell cycle, neurogenesis, and stem cell population maintenance related-

pathways. Previous studies have shown that ZIKV-induced perturbation of these 

processes contributes to the microcephaly phenotype; however, only a few 

mechanisms had been proposed to explain how ZIKV modulates these 

pathways(Dang et al., 2016; Gabriel et al., 2017; Hamel et al., 2015; Li et al., 
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2016; Liang et al., 2016; Onorati et al., 2016; Tang et al., 2016). Our findings now 

propose miRNA regulation as a direct link between ZIKV infection of hNSCs and 

the microcephaly phenotype. 

Analysis of the miRNA–mRNA networks provided evidence that multiple 

differentially expressed miRNAs regulate the same mRNA targets enriched in 

processes implicated in ZIKV-induced microcephaly. For instance, miRNAs miR-

125a-3p and miR-125a-5p, which we found to be upregulated by ZIKV infection, 

are both negative regulators of MAVS, an essential signaling protein in the RIG-I 

and type I interferon response pathways of the innate immune system(Baril et al., 

2009). In addition, miR-320c and miR-7-5p, also upregulated by ZIKV, target 

SIN3A. The SIN3A repressor complex is an essential element in the interferon-

mediated antiviral response through its interaction with STAT3(Icardi et al., 

2012). Previously, ZIKV was shown to inhibit type I interferon production through 

a mechanism involving ZIKV NS5 binding to STAT2 to promote its proteasomal 

degradation(Grant et al., 2016; Kumar et al., 2016). Thus, our findings reveal a 

potential mechanism by which miRNAs mediate suppression of interferon 

signaling in ZIKV-infected hNSCs. Taken together, these data suggest that 

multiple miRNAs work in concert to suppress networks of genes related to 

immunity and neurodegeneration during ZIKV infection. 

 One of the miRNAs upregulated in ZIKV-infected hNSCs was miR-188-3p. 

gene ontology analysis of potential miR-188-3p mRNA targets downregulated 

during ZIKV infection identified networks enriched in cell cycle-related functions. 

Our findings are consistent with previously published reports showing that miR-
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188-3p suppresses the G1/S transition, cell cycle progression, and cell 

proliferation through post-transcriptional regulation of cyclin/CDK complexes and 

SIX1 expression in nasopharyngeal carcinoma and oral squamous cell 

carcinoma(Wang and Liu, 2016; Wu et al., 2014). Following ZIKV infection of 

hNSCs, upregulation of miR-188-3p and inhibition of cell cycle progression and 

proliferation may contribute to the microcephaly phenotype, which is associated 

with dysregulation of the neural progenitor population in vivo(Cugola et al., 2016; 

Dang et al., 2016; Qian et al., 2016).  

 We also analyzed the function of putative miR-218-3p targets that were 

modulated by ZIKV infection, and uncovered a network of genes involved in 

neural stem cell maintenance and neuron fasciculation. Moreover, we confirmed 

that overexpression of miR-218-3p in hNSCs induced their differentiation into 

TUJ1+ neurons, providing a potential mechanism by which ZIKV infection leads 

to depletion of neural progenitors. miR-218-3p is shown to indirectly suppress 

expression of the receptor tyrosine kinase EPHA4, which is essential for 

maintaining NSCs in an undifferentiated state(Khodosevich et al., 2011), and 

knockdown of EphA4 in mice results in depletion of NSCs in the subventricular 

zone(Khodosevich et al., 2011).  

On the other hand, dual luciferase assays and AGO2 RIP-qPCR 

confirmed that miR-218-3p directly represses TFRC mRNA. TFRC is a regulator 

of cellular iron uptake and metabolism which regulates stem cell self-renewal and 

cell cycle (Sanchez et al., 2006; Schonberg et al., 2015; Silvestroff et al., 2013). 

Rat NSCs supplemented with ferric iron and apoTransferrin showed greater cell 
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proliferation mediated through TfRc1 (Silvestroff et al., 2013). Interestingly, TFRC 

has been shown to play a role in glioblastoma cancer stem cell self-renewal 

through an iron-dependent STAT3-FoxM1 regulatory mechanism (Schonberg et 

al., 2015). TFRC is upregulated in glioblastomas and highly upregulated in 

cancer stem cell populations. Schonberg et al. then showed that neurosphere 

formation is TFRC-dependent and that targeting the iron-metabolic pathways can 

decrease cancer stem cell growth in vitro and in vivo. Additionally, iron negatively 

regulates replication of the flavivirus, hepatitis C virus, by binding to the viral 

polymerase NS5B in the protein’s Mg2+ binding pocket (Fillebeen and 

Pantopoulos, 2010; Fillebeen et al., 2005). Thus, miRNA-mediated 

downregulation of TFRC highlights a potential causal link between dysregulated 

cellular metabolic processes and perturbation of cell cycle during ZIKV infection 

as identified by RNA-seq. 

 Collectively, the data presented here identify novel miRNA-regulated 

transcriptional networks in ZIKV-infected hNSCs that regulate neural stem cell 

self-renewal, cell cycle progression, and neurogenesis. Interestingly, integrative 

analyses of the profiling data revealed that ZIKV MR766 and Paraiba strains had 

distinct effects on the mRNA and miRNA transcriptomes, providing a possible 

mechanism for virus-specific effects on neuronal damage during brain 

development. Lastly, functional validation of miR-188-3p and miR-218-3p 

provided insight into dysregulated post-transcriptional mechanisms relevant to 

ZIKV pathogenesis. 
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Chapter 4.4: Materials and Methods 

Cell Lines and Culture Conditions 

All cells were maintained at 37°C in a humidified 5% CO2 atmosphere. 

Vero cells were maintained in Eagle’s Minimum Essential Medium (EMEM; 

ATCC, 30-2003) supplemented with 10% fetal bovine serum (FBS; Gibco) and 

antibiotics. Human NSCs (ThermoFisher, A15654) were cultured in StemPro 

NSC SFM medium consisting of Knockout DMEM/F-12 media supplemented with 

2 mM GlutaMax, 20 ng/ml basic fibroblast growth factor, 20 ng/ml epidermal 

growth factor, and 2% StemPro Neural Supplement (ThermoFisher, A1050901) 

on Matrigel- or CELLStart-coated plates following the manufacturer’s instructions. 

Neurospheres were generated by plating single cell suspensions of hNSC in 

uncoated tissue culture plates. 

For miRNA overexpression experiments, hNSCs were transfected using 

Lipofectamine 2000 (ThermoFisher, 11668019) following the manufacturer’s 

instructions. Briefly, miRIDIAN miRNA mimics (GE Dharmacon) and 

Lipofectamine 2000 were each diluted in OptiMEM, incubated for 10 min at room 

temperature, mixed, and incubated for an additional 20 min. The mixture was 

then added dropwise to hNSCs to give a final concentration of miRNA mimics of 

25 µM. The medium was changed the following day and total RNA was extracted 

at 2 days post-transfection. For the miR-218-3p mimic-induced differentiation 

experiments, hNSCs were transfected twice, on days 0 and 3, and harvested for 

experiments on day 7. 
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Zika Virus Propagation 

ZIKV prototype MR766 and Paraiba strains were propagated in the low 

passage Vero cell line. Vero cells were infected with virus at a MOI of 1 in EMEM 

medium supplemented with 10% FBS. The medium was refreshed 4 h after 

infection and the viral supernatant was collected at 5 days post-infection. Viral 

titers were assessed using iScript One-Step RT-PCR kit (Bio-Rad). Viral copy 

numbers were calculated from a standard curve of in vitro-transcribed viral RNA 

transcripts.  

 

Immunofluorescence Microscopy 

To assess ZIKV infection, hNSCs were fixed at 24, 48, and 72 h post-

infection and immunostained as described previously(Dang et al., 2016). In brief, 

ZIKV- and mock-infected hNSCs were fixed with 4% paraformaldehyde in PBS 

for 20 min at room temperature. Cells were permeabilized by incubation in 0.1% 

Triton X-100 for 5 min at room temperature and then blocked in 5% bovine serum 

albumin for 30 min. Cells were then incubated overnight at 4°C with a mouse 

anti-ZIKVE/anti-flavivirus group antigen (1:500, Millipore MAB10216), which is 

directed against the flavivirus envelope protein. Cells were washed with PBS and 

incubated for 1 h at room temperature with fluorescein isothiocyanate (FITC)-

conjugated anti-mouse IgG. The nuclei were stained with Hoechst 33258 before 

analysis. To assess neuronal differentiation by expression of TUJ1, hNSCs were 

cultured for 7 days and then fixed and stained as described above, except the 
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primary antibody was specific for TUJ1 (Abcam, ab7751). Immunostained cells 

were imaged using a Leica fluorescence microscope (DMI 3000B). 

 

ZIKV infection of mice  

Ifnar-/-  mice (4–5-week-old, MMRRC Jackson Laboratories) were infected 

with ZIKV Paraiba (5 × 104 MOI/µl) or MR766 (3.2 × 105 MOI/µl) by i.p. injection 

(500 µl) as previously described (Lazear et al., 2016; Zhao et al., 2016). Mice 

were sacrificed for immunostaining 2 weeks after ZIKV infection. 

 

Immunohistochemistry  

Mice were transcardially perfused with normal saline (0.9% NaCl) followed 

by ice-cold 4% paraformaldehyde (PFA, pH 7.2) under deep anesthesia, as 

described previously (Tiwari et al., 2014). Brains were removed and post-fixed in 

10% PFA overnight at 4°C followed by cryopreservation in 10%, 20%, and 30% 

(w/v) sucrose in PBS. Serial coronal sections of 30 µm thickness beginning at 

bregma −1.50 to −3.50 mm through the dorsal hippocampus encompassing the 

dentate gyrus region and +0.26 to −2.5 mm through the SVZ were cut using a 

freezing cryostat (Leica Biosystems, CM3050s). Free-floating sections were 

washed, antigen retrieval was performed with citrate buffer (pH 6.2), and the 

sections were blocked with 3% normal goat serum, 0.1% Triton X-100, and 0.5% 

BSA for 2 h. Sections were then incubated with mouse anti-ZIKVE (flavivirus 

group antigen) antibody (1:500), rabbit anti-SOX2, or goat anti-FANCC (1:100) 

for 24 h at 40°C. Sections were then stained with secondary antibodies (anti-
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mouse and anti-rabbit Alexa Fluor 488 at 1:200; anti-rabbit, anti-mouse, and anti-

goat Alexa Fluor 594 at 1:200), washed, mounted with DAPI-containing Hard Set 

anti-fade mounting medium (Vectashield, Vector Laboratories, CA, USA), and 

stored in the dark at 4°C. Slides were analyzed using an inverted Leica 

fluorescence microscope (DMI 3000B) or a Leica SP5 confocal with Resonant 

Scanner microscope with Leica LAS Lite Software. 

 

Dual Luciferase Assay 

 3’ UTR fragments were cloned into pGL3-basic firefly luciferase vectors. 

pGL3 (Promega, E1751), pRL-TK (Renilla luciferase) (Promega, E2241) and 

miR-218-3p or control were transfected together using Lipofectamine 2000 

(ThermoFisher, 11668019) in 293FT cells. Cells were lysed using passive lysis 

buffer and analyzed using the Promega Dual-luciferase Reporter Assay System 

(Promega, E1980) following manufacturer’s instructions using a BioTek Synergy 

2 plate reader. 

 

AGO2 RNA immunoprecipitation 

Cells were lysed using Pierce IP Lysis Buffer (ThermoFisher, 87787) 

supplemented with cOmplete Mini Protease Inhibitor Cocktail (Roche, 

4693159001) and RNasin ribonuclease inhibitor (Promega, N2111) and rotate with 

5ug of either control IgG (Santa Cruz Biotechnology, sc-2026) or AGO2 antibody 

(Sigma, SAB4200085) for 2 hours at 4°C. 50ul of washed Pierce A/G magnetic beads 

(ThermoFisher, 88802) were added to each sample and rotated overnight at 4°C. The 
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following day, samples were washed 5 times using Pierce IP lysis buffer and aliquoted 

for RNA extraction using TRIzol reagent and protein analyses by western blot.  

 

RNA Extraction, cDNA Synthesis, and qRT-PCR 

Total RNA was extracted from hNSCs using a miRNeasy Mini Kit (Qiagen, 

217004) according to the manufacturer’s instructions. RNA samples were treated 

with RNase-free DNase (Qiagen), and cDNA was generated from 500 ng 

RNA/sample using iScript Mastermix (Bio-Rad) according to the manufacturer’s 

instructions. For miRNA RT-qPCR analyses, miRNA cDNA synthesis was 

performed using the MiR-X miRNA First-Strand Synthesis Kit (Clontech, 

638315). qPCR of mRNA and miRNA was performed with SYBR Green PCR 

Master Mix (Bio-Rad) using a Roche LightCycler 480. 

 

RNA-Seq and miR-Seq Data Analysis 

RNA was extracted from hNSCs as described above and then ribo-

depleted. RNA and miRNA sequencing were performed using an Illumina 

NextSeq 500 with an average of 20 million and 5 million reads per sample, 

respectively.  

For RNA-seq analyses, the single-end reads that passed Illumina filters 

were filtered for reads aligning to tRNA, rRNA, adapter sequences, and spike-in 

controls. The reads were then aligned to UCSC hg19 reference genome using 

TopHat (v 1.4.1). DUST scores were calculated with PRINSEQ Lite (v 0.20.3), 

and low-complexity reads (DUST >4) were removed from the BAM files. The 
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alignment results were parsed using SAMtools to generate SAM files. Read 

counts to each genomic feature were obtained with the htseq-count program (v 

0.6.0) using the “union” option. After removing absent features (zero counts in all 

samples), the raw counts were imported into R/Bioconductor package DESeq2 to 

identify genes differentially expressed between samples. DESeq2 normalizes 

counts by dividing each column of the count table (samples) by the size factor of 

the column. The size factor was calculated by dividing the samples by the 

geometric means of the genes. This brought the count values to a common scale 

suitable for comparison. P values for differential expression were calculated 

using a binomial test for differences between the base means of two conditions. 

The p values were adjusted for multiple test correction using the Benjamini–

Hochberg algorithm to control the false discovery rate. Cluster analyses, 

including principal component analysis and hierarchical clustering, were 

performed using standard algorithms and metrics.  

For miR-seq analyses, quality control was assessed using FastQC. Reads 

were aligned to the genome with bowtie2 using the following reference and 

annotations: Homo_sapiens.GRCh38.dna.primary_assembly.fa (NCBI) and 

Homo_sapiens.GRCh38.86.gtf (NCBI). Random 100 unmapped reads were 

generated and compared using BLAST (NCBI). Partek was utilized to generate 

read counts, RPKM, and the mapping summary. Genes with read count values 

<1 across all samples were filtered out. DESeq was utilized to calculate the fold 

change, p value, and adjusted p value for differentially expressed miRNAs. 
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Gene ontology analyses of biological processes were performed using 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 

(Huang da et al., 2009). Grouped functional pathway/gene ontology network and 

miR–mRNA target analyses were performed using Cytoscape with the ClueGo 

and CyTargetLinker add-ons(Bindea et al., 2009; Kutmon et al., 2013; Shannon 

et al., 2003). miRNA target predictions were performed using TargetScan, 

miRTarBase, and miRANDA(Agarwal et al., 2015; Betel et al., 2008; Chou et al., 

2016; Kutmon et al., 2013). Density and cumulative density plots were generated 

in R after calculating the cumulative context scores of a given mRNA based on 

miRNA target sites within the 3′-UTR(Wu et al., 2016).  

 

Western blotting 

Cells were lysed in RIPA buffer containing protease inhibitor cocktail (Roche), 

and proteins were resolved by SDS-PAGE and transferred to PVDF membranes 

(Bio-Rad). Membranes were blocked with Fast Western Blot Kit blocking reagent 

(Thermo Scientific Pierce) and signals were detected with Supersignal West Pico 

Chemiluminescent Substrate (Pierce). The following antibodies were used: 

GAPDH (Cell Signaling Technology, 5174S), TFR (Invitrogen, 13-6800) and 

AGO2 (Sigma, SAB4200085). 

 

 
Statistical analysis  
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Statistical analysis was carried out using GraphPad Prism software. 

Differences between group means were analyzed by Student’s t test. 

Differentially expressed genes in the RNA-seq data were analyzed using 

ANOVA. A p value ≤0.5 was considered statistically significant.  
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Figure S4.1: Gene set enrichment analyses of differentially expressed 
genes in ZIKV-infected hNSCs 

(A–C) GSEA of upregulated (a), downregulated (b) or either upregulated or 
downregulated (c) genes in ZIKV MR766-infected hNSCs at 3 days post-infection 
at a MOI of 1. 
(D–F) GSEA of upregulated (d), downregulated (e), or either upregulated or 
downregulated (f) genes in ZIKV Paraiba-infected hNSCs at 3 days post-infection 
at a MOI of 1. 
 
 

 

 

 

 

 

 



124 
	

	

 

 

Figure S4.2: miRNA-mediated regulatory networks in ZIKV-infected hNSCs 

(A) Integrative networks of mRNAs downregulated and miRNAs upregulated in 
ZIKV-infected hNSCs involved in “viral process,” “apoptosis,” “NFKB signaling,” 
and “cell cycle arrest” based on gene ontology annotation. 
(B) miRNA–mRNA network of commonly upregulated miRNAs and 
downregulated mRNAs in ZIKV MR766- and Paraiba-infected hNSCs. Genes are 
clustered based on gene ontology annotation. 
(C) Gene ontology analyses of putative mRNA targets of commonly upregulated 
miRNAs in ZIKV MR766- and Paraiba-infected hNSCs (shown in (b)). 
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Figure S4.3: ZIKV-induced upregulation of miR-188-3p in hNSCs targets cell 
cycle-related processes 

(A) RT-qPCR validation of miRNAs identified in miR-seq analyses to be 
differentially expressed in mock-, ZIKV MR766-, and ZIKV Paraiba-infected 
hNSCs. Mean ± SEM of biological triplicates. 
(B) Sequence conservation of miR-188-3p-3p. 
(C) RT-qPCR analysis of miR-188-3p expression in hNSCs 2 days after 
transfection with control or miR-188-3p mimics. Mean ± SEM of biological 
triplicates. 
(D) Experimental design. hNSCs were transfected with miR-188-3p mimic for 3 
days and total RNA was analyzed by RNA-seq. Genes differentially expressed 
during ZIKV infection, putative miR-188-3p targets, and genes downregulated by 
miR-188-3p overexpression were cross-referenced to identify miRNA-regulated 
gene networks implicated in ZIKV pathogenesis. 

(E) Volcano plot of differentially expressed mRNAs in hNSCs overexpressing 
miR-188-3p mimic at 3 days post-transfection. Blue circles represent significantly 
(adjusted p<0.05) differentially expressed mRNAs. The size of each circle is 
proportional to the square root of the base mean expression of the gene. 
(F) Distribution plot of log2-fold changes in mRNA expression in hNSCs 
transfected with non-targeting control (red) or miR-188-3p (blue) mimics. The 
blue curve represents putative miR-188-3p target mRNAs with total context 
scores of ≤ −0.1 based on TargetScan prediction, while the red curve represents 
all mRNAs not predicted to be targets of miR-188-3p.   
(G) Cumulative distribution plot of log2-fold changes in mRNA expression in 
hNSCs transfected with non-targeting control (red) or miR-188-3p (blue) mimics. 
The blue curve represents putative miR-188-3p target mRNAs with total context 
scores of ≤ −0.1 based on TargetScan prediction, while the red curve represents 
all mRNAs not predicted to be targets of miR-188-3p.   
(H) Protein–protein interactome of putative miR-188-3p target genes commonly 
downregulated by miR-188-3p overexpression and ZIKV infection. The color 
depth is proportional to the magnitude of the log2-fold change (darker represents 
greater downregulation). The size of the nodes is proportional to the TargetScan 
context score, with larger nodes representing targets with higher confidence. 
(I) Gene ontology analysis of the miR-188-3p–target interactome in ZIKV-infected 
hNSCs (from (h)). 
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Figure S4.4: Validation of miR-218-3p overexpression in hNSCs and miR-
218-3p sequence alignment 

(A) Sequence conservation of miR-218-3p-2-3p. 
(B) RT-qPCR analysis of miR-218-3p expression in hNSCs 2 days after 
transfection with control or miR-218-3p mimics. Mean ± SEM of biological 
triplicates. 
(C) Immunoblot analysis of input and AGO2 immunoprecipitated cell lysates from 
hNSCs transfected with miR-218-3p 3 days post-transfection.  
(D) Immunostaining of neural progenitor marker SOX2 (green) and ZIKV 
envelope flavivirus group antigen (ZIKVE, red) in the hippocampus (top row) and 
SVZ (bottom row) of control uninfected Ifnar-/- mice. Nuclei were stained with 
DAPI (gray). Right-most column in shows enlargements of the regions. SGZ = 
subgranular zone, DG = dentate gyrus, Scale bars, 200 µM (and 50 µM in right 
panel only). 
(E) Immunostaining of mature neuronal marker NeuN (red) and ZIKV envelope 
flavivirus group antigen (ZIKVE, green) in the hippocampus of uninfected (top) or 
ZIKV Paraiba-infected (bottom) Ifnar-/- mice two weeks post-infection. Nuclei 
were stained with DAPI (gray). SGZ = subgranular zone, DG = dentate gyrus, 
Scale bars are as indicated on image.  
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Table 4.1: Differentially expressed genes in ZIKV MR766 infected hNSCs 3 
days post-infection 
 
Table 4.2: Differentially expressed genes in ZIKV Paraiba infected hNSCs 3 
days post-infection 
 
Table 4.3: Differentially expressed miRNAs in ZIKV MR766 and Paraiba 
infected hNSCs 3 days post-infection 
 
Table 4.4: Differentially expressed genes in miR-188-3p overexpressing 
hNSCs 2 days post-transfection 
 
Table 4.5: Differentially expressed genes in miR-218-3p overexpressing 
hNSCs 2 days post-transfection 
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CHAPTER 5: Discussion and Future Directions 

Because of the inherent morphological and functional differences between 

mouse and human brain development, novel stem cell-based platforms for the 

human brain model are required to dissect the molecular mechanisms that 

contribute to neurodegenerative diseases. This dissertation set out to generate 

human pluripotent stem cell-derived models of the brain to study 

neurodegenerative diseases, such as the emerging ZIKV epidemic. The first goal 

was to dissect the mechanisms that contribute to the stochastic nature of somatic 

cell reprogramming in an effort to enhance iPSC yield, the primary limitation of 

iPSC reprogramming. Second, this dissertation aimed to utilize pluripotent stem 

cells – either human embryonic stem cells or induced pluripotent stem cells – to 

generate human cerebral organoid models to study brain development and 

neurodegeneration in vitro. The last goal was to utilize these tools to explore the 

correlation between the increased incidence in ZIKV infection and fetal 

microcephaly and better study the dynamic transcriptomic response during ZIKV 

infection.

 

Chapter 5.1: miR-135b modulates ECM expression to facilitate somatic 

reprogramming 

To study the molecular mechanisms which promote and enhance somatic 

cell reprogramming, we hypothesized that miRNAs may regulate barriers which 

inhibit iPSC maturation and/or facilitate successfully reprogramming. We profiled 
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miRNAs in Thy1+ and Thy1- fibroblasts with Thy1+ MEFs being highly resistant 

to programming as indicated by AP staining. Through gain of function and loss of 

function assays, miR-135b was confirmed to enhance iPSC induction through a 

novel extracellular matrix-driven regulation of the iPSC microenvironment. 

Yamanka OSKM reprogramming induced an upregulation of miR-135b 

expression which directly repressed Wisp1 and Igfbp5 expression. Further 

functional analyses revealed that Wisp1 is a key regulator of Tgfbi, Igfbp5, Dkk2, 

Nov and Ccl20 expression, possibly mediated interactions with biglycan. Thus, 

these data suggest that miRNA-mediated regulation of ECM components 

contributes to the stochasticity of somatic cell reprogramming. While previous 

studies have explored the dynamic transcriptome, epigenome, epitranscriptome 

and metabolome during somatic reprogramming, this study reveals a novel role 

of extracellular matrix reprogramming during iPSC induction. Moreover, this 

study highlights the ability of miRNAs to enhance iPSC reprogramming through 

downregulation of barrier genes such as Wisp1, which is highly expressed by 

MEF. 

Previous studies have shown that iPSC reprogramming is characterized 

by two major stages: the initial epigenetic reprogramming induced by OSKM 

transduction, and the later stage of maturation in which iPSCs enter a 

deterministic stage (Polo et al., 2012; Soufi et al., 2012). Future work in this field 

of study may focus on the role of the extracellular matrix and microenvironment 

during the deterministic phases of iPSC induction and the biphasic nature of 

Wisp1 during somatic cell reprogramming. Inducible shRNA or CRISPR/Cas9-
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mediated knockdown/knockout and overexpression of Wisp1 in a time course 

dependent manner during somatic cell reprogramming may elucidate the 

temporally sensitive role of Wisp1. These analyses in combination with RNA-seq 

will provide insight into the specific stage in which Wisp1 transitions from a 

positive to negative regulator of iPSC induction and the gene networks 

modulated by Wisp1 signaling.  

In addition, the mechanistic role of Wisp1-mediated ECM regulation 

remains to be revealed. Does Wisp1 modulate the iPSC microenvironment and 

expression of ECM genes Igfbp5, Dkk2, Nov and Tgfbi through interactions with 

biglycan and decorin? To address these questions, FLAG-tagged Wisp1 can be 

overexpressed, immunoprecipitated and interacting proteins can be identified by 

mass spectrometry. These experiments may be performed at various timepoints 

during iPSC induction determine whether or not Wisp1 interacting proteins differ 

in a temporal manner during the reprogramming process, thus accounting for its 

dual role. Knockdown or knockout experiments of Wisp1 interacting proteins as 

well as overexpression of mutated Wisp1 can be utilized to dissect the key 

signaling proteins responsible for remodeling the microenvironment during 

reprogramming. Extracellular matrix components involved in Wisp1 signaling 

during reprogramming may be utilized to identify soluble media factors that may 

enhance reprogramming efficiency. 
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Chapter 5.2: 3D self-organizing cerebral organoids model ZIKV-

microcephaly 

The second aim of this dissertation was to examine the potential causal 

relationship between ZIKV and microcephaly using three-dimensional, self-

organizing human cerebral organoid models. The current and ongoing ZIKV 

epidemic originating in Brazil showed a strong correlation between maternal 

ZIKV infection and microcephalic infants. Thus, organoids present a 

physiologically relevant human model for the developing fetal brain with which to 

study ZIKV pathogenesis in vitro. First, we generated stem cell-derived cerebral 

organoids using an “intrinsic” neural differentiation model to allow for broad 

regionalization. Immunohistochemistry revealed the expression of forebrain, 

midbrain and hippocampal markers. Calcium dye imaging was utilized to assess 

electrophysiology. RNA-seq of whole organoids revealed large transcriptomic 

changes between human embryonic stem cells and 1 and 2 month old organoids. 

Correlation between organoid transcriptomes and BrainSpan datasets from post-

mortem fetal tissues across age and region suggested a strong correlation 

between early first trimester fetal brains and organoids. In addition, 

transcriptomic analyses showed that organoids recapitulate regions such as the 

developing neocortex and ganglionic eminence. Overall, this demonstrates the 

ability of stem cell-derived cerebral organoids to model the developing brain at 

the morphological, functional and transcriptomic level.  

Organoids were then treated with prototype MR766 ZIKV to understand 

the phenotypic and transcriptomic response during early stage neural 



134 
	

	

development. Organoids treated with ZIKV showed significant decrease in the 

neuroepithelium and overall organoid size. This was one of the foundational 

studies that showed that ZIKV preferentially infects the neural stem cell 

population in the brain as evidenced by the colocalization of cells expressing the 

flavivirus envelope protein and neural stem cell marker, NESTIN, and leads to a 

microcephaly-like phenotype.  

Because TLR3, a key antiviral component of the innate immunity, has 

been linked to neurodegenerative phenotypes, so we hypothesized that ZIKV 

may activate the TLR3 pathway in neural progenitor cells, subsequently 

triggering a apoptotic cascade and altered cell fate (Cameron et al., 2007; Dang 

et al., 2016; Hamel et al., 2015; Okun et al., 2010; Okun et al., 2011; Tsai et al., 

2009; Yaddanapudi et al., 2011). Indeed, ZIKV infection of organoids and 

neurospheres revealed an increased activation of TLR3. 41 genes were then 

shown to be commonly differentially expressed during cerebral organoid 

formation and TLR3 activation, thus presenting a potential link between antiviral 

innate immune activation and neurodegenerative pathways. 

These data suggest a potential link between ZIKV induced TLR3 

activation and neurodegeneration. To further build upon this, gain and loss of 

function studies should be performed to analyze these individual genes in the 

context of innate immune activation and neurodegeneration. Moreover, the 

mechanistic link between these neurogenesis-related genes and immune 

activation remains unresolved.  
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In addition, genetic mouse models and in vivo knockdown experiments 

would provide insight into the ZIKV-mediate neurodegenerative phenotype in 

vivo. Finally, single cell RNA-seq of ZIKV infected organoids would identify which 

cells are in highly infected in a human brain model and the transcriptomic 

response in infected cells at the single cell level.  

 

Chapter 5.3: miRNAs regulate transcriptional networks during ZIKV 

infection and associated neurodegeneration  

 Finally, the last aim of this dissertation was to analyze the coding and non-

coding transcriptome in ZIKV infected neural stem cells, which were shown to be 

highly infected in organoid models. This study identified ZIKV dysregulated 

miRNA-regulated transcriptional networks involved in neural stem cell self-

renewal, cell cycle progression and neurogenesis using an integrative approach 

analyzing RNA-seq, miR-seq and predictive algorithms. Following ZIKV infection, 

miR-218 was upregulated, thereby repressing a gene network involved in stem 

cell maintenance. Functional analyses showed the miR-218 directly represses 

TFRC and indirectly downregulates EPHA4, both previously shown to regulate 

neurogenesis. 

 Future studies should focus on the role of TFRC in ZIKV-mediated 

neurodegeneration. TFRC is a regulator of ferric iron metabolism and has been 

implicated in regulation of cell cycle regulation, neurogenesis and cancer stem 

cell stemness (Matak et al., 2016; Sanchez et al., 2006; Schonberg et al., 2015; 
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Silvestroff et al., 2013). In addition, TFRC has previously been shown to regulate 

bone resorption, which may potentially play a role in the increased incidence of 

brain calcifications shown in ZIKV infected fetal brains (Ishii et al., 2009). In vivo 

shRNA-mediated knockdown of Tfrc by adeno-associated virus in mice may 

provide additional insight into the role of TFRC in ZIKV pathogenesis. Moreover, 

these findings suggest a causal link between ZIKV induced dysregulation of 

metabolic process and perturbed cell cycle mediated through downregulation of 

TFRC. In depth analysis of TFRC’s role in the STAT3-FoxM1 regulatory axis 

identified by Schonberg et al. may provide further insight into the causes of ZIKV-

mediated neurodegeneration (Schonberg et al., 2015). Further analysis of iron 

uptake during ZIKV infection and its role in both cell cycle regulation and neural 

stem cell self-renewal may provide designs for novel ZIKV therapeutics.  

 miRNA biology may regulate ZIKV infection and pathogenesis in several 

non-canonical ways. For instance, HCV has been shown to functionally 

sequester miR-122 to de-repress miR-122 mRNA targets, thus acting as a miR-

sponge (Luna et al., 2015). This phenomenon follows the competing endogenous 

RNA (ceRNA) hypothesis in which mRNAs, pseudogenes, and long non-coding 

RNAs may collectively compete for miRNA binding (Salmena et al., 2011; 

Thomson and Dinger, 2016). Essentially, if a transcript containing binding sites 

for a specific miRNA is overexpressed, it will, in effect, act as a miRNA-sponge 

and relieve miRNA-mediated repression of other mRNAs. This hypothesis has 

been experimentally supported by Poliseno et al. who observed that the 

pseudogene PTENP1 regulated PTEN expression in a DICER-dependent 
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manner (Poliseno et al., 2010). However, the ceRNA hypothesis is quite 

controversial, stemming from recent analyses about the stoichiometry of miRNAs 

and target site abundance. Denzler et al. systematically calculated that the 

threshold number of transcripts for a given miRNA necessary to effectively act as 

a miR-sponge would be approximately 1.5x105, a physiologically dubious number 

(Denzler et al., 2014). On the other hand, RNA viruses such as ZIKV are highly 

overexpressed and may indeed act as a miR-sponge. Bioinformatic analyses to 

predict putative miRNA binding sites within the ZIKV transcript and AGO-iCLIP-

seq or CLASH-seq experiments should be performed to analyze the global de-

repression by ZIKV-sponged miRNAs. 

 Lastly, analysis of viral-encoded miRNAs may provide insight into novel 

ZIKV-mediated regulatory mechanisms. While numerous studies have shown 

that DNA viruses are capable of encoding for miRNAs, only a few have indicated 

that RNA viruses are capable of generating small RNAs. The majority of known 

functional viral miRNAs are generated by viruses within the Herpesviridae family 

– including Herpes Simplex Virus 1 and 2, Herpes B virus and human 

cytomegalovirus – and regulate the latent versus lytic viral lifecycle and evade 

the immune response (Kincaid and Sullivan, 2012). Previously, it was discovered 

that RNA viruses such as Dengue, Vesicular Stomatitis, Polio, Hepatitis C, West 

Nile and Flock House are capable of generating viral small RNAs, some of which 

were able to load into Argonaute complexes (Parameswaran et al., 2010). 

Furthermore, Rouha et al. indicated that functional miRNAs can be generated 

from cytoplasmic RNA viruses through the introduction of pre-miRNA-like hairpin 
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structures into tick-borne encephalitis virus (Rouha et al., 2010). Together, these 

studies indicate that flaviviruses like ZIKV or tick-borne encephalitis virus may 

generate novel viral miRNAs. Use of RNA secondary-structure algorithms to 

identify hairpin structures coupled with miR-seq analyses may be used to identify 

novel ZIKV-encoded miRNAs. 
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