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Abstract16

Variable-resolution global climate models (VRGCMs) are a dynamical downscaling method17

that can reach spatiotemporal scales needed for regional climate assessments. Over the18

years, several users of VRGCMs have assumed where the location and extent of the refine-19

ment domain should be based on knowledge of the prevailing storm tracks and resolution20

dependence of important regional climate processes (e.g., atmospheric rivers [ARs] and21

orographic uplift), but the effect of high resolution domain size and extent on the simula-22

tion of downstream hydroclimatic phenomena has not been systematically evaluated. Here,23

we use variable-resolution in the Community Earth System Model (VR-CESM) to per-24

form such a test. To do this, three VR-CESM grids were generated that span the entire,25

two-thirds, and one-third of the North Pacific and evaluated for a 30-year climatology us-26

ing Atmospheric Model Intercomparison Project protocols. Simulations are compared with27

reanalysis products offshore (ERA5) and onshore (Livneh, 2015 and Parameter-elevation28

Regressions on Independent Slopes Model) of the western US. The westward expansion29

of refinement domain influenced integrated vapor transport (IVT), which was generally30

high-biased, but minimally impacted AR characteristics. Due to slight differences in land-31

falling AR counts in the western US, California winter precipitation generally improved32

with westward expansion of the refinement domain. Western US mountain snowpack and33

surface temperatures were insensitive to refinement domain size and were more influenced34

by changes in topographic resolution and/or land-surface model version. Given minimal35

dependence of simulated western US hydroclimate on refinement domain size over the36

North Pacific we advise future VR-CESM studies to focus grid resolution on better resolv-37

ing land-surface heterogeneity.38

1 Introduction39

Given the cost prohibitive nature of executing uniform high-resolution global climate40

model (GCM) experiments (e.g., Wehner et al. [2014]; Haarsma et al. [2016]), dynamical41

downscaling has been fundamental in reaching the spatiotemporal scales necessary to meet42

regional climate information needs for assessments of vulnerability, impacts, and adapta-43

tion [Giorgi, 2019]. Over the last thirty years, regional climate models (RCMs) have been44

the primary means to perform dynamical downscaling, with various internationally co-45

ordinated projects aimed at producing climate impacts and/or model sensitivity analyses46

[Christensen and Christensen, 2007; Giorgi et al., 2009; der Linden and Mitchell, 2009;47
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Mearns et al., 2012; Evans et al., 2014]. These projects, and others, have shown that RCM48

simulations can provide added value over coarser-resolution GCM simulations through the49

enhanced representation of spatial variability in regions of complex terrain and land-sea50

contrast and more accurate simulations of certain weather features such as hurricanes [Di51

Luca et al., 2015, 2016; Poan et al., 2018].52

Akin to RCMs, variable-resolution GCMs (VRGCMs) can be configured for high-53

resolution regional modeling, with computational cost scaling with the size and resolution54

of the most refined domain. Unique from RCMs, VRGCMs are GCMs that enable grid55

spacing to vary by location. This capability provides some advantages over RCMs, such56

as eliminating the need for two separate simulations and the corresponding biases that57

arise from the specification of lateral boundary conditions and coupling disparate models.58

However, VRGCMs also have their own issues, particularly scale sensitivity in sub-grid-59

scale parameterizations (e.g., shallow- and deep-convection, turbulence, and cloud macro-60

physics [Arakawa and Jung, 2011]). Over the last several decades, multiple VRGCMs have61

been developed and evaluated for various climate and weather applications. As discussed62

in Fox-Rabinovitz et al. [2006], VRGCMs were first developed as stretched-grid-GCMs63

that refine resolution in one location at the expense of coarsening another [Yessad and Bé-64

nard, 1996; Côté et al., 1998; Fox-Rabinovitz et al., 2001; McGregor, 2005]. More modern65

VRGCMs employ techniques that do not require grid-stretching, but rather gradual tran-66

sitions in grid-refinement including the variable-resolution capabilities in the Community67

Earth System Model (VR-CESM; [Zarzycki et al., 2014a; Guba et al., 2014]), the Model68

for Prediction Across Scales (MPAS; [Park et al., 2014; Rauscher and Ringler, 2014]), and69

the Finite Volume Cubed-Sphere Dynamical Core (FV3; [Harris and Lin, 2013; Harris70

et al., 2016]). A more detailed summary of the current community of VRGCMs, and the71

specifics of their atmospheric model structural and parameter decisions, can be found in72

Ullrich et al. [2017].73

The downscaling benefits and computational cost savings enabled by VRGCMs have74

been extensively evaluated across a hierarchy of model test-cases. Rauscher et al. [2013]75

and Rauscher and Ringler [2014] utilized idealized model test cases in MPAS, atmospheric76

dynamics enabled with prescribed physics (Held-Suarez) and atmospheric dynamics and77

physics enabled with “controlled” SSTs (aquaplanet), to show that VR refinement could78

positively impact eddy kinetic energy (i.e., storm tracks) in the mid-latitudes, but may79

have detrimental effects on model moist-physics in equatorial regions. Similarly, Zarzy-80
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cki et al. [2014b] used VR-CESM in an aquaplanet test-case and showed that the statis-81

tics derived from the VR refinement domain matched those of a corresponding uniform82

high-resolution simulation and noted that cross-scale interactions in the grid-transition re-83

gion were physically consistent (e.g., Kelvin wave phase-speeds). In relation to the find-84

ings highlighted in Rauscher et al. [2013], the choice of and resolution dependence of85

the physics scheme was noted to be responsible for the detrimental feedbacks on cloud86

fraction, precipitation rates, and diabatic heating rates. Building on the aforementioned,87

Sakaguchi et al. [2015] used MPAS in a real-world-like model test case, atmosphere-land88

model coupling and prescribed SSTs and sea-ice observations (Atmospheric Model In-89

tercomparison Project; AMIP), to show that when provided strong surface forcing (e.g.,90

topography, SSTs, etc.) VR refined simulations provide comparably realistic process repre-91

sentation compared with uniform high resolution simulations (e.g., South American mon-92

soon and Andean induced moisture convergence over the Amazon). More recently, Sak-93

aguchi et al. [2016] used MPAS with AMIP protocols to explore how VR refinement may94

influence the large-scale circulation, both locally and globally, through “upscale effects”95

and found comparable improvements as those found in uniform high-resolution simulations96

(e.g., representation of synoptic wave activity and propagation and westerly jets) and al-97

luded that this could improve simulated hydrologic extremes through changes in the advec-98

tion of scalars (e.g., water vapor). This last point in Sakaguchi et al. [2016] is important99

and has not been extensively evaluated in the VRGCM literature to date, particularly the100

sensitivities of the simulated mean climate and hydrologic extremes due to the placement101

and/or extent of the refinement domain in VRGCMs in real-world-like model test cases.102

In the RCM literature, the implications of domain extent, placement and resolution103

on the added value of downscaled simulations has been extensively explored [Laprise104

et al., 2008; Caron et al., 2011; Caron and Jones, 2012; Diaconescu and Laprise, 2013;105

Di Luca et al., 2015; Brisson et al., 2016; Di Luca et al., 2016; Matte et al., 2016; Lucas-106

Picher et al., 2017; Matte et al., 2017; Poan et al., 2018]. In particular, careful selection107

of the RCM domain size and extent has been shown to have significant impacts on sim-108

ulation fidelity [Xue et al., 2014; Matte et al., 2016, 2017]. The prevailing rule-of-thumb,109

colloquially termed the “Goldilocks” rule, is that the RCM domain size should not be too110

big, nor too small to allow for appropriate scale interactions between the lateral boundary111

conditions and the innermost model domain [Jones et al., 1995]. As shown in Leduc and112

Laprise [2009], if the RCM domain is too small, there is insufficient time for meteorolog-113

–4–©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to JGR-Atmospheres

ical processes to develop small-scale features (or transient eddies), particularly higher up114

in the troposphere where surface forcing is weak and winds are stronger. Yet if the RCM115

domain is too large, the features within the simulated domain can become decoupled from116

the large-scale forcing data [Leduc and Laprise, 2009; Matte et al., 2016], particularly if117

domain nudging methods are not used [Miguez-Macho et al., 2004]. Therefore, the RCM118

domain size should be “just right” with an even balance between the forces associated119

with the large-scale boundary conditions and transient eddy spin-up in the RCM domain(s)120

in order for the RCM to recreate and spatially enhance the GCM simulation. In a practical121

sense, this tradeoff also has significant implications with respect to computational expense122

of the simulation, with larger domains resulting in greater costs.123

The “Goldilocks” rule evidenced in the RCM literature may also apply to VRGCMs,124

but to date has been sparsely studied. The VRGCM literature has primarily explored the125

role of horizontal resolution and sub-grid-scale parameterization sensitivities. In particular,126

Hagos et al. [2015] used both aquaplanet and real-world-like AMIP simulations in MPAS127

at ∼240km to ∼30km to explore resolution sensitivity of storm tracks and counts, in par-128

ticular atmospheric rivers (ARs), over the North Pacific using uniform-resolution grids.129

For the AMIP simulations, the number of AR events that impinge on the western US130

showed little dependence on resolution at ∼120 km vs ∼30 km and were low compared131

with reanalysis estimates due to an overall drier subtropics and poleward-shifted storm132

track. Most recently, Goldenson et al. [2018] utilized MPAS-AMIP simulations with VR133

refinement over the western US coast at ∼30 km and showed that the simulation of ARs134

was high biased compared with reanalysis, but improved compared with coarser uniform-135

resolution simulations and previous versions of MPAS with differing dynamical cores and136

sub-grid-scale physics parameterizations. Similar to MPAS-based studies, a plethora of137

VR-CESM-based studies has been published that assess the resolution and sub-grid-scale138

physics dependence of simulations across the continental US. For example, VR-CESM139

has shown comparable skill in reproducing results from a uniform high-resolution GCM140

simulation across a hierarchy of simulations including baroclinic wave tests, aquaplanet,141

and full physics test-cases over the continental US [Gettelman et al., 2018], extratropi-142

cal and tropical cyclone characteristics [Zarzycki and Jablonowski, 2014; Zarzycki et al.,143

2015, 2016; Zarzycki, 2016] and has been shown to produce comparable results to RCMs144

in coastal and mountain climates [Huang et al., 2016; Huang and Ullrich, 2016, 2017;145

Rhoades et al., 2016, 2018a,b; Wang and Ullrich, 2018; Wang et al., 2018; Wu et al., 2017,146
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2018; Xu et al., 2018; Burakowski et al., 2019; Rahimi et al., 2019; van Kampenhout et al.,147

2019]. Yet, akin to the aforementioned MPAS studies, most have assumed what size the148

refinement domain should be for their particular regional application by identifying the149

region’s prevailing storm direction, resolution dependence of the most extreme storms,150

and necessary resolution to appropriately characterize the surface heterogeneity. Given151

the aforementioned literature on the “Goldilocks” rule in shaping the climate information152

produced by RCMs, the effect of refinement domain size and placement on the simulated153

storm characteristics that shape regional hydroclimates needs to be explored in VR-CESM154

as well.155

Evaluation of regional hydroclimate, particularly in mountainous regions, has shown156

a clear added value of dynamical downscaling approaches [Xue et al., 2014]. Accurately157

capturing regional hydroclimate requires models to represent multiple spatiotemporal scales158

and large-scale teleconnections, the near surface and free atmosphere, and statistical mo-159

ments – as pointed out by Di Luca et al. [2015] this is essential in evaluating the added160

value of a particular downscaling approach. Furthermore, hydroclimatic extremes can have161

significant socioeconomic impacts, particularly on water management [Ullrich et al., 2018;162

Vano et al., 2019], and should be a model benchmark if the end-goal of model develop-163

ment is usability outside of academic circles. The western US provides a useful multi-164

scale domain test bed as the hydroclimatology is largely shaped by inter-annual variability165

caused by large-scale teleconnections (e.g., El Niño Southern Oscillation, ENSO; [Harri-166

son and Larkin, 1998; Williams and Patricola, 2018; O’Brien et al., 2019; Patricola et al.,167

2019]) and hydrometeorological extremes (e.g., ARs; [Ralph et al., 2018, 2019]). In par-168

ticular, ARs have been shown to be crucial to western US accumulated precipitation totals.169

Notably, California receives 50% of its water year totals in under 10-40 (60-120) hours in170

the southern (northern) part of the State [Lamjiri et al., 2018] with an average of 14 land-171

falling ARs per year [Neiman et al., 2008]. ARs also directly influence inter-annual vari-172

ability in mountain snowpack with estimates ranging between 22-73% of annual snowpack173

totals associated with ARs in the California Sierra Nevada [Guan et al., 2013]. Greater174

flood potential in California is also associated with ARs due to their punctuated extreme175

precipitation totals when combined with saturated soil moisture conditions [Ralph et al.,176

2006] and/or large antecedent snowpacks [Guan et al., 2016; White et al., 2019]. Over177

the years, several GCM simulations at 1◦ and 0.5◦ resolution have shown skill in rep-178

resenting AR characteristics over the North Pacific [Dettinger, 2011], CESM being one179
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Figure 1. The three VR-CESM grids used for this study. Each cubed-sphere grid has a quasi-uniform

111km (1.00◦) global resolution and a 28km (0.25◦) refinement region over the north Pacific and western US.

197

198

such model [Hagos et al., 2016; Shields and Kiehl, 2016a,b; Benedict et al., 2019]. It was180

noted in some of these studies that commonly used GCM resolutions may bias the interac-181

tions between landfalling ARs and orography. With that said, VR-CESM provides a model182

framework to explore the interactions between refinement domain size and fidelity in rep-183

resenting AR characteristics over the North Pacific and the interactions between landfalling184

ARs and their influence on the simulated western US hydroclimate.185

To evaluate the “Goldilocks” rule in VR-CESM, we have designed an experiment186

where a 28km refinement domain size varies longitudinally, yet is fixed latitudinally, over187

the North Pacific Ocean basin. Our hypothesis is that these different model configurations188

will modify the simulated hydroclimatology of the western US through its impact on the189

dynamic and thermodynamic processes that influence key storm types (e.g., ARs). The re-190

mainder of the paper is organized as follows: Section 2 discusses the experimental design191

for the VR-CESM domain sensitivity experiments and the reanalysis datasets, statistical192

approaches, and atmospheric river detector used to benchmark model performance. Sec-193

tion 3 includes the results of the study, followed by the discussion and conclusions out-194

lined in section 4.195

2 Experimental Design and Reference Datasets196

CESM Overview199

CESM is a widely used and community-supported GCM co-developed by the Na-200

tional Center for Atmospheric Research (NCAR) and the US Department of Energy (DoE)201
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over the last several decades and is comprised of stand-alone atmospheric, land-surface,202

oceanic, sea-ice, and land-ice components that can either be fully and/or selectively cou-203

pled or data prescribed [Collins et al., 2006; Gent et al., 2011; Hurrell et al., 2013]. For204

the domain size sensitivity simulations, we chose to use the Atmosphere Model Intercom-205

parison Project (AMIP) protocols with active, coupled atmosphere and land-surface, and206

prescribed ocean and sea-ice models using monthly observations of sea-surface tempera-207

ture and sea-ice extent [Gates et al., 1999; Hurrell et al., 2008]. Figure 1 depicts the three208

VR-CESM grids that were generated using an open-source grid generator, SQuadGEN209

[Guba et al., 2014; Ullrich, 2014]. The three VR-CESM grids span resolutions of 111km-210

>55km->28km (not including grid-transition regions) with a fixed latitudinal extent (i.e.,211

15◦N to 60◦N), a fixed eastern boundary (100◦W), and a varied longitudinal extent of212

141 degrees (large refined domain), 94 degrees (medium refined domain), and 47 degrees213

(small refined domain) over the North Pacific Ocean. The latitudinal and longitudinal ex-214

tents of the 28km refinement domain were chosen based on work done by Payne and Mag-215

nusdottir [2014], who identified AR source-to-terminus pathways using the Modern-Era216

Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Each217

of the VR-CESM simulations were run from 1984-2015, with 1984 discarded as spin-up.218

Table 1 provides a summary of the aforementioned and highlights the number of grid ele-219

ments, simulated years per day using 48 nodes on the National Energy Research Scientific220

Computing Center (NERSC) Cori-Haswell supercomputer, and the simulation output fre-221

quencies.222

The atmospheric model used for these experiments was the Community Atmosphere223

Model (CAM) version 5.4 with the cubed-sphere spectral element (CAM5.4-SE) dynam-224

ical core, which features variable-resolution capabilities and demonstrated computational225

scalability [Dennis et al., 2012]. The CAM5.4-SE physics time-step for each simulation226

was set to 7.5 minutes (4 times shorter than the default), and the convective time-scale227

parameter (tau) is set to 15 minutes (2 times shorter than the default). These timescales228

were chosen to more comprehensively capture processes governing the finer features sim-229

ulated in the high-resolution domain. In addition, we utilized the newest publicly released230

version of the Morrison and Gettelman microphysics scheme, version 2 (MG2), which al-231

lows for prognostic rainfall and snowfall [Gettelman and Morrison, 2015; Gettelman et al.,232

2015], an essential feature to simulate mountainous hydroclimate correctly [Rhoades et al.,233

2018b]. All other physics parameterizations and prescription files are default to the CAM5234
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release including bulk aerosols [Ghan et al., 2012], deep convection [Neale et al., 2008],235

macrophysics [Park et al., 2014], radiation [Iacono et al., 2008], and shallow convection236

[Park and Bretherton, 2009]. Further specifics of CAM-SE can be found in Neale et al.237

[2010] and Lauritzen et al. [2018].238

The newest version of the Community Land Model available at time of writing, ver-239

sion 5 with satellite phenology (CLM5.0-SP), was used. CLM5.0-SP was chosen as it has240

considerable process advancements compared with CLM4.0-SP and CLM4.5-SP such as241

carbon and nitrogen cycling, soil evaporation and decomposition, vegetation hydraulics242

and traits, representative hillslope based river routing, surface and subsurface hydrology243

and, in particular to western US hydroclimate, snow hydrology [Lawrence et al., 2019].244

The snow hydrology module in CLM5.0-SP explicitly models the mass of water, the mass245

of ice, layer thickness, and temperature. Compared with CLM4.0-SP, CLM5.0-SP includes246

12 dynamic snow layers (rather than 5), enables snow water equivalent to develop to 10-247

meters (rather than 1-meter), calculates the snow cover fraction separately for the accu-248

mulation and melt phases of the snow season, and allows the forest canopy to capture and249

store ice and liquid precipitation separately (rather than just liquid precipitation). Further,250

snow cover depletion in CLM5.0-SP now depends on the ratio of the current and max-251

imum mass of snow and a melt parameter that accounts for sub-grid-scale topographic252

variability. Furthermore, the bulk density of snow now depends on both temperature and253

wind (rather than just temperature) [van Kampenhout et al., 2017]. Similar to CLM4.0-SP,254

CLM5.0-SP allows for black carbon, organic carbon, and dust deposited and encapsulated255

by the snowpack. The snowpack layers are then free to compact and age by pressure and256

melt.257

Reference Dataset Overview264

We evaluate our VR-CESM simulations against three reanalysis products: ERA5265

[Copernicus Climate Change Service (C3S), 2017], Livneh, 2015 (L15; [Livneh et al.,266

2015]) and the Parameter-elevation Relationships on Independent Slopes Model (PRISM;267

[Daly et al., 2008]). All reference datasets in this study were either conservatively (L15268

and PRISM, original data ≤28km resolution) or bilinearly (ERA5, original data ≥28km269

resolution) interpolated using TempestRemap [Ullrich and Taylor, 2015; Ullrich et al.,270

2016] from their base resolutions to the highest resolution of the VR-CESM simulations271

(i.e., 28km). Similarly, each of the VR-CESM simulations are bilinearly interpolated from272
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Table 1. VR-CESM North Pacific Ocean domain size experiment metadata including the case name, num-

ber of spectral elements in the model grid, simulated years per day (SYPD), and 28km domain size extent in

latitude and longitude. All CESM simulations were conducted for 1984-2015 with all of 1984 discarded as

spin-up. For each of the CESM simulations all default CAM5.4-SE variables were output at monthly inter-

vals, most variables (including those from CLM5.0-SP) were output at daily intervals, and a select number of

CAM5.4-SE variables were output at 6-hourly, 3-hourly, and 1-hourly intervals to evaluate atmospheric rivers.

258

259

260

261

262

263

CESM
Case Name

Number o f
Spectral Elements

SY PD
(48 nodes)

28km Re f inement
Domain E xtent

Large refined domain 17,715 3.74
Lat: 15N to 60N

Lon: 119E to 100W

Medium refined domain 13,905 4.25
Lat: 15N to 60N

Lon: 166E to 100W

Small refined domain 9,879 4.55
Lat: 15N to 60N

Lon: 147W to 100W

No refined domain 5,400 8.47 N/A

unstructured to regular latitude–longitude at 28km resolution over the entire extent of the273

largest refined domain. ERA5 was used to evaluate offshore fields in VR-CESM, whereas274

PRISM and L15 were used for onshore fields. When comparing the climatological and275

seasonal differences between model simulations and reanalysis products, we utilize the276

Kolmogorov-Smirnov two-sample test made available from the NCAR Command Lan-277

guage [The NCAR Command Language (Version 6.6.2), 2019]. To ensure that we minimize278

Type-I error in spatial map comparisons we also employ the false discovery rate (FDR;279

Benjamini and Hochberg [1995]; Wilks [2016]) combined with a strict p-value choice (i.e.,280

0.001).281

ERA5 is a newly available fifth generation reanalysis product developed at the Eu-282

ropean Centre for Medium-Range Weather Forecasts (ECMWF) that uses a mixture of283

aircraft, satellite, and in-situ measurement data assimilated into the Integrated Forecasting284

System (IFS) to estimate climate variables globally across 137 vertical levels at 30km spa-285

tial and hourly temporal resolution. To evaluate domain size influence on integrated vapor286

transport (IVT), and therefore AR activity, ERA5 zonal and meridional winds and specific287

humidity across 17 vertical levels, or every 50 hPa, were used. The 17 vertical levels in-288

clude: 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850,289
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900, 950, and 1000 hPa. In comparison, CAM5.4-SE has 32 terrain-following vertical lev-290

els which include: 4, 8, 14, 25, 36, 43, 52, 62, 74, 88, 103, 122, 143, 168, 198, 233, 274,291

322, 379, 446, 525, 610, 691, 763, 821, 860, 887, 913, 936, 957, 976, and 993 hPa (as292

well as the terrain surface). To evaluate potential IVT sensitivity to vertical level choice in293

ERA5 an analysis, not shown, was conducted across a smaller time-period (2006-2015) to294

evaluate how the number of vertical levels used in ERA5 (17 vs 38) would impact com-295

puted IVT. An average difference over the North Pacific of ∼20 kg/m/s was found (or a296

∼10% difference).297

L15 utilizes 21,137 quality assured and quality controlled in-situ meteorological sta-298

tions that encompass a large swath of spatial coverage of North America and a temporal299

period of 1950-2013. Livneh et al. [2015] then applies several adjustments to the in-situ300

derived meteorological variables using NCEP-NCAR reanalysis data along with other key301

spatiotemporal adjustments such as correcting the climate normal fields towards PRISM,302

assuming a fixed lapse-rate of 6.5 K/km, and modifications to orographic precipitation.303

This spatially continuous daily meteorological field is then used to bound variable infil-304

tration capacity (VIC) hydrologic model simulations that then output key hydroclimate305

variables (e.g., snow water equivalent) to produce a 6km resolution reanalysis product.306

PRISM was developed at Oregon State University and is a spatially continuous high-307

resolution estimate (either 800m, proprietary, or 4km, free) of precipitation, max and min308

surface temperature, max and min surface vapor pressure deficit, and mean dewpoint tem-309

perature over the continental US for the time period of 1970 to present day. To create the310

spatially continuous climate fields, Daly et al. [2008] used a digital elevation model and311

quality assurance and quality control protocols on ∼13,000 precipitation and ∼10,000 tem-312

perature in-situ measurement stations. To ensure that proper spatiotemporal variation was313

incorporated into the PRISM climate fields, their algorithm incorporated geographic vari-314

ables, including coastal proximity, elevation, location, terrain slope, topographic orienta-315

tion and position, and vertical atmospheric layer. PRISM was used for this analysis due316

to its improved characterization of coastal effects, cold air drainage, elevational gradients,317

inversion layers, and rain shadows compared with other publicly available reanalysis prod-318

ucts.319

The use of both PRISM and L15 provides juxtaposition for known tradeoffs in re-320

analysis products widely used in the western US hydroclimate community. For example,321
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the assumption of a fixed lapse rate of 6.5 K/km in L15 has been shown to be partic-322

ularly influential on minimum surface temperature in mountainous regions [Walton and323

Hall, 2018]. Similarly, L15 and PRISM (and other reanalysis products) have shown con-324

siderable differences in precipitation amount and structure due to differences in spatial in-325

terpolation technique and quality controls used to account for the spatiotemporal variation326

of measurement networks and extreme events, particularly at higher elevation in moun-327

tainous regions [Henn et al., 2018a,b; Timmermans et al., 2019]. Further, as discussed in328

Rhoades et al. [2018c], L15 is one of only a handful of reanalysis products that provide329

daily snow water equivalent estimates across the western US and has shown comparable330

skill to a high quality snow water equivalent reanalysis product that is only available in331

the California Sierra Nevada, the Sierra Nevada Snow Reanalysis (SNSR; [Margulis et al.,332

2016]).333

Atmospheric River Tracking with TempestExtremes334

To evaluate the potential influence of domain size on AR characteristics, we employ335

a publicly-available Lagrangian tracking algorithm, TempestExtremes [Ullrich and Zarzy-336

cki, 2017; Zarzycki and Ullrich, 2017]. Specifically, the AR algorithm in TempestExtremes337

when used “out-of-the-box” has tended to be a good representation of the median of the338

community of AR trackers [Shields et al., 2018]. For detecting ARs, TempestExtremes339

necessitates the use of five parameter choices to filter fields of IVT. The parameter defini-340

tions (units) and our choices include:341

(1) minimum threshold of IVT to be considered an AR (min_val; kg m−1 s−1) = 250342

(2) minimum laplacian of IVT (min_laplacian; kg m−1 s−1 degrees−2) = 50000 (de-343

fault)344

(3) minimum area of IVT to be classified as an AR (min_area; # of grid-cells) = 25345

(4) radius of the discrete Laplacian (size_laplacian; # of grid-cells) = 35346

(5) absolute latitude at which AR detection is not warranted (min_abslat; degrees) = 15347

These choices are specific to the 28km grid on which major analysis for this study is per-348

formed. To choose the AR algorithm parameters we use a combination of AR community349

suggested values (e.g., min_val and min_area, Ralph et al. [2018]) and conducted a pa-350

rameter sensitivity analysis (e.g., min_laplacian, size_laplacian, and min_abslat). The AR351

algorithm generated fields are then stitched together in time using another TempestEx-352

–12–©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to JGR-Atmospheres

tremes algorithm that we set to have an overlap constraint of, at least, 8 time steps (or 2353

days with 6-hourly data) and, at least, 35 grid-cells (which meets the Ralph et al. [2018]354

average AR width constraint of 850km assuming ∼25km resolution data). The qualitative355

sensitivity analysis evaluated TempestExtremes filtered IVT data for AR characteristics356

such as AR life cycle coherence, thickness and length and tried to ensure that little-to-no357

equatorial blobs (i.e., tropical cyclones and/or storms associated with equatorial deep con-358

vection) were present in the filtered data to minimize the number of false positives in AR359

detection.360

A novel extension to the TempestExtremes AR tracking algorithm was developed361

for this work to identify potential influences of domain size on the characteristics of ARs.362

This new algorithm takes the spatiotemporally stitched outputs from TempestExtremes363

to create a composite mask over the lifetime of each unique AR identified. The methods364

used in our algorithm share some commonality with other published methods including365

Payne and Magnusdottir [2014] and Zhou et al. [2018]. These composite masks are then366

used to find the latitudinal center-of-mass at each of several longitudinal cross-sections for367

each AR to generate the source-to-terminus pathways. Figure 2 shows an example of a368

single AR identified using the composite mask and center-of-mass approach and an entire369

DJF season worth of AR source-to-terminus pathways using one of the VR-CESM simula-370

tions. Once generated, these AR source-to-terminus pathways allow for the compilation of371

various summary statistics of the ARs. These summary statistics include:372

(1) the number of unique ARs (total and western US landfalling)373

(2) the lifetime of each unique AR (total and after western US landfall)374

(3) the latitude and longitude of AR western US landfall location375

(4) the average maximum IVT over the lifetime of the AR (total and after western US376

landfall)377

(5) the duration of the AR (total and after western US landfall)378

(6) the resultant Ralph et al. [2019] AR category for each AR that made landfall over379

the western US380

3 Results387

The goal of this work is to identify the extent to which the size of the refinement388

domain within a VR-CESM simulation can influence the simulated western US hydro-389

climate. To do this, we first examine if there are any discernible differences in the simu-390

–13–©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to JGR-Atmospheres

Figure 2. A step-by-step visual depiction of the TempestExtremes based workflow which takes a) 6-hourly

integrated vapor transport (IVT) fields b) filters the fields into atmospheric river (AR) masks based on user

selected parameter thresholds c) stitches and composites the AR tracks in time and space and d) compiles

the AR source-to-terminus pathways and summary statistics over an entire DJF season. For a) and b), IVT

magnitudes are shown for a particular 6-hourly time slice, whereas in c) and d) the maximum IVT over the

lifetime of the AR is shown via circles at each longitude.

381

382

383

384

385

386

lations due to dynamical and/or thermodynamical properties of the atmosphere over the391

North Pacific Ocean. Next, we evaluate how these potential differences influence the at-392

mospheric response to key climate modes of variability (e.g., the El Niño Southern Oscil-393

lation [ENSO]) and storm characteristics (e.g., ARs). Last, we examine how the character-394

istics of the western US hydroclimatology, particularly in mountainous regions, is shaped395

by the influence of refinement domain size. Throughout each of these analyses we focus396

on the boreal winter, specifically December, January, and February (DJF).397

North Pacific Ocean Integrated Vapor Transport398

IVT is a primary variable of interest for assessing how well models can simulate the407

western US hydroclimate [Zhu and Newell, 1998; Ralph et al., 2006; Neiman et al., 2008;408

Ralph and Dettinger, 2011; Gimeno et al., 2014; Lamjiri et al., 2018; Shields et al., 2018].409

As discussed by Lavers et al. [2016], IVT is a key driver of western US precipitation and410

has been shown to be easier to prognose than precipitation given that it is not as depen-411

dent on localized processes that shape precipitation intensity and spatial variability that412
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Figure 3. (a) DJF climatological average integrated vapor transport (IVT) for a uniform-resolution 1◦

CESM simulation (no refined domain) and three variable-resolution CESM cases with a 28km refinement

domain that varies in extent longitudinally. Total wind vectors are overlaid along with 500m interval to-

pography contours. (b) ERA5 differenced DJF climatological average IVT. The gray box region is used

for analysis and spans across the three VR-CESM 28km refinement domains. The hatching overlay repre-

sents a statistically significant difference between ERA5 and CESM simulations (p-value = 0.001) using the

Kolmogorov-Smirnov two-sample test (K-S test) adjusted using the Benjamini and Hochberg [1995] FDR

(dark gray).
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often need to be parameterized at the sub-grid-scale (e.g., convective precipitation due to413

frontal convergence and land-atmosphere feedbacks).414

Total IVT is calculated as415

IVT =
1
g

∫ Pt

Ps

qVdp, (1)

where g is the gravitational acceleration (9.8 m/s2), Ps is the surface pressure level (Pa),416

Pt is the top of atmosphere pressure level (Pa), q is specific humidity (kg/kg), and V is417

the total wind (m/s;
√

u2 + v2 where u is the zonal wind component and v is the merid-418

ional wind component).419

Figure 3a shows the IVT and total wind fields across CESM simulations for the DJF420

climatological period of 1985-2015. Figure 3b shows the difference in IVT over this same421

period from ERA5, where all IVT values with gray stitching are statistically significant at422

a p-value of 0.001 using the Kolmogorov-Smirnov two-sample test and further adjusted423

using the FDR. Interestingly, the magnitude of IVT bias generally decreases as the 28km424

refinement domain is expanded westward over the North Pacific Ocean. Across the box re-425

gion highlighted in Figure 3b, all CESM simulation estimates of IVT are positively biased426

compared with the ERA5 dataset, however, the large refined domain has the lowest mean427

bias of +70 kg/m/s and the no refined domain has the highest mean bias of +87 kg/m/s.428

Notably, although the analysis is not shown, Kolmogrov-Smirnov significance testing of429

IVT differences between all CESM simulations at p-values of 0.001 and 0.01 (corrected430

using FDR) are not significantly different over most of the North Pacific and western US431

(save for the southern coast of Japan and a portion of the Northern Rockies in the large432

refined domain).433

To understand why IVT increases as the longitudinal extent of the 28km refine-441

ment domain decreased over the North Pacific Ocean, we compare the water budgets of442

the VR-CESM simulations to the no refined domain. The water budget, similar to the443

technique used in Dacre et al. [2019], includes precipitable water, total precipitation (lo-444

cal sink), evaporation (local source), and zonal and meridional vapor transport (non-local445

source/sink) (Figure 4). We evaluate these water budget terms in the same region identi-446

fied in Figure 3, which represents the core-region of IVT in DJF across the North Pacific.447

As shown by the precipitable water fields in Figure 4 the atmospheric column was drier448

in the large refined domain, particularly over the western equatorial Pacific Ocean. An449

indication of potential resolution-dependent processes that led to this drying of the atmo-450
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Figure 4. DJF climatological average difference in a) precipitable water b) total surface wind speed c) total

precipitation, d) evaporation, e) zonal vaport transport, and f) meridional vapor transport compared against

the no refined domain.

434

435

436

–17–©2020 American Geophysical Union. All rights reserved.



Confidential manuscript submitted to JGR-Atmospheres

Figure 5. DJF climatological average vertical profile difference in a) specific humidity, b) static stability, c)

zonal wind, and d) meridional wind against the no refined domain. Horizontal black bars represent the 95%

confidence intervals based on DJF seasonal averages. The North Pacific Ocean box region over which the

vertical profiles are generated is shown in the upper right corner of a).
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spheric column is shown via the source terms in Figure 4 which highlight that as the lon-451

gitudinal extent of the 28km refinement domain is extended westward towards the Asian452

coastline, surface wind speeds and evaporation are diminished, particularly off the coast of453

Japan and into the north-central Pacific where IVT is highest in Figure 3. Slower surface454

wind speeds combined with drier lower levels of the atmosphere in turn diminishes the455

water vapor available to be transported eastward and northward via the zonal and merid-456

ional vapor transport and, importantly, along one of the main source regions, southwest457

of Hawaii, and terminus regions, Pacific Northwest, of IVT. Figure 5 confirms this as the458

vertical profiles of the atmosphere across the North Pacific Ocean are more stable, drier,459

and the zonal wind speeds are dampened, particularly near the surface up to the region in460

which low-level jets usually occur within the warm-conveyor belt of North Pacific extra-461

tropical cyclones (i.e., ∼1000-700 hPa, [Dacre et al., 2019])462

The net result of this dampened IVT is shown in Figure 4 where a westward expan-463

sion of the 28km refinement domain leads to less total precipitation throughout the North464

Pacific. This is shown primarily through a reduction in the contribution of convective pre-465

cipitation to total precipitation and, interestingly, is not completely compensated for by a466

concomitant increase in stratiform precipitation (Supplemental Figure 1). The resolution467

dependence of convective precipitation is corroborated by other global and regional cli-468

mate modeling literature [Williamson, 2008; Bacmeister et al., 2014; Zarzycki et al., 2014b;469

O’Brien et al., 2016; Rauscher et al., 2016; Benedict et al., 2017; Herrington and Reed,470

2017]. In some of these studies, precipitation fidelity is shown to improve with refinement471

of model resolution and is associated with an overall reduction in drizzle events (i.e., a de-472

crease in the initiation of parameterized convective precipitation) along with an increase in473

extreme precipitation (i.e., precipitation intensity has been shown to scale with vertical ve-474

locity which is directly related with grid resolution in hydrostatic models). However, other475

studies evaluating multiple versions of CAM have shown that model simulated precipita-476

tion extremes at more refined resolutions (i.e., 0.25◦) do not converge and even overshoot477

observations due to model adjustment changes (i.e., performance of model dynamics and478

physics at multiple resolutions) in intensity, duration, and/or frequency, potentially due to479

the cumulus parameterization and its allowance of overly saturated model columns too fre-480

quently [Wehner et al., 2014; Chen and Dai, 2018]. More specifically, in a recent study481

by Chen and Dai [2019], CAM precipitation frequency and duration has been shown to482
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decrease at coarser grid spacing, particularly for convective precipitation, and intensity in-483

creases at more refined grid spacing, especially for stratiform precipitation.484

The decrease in western equatorial convective precipitation and meridional and zonal485

vapor transport (i.e., 120-170◦E, 10-20◦N) has an important influence on IVT over the486

North Pacific, particularly in regions in close proximity to Hawaii and off the coast of the487

Pacific Northwest. This indicates that refinement domain size may have also had an influ-488

ence on the atmospheric response at sub-seasonal scales through the Madden Julian Oscil-489

lation (MJO) and at inter-annual scales through the El Niño Southern Oscillation (ENSO).490

Although a comprehensive analysis of sub-seasonal scale phenomena is out-of-scope for491

this climate sensitivity study, we note a few of the important atmosphere-ocean couplings492

given their importance to western US hydroclimate. At sub-seasonal timescales, the re-493

gion southwest of Hawaii has been shown to be a source region of IVT to the western494

US through its association with the Madden Julian Oscillation (MJO), or eastward migra-495

tion of equatorial convection, during the northern hemisphere winter season. As shown496

by Guan et al. [2012] and Zhou et al. [2018], MJO phases can be directly linked to IVT497

anomalies which in turn have a particular influence on the strength and variability of win-498

tertime ARs that make landfall in the western US (e.g., MJO Phase 6-7 increase both the499

number and lifetime of AR events over the North Pacific). Supplemental Figure 1 shows500

how refinement domain size has a direct influence on the convective precipitation in the501

simulations, particularly equatorial deep convection, which may be an indication that the502

representation of particular phases of MJO and, consequently, anomalous IVT were also503

dependent on refinement domain size. Meridional vapor transport may also have been504

impacted by other sub-seasonal atmosphere-ocean feedbacks that led to the inhibition of505

local evaporation in the East China Sea and Sea of Japan such as the East Asian Cold506

Surge (EACS) associated with southerly movement of polar air masses [Jiang and Deng,507

2011]. Supplemental Figure 3 compares the surface sensible and latent heat fluxes and508

minimum and maximum surface temperatures across simulations. A general warming of509

Siberia and Northern China occurs as the 28km refinement domain is expanded westward510

which, as shown by surface sensible and latent heat fluxes, would act to suppress the sea-511

sonal strength of EACS events as they move into the Sea of Japan and East China Sea.512

This regional warming could be a response to a strengthening of the Siberian High which513

in turn would augment the prevalence of onshore (relatively warm, moist) or offshore (rel-514

atively cold, dry) winds due to sharper gradients in land-sea contrast at more refined res-515
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olution [Kumar et al., 2019]. Diminished EACS would in turn minimize the sub-seasonal516

atmospheric disturbances that are induced by these events which would feedback onto the517

North Pacific trough-ridge patterns and, inevitably, dampen IVT. These two sub-seasonal518

processes would make for interesting avenues to explore in future research using these519

VR-CESM domain sensitivity experiments.520

Representation of the Extreme 1998 El Niño521

The El Niño Southern Oscillation (ENSO) is a coupled ocean-atmosphere inter-522

action, which alternates between its positive phase (El Niño) and its negative phase (La523

Niña) every 2-7 years [Philander, 1985; Neelin et al., 1998; McPhaden et al., 2006]. ENSO524

accounts for the largest fraction of inter-annual climate variability and alters global circu-525

lation and weather patterns around the world via an atmospheric bridge, or teleconnec-526

tion [Rasmusson and Wallace, 1983; Alexander et al., 2002]. During El Niño, anomalous527

oceanic heat builds up in the tropical east-Pacific as a result of slackening tradewinds as-528

sociated with a weakened Walker circulation, downwelling oceanic Kelvin waves, and a529

deepening thermocline [Neelin et al., 1998; Timmermann et al., 2018]. This in turn, al-530

ters the zonal temperature gradient of the tropical Pacific exciting deep convection far531

out into the east-Pacific, where the climatologically cool sea surface temperatures (SSTs)532

would normally prevent deep convection from occurring [Hoerling et al., 1997; Sabin533

et al., 2013]. The anomalous convection excites a quasi-stationary Rossby wave that deep-534

ens the Aleutian low and moves its center of action to the East [Bjerknes, 1969; Hoskins535

and Karoly, 1981; Rasmusson and Wallace, 1983; Trenberth et al., 1998]. This has the ef-536

fect of strengthening and extending the North Pacific stormtrack and moving it south re-537

sulting in enhanced western US precipitation, and in particular, for California [Trenberth538

et al., 1998; Cayan et al., 1999; Feldl and Roe, 2011; O’Brien et al., 2019; Patricola et al.,539

2019].540

Given that El Niño’s primary region of action is across the eastern Pacific, it is541

reasonable to suspect that there may be sensitivity to the longitudinal extent of the VR-542

CESM refinement domain in the representation of the El Niño tropical Pacific - North-543

east Pacific teleconnection and resultant precipitation response across the western US. For544

this analysis we focus on the DJF precipitation response to El Niño in California as the545

transpacific teleconnection signal tends to be the largest here among all regions across546

the western US [Cayan et al., 1999; Feldl and Roe, 2011; Patricola et al., 2019]. The VR-547
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CESM simulations span December 1986 through February 2014, thus simulating the ex-548

treme El Niño year of 1998, where California received near record levels of precipitation549

and sustained significant infrastructure and property damage resulting in large financial550

losses due to the widespread flooding that occurred that year [Hoell et al., 2016; Lee et al.,551

2018; Corringham and Cayan, 2019]. That the physical driver of the El Niño teleconnec-552

tion to California is tropical deep convection, which transmits energy north and east across553

the Pacific, the placement and extent of the refined grids makes its representation in the554

VR-CESM simulations important for understanding domain size sensitivity. Supplemen-555

tal Figure 2 shows the 1998 DJF tropical east-Pacific SST anomaly with the four CESM556

grids overlain. Additionally, the dot in each panel represents the estimated 1998 DJF av-557

erage center of deep convection as indicated by the ENSO Longitude Index [Williams and558

Patricola, 2018] and the gray box indicates the more conventional Niño3.4 region.559

The results of any single initialized simulation are subject to variability introduced560

by its unique initial conditions and subsequent evolution in time. Thus, the atmospheric561

response to the 1998 El Niño and associated precipitation response in California in each562

of the three refined domain experiments represents a single outcome of a range of plau-563

sible outcomes. Therefore, to isolate the El Niño forced response in each of the three re-564

fined domains we ran 10 additional perturbed initial condition simulations of 1998 at each565

domain extent. This is done to account for internal variability and isolate the signal-to-566

noise of the effect of refinement domain extent. Given the large computational costs of567

running multi-member ensembles of global simulations we chose 10 ensemble members568

for 1998 following from Deser et al. [2012, in press 2019] (plus the simulation of 1998 in569

the climatological runs).570

As a benchmark by which to compare the VR-CESM domain sensitivity simula-571

tions, we use both a large-ensemble of 1◦ resolution global atmospheric model (CAM5.1)572

simulations and a reanalysis (ERA5). The CAM simulations make up a 50 member large-573

ensemble extending from 1959-2018 and are, similar to the VR-CESM simulations, of the574

AMIP class where each member is forced by the observed SSTs and radiative forcings, but575

differentiated by slight perturbations in their initial conditions. The CAM simulations are576

part of the Climate of the Twentieth Century (C20C) Project and are a subset of a larger577

multi-model ensemble [Folland et al., 2014; Stone et al., 2019]. Additionally, we employ578

the ERA5 reanalysis product as the ground truth representation of California DJF precip-579
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itation climatology and the 1998 El Niño response [Copernicus Climate Change Service580

(C3S), 2017].581

Figure 6. The ensemble mean representation of the extreme 1998 El Niño among three key atmospheric

variables: left column, the 300-hPa geopotential height anomaly; center column, the Integrated Vapor Trans-

port (IVT) anomaly; and right column, the precipitation anomaly. Each variable is represented by a different

model product in each row: top row, the uniform 1◦ resolution of the CAM large ensemble; top middle row,

the small refined domain ensemble; middle row, the medium refined domain ensemble; bottom middle row,

the large refined domain ensemble; and bottom row, ERA5 reanalysis. The ensemble means are comprised

of 50 and 11 simulations of 1998 for the CAM and the three VR-CESM domain experiments respectively.

Anomalies are calculated with respect to the all-year DJF climatologies for each simulation.
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Figure 6 shows the representation of the strong 1998 El Niño event among several590

key variables. In the left column, the geopotential height anomaly at 300-hPa, the center591

column shows the IVT anomaly, and the right column shows the precipitation anomaly592

all corresponding to their respective DJF climatologies. The top row shows the ensem-593

ble mean anomalies of 50 simulations of 1998 from the uniform 1◦ CAM large ensem-594

ble, while the top center, middle center, and bottom center rows show the ensemble mean595

anomalies of 11 simulations of 1998 for each VR domain experiment. We were unable to596

calculate the IVT field for the CAM ensemble as the 3D specific humidity variable was597

not output for this experiment. The broad similarities of the geopotential height anomalies598

across the different VR-CESM domains are consistent with the atmospheric response to599

El Niño ocean forcing, in particular, the deepening of the Aleutian Low [Bjerknes, 1969;600

Hoskins and Karoly, 1981; Rasmusson and Wallace, 1983; Trenberth et al., 1998]. How-601

ever, each model experiment has its own unique character and differ in their respective602

representations of the atmospheric response to El Niño. For example, relative to ERA5,603

the center of z300 height anomaly is moved further to the Northwest in the small refined604

domain, whereas in the CAM simulations and the medium/large refined domains the lo-605

cation is approximately correct, however the response is weaker/stronger than what is ob-606

served in ERA5. Similarly with IVT (Figure 6 middle column), the small refined domain607

simulates a stormtrack that is most inconsistent with ERA5 while the medium and large608

refined domains broadly simulate the correct strength and position. The precipitation re-609

sponse shows the most heterogeneity across simulations (Figure 6 right column) likely610

reflecting model sensitivity to the complexity of processes and parameterizations neces-611

sary to generate precipitation. In terms of the spatial footprint of the western US precipi-612

tation anomaly in each simulation, the CAM large ensemble simulations and the medium613

refined domain most closely match ERA5. Though it is notable that both the CAM large614

ensemble simulations and all of the refined domain simulations fail to capture the precip-615

itation near Washington State and British Columbia. In the refined domain experiment616

that best simulates precipitation in California, the medium refined domain, the effect of617

the increased resolution is apparent relative to the uniform 1◦ resolution in the CAM large618

ensemble simulations. This is likely because the refined domain simulations better resolve619

orthographically enhanced precipitation in the Sierra Nevada mountains.620

Figure 7 panel (a) shows that the distribution of the 1998 CAM simulations (red)629

clearly separate from the climatological distribution (black) indicating a clear and strong630
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Figure 7. Probability Density Functions (PDFs) of the California DJF spatiotemporal average precipitation

rate. Panel (a) corresponds to the CAM large ensemble all-year DJF climatology (black curve) and the 50

member ensemble representation of the extreme 1998 El Niño year (red). Panel (b) shows the DJF climatolo-

gies of the three different VR-CESM simulations. Both panels (a) and (b) have the ERA5 climatology overlain

(magenta). Panel (c) shows box and whisker plots of the ensemble of 1998 simulations for each VR-CESM

experiment. Box edges indicate the 25th/75th percentiles and the whiskers indicate the 5th/95th percentiles

with outlier points plotted beyond the whiskers. For reference, each panel has a vertical dashed line to indicate

the ensemble median for each experiment and the single year representation derived from ERA5.
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623

624

625

626

627

628

ocean forced response from the extreme El Niño. Moreover, relative to the ERA clima-631

tology (magenta), the CAM ensemble accurately captures California’s DJF climatologi-632

cal precipitation (black) albeit with more refined tails due to greater sampling of internal633

variability. Within a small margin of error, the ensemble median of the 1998 CAM sim-634

ulations accurately captures the outcome of the 1998 El Niño precipitation response in635

California indicated by the proximity of vertical dashed red and magenta lines. We note636
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here that throughout Figure 7 medians rather than means are shown only to be consistent637

with the standard interpretation of box and whisker plots, however, the normality of the638

distributions ensures that results are not sensitive to whether means or medians are used639

to show ensemble averages. Additionally, it is notable that the 50 member ensemble of640

CAM simulations for the 1998 El Niño include both members that fall far below (near the641

climatological mean) and far above the 1998 response estimated by ERA5. This clearly642

demonstrates that any single initialized simulation may result in a wide range of simu-643

lated outcomes for the same event and that it is only with an ensemble of perturbed initial644

condition simulations that the true forced response can be separated from internal vari-645

ability [Deser et al., 2012, 2016, in press 2019]. However, the ensemble median of the 50646

simulations of 1998 provides a close approximation of the response estimated by ERA5647

indicating that the DJF precipitation 1998 in California was indeed primarily the result of648

large-scale ocean forcing. Panel (b) shows that the DJF precipitation climatologies of all649

VR-CESM domain sizes are roughly the same, suggesting that the representation of aver-650

age California DJF precipitation is not sensitive to domain refinement extent. In the ERA5651

data, the extreme El Niño of 1998 occupies the 95th percentile of the distribution. Only in652

the CAM simulations and the medium refined domain experiment does the 1998 ensemble653

median occupy approximately the correct percentile of the climatological distribution. No-654

tably, both the small and large refined domain ensemble median simulates a much weaker655

representation of the extreme 1998 El Niño (falling closer to the climatological mean).656

However, that said, panel (c) shows the box and whisker plots for the 10 member ensem-657

ble of simulations of the extreme 1998 El Niño and each experiment spans the range of658

internal variability as indicated by the CAM large ensemble. Therefore, from a statistical659

perspective, we cannot say that one domain extent represents El Niño better than another.660

Despite this null result, the lack of sensitivity of the El Niño teleconnection to western661

US precipitation is still important in that it appears that a large refined domain may not662

be required to ensure simulation precipitation fidelity in the western US. Thus, computa-663

tional resources can be focused elsewhere such as longer duration simulations and/or more664

ensemble members.665

Western US Landfalling Atmospheric Rivers666

As discussed in Gimeno et al. [2014], and in more detail in Ralph and Dettinger667

[2011] and Jiang and Deng [2011], the aforementioned dynamical and thermodynamical668
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differences induced by refinement domain size across CESM simulations likely influenced669

the most extreme form of IVT, ARs. Furthermore, Hagos et al. [2015] posited that al-670

though their MPAS simulated estimates of AR counts in the North Pacific did not show671

strong dependence on resolution, that AR position at landfall and associated precipitation672

may have been influenced. Given these assumptions, we evaluate the impact of the 28km673

refinement domain extent on the characteristics of ARs prior to and after western US land-674

fall. We employ the Ullrich and Zarzycki [2017] TempestExtremes AR detection algorithm675

along with a novel AR lifecycle stitching algorithm developed specifically for this study.676

Table 2 gives an overview of the various summary statistics of AR characteristics over the677

1985-2015 DJF climatology. Summary statistics were compiled by using the AR tracking678

algorithms to filter individual AR events for each DJF season, averaging these individual679

statistics across a given DJF season, and then compiling each DJF season into a clima-680

tology and providing a 95% confidence interval based on the seasonal averages. The AR681

metrics evaluated include: the total number of ARs identified, the number of ARs that682

made landfall in the western US, the average latitude and duration of the AR after land-683

fall, the maximum IVT identified over the lifetime of the AR after landfall, and, finally,684

the Ralph et al. [2019] AR category scale.685

The total number of annual ARs have been identified in several studies to date using686

various satellite and/or reanalysis datasets. Waliser et al. [2012] found that a typical AR687

count over the North Pacific ranged between 122 to 137 per year over a two-year period688

using IWV derived from the Atmospheric Infrared Sounder observations from the NASA689

Aqua satellite. Payne and Magnusdottir [2014] showed a higher estimate in AR counts690

over the North Pacific of 156 per year from 1979-2011 using the MERRA reanalysis prod-691

uct, although, importantly, daily extreme precipitation has been shown to be quite different692

in MERRA versus other global precipitation products [Sun et al., 2018]). Importantly, AR693

count can depend on the detection method used [Shields et al., 2018]. Using TempestEx-694

tremes, we find a comparable AR count over our 30-year period of 1985-2015 of 133 per695

year when we use the ERA5 dataset. As indicated previously, each of the CESM simula-696

tions had higher IVT than ERA5 and, not surprisingly, this resulted in a higher number697

of total ARs identified (Figure 3). This AR count varied from 139 per year (large refined698

domain) to 141 per year (small refined domain). However, for DJF, both ERA5 and all699

of the CESM simulations show comparable seasonal AR count statistics with overlapping700

counts at the 95% confidence interval (Table 2).701
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Although total AR counts are relevant in identifying if CESM is simulating the var-702

ious dynamical and thermodynamical processes that seed and propogate ARs over the703

North Pacific, water managers in the western US are primarily interested in the number704

of ARs that make landfall due to their role as both a boon and bane on reservoir man-705

agement [Ralph et al., 2006; Vano et al., 2019]. To estimate AR landfall counts, Neiman706

et al. [2008] used 8-years of Special Sensor Microwave Imager observations to identify707

that ARs made landfall in 27-49 (10-19) days per year in Oregon/Washington (California).708

Payne and Magnusdottir [2014] identified that there were an average of 6, 5, and 3 AR709

landfall dates in the months of DJF (14 total), respectively, with 749 out of the 4992 to-710

tal dates (15%) associated with landfalling ARs. Our estimates of DJF landfalling ARs in711

ERA5 are similar, yet slightly higher (17), compared with those in Payne and Magnusdot-712

tir [2014]. Interestingly, all CESM simulations overestimate the number of ARs that make713

landfall save for the large refined domain, 20, at the 95% confidence interval. Regardless714

of differences in landfalling AR counts, the average latitude in which they make landfall715

are agreed upon between CESM simulations and ERA5 (41 N near the California/Oregon716

border).717

In addition to the number of landfalling ARs, it’s also necessary to quantify the du-718

ration and magnitude of these events, as both are important for assessing impacts [Ralph719

et al., 2019]. For example, Ralph et al. [2013] showed that landfalling ARs over Califor-720

nia typically have durations of 20 hours, but can last up to 40 hours in extreme cases. Our721

evaluation of the ERA5 dataset complements this finding and shows that the average du-722

ration of the AR events identified in DJF last 18 hours (Table 2). Interestingly, CESM723

model simulated ARs on average last 6-12 hours longer than those found in the ERA5724

dataset. This is likely related to the fact that the average max IVT is also ∼80-100 kg/m/s725

higher in CESM simulations than in the ERA5 dataset. The result of this high bias in IVT726

is that CESM simulations have a concomitant increase in Ralph et al. [2019] scores during727

DJF (2.38-2.47) compared with ERA5 (1.83). Albeit only a difference of 1 category in the728

Ralph et al. [2019] scale, the qualitative difference between category 1 versus category 2 is729

the difference between ARs being primarily beneficial to water resources versus beginning730

to pose some type of hazard.731
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Table 2. DJF climatological average summary statistics for western US landfalling ARs over the years

1985-2015 with 95% confidence intervals. In the landfalling ARs column, emboldened numbers represent the

percentage of landfalling ARs relative to the total number of ARs.

732

733

734

Dataset
Name

Total
ARs

Landf alling
ARs

Average
Latitude

Average
Duration (days)

Average
Maximum

IVT (kg/m/s)

Average
Ralph et al . 2019

AR category

ERA5 37±1 17±2 (46%) 41.6±0.68 0.76±0.11 746±28.1 1.83±0.16

Large refined domain 35±2 20±2 (57%) 41.4±0.83 1.26±0.19 842±32.4 2.44±0.20

Medium refined domain 35±1 22±1 (63%) 41.3±0.66 1.13±0.12 830±22.8 2.38±0.14

Small refined domain 36±2 22±1 (61%) 41.1±0.76 1.23±0.19 842±28.1 2.47±0.20

No refined domain 34±1 21±2 (62%) 41.4±0.84 1.20±0.15 824±26.1 2.44±0.19

Western US Mountain Hydroclimate: Precipitation, Snowpack, and Surface Temper-735

ature736

The differences in AR landfall counts between the large refined domain and the737

other CESM simulations likely played a role in shaping the precipitation totals in the738

western US. To explore this we compare the DJF hydroclimatology (i.e, total precipita-739

tion, snow water equivalent, and surface temperature) between the CESM simulations and740

two widely used reanalysis products, L15 and PRISM (Figure 8). Across the western US,741

CESM simulations are generally positively-biased in total precipitation and surface tem-742

perature and negatively-biased in snow water equivalent when compared against L15. The743

large refined domain simulated the DJF climatology most closely with L15 with total pre-744

cipitation at +0.3 mm/day, snow water equivalent at -5.3 mm, and surface temperature at745

+2.3 K, whereas the no refined domain was least similar with total precipitation at +0.5746

mm/day, snow water equivalent at -16 mm, and surface temperature at +3.3 K. Therefore,747

all VR-CESM simulations outperform the uniform-resolution 1◦ resolution simulation.748

This highlights the added value of high-resolution modeling over the western U.S. com-749

pared with conventional GCM simulations (e.g., better representation of complex terrain750
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and land-surface cover). However, in concert with the positively-biased surface temper-751

atures, which likely altered general storm precipitation phasing from snowfall to rainfall752

too regularly, in CESM simulations it appears that 28 km resolution was insufficient in753

representing the various topographic dependent processes in the Oregon and Washington754

Cascades. This is shown by the clear negative-bias in total precipitation and snow water755

equivalent throughout much of the Cascades which consists of a chain of highly localized756

and intermittent volcanic peaks.757

Across the VR-CESM simulations there are important regional differences, particu-758

larly in the coastal ranges of the western US, that are likely related to refinement domain759

size. The impact of refinement domain size is indicated most clearly in California. As760

shown for the California Central Valley and Sierra Nevada, the large refined domain pro-761

vides the best skill in representing the expected total precipitation climatology of L15 and762

PRISM, whereas the small refined domain is high-biased with statistically significant er-763

rors across most of the central-to-northern portions of California. This is likely because764

of better IVT representation in the large refined domain over the North Pacific (Figure 3).765

In terms of precipitation phasing, all VR-CESM simulations are significantly low-biased766

in their DJF climatology of snow water equivalent compared with the reanalyses datasets,767

akin to other regions of the western US. This lack of DJF snow water equivalent is in-768

sensitive to refinement domain size and is more likely related to the overall warm-bias769

in CLM5.0-SP simulated surface temperatures. The warm-bias is important because a770

discrete range of surface temperatures dictate precipitation phase partitioning (i.e., +2 C771

[all rain] ≥ 0 C [mixture of rain-snow] ≥ -2 C [all snow]) and ripening, or changes in772

density and albedo, of the snowpack over the water year in CLM5.0-SP [Lawrence et al.,773

2019]. Interestingly, surface temperature biases appear to be dictated more by minimum774

than maximum surface temperatures (Supplemental Figure 4). As noted before, Walton775

and Hall [2018] has shown that L15 surface temperatures are likely at the lower end of776

reanalysis dataset estimates, due to fixed assumptions in lapse-rates, and this is confirmed777

with the DJF climatology comparison with PRISM indicating that surface temperature778

biases may be inflated when comparing simulation results to L15. Regardless of assump-779

tions in L15, comparisons with PRISM indicate that there is a systematic warming and780

over correction of previously identified surface temperature biases across the western US781

when CESM simulations with CAM5.4-SE are run with CLM4.0-SP versus CLM5.0-782

SP [Rhoades et al., 2018b] with deleterious impacts on seasonal dynamics of mountain783
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snowpack. Previous VR-CESM simulations using CAM5.4-SE coupled with CLM4.0-784

SP showed much better agreement with observational estimates of western US mountain785

snowpack.786

To expand our analysis beyond DJF and explore how refinement domain size may787

have influenced the accumulation and melt seasons in western US mountains we present788

daily climatologies across the water year (Figure 9). Similar to the DJF climatologies, VR-789

CESM simulations perform well for accumulated total precipitation in western US moun-790

tains with all VR-CESM simulations falling inside of the 95% confidence intervals of L15791

throughout the entire water year. Accumulated total precipitation is slightly low-biased in792

the large refined domain and the medium refined domain (-9 to -34 mm) and high-biased793

in the small refined domain (+28 mm) across western US mountain ranges. The moun-794

tain region with most disagreement across VR-CESM simulations is the California Sierra795

Nevada where the large refined domain has a bias of -144 mm and the small refined do-796

main has a bias of +87 mm (both within ∼10% of L15; Supplemental Figure 5). This is797

likely related to the previously mentioned difference in AR landfall counts of 2 per DJF,798

associated with refinement domain size (Table 2). Although, total precipitation is generally799

well represented across VR-CESM simulations, daily snow water equivalent is low-biased800

across all VR-CESM simulations. Peak snow water equivalent estimates are low biased by801

-68 to -75 mm across the western US mountains in all VR-CESM simulations. With that802

said, all VR-CESM simulations still outperform peak snow water equivalent estimates pro-803

vided by the uniform 1◦ resolution CESM simulation (-124 mm bias). Further, although804

coastal mountains show poor snow water equivalent simulation performance across VR-805

CESM simulations the interior mountain ranges are better simulated (Supplemental Figure806

5). For example, in the Rockies peak snow water equivalent estimates are low biased by807

-18 to -28 mm (within ∼15% of L15). Regardless of mountain range, VR-CESM simu-808

lations using CLM5.0-SP still exhibit a systematic bias whereby snow water equivalent809

peaks too early and melts too fast, an holdover identified in previous VR-CESM studies810

using CAM5.4-SE coupled with CLM4.0-SP over the western US [Rhoades et al., 2016,811

2018a,b].812

As mentioned previously, the warm-bias in surface temperature was likely the ma-813

jor reason for the deleterious impacts on seasonal mountain snowpack. VR-CESM sim-814

ulated surface temperatures are biased between +2.9 and +3.0 (+1.6 to +1.7) K on av-815

erage throughout the water year when compared with L15 (PRISM). This warm-bias is816
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pronounced and is particularly impactful in the accumulation season where precipitation817

is unable to change its phase from rain to snow and/or preserve at the land-surface and818

in the melt season where the snowpack ripens too quickly (i.e., snow density increases819

too fast) lowering the albedo which leads to earlier spring-season melt [Colombo et al.,820

2019]. Supplemental Figure 6 shows this by highlighting the frost (Tmin < 273K), freez-821

ing (Tavg < 273K), and ice day (Tmax < 273K) deficits across CESM simulations, the822

naming conventions are consistent with the World Meteorological Organization [Contosta823

et al., 2019]. Freezing days are a proxy for the days available to accumulate snowfall at824

the surface and frost days are a proxy for the number of days in which snow can be pre-825

served into late-winter to early-spring. VR-CESM freezing day deficits range from -12 to826

-24 days with the uniform-resolution 1◦ simulation having the largest freezing day deficit827

of -43 days. This 2-3 week freezing day deficit in early-winter inhibits the VR-CESM828

simulations from allowing precipitation events to precipitate as snowfall and accumulate829

as snowpack (and is most pronounced in the coastal mountain ranges). In late-winter to830

early-spring, VR-CESM simulations have another 2-3 week frost day deficit which forces831

the snowpack to ripen and melt more abruptly than is expected in L15. Therefore, it ap-832

pears that none of the snow-process enhancements in CLM5.0-SP could compensate for833

these surface temperature biases including the new upper limit of snow water equivalent834

(10,000 mm), the updated partitioning of snow cover fraction (depletion) curves for the835

snow accumulation (melt) seasons, and/or the new snow density parameterization that now836

depends on both temperature and wind, to account for wind-driven snow compaction [van837

Kampenhout et al., 2017]. Of note, Rhoades et al. [2018c] and Rhoades et al. [2018d] have838

shown that these systemic snow water equivalent lifecycle biases are prevalent in other839

global and regional climate models of comparable and/or refined model resolutions too,840

particularly in the melt season. This was similarly confirmed in Xu et al. [2019] who de-841

vised an error decomposition framework to quantitatively show that simulated SWE biases842

in regional climate models are resolution-dependent, however are also related to biases,843

that can sometimes offset, in the spatial and elevational distribution of precipitation (i.e.,844

microphysics scheme), lapse-rates (i.e., boundary layer scheme), and rain-snow partitioning845

in the land-surface model (i.e., surface temperature threshold choice). Future work should846

evaluate this systematic increase in surface temperature from CLM4.0-SP to CLM5.0-SP.847

A hypothesis as to why a general warming occurred is due to several new modifications848

to soil evaporation and/or transpiration in CLM4.0-SP versus CLM5.0-SP. More specifi-849
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cally, CLM5.0-SP soil evaporation now includes a resistance parameterization and transpi-850

ration includes a hydraulic stress parameterization. These two modifications likely led to851

drier soil and vegetation and enhanced the surface sensible heat flux, but need to be more852

robustly explored using an error decomposition framework mentioned previously and/or853

energy budget analysis to confirm this hypothesis.854

4 Discussion and Conclusions855

The effects of refinement domain size on simulation fidelity in the RCM litera-856

ture has been extensively explored, however this same analysis has not been methodically857

tested in the VRGCM literature. Therefore, the goal of this study was to identify if the858

refinement domain size in VR-CESM had a significant impact on the simulated dynami-859

cal and thermodynamical characteristics of the atmosphere over the North Pacific Ocean860

and, if so, what were the concomitant impacts on the simulated hydroclimatology over the861

western US.862

We found that the westward expansion of the 28km refinement domain over the863

North Pacific Ocean led to a decrease in IVT in DJF resulting in a closer approximation to864

ERA5. Lower DJF IVT can be attributed to the atmosphere becoming more stable, drier,865

and less windy near the surface. In turn, lower simulated DJF IVT led to a decrease in to-866

tal precipitation. Interestingly, refinement domain size (or more refined resolution in gen-867

eral) did not have a significant impact on the total count of DJF ARs, but does seem to re-868

duce the number of landfalling ARs, specifically in California. The lower number of land-869

falling ARs was shown to improve DJF precipitation in the western US, but was mostly870

evident over California. At inter-annual timescales, the simulated atmospheric response to871

strong El Niño events does not seem to be influenced by refinement domain size.872

Regardless of 28km refinement domain size over the North Pacific Ocean, we found873

that DJF simulated IVT is high-biased across all CESM simulations when compared against874

ERA5. The high-bias in IVT resulted in landfalling ARs that are generally too strong ac-875

cording to the Ralph et al. [2019] scale (i.e., max IVT is too high and AR duration is too876

long). Although DJF total precipitation was better simulated with the westward expansion877

of the 28km refinement domain, snow water equivalent was low-biased throughout most of878

the western US, save for the interior mountain ranges. The low-bias in snow water equiva-879

lent in the VR-CESM simulations is intuitive as topographic resolution was still too coarse880
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to properly represent certain western US mountain ranges, in particular the intermittent881

and localized peaks of the Cascades and sharp elevation gradients of the eastern Sierra882

Nevada. However, even when comparing 28km resolution VR-CESM simulations using883

CLM4.0-SP in past studies to the simulations using CLM5.0-SP in this study, a systematic884

increase in surface temperature was evident. This systematic increase in surface tempera-885

ture altered precipitation phase partitioning and overall residence time of snowpack in the886

mountains.887

Therefore, although the DJF simulated climatology across the VR-CESM simulations888

did produce some differences, particularly in North Pacific IVT, minimal differences were889

actually seen on AR characteristics and resultant influences on the simulated western US890

hydroclimate, save for precipitation over California. Topographic resolution and/or the ver-891

sion of land-surface model used appears to be more of a factor in simulation fidelity than892

the refinement domain extent, at least for the western US. This corroborates assumptions893

made by previous VRGCM studies that refinement domain size need only extend out as894

far as Hawaii when evaluating the western US and instead finer refinement should be ap-895

plied over areas of complex terrain. Practically, this finding enables a core-hour saving896

of ∼30% when running VR-CESM with the small refined domain versus the large refined897

domain using 48 nodes on the NERSC Cori-Haswell supercomputer.898

These findings are likely generalizable to other VRGCMs that have comparable nu-899

merical order accuracy in grid-transition regions and physics parameterizations. For exam-900

ple, CAM-SE has third-order numerical accuracy in grid-transition regions, therefore other901

VRGCMs that have lower order accuracy may require a larger grid-transition region for902

comparable results. However, these findings are likely not generalizable to RCMs. This903

is because VRGCMs allow for two-way feedbacks between coarser and finer domains,904

whereas RCMs only enable a one-way feedback with varying degrees of influence based905

on domain size configuration. More specifically, using a similar experimental design to906

this one, western US hydroclimate simulations in RCMs may be more influenced by a907

westward expansion of the refinement domain over the North Pacific due to a more pro-908

nounced decoupling of larger scales (GCM boundary conditions) from regional scales909

(RCM simulation). Further, if boundary conditions are provided by a reanalysis dataset910

the relative quality of the RCM simulation would likely be impacted by the number of911

available observations that are assimilated in the generation of the reanalysis dataset, par-912

ticularly over the Pacific Ocean.913
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As mentioned previously, there are still several avenues of future research that could914

be explored with these VR-CESM domain sensitivity experiments. One such path would915

be a robust evaluation of the implications of refinement domain size on the atmospheric916

response to teleconnections at sub-seasonal timescales (e.g., the MJO and EACS events).917

Given the minimal influence that refinement domain size had on North Pacific AR char-918

acteristics, particularly between the large and small refined domain, another path could be919

an exploration of how a warmer world may influence AR characteristics (using any of the920

VR-CESM grids from this study).921
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