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ABSTRACT OF THE DISSERTATION

Low Latency and Low Complexity Communication on High Noise Channels

by

Navid Gharavi

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2021

Professor Ilya Dumer, Chairperson

Low latency and low power communications have broad applications such as Internet

of things (IoT), autonomous vehicles, industry automation (collaborative robots), health pro-

cedures (like robot assisted surgery requiring haptic feedback), satellite communication, radar

applications, virtual reality headsets and millimeter Waves (mmWave). Low latency communi-

cations is in high demand for autonomous systems to be able to react swiftly to changes in the

environment and to unexpected situations. Latency is tied to the technology used and even more

to the overall architecture adopted. Enhanced mobile broadband, massive machine type com-

munications and ultra-reliable and low latency communication are the most prominent promises

of 5th generation mobile network (5G). The low power wide area networks communications is

expected to grow exponentially from the 1.5B$ of 2018 to 65B$ in 2025 and communication

services, asset tracking and smart buildings (installation and operation) are just some of its

applications. Low power communications can use a number of different protocols and systems

like Narrow-band (NB) IoT and Long Range Wide Area Network (LoRaWAN). Long range wide

area networks use unlicensed spectrum and are more suitable for applications generated in low

traffic volume (which is typically the case for IoT). All these applications of low power and low

latency communication were the motivation behind our research.
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In this thesis, we introduce a low-rate low-density parity-check (LDPC) code for

channels with extreme noise and present a low latency and low complexity communication

method for low power applications. We then show that this design has the ability of outperforming

uncoded modulation for the signal-to-noise ratios (SNR) above −3 dB per information bit and

achieve a 3 dB gain as SNR grows. We use belief propagation (BP) decoding only on information

bits to decode these codes and by doing so the overall complexity of decoding would be log-linear

in terms of block size. To improve code performance, information bits are further protected

with a polar code. The combined design has low complexity of decoding, small latency and a

vanishing bit error rate (BER).

We also prove upper and lower bounds on bit error rate of these algorithms at any SNR

and study a combined scheme that splits the information block into b blocks and protects each

with some polar code. Decoding moves back and forth between polar and LDPC codes, every

time using a polar code of a higher rate. For a sufficiently large constant b and a large block

size, this design yields a vanishing BER at any SNR that is arbitrarily close to the Shannon limit

of -1.59 dB. This scheme also has very low complexity and decodes m information bits with

complexity of order O(m logm) per information bit.

In the subsequent chapters of this thesis, we combine polar and low-density parity-

check (LDPC) with parity checks of small weight to achieve low latency and low complexity

codes for high noise channels. Decoding of this codes also performs several iterations of the

belief propagation (BP) algorithm. Partially corrected bits are then passed to a short polar code

that uses successive cancellation list (SCL) decoder. The newly corrected bits then serve as the

new inputs for the LDPC decoder. For codes of rate less than 0.05, the algorithm performs on a

par with a cyclic redundancy check (CRC) aided successive cancellation list (CA-SCL) decoder,

while substantially reducing its latency.
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Chapter 1

Introduction

The ultimate goal of communication is to transmit information form source to the

receiver with high reliability, low complexity, low latency and the least amount of power possible.

However, these goals are hard to accomplish due to presence of noise in communication channel.

In 1948 Claude E. Shannon [4] showed that reliable data transmission over a noisy channel,

described in Figure (1.1), is possible. Shannon coding theorem demonstrated that maximum rate

of transmission over a noisy channel is bounded by channel capacity, As long as the transmission

rate is smaller than channel capacity, there are long codes that can achieve arbitrary low probability

of output error. These random codes will obtain exponentially declining probability of error

when maximum likelihood (ML) decoding is implemented but ML decoding is NP-hard [5].

It is an open problem to design the efficient capacity achieving codes with low complex-

ity of encoding and decoding. In order to address this question there were a number of different

Source Transmitter +

Noise

Receiver Destination

Figure 1.1: A general noisy communication system
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codes introduced in the up coming years. In 1950, Hamming introduced Hamming distance [6]

and formalized linear codes and lead to introduction of a number of important algebraic codes

such as Reed-Muller codes [7, 8], Bose-Chaudhuri-Hocquenghem (BCH) codes [9, 10] and

Reed-Solomon (RS) codes [11]. Even though these codes have lots of applications in real life,

they did not achieve channel capacity on binary input additive white Gaussian noise (BI-AWGN)

channels with low complexity.

In contrast to algebraic codes, probabilistic codes are mostly inspired by Shannon’s

random codes. Some of famous probabilistic codes are convolutional codes [12], product codes

[13], concatenated codes [14], Turbo codes [15], low-density parity-check codes (LDPC) [16,17],

irregular LDPC codes [18, 19] and convolutional LDPC codes [20]. These code are practically

important and have the ability of getting close to Shannon limit [21, 22].

Polar codes [23] are theoretically have the ability to achieve channel capacity over

huge blocks. This capacity achieving property of polar codes has attracted the world to use this

code on a wide variety of topics such as data compression [24, 25], broadcast channels [26, 27],

multiple access channels [28, 29], physical layer security [30, 31], and coded modulation [32, 33].

This indicates the significance of polar codes and the need for comparison of any new capacity

achieving codes with polar codes in terms of complexity and latency.

Low-capacity scenarios have become increasingly important in narrow-band and wide-

band communications. Narrow-band communication is used in the technology of the Internet

of Things (IoT) in cellular networks where a huge number of users need to be served [34] and

wide-band communication is considered in millimeter-Wave (mmWave) which is crucial for the

next generation of cellular networks (5G) [35]. In both of theses scenarios users need to work in

very low signal-to-noise-ratios therefore we are interested to explore these schemes and introduce

solutions for both asymptotic and practical cases.

Efficient code design protecting data from extreme levels of noise is central to many
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low power applications. To efficiently employ Internet of things (IoT), prospective standards [36]

are supposed to achieve a 20 dB reduction in snr per channel bit (we use notation snr for signal-to-

noise ratios per input channel bits, while notation SNR will be applied to the output information

bits).

There are a few different ways to address this important problem. One prospective

approach is to design an efficient (possibly, capacity-reaching) sequence of codes of vanishing

code rates. Practically, these codes should also achieve low decoding complexity and rapid

decline of error rates. However, currently this problem is far from sound practical solutions.

From the theoretical standpoint, we consider binary linear codes C(n,k) of length

n → ∞ and dimension k used on the BSC and BI-AWGN N (0,σ2
n ) with noise power σ2

n → ∞.

To achieve a fixed signal-to-noise ratio SNR = 1/
(
2σ2

n Rn
)
, these codes must have the vanishing

code rates Rn that have an order of σ−2
n . Moreover, the fundamental Shannon limit shows that

any such code may achieve the vanishing BERs only if SNR > ln2 (equivalently, this limit

corresponds to 10log10 ln2 =−1.5917 dB).

The central problem here is to design a capacity-achieving sequence of codes that

have low decoding complexity and a rapidly declining BER. Currently, this problem is far

from solution. To date, most existing capacity-achieving codes have code rates Rn that decline

exponentially in code dimension m. In turn, this yields an exponential growth in bandwidth and

decoding complexity, both proportional to R−1
n .

For example, biorthogonal codes [37] C(2m−1,m) achieve the Shannon limit; however,

their code rate Rn = m/2m−1 declines exponentially in m. By contrast, the output word error rates

(WER) of these codes experience very slow decline, which is only polynomial in block-length n.

In particular, for the low SNR ∈ (ln2,4ln2), codes C(2m−1,m) have word error rate (WER) [38]

bounded from above by

Pm = exp{−m(
√

SNR−
√

ln2)2}

3



For a practically important range of SNR ∈ [1,2] (which gives the range of [0,3] dB), long

codes Cm – up to billions of bits – still have very high error rates Pm. This is shown below for

m = 18,21,25 and 30.

SNR (in dBs) 0 0.5 1 1.5 2 2.5 3
m = 18: P18 (in %) 60.3 39.6 22.1 10.2 3.8 1.1 0.2
m = 21: P21 (in %) 55.5 34.0 17.2 7.0 2.2 0.51 0.085
m = 25: P25 (in %) 49.6 27.7 12.3 4.2 1.1 0.19 0.02
m = 30: P30 (in %) 43.1 21.4 8.1 2.2 0.43 0.05 4E-3

Table 1.1: WER of Biorthogonal Codes

Further analysis shows that concatenations of codes C(2m−1,m) with the outer Reed–Solomon

(RS) codes or algebraic geometry (AG) codes [39, 40] still have similar shortcomings, due to

the fact that codes C(2m−1,m) should have length n proportional to σ2
n → ∞. In summary, codes

Cm or their concatenations fail to yield acceptable output error rates on the high-noise AWGN

channels with SNR of [0,2] dB for the blocks of length n < 108.

As the second example, consider general RM codes or their bit-frozen sub-codes. Let

Wm be a sequence of the binary symmetric channels (BSCp) with transition error probabilities

pm = (1−εm)/2 such that εm → 0 as m → ∞. It is well known that channels Wm yield a sequence

of vanishing capacities

Cm ∼ ε
2
m/ ln4, m → ∞

It was proven in [41, 42] that long low-rate RM codes RM(m,r) of order r = o(m) and length

n = 2m approach the maximum possible code rates Cm on channels Wm under the maximum-

likelihood (ML) decoding. Even in this case, code rates Rn decline exponentially as mr2−m and

require exponential decoding complexity.

Consider also the existing low-complexity algorithms known for RM codes [43–45]

or their bit-frozen sub-codes [46]. For low SNR < 1 dB, these algorithms yield high error rates

above 10−3 or require unacceptably large lists under successive cancellation list (SCL) decoding.
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Polar codes [23] of rate Rn → 0 that operate under growing noise power σ2
n ∼ 1/(2SRn)

for a fixed SNR = S. One construction of such codes is considered in [47]. For σ2
n → ∞,

these codes begin with a growing number µ ∼ log2 σ2
n of upgrading channels and employ

long repetition codes B(2µ ,1) or RM codes C(2µ ,m+1). This design again results in a rapid

complexity increase as σ2
n → ∞. To advance polar design, it is important to analyze how polar

codes of length n → ∞ operate within a vanishing margin εn → 0 to the Shannon limit. One

important problem here is to find the minimal length n(ε) which polar codes approach the

Shannon limit within a gap ε . It is known [48] that such a length is a polynomial in ε−1.

For moderate lengths, one efficient construction of [49, 50] concatenates repetition

code of length 4 with a (2048,40) polar code. The resulting code has WER of .002 at the SNR of

2 dB and improves the NB-IoT standard [36] by 1 dB. Another recent design [51] yields WER of

0.0007 for the similar parameters. In this thesis, we present algorithms to improve asymptotic

and practical performance of low rate designs with low complexity and low latency.

1.1 Contributions of this thesis

1.1.1 Codes for high-noise memoryless channels

We consider codes for channels with extreme noise that emerge in various low power

applications such as IoT or sensor networks. To address this case, we design simple LDPC-type

codes that have growing dimension m and length m(m+1)/2 where m → ∞. These codes can

be regarded as a ”modulation-type” codes. We use belief propagation (BP) [16, 52] algorithm

only on information bits to decode them. We show that this design has the ability to improve

the original channel output for any signal-to-noise ratios (SNR) per information bit SNR >−6

dB and outperform uncoded modulation for SNRs above −3.7 dB. It also obtains a 3 dB

gain over uncoded modulation as SNR grows. The proposed low rate LDPC design has an
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overall complexity of order O(m2 logm) and a latency of order O(logm) when BP algorithm

is implemented in parallel. Similar to uncoded modulation, these codes also exhibit a floor on

the output bit error rate (BER) for any m. To improve code performance, information bits are

further protected with some polar code of length m. This design also has low complexity of order

O(m2 logm), a latency of order O(m), a vanishing BER of order O(exp{−m1/2}).

Tight lower and upper bounds for the maximum likelihood (ML) and BP algorithm,

which are virtually identical to simulation results, are then obtained for BER at any SNR for

binary symmetric channel (BSC) and binary-input additive white Gaussian noise (BI-AWGN)

channels.

1.1.2 Codes approaching the Shannon limit with polynomial complexity per infor-

mation bit

We introduce a combined scheme that splits m information bits into b blocks and

protects each with some polar code. Decoding moves back and forth between polar and LDPC

codes, every time using a polar code of a higher rate. We then present theoretical boundaries for

BER of this algorithm with frozen information bits and compare them with simulation results and

show that they are practically identical. We then show numerically that for a sufficiently large

constant b and m → ∞, this design yields a vanishing BER at any SNR that is arbitrarily close to

the Shannon limit of -1.5917 dB. Unlike other existing designs, this scheme has a polynomial

complexity of order O(m lnm) per information bit. The latency of this capacity achieving design

is of order O(m) which is significantly smaller than that of polar codes.

1.1.3 Combined polar-LDPC design using Gallager ensemble of LDPC codes

We combine polar and LDPC codes to address data correction for various low power

applications. We use a combination of Gallager’s design [16] and repetition codes to create long

6



low rate LDPC codes that have parity checks of a small weight w. Decoding first improves the

information bits by using the small block of repeated information bits and then performs several

iterations of the belief propagation (BP) algorithm that recalculates the information bits only.

Partially corrected bits are then passed to a short polar code that uses successive cancellation

list (SCL) decoder. The newly corrected bits then serve as the new inputs for an LDPC decoder.

For codes of rate less than 0.1, the algorithm performs on a par with a CRC-Aided SCL polar

decoder (CA-SCL), while substantially reducing its latency.

1.2 Outline

We start by introducing a low rate LDPC code in Chapter 2 and showcase the abilities

of this code combined with repetition code and compare it to uncoded modulation. We then

present precise lower and upper bounds for BER of this design. Then we combine this design

with polar precoding and show the simulation results of this low rate and low latency code and

compare it with state-of-the-art polar-repetition codes. In Chapter 3, we introduce a back and

forth polar-LDPC scheme with the ability of approaching the the Shannon limit of -1.59 dB.

In Chapter 4 we showcase an extension of these codes that uses parity check of higher weight

and has the ability of introducing practical code design under moderate block lengths. The

performance of this code is on a par with the best existing codes such as CA-Polar codes and

hybrid non-binary repeated polar codes with much smaller latency. Finally, in Chapter 5 we

conclude this work and discuss the potential future work.

7



Chapter 2

Codes for high-noise memoryless

channels

2.1 Introduction

In this chapter, we introduce a low rate and low latency LDPC code and we discuss

its properties, encoding and decoding algorithm. We present bounds for bit error rate (BER) of

maximum likelihood (ML) and belief propagation (BP) algorithm and prove them on BSC and

AWGN channels. Then we combine repetition codes with this low rate design and show that

this design can outperform uncoded modulation for SNR >−3 dB. We also use polar codes as a

precoding for this modulation LDPC code and present a low rate and low latency scheme that

has the ability of outperforming polar-repetition codes with similar complexity and much smaller

latency.

8



2.2 Basic construction

Our basic code - which we denote Cm - has generator matrix Gm = [Im|Jm], where Im

is an m×m identity matrix and Jm is an m× (m
2 ) matrix that includes all columns of weight 2.

Clearly, n =
(m+1

2

)
and k = m. Let a(s) be any codeword generated by s rows of Gm. Note that

every row in Jm has weight m−1, every two rows have a single common 1, and every s ≥ 2 rows

have (s
2) common 1s. Any codeword a(s) that has weight s in Im has overall weight

ws = ms−2(s
2) = s(m− s+1) (2.1)

Thus, code Cm has distance m, which is achieved if s = 1,m. All other codewords have weight

2(m−1) or more. Note also that code Cm represents a heavily truncated Hadamard code [53]

that leaves only positions of weight 1 and 2 and excludes other m−2 spherical layers formed by

the full space of positions Em
2 . You can see the generator matrix G4 in (2.2).

G4 =



1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1


(2.2)

2.3 Belief propagation decoding on BSC and AWGN channels

Tanner proposed to represent codes as bipartite graphs and to visualize iterative decod-

ing as a message-passing algorithm on such a graph [54,55]. Kim and Pearl introduced the belief

propagation algorithm [56, 57] to solve statistical inference problems [58]. LDPC codes can also

be represented as a bipartite graph and belief propagation algorithm can be used to decode them.

Here we implement BP only on information bits.
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2.3.1 Decoding on binary symmetric channels

In this section we consider communication on a BSC, described in Figure (2.1), and

present their belief propagation decoding. Let [i, j] = [ j, i] denote code positions in Gm, where

0 ≤ i ̸= j ≤ m. Encoder aGm receives a string a = (a0,1, ...,a0,m) of m information bits and adds

(m
2 ) parity bits a1,2, ...,am−1,m such that ai, j = a0,i + a0, j. Note that encoding has complexity

O(n). Let code Cm of rate R = 2/(m+1) be used on a BSC channel described in Figure (2.3) .

We use a map {0,1}→ {±1} for each transmitted symbol ai, j, describe in Figure (2.2), where

0 ≤ i ̸= j ≤ m. Then the parity checks ai, j form the real-valued products

a0,i = a0, jai, j (2.3)

It is important to note that when we send antipodal signals si = ±1 we can claim that error

probability p = (1+u0)/2 where u0 → 0. In this thesis we assume that the communication rate

is small, r → 0 and because of that we can estimate u0 =
√

cb/m where cb = 8SNR/π . It can be

shown that limx→0 Q(x) = 0.5− x/
√

2π where Q(x) is:

n(x) = (2π)−1/2 exp{−x2/2) (2.4)

Q(x) =
∫

∞

x
n(y)∂y

Data Source Encoder

+ei ∼ Bernoulli(p)

DecoderData user

a ∈ {0,1}m

c ∈C ⊆ {0,1}n

b = c+ e, b ∈ {0,1}n

â ∈ {0,1}m

Figure 2.1: Communication system on a binary symmetric channel
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1

0

-1

1

Figure 2.2: Antipodal Signal Representation of Binary Data

Our decoding algorithm ΨBSC performs several steps of belief propagation. However, unlike

conventional algorithms, we estimate only information bits a0,i. In the first iteration our estimate

comes from the BSC channel but after the fist iteration this random variable will have a Gaussian

distribution due to central limit theorem and independence of information bits and parity check

bits. After the first iteration we assume that by removing intrinsic information in each step

and having a large size, m → ∞, there is a weak dependence between theses estimates. A

number of sources show that summation of m dependent random variables can have a Gaussian

distribution [59–64]. Our conjecture is that similar conditions hold for our partial log-likelihood

random variables to the conditions that are mentioned in [65, 66].

1

0

1

0

1− p

p

p

1− p

Figure 2.3: Binary symmetric channel

In our decoding algorithm we assume that the received parity checks have probability

offsets ui, j = bi, ju0, where their sign is the same as the received bits, bi, j, of the BSC. Given

some received bit bi, j, an input ai, j = 1 has posterior probability

qi, j ≜ Pr{1 | bi, j}= (1+bi, ju0)/2.

11



Now we can describe the soft decision belief propagation decoding algorithm for a total of L

iterations as follows:

For all i, j ∈ {1, ...,m} and j ̸= i :

A. Derive quantities ui |ℓ+1( j) = ui, jui |ℓ( j)

and hi |ℓ+1( j) = 2tanh−1 [ui |ℓ+1( j)
]
.

B. Derive quantities hi |ℓ+1 = ∑ j hi |ℓ+1( j)

and h j |ℓ+1(i) = hi |ℓ+1 −hi |ℓ+1( j)

C. If ℓ < L, find ui |ℓ+1( j) = tanh(hi |ℓ+1( j)/2).

Go to A with ℓ := ℓ+1. If ℓ= L :

estimate BER τL =
1
m ∑i Pr{hi |L < 0};

output numbers hi |L and ai = sign (hi |L). (2.5)

2.3.2 Decoding on AWGN Channels

Let us assume that the code Cm is transmitted over an AWGN channel with pdf.

N (0,σ2), described in 2.4, and constant SNR =
(
2σ2R

)−1 per information bit. In the sequel, it

will be more convenient for us to use a constant c = 4(SNR). We use the same mapping described

in (2.2) for each transmitted symbol ai, j, where 0 ≤ i ̸= j ≤ m. Then the parity checks ai, j form

the real-valued products seen in (4.3). Let an all-one codeword 1n be transmitted. Then the

received symbols yi, j ≡ y j,i form independent Gaussian random variables (r.v.) N (1,σ2). We

will use rescaled r.v. zi, j = δyi, j,where δ = 1/
(
σ2 +1

)
= c/(m+ c+1) . It is easy to verify that

this scaling gives power moments x0 = E(zi, j) and σ2
0 = E(z2

i, j) such that

x0 = σ
2
0 = δ (2.6)

12



Given some zi, j, an input ai, j = 1 has posterior probability:

qi, j ≜ Pr{1 | zi, j}= 1/(exp(−2zi, j)+1). (2.7)

Decoding algorithm Ψso f t(z) described below employs two closely related quantities,

the log-likelihoods (l.l.h.) hi, j and the “probability offsets” ui, j :

hi, j = ln[qi, j]− ln[1−qi, j] = 2zi, j (2.8)

ui, j = 2qi, j −1 = tanh(zi, j) (2.9)

Given the offsets u0, j and ui, j in (4.3), it is easy to verify that symbol a0,i has offset u0,i =

u0, jui, j. Also, ui, j = tanh(zi, j) = tanh(hi, j/2). Function tanh(x) has derivatives tanh′(0) = 1 and

tanh′′(0) = 0 at x = 0. Thus, for the vanishing values of zi, j → 0,

ui, j = zi, j +o(z2
i, j) = hi, j/2+o(h2

i, j) (2.10)

Algorithm Ψso f t performs several steps of belief propagation. Unlike conventional algorithms,

we estimate only information bits a0,i. We will show that Ψso f t requires L ∼ lnm/ lnc iterations

to achieve the best performance. For every step ℓ= 1, ...,L and every symbol a0,i, consider its

Data Source Encoder

+ei ∼ N (0, σ2)

DecoderData user

a ∈ {0,1}m

c ∈C ⊆ {1,−1}n

y = c+ e,y ∈ Rn

â ∈ {0,1}m

Figure 2.4: Communication system on an AWGN channel
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j-th parity check a0,i = a0, jai, j of (4.3). To re-evaluate a0,i, we introduce the offset ui |ℓ( j) of the

symbol a0, j used in this parity check. Then the estimate ui, ju j |ℓ( j) re-evaluates symbol a0,i via

the product a0, jai, j. We then obtain the l.l.h. hi |ℓ+1( j) of the j-th parity check using transforms

(2.8) and (2.9). Next, the sum of l.l.h. hi |ℓ+1( j) gives the compound estimate hi |ℓ+1 of the

symbol a0,i. Finally, we derive the partial l.l.h. h j |ℓ+1(i) of the symbol a0,i that will be used in

the next round to estimate a0, j via its i-th parity check a0, j = a0,iai, j. This excludes the intrinsic

information hi |ℓ+1( j) that symbol a0, j already used in round ℓ. Our recalculations begin with the

original estimates ui |0( j)≜ u0,i. Round ℓ of Ψso f t is done as follows.

For all i, j ∈ {1, ...,m} and j ̸= i :

A. Derive quantities ui |ℓ+1( j) = ui, jui |ℓ( j)

and hi |ℓ+1( j) = 2tanh−1 [ui |ℓ+1( j)
]
.

B. Derive quantities hi |ℓ+1 = ∑ j hi |ℓ+1( j)

and h j |ℓ+1(i) = hi |ℓ+1 −hi |ℓ+1( j)

C. If ℓ < L, find ui |ℓ+1( j) = tanh(hi |ℓ+1( j)/2).

Go to A with ℓ := ℓ+1. If ℓ= L :

estimate BER τL =
1
m ∑i Pr{hi |L < 0};

output numbers hi |L and ai = sign (hi |L). (2.11)

To estimate the complexity of Ψso f t , note that Step A uses at most n multiplications and n

two-way conversions u ↔ h. Step B calculates the sums hi |ℓ+1 using m operations for each i. It

also requires 2n operations to derive the residual sums hi |ℓ+1( j) and their offsets ui |ℓ+1( j) for all

pairs i, j. Then the overall complexity has the order O(n) for every iteration ℓ. Assuming that we

have L = O( logm) iterations, we obtain complexity O(n logn).
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2.4 Lower bounds for BER of codes Cm on AWGN channels

We will now study the output BER of codes Cm. We first show that long codes Cm fail

to achieve BER Pc → 0 for any SNR = c/4 even if they employ ML decoding. This is similar to

the uncoded modulation (UM). Assume that an all-one codeword 1n (formerly, a 0n codeword in

Fn
2) is transmitted and z = (zi, j) is received. Consider the sets of positions I0 = (0, j | j ̸= 0,1)

and I1 = (0, j | j ̸= 0,1). For any vector z, we will define the corresponding r.v.

Y0 = ∑ j ̸=0,1 z0, j, Y1 = ∑ j ̸=0,1 z1, j

Below we use asymptotic probability density functions (pdf) as m → ∞. Then r.v. zi, j have

asymptotic pdf N (δ ,δ ). It is also easy to verify that r.v. Zi = ∑ j zi, j, Y0, and Y1 have asymptotic

pdf N(c,c). Code-words of minimum weight in Cm include m generator rows g(p), where

p= 1, ...,m, of the generator matrix Gm and their sum g(0) = g(1)+ ...+g(m). Under ML decoding,

any two-word code {1n, g(p)}, has BER

Pc = Pr{Y1 < 0}= Q

(
mδ −δ√
m(δ −δ 2)

)
∼ Q

(√
c
)

(2.12)

Here we write f (m)∼ g(m) if lim f (m)/g(m) = 1 as m → ∞. Similarly, we use notation f (m)≳

g(m) if lim f (m)/g(m)≥ 1.

Theorem 1 Let codes Cm be used on an AWGN channel with an SNR of c/4 per information bit.

Then for m → ∞, ML decoding of codes Cm has BER

pML(c)≳ 2Pc(1−Pc) = 2Q
(√

c
)
−2Q2 (√c

)
(2.13)

Proof. Without loss of generality, we consider BER of symbol a0,1. In essence, we prove that

15



ML decoding gives a0,1 =−1 if so does one of the codes {1n, g(p)} for p = 0,1. All received

vectors z form four disjoint subsets U = A,B,C,D, where

A = {z |Y0 < 0, Y1 > 0}, B = {z |Y0 > 0, Y1 < 0} (2.14)

C = {z |Y0 > 0, Y1 > 0}, D = {z |Y0 < 0, Y1 < 0} (2.15)

Clearly, Pr{A}= Pr{B}= Pc(1−Pc). We will prove that pML(c)≳ Pr{A}+Pr{B}.

Two vectors g(p), p = 0,1, have supports Jp = {(p, j)}, where j ∈ {0, ...,m}\{p} .

For any z, consider bitwise products g(p)z that flip symbols of z on the supports Jp. Then

g(0)A =C, g(1)A = D, g(0)B = D, g(1)B =C (2.16)

Let z be decoded into some a(z) ∈ Cm and let a0,1(z) be the first symbol of a(z). We decompose

each set U into

U+ = {z ∈U : a0,1(z) = 1}, U− = {z ∈U : a0,1(z) =−1}

Note that a
(
g(p)z

)
= g(p)a(z). Then

g(0)A+ =C−, g(1)A+ = D− (2.17)

g(1)B+ =C−, g(0)B+ = D−

Conditions (2.16) and (2.16) show that maps g(0) and g(1) flip full sets U and there subsets U+

and U−.

In the next step, we remove the first symbol a0,1 from each vector z and obtain four sets

U ′ = A′,B′,C′,D′ with a punctured symbol a0,1. Let U ′
+ and U ′

− denote the punctured subsets of
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U+ and U−. Below we show in Lemma 2 that the maps g(0) and g(1) cannot reduce the probability

of the sets A′+B′. Namely,

Pr
{

C′
−
}
+Pr

{
D′
−
}
≥ 2Pr

{
A′
+

}
(2.18)

Pr
{

C′
−
}
+Pr

{
D′
−
}
≥ 2Pr

{
B′
+

}
(2.19)

Finally, consider pML(c)≡ ∑U Pr{U−} . We then prove in Lemma 3 that removing one bit a0,1

has immaterial impact on Pr{U} as m → ∞, so that Pr{U} ∼ Pr{U ′}. Then

pML(c) = ∑U Pr{U−} ∼ ∑U Pr
{

U ′
−
}

We can now use (2.18) and (2.19), which gives

pML(c)∼ Pr
{

A′
−
}
+Pr

{
B′
−
}
+Pr

{
C′
−
}
+Pr

{
D′
−
}

≥ Pr
{

A′
−
}
+Pr

{
B′
−
}
+Pr

{
A′
+

}
+Pr

{
B′
+

}
= Pr

{
A′}+Pr

{
B′}

Thus, we obtain (2.13). ■

Lemma 2 Punctured sets U ′ = A′,B′,C′,D′ satisfy inequalities (2.18) and (2.19).

Proof. Recall that 1n is the transmitted vector. In this case, the set C has the highest probability

among all sets U , while D is the least likely. We now can establish stronger conditions. In

essence, we show that the transition A 7→C (or B 7→C) produces a greater increase Pr(C)−Pr(A)

than the drop Pr(A)−Pr(D) required in transition A 7→ D.

We say that any x ∈ A′,B′ is a (θ ,ρ) vector if Y0 = θ , Y1 = ρ. According to (2.14),

any x ∈ A has θ < 0, ρ > 0, whereas it is vice versa for x ∈ B.
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Recall that r.v. Y0, Y1 have asymptotic pdf N (c,c). (The exact pdf is N (cλ ,cλ −

cδλ )). Consider (θ ,ρ)-vectors x ∈ A. On the subset I0 = {(0, j)} , these vectors x have pdf

p(θ)∼ (2πc)−1/2 e−(θ−c)2/2c

For any x, the transform g(0)x only flips symbols x0, j thus replacing pdf. p(θ) on the set I0 with

p(−θ) . This gives the ratio

r (θ) = p(−θ)/p(θ) = e−2θ

The other transform g(1)x of any (θ ,ρ)-vector x flips symbols x1, j. Then we obtain the ratio

r (ρ) = p(ρ)/p(−ρ) = e−2ρ

Now we consider two vectors from A+, namely, x = x(θ ,ρ) and y = y(−ρ,−θ). Then g(0)x ∈C

and g(1)x ∈ D. The same inclusion holds for vector y. Also, both vectors x and y have the same

pdf p(x) = p(y) = p generated on the sets I0 and I1, since both r.v. Y0 and Y1 have the same

distribution. We can now estimate the total pdf of vectors g(p)x and g(p)y as follows

p
(

g(0)x
)
+ p

(
g(1)x

)
=
(

e−2θ + e−2ρ

)
p

p
(

g(0)y
)
+ p

(
g(1)y

)
=
(

e2θ + e2ρ

)
p

Since exp{−2a}+ exp{2a} ≥ 2 for any a, we can reduce the latter equalities to

2∑p=1,2 p
(

g(p)x
)
+ p

(
g(p)y

)
≥ 4p
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This immediately leads to inequality (2.18). Inequality (2.19) is identical if we replace A+ with

B+. Other inequalities of the same kind can be obtained if we consider subsets A′,B′ (or A′
−,B

′
−).

■

We now prove that removing position (0,1) is immaterial for our proof.

Lemma 3 Any set U and its one-bit puncturing U ′ satisfy asymptotic equality Pr{U} ∼ Pr{U ′}.

Proof. Note that r.v. z0,1 has pdf N (δ ,δ ), where δ ∼ c/m → 0 as m → ∞, whereas r.v. Y0 (or

Y1) has pdf N (c,c). Let r =
√

c/m lnm and r′ = r lnm. Then with probability tending to 1, we

have the following conditions:

z0,1 ∈ [−r,r], Y0 /∈ [−r′,r′] (2.20)

Thus, Pr{z0,1/Y0 → 0}→ 1 as m → ∞. Now we see that equalities Pr{U} ∼ Pr{U ′} hold for any

set U or U+ or U− as m → ∞. ■

2.5 Probabilistic bounds for BP decoding on AWGN channels

Our next goal is to study BP algorithm Ψso f t of (4.7). We first slightly expand on our

notation. We say that events Um hold with high probability Pm if Pm → 1 as m → ∞. Let N (a,b)

denote the pdf of a Gaussian r.v. that has mean a, variance b, and the second power moment a2+b.

Consider a sequence of Gaussian r.v. xm that have pdf N (a,bm), where bm = b(1+θm), b > 0

is a constant, and θm → 0 as m → ∞. Consider also any sequence tm such that tm = o(θ−1/2
m ).

Then Pr{xm > tm} ∼ Q((tm −a)b−1/2) and we write N (a,bm)∼ N (a,b).

Consider also r.v. zi, j that has pdf asymptotic N (δ ,δ ) as m → ∞. Then restriction

(2.20) shows that with high probability zi, j → 0. Then equality (2.10) shows that ui, j = zi, j +

o(z2
i, j)∼ zi, j. Thus, we will replace r.v. ui, j in algorithm Ψso f t with zi, j.
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To derive analytical bounds, we will slightly simplify algorithm Ψso f t and assign the

same value hi |ℓ+1( j) = hi |ℓ+1 for all j instead of different assignments hi |ℓ+1( j) := hi |ℓ+1 −

h j |ℓ+1(i). It can be shown that this change is immaterial for our asymptotic analysis. It also

makes very negligible changes even on the short blocks C. The simplified version of the algorithm

Ψso f t - described below - begins with the initial assignment u j |0 = z0, j in round ℓ= 0. We will

perform L = 2lnm/ lnc rounds. In round ℓ, Ψso f t proceeds as follows.

A. Derive quantities ui |ℓ+1( j) = zi, ju j |ℓ

and hi |ℓ+1( j) = 2tanh−1 [ui |ℓ+1( j)
]
.

B. Derive quantities hi |ℓ+1 = ∑ j hi |ℓ+1( j)

C. If ℓ < L, find ui |ℓ+1 = tanh(hi |ℓ+1/2).

Go to A with ℓ := ℓ+1. If ℓ= L :

estimate BER τL =
1
m ∑i Pr{hi |L < 0};

output numbers hi |L and a0,i = sign (hi |L). (2.21)

To derive analytical bounds, what we need to show is that zi, ju j |ℓ for different values of j are

weakly dependant. We know that zi, j for different values of j are i.i.d random variables but u j |ℓ

are not necessarily independent from each other. Namely, we call r.v. ξ1, ...,ξm weakly dependent

if for m → ∞, we have asymptotic equality

E(ξi |ξ j1 , ...,ξ jb)→ E(ξi) (2.22)

For any constant b, index i, and any subset J = { j1, ..., jb} such that i /∈ J. In particular, we will

assume that the conditional moment E(hi |ℓ+1 |h j1 |ℓ, ...,h jb |ℓ) tends to the unconditional moment

E(hi |ℓ+1). This assumption does not necessarily hold if b is a growing number. However, in our
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case, r.v. hi |ℓ+1 includes m− 1 different summands hi |ℓ+1( j) for all j ̸= i. On the other hand,

only one related term h j |ℓ(i) is included in each sum h j |ℓ for any j ∈ J. (Both terms include the

same factor ui, j used to evaluate symbols a0,i and a0, j in parity check (4.3)). We further assume

that the sums of weakly dependent r.v. satisfy the central limit theorem (CLT). This has been

proven in many settings [59–64], where ”the future” r.v. have vanishing connection to the past

(or “distant” past). In this case, our conjecture is that similar conditions to [65, 66] will hold for

partial log-likelihood ratio random variables. The above assumption is also corroborated by the

simulation results, which essentially coincide with the theoretical bounds derived below (see

Figure 3.2, in particular).

Our goal is to derive BER Pso f t(c) = limτL for Ψso f t as L,m → ∞. Given c > 0,

consider the equation

x =
1√
2π

∫
∞

−∞

tanh(t
√

xc)e−(t−
√

xc)2
/2dt (2.23)

In Lemma 8, we will show that for c ≤ 1 equation (2.23) has a single root x = 0. For c > 1, (2.23)

has the root x = 0 and two other roots x∗ and −x∗, where x∗ ∈ (0,1).

For any ℓ= 0,1, ..., L and any m → ∞, we introduce parameter cℓ = c(ℓ+1)/2. We then

derive probabilities Pℓ using recursion Pℓ+1 = (1−Pℓ)Sℓ+PℓTℓ, where

Sℓ = (2π)−1/2
∫

∞

−∞

Q(cℓt)e−(t−cℓ)2/2dt (2.24)

Tℓ = (2π)−1/2
∫

∞

−∞

Q(cℓt)e−(t+cℓ)2/2dt (2.25)

and P0 = Q(
√

c). For any ℓ, probabilities Pℓ depend on c only. Pℓ is representative of having a

negative average for log-likelihood ratio random variables given the all-one codeword was sent

at iteration ℓ. We will also show that quantities Pℓ converge exponentially fast as ℓ→ ∞. Let

P∞ = limℓ→∞ Pℓ. We can now establish the asymptotic value of BER as m → ∞.
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Theorem 4 Let codes Cm be used on an AWGN channel with an SNR c/4 per information bit.

For m → ∞ and c ≤ 1, algorithm Ψso f t has BER Pso f t(c)→ 1/2. For c > 1,

Pso f t(c)∼ (1−P∞)Q(
√

x∗c)+P∞(1−Q(
√

x∗c)) (2.26)

In Figure 2.6 of this section, we will plot analytical bound (2.26) along with simulation

results and the lower bound (2.13) of ML decoding. We will see that all three bounds of Figure

2.6 give very tight approximations.

We begin the proof of Theorem 4 with Lemma 5. Here we analyze the sums of r.v. z j

that have asymptotic pdf N (δ ,δ ) with a small bias δ → 0.

Lemma 5 Consider m independent r.v. z1, ...,zm with pdf N (δ ,δ ), where δ ∼ c/m. Let Z =

∑ j z j and Y = ∑ j z2
i. j. Then for m → ∞,

E (Z |Y )∼ E (Z)∼ c (2.27)

Proof. Consider r.v. ε j = z j − δ that has pdf N (0,δ ). Let R = ∑ j ε2
j . This r.v. has ℵ2

distribution that tends to N (c,2δc) as m → ∞. Next, note that r.v. z2
j and ε2

j are equivalent with

high probability. Indeed,

z2
j = ε

2
j +2δε j +δ

2 ∼ ε
2
j (2.28)

Here with high probability we have two events. First, ε2
j ≥

√
δ/ lnm, whereas the terms

∣∣δε j
∣∣ and

δ 2 are bounded from above by δ 3/2 lnm = o
(√

δ/ lnm
)
. Thus, z2

j ∼ ε2
j and Y ∼ R as m → ∞.

In turn, this implies that r.v. Yi has asymptotic pdf N (c,2δc).

To prove (2.27), we now may consider unbiased r.v. ε j and prove asymptotic equality

E
(
∑ j ε j |R

)
∼ E

(
∑ j ε j

)
= 0 (2.29)
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Consider any subset S of 2m unbiased vectors (±ε1, ...,±εm) that give the same sum R = ∑ j ε2
j .

Then asymptotic equality (2.29) holds for each subset S , which proves Lemma 5. ■

To prove Theorem 4, we will first study r.v. ui |ℓ and their average power moments

xℓ = E ∑i

(
ui |ℓ/m

)
(2.30)

σ
2
ℓ = E ∑i

(
u2

i |ℓ/m
)

(2.31)

Then r.v. uℓ = ∑i ui |ℓ/m has power moments xℓ and σ2
ℓ /m (here we assume that r.v. ui |ℓ are

weakly dependent).

In the following statements (Lemmas 6-8 and Theorem 4), we will show that r.v. uℓ

undergo two different processes as ℓ→ ∞. In the initial iterations ℓ= 1, ..., r.v. uℓ take vanishing

values with high probability as m → ∞. In these iterations, they also may take multiple random

walks across the origin. For c < 1 and ℓ→ ∞, r.v. uℓ converge to 0. By contrast, for c > 1, r.v. uℓ

gradually move away from the origin in opposite directions, albeit with different probabilities.

In the process, r.v. uℓ cross 0 with the rapidly declining probabilities as ℓ→ ∞. They approach

two end points, x∗ and −x∗ with probabilities 1−P∞ and P∞, respectively, and converge to these

points after ℓ≳ lnm/ lnc iterations. At this point, any r.v. ui |ℓ (that represents a specific bit i)

has BER of Q
(√

x∗c
)

and 1−Q
(√

x∗c
)
. This constitutes bound (2.26).

We first derive how quantities xℓ and σ2
ℓ change in consecutive iterations. Let σ > 0

and −σ ≤ x ≤ σ . Below we use two functions Fc(x,σ) and Gc(x,σ) that are related to E(ui|ℓ+1)

and E(u2
i|ℓ+1)

Fc(x,σ) = (2π)−1/2
∫

∞

−∞

tanh
(
σt

√
c
)

e−(t−x
√

c/σ)2/2dt (2.32)

Gc(x,σ) = (2π)−1/2
∫

∞

−∞

tanh2 (
σt

√
c
)

e−(t−x
√

c/σ)2/2dt (2.33)
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Lemma 6 Let r.v. ui |ℓ, i = 1, ..,m, have average power moments xℓ and σ2
ℓ of (2.30) and (2.31).

Then any r.v. ui |ℓ+1 has conditional power moments

E (xℓ+1 |xℓ,σℓ) = Fc (xℓ,σℓ) (2.34)

E
(
σ

2
ℓ+1 |xℓ,σℓ

)
= Gc (xℓ,σℓ) (2.35)

Proof. Below we consider r.v. zi, j, Zi = ∑ j zi, j and Yi = ∑ j z2
i, j. The proof of Lemma 5 shows

that these r.v. have pdfs N (δ ,δ ), N (c,c), and N (c,2δc), respectively. For m → ∞, we

will use three restrictions, all of which hold with high probability. Firstly,
∣∣zi, j
∣∣ ≤ ∆, where

∆ = 2
√

δ lnm → 0. Indeed,

Pr
{∣∣zi, j

∣∣> ∆
}
≤ 2Q(2lnm−

√
δ ) = m−2lnm+o(1) (2.36)

Also,

c−
√

c lnm ≤ Zi ≤ c+
√

c lnm (2.37)

Yi ∈ (c−∆1,c+∆1), ∆1 = m−1c lnm (2.38)

Since zi, j → 0 for all i, j, algorithm Ψso f t can use the following approximations

ui |ℓ+1( j) = ui, ju j |ℓ ∼ zi, ju j |ℓ (2.39)

hi |ℓ+1( j) = 2tanh−1 [zi, ju j |ℓ
]
∼ 2zi, ju j |ℓ (2.40)

Here we assume that r.v. zi, j and u j |ℓ are “weakly dependent”. Indeed, any estimate of u j |ℓ

includes m−1 terms and only one term includes r.v. zi, j. We then fix the sums Zi = ∑ j zi, j and
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consider conditional r.v. zi, ju j |ℓ |Zi. Given restrictions (2.37) and (2.38) we obtain the moments

E
(
zi, ju j |ℓ|Zi

)
= E (zi, j)E(u j |ℓ) = xℓZi/m (2.41)

D
(
zi, ju j |ℓ |Zi

)
= E(z2

i, j |Zi)E(u2
j |ℓ)− (xℓZi/m)2 ∼ δσ

2
ℓ (2.42)

and similarly to the proof of Lemma 5, we consider r.v. z2
i, j and the sums Zi to be independent.

We also remove the term (xℓZi/m)2 in (2.42). Indeed, this term is immaterial since x2
ℓ ≤

σ2
ℓ and (Zi/m)2 ≲ cm−2 lnm = o(δ ) , according to (2.37). In essence, here r.v. zi, ju j |ℓ have

negligible means, which yield similar values of conditional variances D
(
zi, ju j |ℓ |Zi

)
and the

second moments E
(
zi, ju j |ℓ |Zi

)2.

We can now proceed with r.v. hi |ℓ+1 = 2∑ j zi, ju j |ℓ that sums up independent r.v.

zi, ju j |ℓ derived in Step B of Ψso f t . Here we obtain

E
(
hi |ℓ+1|Zi

)
= mE

(
zi, ju j |ℓ |Zi

)
∼ 2xℓZi (2.43)

D
(
hi |ℓ+1|Zi

)
= mD

(
zi, ju j |ℓ |Zi

)
∼ 4cσ

2
ℓ (2.44)

We can now proceed with the r.v. ui |ℓ+1 ∼ tanh(hi |ℓ+1/2) used in Step C of Ψso f t . For a given Zi,

r.v. hi |ℓ+1 has Gaussian pdf N (2xℓZi,4cσ2
ℓ ). By using the variables z ≡ xℓZi and t = z/σℓ

√
c,

we obtain (2.34):

E
(
ui |ℓ+1

)
∼
(
2πσ

2
ℓ c
)−1/2

∫
∞

−∞

tanh(z)e−(z−xℓc)
2/2cσ2

ℓ dz

= (2π)−1/2
∫

∞

−∞

tanh(σℓt
√

c)e−(t−xℓ
√

c/σℓ)
2
/2dt = Fc(xℓ,σℓ) (2.45)

Similarly, we obtain (2.35):

E
(

u2
i |ℓ+1

)
∼ Gc(xℓ,σℓ) (2.46)
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which completes the proof. ■

Recall that the original r.v. ui |0 have equal power moments x0 = σ2
0 of (2.6). The

following lemma shows that nonlinear transformations (2.45) and (2.46) preserve this equality. It

is for this reason that we rescaled the original r.v. yi, j into zi, j to achieve equality (2.6).

Consider function Fc(x,σ) of (2.32) for |x|= σ2. For any c, this gives the function

Rc(x) = (2π)−1/2
∫

∞

−∞

tanh(t
√

|x|c)e−
(

t−
√

|x|c
)2

/2dt (2.47)

Lemma 7 For any two quantities x,σ such that |x|= σ2 and any c > 0, functions Fc(x,σ) and

Gc(x,σ) satisfy relation

Fc(x,σ) = Gc(x,σ) = Rc(x), if x ≥ 0

Fc(x,σ) =−Gc(x,σ) =−Rc(x), if x < 0

(2.48)

Proof. Let x = σ2 and r = t
√

xc. Then e−(t−
√

xc)2
/2 = ere−t2/2e−xc/2. Consider the function

f (r) = er (tanh(r)− tanh2(r)
)
=

er − e−r

1+ e2r + e−2r

Clearly, f (r) is an odd function of r. Then

Fc(x,σ)−Gc(x,σ) = (2πxc)−1/2 e−xc/2
∫

∞

−∞

f (r)e−r2/2xcdr = 0

The case of x < 0 is similar. Note that Fc(x,σ) is an odd function and Gc(x,σ) is an even function.

Then we proceed as above. ■

Lemma 8 For c ≤ 1, equation (2.23) has a single solution x = 0. For c > 1, equation (2.23) has

three solutions: x = 0, x∗ ∈ (0,1) and −x∗.
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Proof. Let x > 0. Integration in (2.47) includes the pdf of N (
√

xc,1), which gives negligible

contribution beyond an interval t ∈ (−x−1/4,x−1/4). For x → 0, we can now limit 2.47) to this

interval. In this case, t
√

xc → 0 for any c and tanh(t
√

xc)∼ t
√

xc. Then

Rc(x)∼ (2π)−1/2
∫

∞

−∞

t
√

xce−(t−
√

xc)2
/2dt = xc (2.49)

Thus, inequality Rc(x)> x holds for sufficiently small x iff c> 1. On the other hand, tanh(t
√

xc)<

1 and therefore Rc(x)< 1 for any x. Now we see that functions y = Rc(x) and y = x intersect at

some point x∗ ∈ (0,1) for any c > 1. Finally, it can be verified that Rc(x) has a declining positive

derivative R′
c(x), unlike the constant derivative 1 of the function y = x. Therefore, equation (2.23)

has a single positive solution x∗. ■

In Figure 2.5, function y = Rc(x) is shown for different values of x ∈ [0,1] and SNR =

10log10(c/4). The cross-point of functions y = Rc(x) and y = x represents the root x∗. Here the

threshold c = 1 corresponds to SNR =−6 dB. Summarizing Lemmas 6-8, we have corollary 9.
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Figure 2.5: Functions y = Rc(x) and y = x for different values of SNR = 10log10 (c/4) .
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Corollary 9 Let m → ∞. Then r.v. ui |ℓ, i = 1, ..,m, have power moments xℓ and σ2
ℓ that satisfy

equality |xℓ|= σ2
ℓ for any iteration ℓ. Iteration ℓ transforms xℓ and σ2

ℓ into

|xℓ+1|= σ
2
ℓ+1 = Rc(xℓ) (2.50)

Proof of Theorem 4.

1. Lemma 8 shows that for c > 1, function Rc(xℓ) grows for positive xℓ. Thus, equality

Rc(xℓ) = xℓ holds iff xℓ = x∗, where x∗ the root of (2.23). Next, consider initial iterations

ℓ = 0, ... Here r.v. u0 has pdf N (δ ,δ/m) and (with high probability) has vanishing values

|u0| ≤
√

δ/m lnm. In further iterations ℓ, transform (2.49) performs simple scaling xℓ+1 ∼ cxℓ as

long as xℓ → 0 for m → ∞. Thus, algorithm Ψso f t fails for c < 1 since xℓ → 0 in this case.

2. Now let c > 1 and L = lnm/ lnc. Note that u0 < 0 with probability Q(
√

δm) ∼

Q(
√

c). For iterations ℓ= o(L) and m → ∞, we still obtain vanishing moments |E(uℓ)|≲ cℓδ → 0

.It can also be verified that E(uℓ) moves away from 0 in µ = αL iterations for some α > 0.. Note

also that r.v. uℓ has variance D(uℓ)≤D(ui |ℓ)/m ≤ 1/m. Thus, both cases, uℓ → x∗ or uℓ →−x∗,

hold with high probability as ℓ→ ∞.

3. We can now derive the BER for both cases. From (2.43) and (2.42), we see that the

Gaussian random variable hi |ℓ+1 has the moments

E
(
hi |ℓ+1

)
∼ 2xℓE (Zi) = 2xℓc, D

(
hi |ℓ+1

)
∼ 4cσ

2
ℓ

For any iteration ℓ, we can now estimate BER pi |ℓ+1 = Pr{hi |ℓ+1 < 0} as

pi |ℓ+1 = Q
(
xℓc/σℓ

√
c
)
=


Q
(√

xℓc
)
, if xℓ > 0

1−Q(
√
−xℓc) , if xℓ < 0

(2.51)
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4. Consider the probabilities Pℓ = Pr{xℓ < 0} and 1−Pℓ = Pr{xℓ > 0} , which define

conditions of (2.51). We will now use two partial distributions of r.v. uℓ that have opposite means

±bℓ, where bℓ = |xℓ|. According to (2.50), r.v. ui |ℓ have the second moment E(u2
i |ℓ) = bℓ. Then

r.v. uℓ = ∑i
(
ui |ℓ/m

)
has the pdf N (±bℓ,ηℓ) with the variance

ηℓ =
(
bℓ− x2

ℓ

)
/m = bℓ(1−bℓ)/m

Note that bℓ → x∗ for ℓ > L, whereas ηℓ → 0 as ℓ,m → ∞. Thus, r.v. uℓ cross 0 with a vanishing

probability for any iteration ℓ > L. On the other hand, r.v. uℓ may cross 0 multiple times if

ℓ= o(L). From now on, we take ℓ= o(L). Then we will express Pℓ+1 via Pℓ using the mean

bℓ = cℓδ

5. Consider both distributions N (xℓ,ηℓ), where xℓ =±bℓ =±cℓδ . Given some value

u of r.v. uℓ, define r.v. uℓ+1 |u = m−1
∑i
(
ui |ℓ+1 |u

)
. This r.v. has pdf

p(u) = N (cu,cηℓ) = (2πηℓ)
−1/2e−(u−xℓ)2m/2ηℓ

First, let E(uℓ) = bℓ. Clearly Pr{cu < 0}= Q(u
√

c/ηℓ). Then we average over all values u of

uℓ and obtain the probability

Sℓ = Pr{uℓ+1 < 0 |E(uℓ) = bℓ}=
∫

∞

−∞

Q(u
√

c/ηℓ)p(u)du

∼ (2π)−1/2
∫

∞

−∞

Q(t
√

c)e−(t−bℓ/
√

ηℓ)
2/2dt

Here we use variable t = u/
√

ηℓ. Next, we consider the initial iterations ℓ = o(lnm/ lnc) and
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introduce parameter

Cℓ = bℓ/
√

ηℓ ∼
√

cℓ+1/(1−m−1cℓ+1)∼ c(ℓ+1)/2 (2.52)

Note that bℓ/
√

ηℓ = Cℓ ∼ cℓ, which gives (2.24). Similarly, for E(uℓ) = −bℓ, we obtain the

probability

Qℓ = Pr{uℓ+1 < 0 |E(uℓ) =−bℓ}=
∫

∞

−∞

Q(u/
√

c/ηℓ)p(−u)du

For ℓ < L = lnm/ lnc, this gives the probability

Pℓ+1 = Pr{uℓ+1 < 0}= (1−Pℓ)Sℓ+PℓQℓ = Sℓ+PℓTℓ (2.53)

where Tℓ = Qℓ−Sℓ is given by (2.25). We can also slightly tighten estimates (2.24) and (2.25),

by using quantity Cℓ of (2.52) instead of cℓ.

We can now proceed with iterations Pℓ, which begin with P0 = Q(
√

c). For any ℓ,

quantities Sℓ and Tℓ depend on c only. Also, quantities cℓ = c(ℓ+1)/2 grow exponentially, in which

case Sℓ → 0 and Qℓ → 1. Thus, quantities Pℓ converge, since Pℓ+1 ∼ PℓQℓ for sufficiently large

ℓ≥ L.

We can now evaluate Pso f t . For ℓ→ ∞, we replace Pℓ with P∞ in (2.53) and use x∗ of

(2.23). Finally, note that (2.26) is only an asymptotic estimate. Here we excluded the residual

term O(lnm/
√

m) used in approximations (2.36) and (2.38). ■

High-signal case. Consider functions Sℓ and Tℓ of (2.24) and (2.25) as c → ∞. Then

Sℓ → 0, Tℓ → 1, and P∞ → P0 = Q(
√

c) . In this case, Pso f t ∼ 2Q(
√

c) ∼ (2/πc)1/2e−c/2. The

latter represents a 3 dB gain over the uncoded modulation, whose BER has the order of e−c/4.

Complexity. Given m information bits, algorithm Ψso f t has complexity of order
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Figure 2.6: Simulation results and analytical bounds for the algorithm Ψso f t applied to
modulation-type codes C128 of length 8256.

m2 logm. Indeed, each iteration ℓ recalculates quantities ui |ℓ( j) and hi |ℓ( j) for all ordered

pairs (i, j). This requires O(m2) operations. We also need O(logm/ logc) iterations ℓ to make

the estimates ui |ℓ bounded away from 0 as m → ∞. Also, it can be shown that the stable point x∗

can be reached within a margin ε → 0 in O
(
lnε−1 / lnc

)
iterations. For ε = m−1, this gives the

overall complexity of m2 lnm/ lnc operations.

2.6 BER bounds on binary symmetric channels

In this section, we use all the techniques introduced in Chapters 2.4 and 2.5 to come

up with theoretical bounds of BER for ML algorithm and BP algorithm on the BSC. In order not

to repeat the entire section, we try to reuse as many of those theorems as possible to explain the

proofs on the BSC.
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2.6.1 Lower bounds for BER of ML algorithm on BSC

Theorem 10 Let codes Cm be used on a BSC with an SNR of s where cb = 8s/π per information

bit. Then for m → ∞, ML decoding of codes Cm has BER

pML(s)≳ 2Pcb(1−Pcb) = 2Q(
√

cb)−2Q2 (
√

cb) (2.54)

Proof. This theorem follows the proof of theorem 2.13 closely. We assume that the all-one

codeword 1n is sent and then we define r.v. Bi as follows.

B0 = ∑ j ̸=0,1 b0, j, B1 = ∑ j ̸=0,1 b1, j

Below we use the assumption that m → ∞. It is easy to verify that r.v. B0, and B1 have asymptotic

pdf N (
√

mcb,m).

Code words of minimum weight in Cm include m generator rows g(p), p = 1, ...,m, of

the generator matrix Gm and their sum g(0) = g(1)+ ...+g(m). Under ML decoding, any two-word

code {1n, g(p)}, has BER

Pcb = Pr{Y1 < 0} ∼ Q(
√

cb) (2.55)

Without loss of generality, we consider BER of symbol a0,1. In essence, we use the same proof

as theorem 2.13 to show that ML decoding gives a0,1 =−1 if so does one of the codes {1n, g(p)}

for p = 0,1. All received vectors b form four disjoint subsets U =V1,V2,V3,V4, where

V1 = {z |B0 < 0, B1 > 0}, V2 = {z |B0 > 0, B1 < 0} (2.56)

V3 = {z |B0 > 0, B1 > 0}, V4 = {z |B0 < 0, B1 < 0} (2.57)

Clearly, Pr{V1}= Pr{V2}= Pcb(1−Pcb). We use the same technique used in theorem 2.13 and
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show that pML(s)≳ Pr{V1}+Pr{V2}.

2.6.2 Probabilistic bounds of BP algorithm on BSC

Now, in order to show BER of BP algorithm we first show the probability of high

weight errors with P∞ and then show BER of those cases by calculating the correct x∗. For any

ℓ= 0,1, ..., L and any m → ∞, we introduce parameter cℓ = c(ℓ+1)/2
b . We then derive probabilities

Pℓ using recursion Pℓ+1 = (1−Pℓ)Sℓ+PℓTℓ, where

Sℓ = (2π)−1/2
∫

∞

−∞

Q(cℓt)e−(t−cℓ)2/2dt (2.58)

Tℓ = (2π)−1/2
∫

∞

−∞

Q(cℓt)
(

e−(t+cℓ)2/2
)

dt (2.59)

and P0 =Q(
√

cb). For any ℓ, probabilities Pℓ depend on cb only. Pℓ is representative of high weight

errors after ℓ iteration. Quantities Pℓ converge exponentially fast as ℓ→ ∞. Let P∞ = limℓ→∞ Pℓ.

We can now establish the asymptotic value of BER as m → ∞.

Theorem 11 Let codes Cm be used on a BSC channel with an SNR s per information bit and

cb = 8s/π . For m → ∞ and cb ≤ 1, algorithm ΨBSC has BER PBSC(s)→ 1/2. For cb > 1,

PBSC(s)∼ (1−P∞)Q(
√

x∗cb)+P∞(1−Q(
√

x∗cb)) (2.60)

where P∞ can be calculated using equations (2.58), (2.59) and x∗ is the positive answer to the

equation x = Rcb(x) where Rcb(x) is (2.61) .

Rcb(x) =
1√
2π

∫
∞

−∞

tanh(t
√

xcb)e−(t−√
xcb)

2
/2dt (2.61)

We begin the proof of this theorem by introducing to two random variable hi|ℓ and ui|ℓ
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where hi|ℓ is half of the log likelihood of information bit i at iteration ℓ and ui|ℓ is the probability

offset of that information at iteration ℓ. Here we assume the all-one 1n codeword is sent (without

loss of generality we can later claim that BER of this one information bit is the same as all

other information bits). It is important to mention that hi|1 is a Gaussian random variable with

distribution N (cbu2
0,cbu2

0) where u0 =
√

cb/m is the probability offset of BSC.

ui|ℓ = tanh(hi|ℓ) (2.62)

hi|ℓ+1 = ∑
k

tanh−1(uk|ℓbi,ku0) (2.63)

Lemma 12 Let us consider a r.v. V with a Gaussian distribution N (a,a) where a → 0. We can

claim that tanh(v) = v.

Proof. We know that limx→0 tanh(x) = x and we can say that Pr[|v−a|< c
√

a]→ 1 where c is

any desired large constant, so we can say tanh(v) = v.

Theorem 13 If cℓbu2
0 ≪ 1 and hi|ℓ has a Gaussian distribution N (cℓbu2

0,c
ℓ
bu2

0) we can say that

hi|ℓ+1 will have a Gaussian distribution N (cℓ+1
b u2

0,c
ℓ+1
b u2

0).

Proof. We use lemma (12) and weak dependence of these random variables to show that hi|ℓ+1

will have a Gaussian distribution N (cℓ+1
b u2

0,c
ℓ+1
b u2

0).

Theorem 14 If E(ui|ℓ) = a and E(u2
iℓ) = a then hi|ℓ+1 has a Gaussian distribution N (cba,cba).

Proof. We use weak dependence of uiℓ and show

E(hi|ℓ+1) = mu2
0E(uiℓ) = cba (2.64)

E(h2
ℓ+1) = u2

0(mE(u2
iℓ)+m2uE

0 (ui|ℓ)
2) = cba+(cba)2 (2.65)
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Theorem 15 If hi|ℓ has a Gaussian distribution N (x,x) then E(ui) = µx and E(u2
iℓ) = σ2

x where

µx and σx can be calculated using equations (2.66) and (2.67)

µx = (2xπ)−1/2
∫

∞

−∞

tanh(t)e−((t−x)2/2x)dt (2.66)

σ
2
x = (2xπ)−1/2

∫
∞

−∞

tanh2(t)e−((t−x)2/2x)dt (2.67)

Note. By using lemma 7 we can show that |µx|= σ2
x .

Now we can put together the proof of theorem (11) by stating that if E(ui|ℓ) = E(ui|ℓ+1)

and E(u2
iℓ) = E(u2

iℓ+1) the point x∗ will satisfy equation (2.61) and BER of ΨBSC is going to be

PBSC(s). It is interesting to point out that in Figure 2.7 for SNR <−4.07 dB our x∗ = 0. In Figure

2.8 we can see that simulation result and theoretical bound PBSC are virtually identical to each

other.
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Figure 2.7: Functions y = Rcb(x) and y = x for different values of SNR
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Figure 2.8: BER of BP algorithm on BSC for codes Cm for m = 128

2.7 Design improvements and simulation results

In Figure 2.6, we plot analytical bound Pso f t of (2.26) along with simulation results

Psim and the lower bound PML of (2.13). Here we consider codes Cm of dimension m = 128 on

the AWGN channels with various SNRs 10log10(c/4). We see that both bounds (2.26) and (2.13)

tightly follow simulation results and each other. This also supports our main assumption that the

algorithm Ψso f t can be considered using independent random variables. For completeness, we

also plot non-asymptotic bound Pf inite length obtained by using parameters Cℓ of (2.52) in both

formulas (2.24) and (2.25). Unexpectedly, this bound completely coincides with a much simpler

lower bound PML for high SNR.

Simulation results of the BP algorithm Ψso f t for different values of m are presented

in Figure 2.9. These results show that for different values of m BER of these codes are similar

and the assumption m → ∞ can be relaxed to m being a large number and still the theoretical

probabilistic bound (2.26) can describe BER of these Codes. It is also important to note that they
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Figure 2.9: BER of BP algorithm Ψso f t for codes Cm

improve on uncoded modulation for SNRs above 0 dB.

To improve performance of Ψso f t , recall from (2.13) that ML decoding error pML ∼

2Q(
√

c)(1−Q(
√

c)) of any symbol a0,i is defined by the two codewords of minimum weight,

g(i) and g(0) = g(1)+ ...+g(m). The latter also affects all m bits a0,i, unlike g(i). We now repeat s

times the information block Im of code Cm using generator matrix Gm,s = [Im|...|Im|Jm]. This will

also increase s times the weight of g(0). Then we obtain code Cm,s with parameters

nm,s = m(m+2s−1)/2, k = m, dm,s = m+ s−1

Decoding of code Cm,s is almost identical to the algorithm Ψso f t . The only difference arises in

calculating the quantities hℓ0,i in (4.6). With a new matrix Gm,s, we now have s copies a(1)0,i ,...,a(s)0,i

of any symbol a0,i and can use s estimates of these symbols instead of a single estimate in (4.6):

hℓ0,i := h(1)0,i + ...h(s)0,i +Sℓ0,i
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For s > 1, code Cm,s has a lower code rate Rm,s = 2(m+2s−1)−1.

Given SNR c for a former code Am,1, we now obtain a lower SNR cRm,s/Rm,1. Accord-

ing to (2.12), then decoding into any vector g(i) of minimum weight d has probability Q(
√

cη1),

where η1 = (m+ s−1)/(m+2s−1)< 1. On the other hand, decoding into the vector g(0) of

weight sm has a much lower BER of Q(
√

cη0), where η0 = sm(m+2s−1)−1. In other words

by repeating information bits a number of times we can reduce the probability of P∞ in formula

(2.26) considerably.
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Figure 2.10: BER of BP algorithm Ψso f t for codes Cm,s

For s > 2 and m → ∞, we have η0 ∼ s and η1 → 1. It is important to mention that for

any large constant s > 2 we can say that Q(
√

cx∗η1)≫ Q(
√

cη0).

Corollary 16 For m → ∞ and a large constant s code Cm,s has output BER where x∗ can be

calculated using the same recursive equations used to calculate (2.26)

pm,s(c)∼ Q(
√

cx∗η1)+Q(
√

cη0) (2.68)
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Figure 2.11: BER of algorithm Ψso f t for codes Cm,s with optimal parameter s.

Figures 2.10 and 2.11 we show BER achieved by codes Cm,s on AWGN Channel. In

Figure 2.12 we show BER of BSC for m = 128 and s = {1, . . . ,6} and in Figure 2.10, we have

BER of AWGN channel for the case of s = 2,3,4 depending on m but keep the same s for all

SNRs. Figure 2.11 presents the output BER when parameter s is also optimized depending on a

given SNR. As SNR grows, parameter s declines and reaches s = 1 for c ≥ 3. By contrast, codes

Cm,s outperform codes Cm,1 at the lower SNRs. Codes Cm,s also outperform uncoded modulation

at SNR ≥−3 dB and gain about 1.4 dB at the channel capacity SNR =−1.59 dB and about 2

dB at SNR = 0.

Finally, we combine modulation codes Cm,s and results of BP algorithm Ψso f t with

some polar code of length m, which is formed by m information bits a0,i, described in Figure

(2.13). In decoding, the algorithm Ψso f t outputs bits a0,i and passes them to a SCL decoder of

the polar code that selects the optimal frozen bits [67, 68].

Note that adding a polar code of some rate R < 1 reduces the overall SNR by a factor R.

To compare code performance at the given SNR, we will adjust the SNR and use BP algorithm
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Figure 2.12: BER of BP algorithm ΨBSC for codes Cm,s where m = 128 and s = {1 . . .6}

Ψso f t at the lower SNR. For each bit a0,i, we then consider its output as a soft-decision AWGN

channel and calculate the channel capacity. This way we can calculate the optimal precoding rate

that allows the minimum SNR per information bit.

Data
Source

Polar
Encoder

LDPC
Encoder

+ei ∼ N (0, σ2)

LDPC
Decoder

Polar SCL
Decoder

List
Decoder

Data
User

b ∈ {0,1}k a ∈ {0,1}m

c ∈C ⊆ {1,−1}n

y = c+ e,y ∈ Rn

â ∈ {0,1}mb̂ ∈ {0,1}kb̂ ∈ {0,1}k

Figure 2.13: Polar-LDPC code design

For the non-asymptotic setting with parameters m = 128,256, and precoding rate,

R = 0.64 the results of this optimization are shown in Figure 2.14. Here we use SCL decoding

with the list size L = 32 and after SCL we select the best candidate over the entire block size.
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For m = 128, we reduce the output WER of [49] by a factor of 3 and also double the code rate.

Selecting the best codeword over the entire block size will reduce the WER for non-asymptotic

cases.
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Figure 2.14: Block error rate of codes Cm,s using BP decoding and polar-based precoding for
m = 128,256

2.8 Concluding remarks

In first part of this chapter, we introduced “modulation ” binary codes Cm and we

discussed their code properties, encoding and decoding algorithms. Then we described belief

propagation (BP) decoding on BSC and AWGN channel and proved BER bounds for the max-

imum likelihood and belief propagation algorithms for BSC and AWGN channels. Then we

showed that simulation results and theoretical boundaries are very close on both channels. Then

we introduce a very easy approach to reduce BER of AWGN channel by repeating information

bits s times and called theses codes Cm,s. We showed that encoding and decoding of these codes

are very similar to Cm but they have the ability of outperforming uncoded modulation for any
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channel SNR above −3 dB on AWGN channel for moderate lengths and for asymptotic condi-

tions, m → ∞, they can outperform uncoded modulation for any SNR >−3.7 dB per information

bit. They also gain about 3 dB on UM for the AWGN channels with a higher SNR.

This ability of outperforming uncoded modulation for SNRs smaller than −1.59 dB

allows us to use this design as an inner code for a two stage polar-LDPC code. In turn, codes

Cm,s - combined with polar codes - improve code performance on the high noise AWGN channels

with a vanishing channel snr as m → ∞. It can be proven that these modified codes can achieve

exponentially declining BER for any SNR >−1.0 dB. The main advantage of theses codes is

their latency which is of order O(
√

n).
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Chapter 3

Codes approaching the Shannon limit

with polynomial complexity per

information bit

3.1 Introduction

In this chapter, we present a multilevel protection scheme, described in Figure 3.1, that

uses b different polar codes in parallel as the precoding for the low rate LDPC code. We then

present tight bounds for BER of LDPC codes with frozen information bits and show that these

bounds closely follow simulation results. Using these accurate bounds we then numerically show

this design has the ability of achieving the Shannon limit of −1.5917 dB per information bits. It

is also important to mention that this capacity achieving design achieves the channel capacity

with a latency of order
√

n if all operations of LDPC code decoding is done in parallel. The main

claim of this chapter is mentioned in Statement 1 as follows.

Statement 1 There exist codes Ĉm of dimension k → ∞ and length O(k2) that have complexity of
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order O(k2 logk) and upper-bound BER to the order of exp{−cSNR
√

k}, where cSNR > 0 depends

on SNR and is positive for any SNR above the Shannon limit of ln2.

Statement 1 is predicated on our ”weak-independence” assumption discussed in section 2.5.

From a practical point of view, this design heavily relies on the capacity achieving property of the

small polar precoding blocks and this may result in really large block sizes for practical purposes.

3.2 Multilevel protection schemes

Let Bi = Bi(µ,µri) be a sequence of b capacity-achieving polar codes with rates

0 ≤ r0 < ... < rb−1, that will be specified later. We first encode data block ai of length µri into

some vector Ai ∈ Bi and then form a compound block A = (A0, ...,Ab−1) of length m = µb. Below

µ → ∞ and b is a constant. Block A is further encoded by code Cm of rate Rm = 2/(m+1) and

length n =
(m+1

2

)
. We use notation Ĉm for the compound code of rate R ∼ Rmr, where r = ∑i ri/b.

Thus, code Ĉm reduces code rate Rm by a factor of r, which gives SNR of c/4r per information

bit.

Let Is = {µs+ 1, ...,µ(s+ 1)} for any s = 0, ...,b− 1. The received block Ĉ = Ĉ(0)

of length n is first decoded by the algorithm Ψso f t using L = O(lnm) iterations. The result is

some block Â(0) of length m. We then retrieve the first µ decoded bits in Â(0) that form the

sub-block Â0 =
(
â1, ..., âµ

)
of length µ. Block Â0 is decoded by a polar code B0 into some block

A0 = {a1, ..., aµ}. We assume that the corrected block A0 has WER → 0 as µ → ∞. We then use

A0 to replace the first µ symbols of the block Ĉ(0). The result is a new block Ĉ(1) of length n.

This completes round s = 0.

Round s = 1 is similar. Algorithm Ψso f t now also employs block A0 to recalculate

the remaining m−µ information bits of Ĉ(1). The obtained sub-block Â1 =
(
âµ+1, ..., â2µ

)
is

decoded into some vector A1 = {aµ+1, ..., a2µ} using code B1. Then A1 replaces Â1 in positions
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i ∈ I1 and yields a new block Ĉ(2). Similarly, rounds s = 2, ...,b−1 only retrieve a block As on

positions i ∈ Is Then we obtain block Ĉ(s+1) that include corrected bits a1, ..., a(s+1)µ .

In any round s, µs corrected information bits serve as frozen bits and aid the algorithm

Ψso f t . Indeed, with high probability, we use correct estimates u j |ℓ = a j for all j ≤ µs. Then the

parity checks ui |ℓ+1( j) = ui, ju j |ℓ are reduced to the repetitions/inversions ui |ℓ+1( j) = a jui, j of

symbols ui, j. Also, recall that algorithm (4.7) outputs the likelihoods hi |L of all symbols ai. Thus,

we use hi |L as our bit estimates in every round s as follows.

For all i ∈ {µs+1, ...,m} and j ∈ {1, ...,m} :

A. Use block Ĉ(s). Derive ui |ℓ+1( j) = ui, ju j |ℓ

and hi |ℓ+1( j) = 2tanh−1(ui, ju j |ℓ)

B. Derive hi |ℓ+1 = ∑ j hi |ℓ+1( j)

C. If ℓ < L, find ui |ℓ+1 = tanh
(
hi |ℓ+1/2

)
.

Goto A with ui |ℓ+1 and ℓ := ℓ+1.

D. If ℓ= L, use block Âs = (hi |L, i ∈ Is).

Decode it into As ∈ Bs(µ,µrs).

E. Replace Âs with As to form Ĉ(s+1).

If s < b−1, let s := s+1, ℓ := 0. Goto A.

If s = b−1, output bits a1, ...,am.

Let an information block A consist of m zeros. We then use antipodal signaling and transmit a

codeword 1n over an AWGN channel. Round s includes µs correct information bits ui |ℓ = ai = 1.
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Figure 3.1: Multi level protection design on AWGN Channel

Let λs = s/b. Then the remaining m−µs r.v. ui |ℓ, i > µs, have the average power moments

xℓ = [m(1−λs)]
−1

∑i>µs Eui |ℓ (3.1)

σ
2
ℓ = [m(1−λs)]

−1
∑i>µs E

(
u2

i |ℓ

)
(3.2)

In particular, the initial setup with ℓ= 0 employs the original r.v. ui |0 that have asymptotic pdf

N (δ ,δ ) for all i > µs and satisfy equalities x0 = σ2
0 = δ .

Theorem 17 Let the algorithm Ψso f t have λm correct information symbols a1 = ...= aλm = 1,

where λ ∈ (0,1). Then the remaining (1−λ )m symbols ai have BER

Pso f t(λ ,c)∼ Q
(√

cX(λ )
)

(3.3)
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where X(λ ) satisfies equations

X(λ ) = λ +(1−λ )x(λ ) (3.4)

x(λ ) = (2π)−1/2
∫

∞

−∞

tanh
(

t
√

cX(λ )
)

e−
(

t−
√

cX(λ )
)2

/2dt (3.5)

Proof. In essence, we follow the proof of Theorem 4. The main difference - that simplifies the

current proof - is that the former vanishing point x0 = δ → 0 is now replaced with X0 → λ . This

removes the random walks across 0 analyzed in parts 4 and 5 of the former proof. Thus, now we

have the case of P∞ = 0. The details are as follows.

For any j ≥ µs+ 1, we use approximations (2.39) and (2.40) and take u j |ℓ = 1 for

j ≤ µs. Then

hi |ℓ+1( j)∼ 2ui |ℓ+1( j)∼


zi, ju j |ℓ, if j ≥ µs+1

zi, j, if j ≤ µs

For any given Zi, consider the sums Z′
i = ∑ j≤µs zi, j and Z′′

i = ∑ j≥µs+1 zi, j. These sums have

expected values E(Z′
i) = λZi and E(Z′′

i ) = (1−λ )Zi. Let

Xℓ = λ +(1−λ )xℓ

θ
2
ℓ = λ +(1−λ )σ

2
ℓ

Then we define the moments

E
(
hi |ℓ+1

)
∼ 2xℓZ′′

i +2Z′
i ∼ 2Zi [λ + xℓ (1−λ )] = 2ZiXℓ (3.6)

D
(
hi |ℓ+1

)
∼ 4c(1−λ )σ

2
ℓ +4cλ = 4cθ

2
ℓ (3.7)

Thus, r.v. hi |ℓ+1/2 has Gaussian pdf N (Xℓc,θ 2
ℓ c).
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Next. consider r.v. ui |ℓ+1 ∼ tanh(hi |ℓ+1/2). Similarly to equalities (2.34) and (2.35),

we have

E
(
ui |ℓ+1

)
∼
(
2πθ

2
ℓ c
)−1/2

∫
∞

−∞

tanh(z)e−(z−Xℓc)
2/2cθ 2

ℓ dz = Fc(Xℓ,θℓ) (3.8)

E[u2
i |ℓ+1]∼

(
2πθ

2
ℓ c
)−1/2

∫
∞

−∞

tanh2(z)e−(z−Xℓc)
2/2θ 2

ℓ cdz = Gc(Xℓ,θℓ)

Any round s = λb begins with the initial values X0(λ ) and θ 2
0 (λ ) that satisfy equalities

X0(λ ) = θ
2
0 (λ ) = λ +δ (1−λ )∼ λ (3.9)

which are similar to the former equality x0 = σ2
0 . Thus, we may follow the proof of Theorem

4 and obtain equality Fc(Xℓ,θℓ) = Gc(Xℓ,θℓ) for any iteration ℓ. Now we see that xℓ+1 = σ2
ℓ+1

and Xℓ = θ 2
ℓ . Then for any λ and ℓ→ ∞, we use variables x(λ ) and X(λ ) = λ +(1−λ )x(λ ).

Equalities (3.1) and (3.8) then give

x(λ ) = E (u∞
i ) = Fc(X(λ ),

√
X(λ ))

which can be rewritten as (3.5).

This also gives estimate (3.3). Indeed, iterations (3.6) and (3.7) show that the original

iteration for ℓ = 0 gives r.v. h1
i that has Gaussian pdf N (2λc,4λc). Then for any round

s = λb, r.v. u1 = m−1
∑i>µs ui |1 has the mean Fc(λc,λc) = R(λc) and the vanishing variance

D =R(λc)/(1−λ )m, where Rc(x) is defined in (2.47). Thus, for any λ > 0, our iterations begin

with the crossover probability P0 = Pr{u1 ≤ 0} → 0 as m → ∞. The latter implies that Pℓ → 0

for ℓ→ ∞, as defined in (2.53). In turn, we can remove P∞ = 0 from (2.26). Now we can use r.v.
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hi |ℓ+1that have pdf N (2Xℓc,4Xℓc), according to (3.6) and (3.7). For ℓ→ ∞, this gives (3.3) as

Pso f t(λ ,c) = Pr{hi |∞ < 0} ∼ Q
(√

X(λ )c
)

(3.10)

■

The absence of random walks in our current setup also makes bound (3.3) very tight.

This is shown in Figure 3.2, where we plot analytical BER of (3.3) along with simulation results

obtained for the algorithm Ψso f t(λ ). Here we consider codes Cm with m = 128 and test various

fractions of frozen bits λ = s/m and different S/N ratios 10log10(c/4).
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Figure 3.2: Simulation results and analytical bounds for the algorithm Ψso f t applied to
modulation-type codes C128 with a fraction λ of frozen bits.

It is also important to mention we can assume this frozen portion as a precoding for our

LDPC code and estimate the asymptotic BER of the code for m → ∞. Figure 3.2 and the bound

(3.10) will allow us to have an accurate estimate of BER of this code a with a frozen portion λ

(we assume λm bits out of m bits do not contain information and are frozen with value of 1). In

Figure (3.3) we can see that these code can outperform uncoded modulation for any SNR larger
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than −3.7 dB (this is the c where x∗ = 0.5). In this case λ will affect the SNR and c and change

it to cnew = c(1−λ ).
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Figure 3.3: Analytical bounds for the algorithm with frozen information bits

Recall that the likelihoods hi |L(λ ) give BER (3.3) in round s = λb. We can now

represent any Gaussian r.v. hi |L(λ ) as a channel symbol that has pdf N(1,σ2) and a BER

Q(1/σ). Thus, σ2 = 1/cX(λ ). An important note is that codes Bs(µ,µrs) now operate on the

AWGN channels N(0,σ2) that have a limited noise power 1/cX(λ ). Unlike the original code

Cm, we can now use codes Bs(µ,µrs) of non-vanishing code rates that grow from r0 to rb−1.

Theorem 18 Codes Ĉm of dimension k → ∞ and length n = O(k2) precoded with b polar codes

have overall complexity of O(n lnn). For sufficiently large b, these codes achieve a vanishing

BER if used arbitrarily close to the Shannon limit of −1.5917 dB per information bit.

Proof. In round s = λb, we use a capacity-achieving code Bs(µ,µrs). The corresponding
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BI-AWGN channel Ns(0,σ2
s ) has noise power σ2

s = (X(λ )c)−1 and achieves capacity [69, 70]

ρc(λ ) = log2

√
cX(λ )

2πe
−
∫

∞

−∞

f (y) log2 f (y) dy (3.11)

f (y) =

√
cX(λ )

8π

[
e−(y+1)2cX(λ )/2 + e−(y−1)2cX(λ )/2

]

Here parameter λ changes from 0 to 1 in small increments 1/b, which tend to 0 as b → ∞. The

average capacity for all AWGN channels Ns(0,σ2
s ) is ρc =

∫ 1
0 ρc(λ )dλ . Thus, for m → ∞, code

Ĉm achieves a vanishing BER for any code rate r < 2ρc/m, which gives SNR > c/4ρc.

We now proceed with code complexity. For b polar codes Bs(µ,µrs), design complex-

ity has the order of bµ2 ∼ 2n/b or less. Their decoding requires the order of bµ ln µ < m lnm

operations. Algorithm Ψso f t includes b rounds with L = O(lnm) iterations in each round. This

gives complexity order of n lnn if b is a constant or n ln2 n for growing b < lnm. Thus, overall

complexity has the order of k2 lnk, where k → ρcm is the number of information bits.

To calculate the minimum SNR κ = minc (c/4ρc) , we select parameters c and b. Then

we solve equation (3.4) for different values of λ = s/b, where s = 0, ...,b− 1, and calculate

ρc. The following table gives the highest value of code rate ρc, and the corresponding value of

κ = κ(c,b). Here we count κ in dB, as 10log10κ. The last line shows the gap κ/ ln2−1 to the

Shannon limit of ln2.

b 102 103 104 25000
ρc 0.404 .3621 .3623 .3623

κ (in dB) −1.5655 −1.5890 −1.5915 −1.5917
κ/ ln2−1 6E −3 7E −4 6E −5 E −5

Table 3.1: Relative gap to capacity as a function of number of divisions (b)

Finally, note that b is a constant for any SNR > ln2. Statement 1 now follows directly

from the existing bounds [23] on BER for polar codes. Here polar codes Bi have length µ =

m/b > 2k/b.
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3.3 Concluding remarks

In this chapter, we study new codes that can approach the Shannon limit on the BI-

AWGN channels. We first employ “modulation ” codes Cm that use parity checks of weight

3. These codes can be aided by other capacity achieving codes Bm via back-and-forth data

recovery. Using BP algorithms that decode information bits only, codes Cm achieve complexity

order of n lnn. Then new analytical techniques give tight lower and upper bounds on the output

BER, which are almost identical to simulation results. Finally, we employ multilevel codes of

dimension k → ∞ that approach the Shannon limit with complexity order of k2. It is interesting

that in the asymptotic case the number of overall information bits of the design approaches to

0.36k. One open problem is to find out if there exists a close-form solution to the transcendental

equations (3.4), which (unexpectedly) give the Shannon limit using numerical integration in

(3.11).

It is important to highlight that if all the BP decoding part of LDPC code gets done

in parallel, the latency of this capacity achieving design can be reduced to the latency of polar

precoding stage which results in an overall latency of order (O(k)). Latency of order (O(k)) is

much smaller than the latency of polar codes over the same block size which would be of order

(O(n)).
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Chapter 4

Combined polar-LDPC design using

Gallager ensemble of LDPC codes

4.1 Introduction

In this chapter, we consider code design for channels with high noise that can emerge

in the Internet of things (IoT) for moderate block sizes. The design of [2] (multi-level design)

becomes competitive only on the very large lengths n ≥ 217. The main shortcoming is the very

short length of m/b used in multilevel constructions even for small b = 2,3. Therefore, below

we again take b = 1 and use LDPC codes with parity checks of weight w where w ≥ 2. We show

that a combination of repetition of information bits and parity checks of weight w have the ability

of achieving low BER for low rate codes over moderate blocks. More importantly, the latency of

this design is of order O(∥) where k is the number of information bits.

In section 4.2 we describes the basic sequence Ck,d,w of the LDGM codes that have

dimension k. These codes have systematic generator matrices, in which every parity-check

column has fixed weight w. We only use w ≤ 4 then we proceed with the basic decoding

53



algorithm in Chapter 4.3 and describe its enhancements in Chapter 4.4 and proceed with a

two-stage design. Here we combine BP decoding of codes Ck,d,w with a SCL decoding of the

shorter polar codes. Simulation results are discussed in section 4.5. In particular, new codes of

length 213 achieve WER of about 10−4 at SNR ∼ 1 dB using the lists of 32 candidates for polar

codes. This yields a 0.75 dB gain over the designs of [1,49]. However, the latter gain comes with

a much higher dimension of about k ≈ 400 that simplifies code design compared to [1, 49]. We

propose 4 different algorithm and compare their complexity, latency and performance. Using

simulation results we compare these 4 algorithms with each other and compare the best version

of them with CA-Polar codes. The new two-stage codes presented below are also on par with the

best CA-Polar codes that have similar parameters. Here we substantially reduce the latency of

SCL decoding over the same block size and rate.

4.2 Basic construction

Let ei denote a binary column of some length k′ that has a single symbol one in

the position i ∈ {1, ...,k′} only. We then consider a k′ × k′ identity matrix Ik′ and its cyclic

permutation Ps
k′ = [es+1, · · ·ek′ ,e1, · · · ,es], where s ∈ {0, ...,k′−1}(modk′). Here P0

k′ = Ik′ . Now

consider integer parameters k′, d, and 2 ≤ w < min{k′,d}. We then form the (k′w× k′d)-matrix

Jk,d,w =



Ik′ Ik′ · · · Ik′

P0
k′ P1

k′ · · · Pd−1
k′

P0
k′ P2

k′ · · · P2d−2
k′

· · · · · · · · · · · ·

P0
k′ Pw−1

k′ · · · P(w−1)(d−1)
k′


(4.1)
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Each column in matrix Jk,d,w has weight w and each row has weight d. Note also that columns of

the matrix Jk,d,w are pairwise different if d ≤ k′ but some are repeated at most ⌈d/k′⌉ times if d >

k′. Next, let Ck,d,w be a systematic LDPC code with the generator matrix Gk,d,w = [Ik|Jk,d,w]. This

code has dimension k = k′w and length n = k+ k′d. Its parity check matrix Hk,d,w = JT
k,d,w | In−k

has rows of weight w+1. Below we only consider low-rate codes Ck,d,w that have small parameter

w = 2,3,4 and a large parameter d.

Remarks. Systematic codes Ck,d,w also form low-density generator matrix (LDGM)

codes [71]. Polar-based LDGM codes of [72] may achieve the capacity of the binary memoryless

channels if the columns of generator matrices have weight (logn)1.18 or more. Some high-rate

LDGM codes that use circulant matrices Pi
j are considered in [73]. Our previous construction

[2, 51] differs from (4.1) and forms each parity bit as a binary sum of p = 2 information bits. It

was shown that BP gives the output BERs that is equivalent to that of maximum likelihood (ML)

decoding for large m. A more general construction of [74] analyzed ML performance of such

codes for any p ≥ 2.

Next, consider the parity check equations generated by matrix (4.1). Let a=(a1, · · · ,ak)

denote the string of k information bits ai encoded by the generator matrix Ik|Jk,d,w into the string

a1, · · · ,an. Consider the subset J(i) of d columns that contain 1 in row i. For two rows i, i′ ∈ [1,k]

and any column j ∈ [1,n], we write δ j(i, i′) = 1 if both rows of the generator matrix Gk,d,w have

common 1 in column j. Otherwise, δ j(i, i′) = 0. Each column j ∈ J(i) forms a parity check with

respect to the information bit ai. The first such column j = i forms a trivial parity check ai = ai.

For any j > k, the remaining d −1 parity checks include one parity bit a j and w−1 information

bits ai′ such that δ j(i, i′) = 1. Thus, each information bit ai satisfies d parity checks

ai = a j +∑i′ : δ j(i,i′)=1 ai′ , ∀ j ∈ J(i) (4.2)
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4.3 BP algorithm for parity check of weight w

Let code Ck,d,w be used on an AWGN channel with a pdf. N (0,σ2) and a constant

SNR =
(
2σ2R

)−1 per information bit. We use a map {0,1}→ {±1} for each transmitted symbol

ai, i ∈ [1,n]. Then the parity checks (4.2) form the real-valued products

ai = a j ∏i′ : δ j(i,i′)=1 ai′ , j ∈ J(i) (4.3)

Let an all-one codeword 1n be transmitted. Then the received symbols y j form independent

Gaussian r.v. N (1,σ2). In decoding, we will use rescaled r.v. z j = y j/σ2. Given some z j, an

input a j = 1 has posterior probability

q j ≜ Pr{1 | z j}= (e−2z j +1)−1

Decoding algorithm Ψso f t(z) described below employs two closely related quantities, the log-

likelihoods (l.l.h.) h j and the “probability offsets” u j.

h j = ln[q j]− ln[1−q j] = 2z j

u j = 2q j −1 = tanh(z j)

(4.4)

Algorithm Ψso f t performs several rounds of belief propagation. We use the conven-

tional BP algorithm of [16], with the only difference that our recalculations are limited to

information symbols only. This is used to reduce complexity of the BP decoding. Our simulation

results showed that this extra restriction caused only a slight degradation of code performance.

Similarly to [2], we use µ = O(lnd) iterations to achieve the best performance.

For every step ℓ= 1, ...,µ and every symbol ai, consider its j-th parity check of (4.3).

For each information bit ai′ , every decoding round ℓ will employ its offset ui |ℓ(i′), which will be
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recalculated in the next round. For each i = 1, ...,k and each j ∈ J(i), we can now rewrite (4.3)

using the offsets ui |ℓ(i′) :

ui |ℓ+1( j) = u j ∏i′ : δ j(i,i′)=1 ui |ℓ(i
′), j ∈ J(i) (4.5)

Similarly to conventional BP decoding [16], we then obtain the l.l.h. hi |ℓ+1( j) of the j-th parity

check. Now we can derive the compound estimate

hi |ℓ+1 = ∑ j ̸=i hi |ℓ+1( j) (4.6)

of the symbol ai. The algorithm Ψso f t begins with the original estimates ui |0( j)≜ u j = tanh(z j)

in iteration ℓ= 0 and proceeds in round ℓ as follows.

For each i ∈ [1,k] and each j ∈ J(i) :

A. Derive the offsets ui |ℓ+1( j) of (4.5)

and l.l.h. hi |ℓ+1( j) = 2tanh−1 [ui |ℓ+1( j)
]
.

B. Derive full l.l.h. hi |ℓ+1 of (4.6) and

partial l.l.h. h j |ℓ+1(i) = hi |ℓ+1 −hi |ℓ+1( j)

C. If ℓ < µ, find ui |ℓ+1( j) = tanh(hi |ℓ+1( j)/2).

D. Go to A with ℓ := ℓ+1. If ℓ= µ go to B

and find BER τ
µ
= 1

m ∑i Pr{hi |µ < 0};

output numbers hi |µ and ai = sign (hi |µ). (4.7)

To estimate the complexity Φk,d,w of the algorithm Ψso f t , note that Step A uses (d −

1)(w−1) multiplications and d conversions into hi |ℓ+1( j) for each of k information bits ai.
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For each i, step B uses d parity checks j ∈ J(i). Here we use d − 1 operations to find the

full sums hi |ℓ+1 and d − 1 operations to find the partial sums hi |ℓ+1( j). Then step C uses d

conversions into ui |ℓ+1( j). Taking all k symbols for each iteration ℓ, we obtain complexity

order Φk,d,w ∼ kd(w+4). Given the length n = kd/w+ k , we obtain Φk,d,w ∼ (n− k)w(w+4).

Following the analysis of [2], we further assume that we need µ ∼ 2log2 k iterations. Then

Φk,d,w ∼ 2nw(w+4) log2 k (4.8)

In Figure (4.1) we can see the results of this algorithm for a number of different parameters

k = {256, 512, 1024} and w = 2. These codes are similar to code Cm that are introduced in

Chapter 2 in terms of weight of parity checks but are different due to their selection of parity

checks. They basically select a portion of all possible parity checks and subsequently will have a

higher rate, r, and lower distance, d, over the same block size. Higher rate of these codes will

reduce the probability of high weight errors that was discussed in Chapter 2.

−6 −4 −2 0 2 4
SNR [dB]

10−3

10−2

10−1

B
E
R

W2 (8192, 256, d=63)
W2 (8192, 512, d=31)
W2 (8192, 1024, d=15)

Figure 4.1: BER of BP algorithm for a (8192,k) code
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4.4 Joint polar-LDPC coding

One significant shortcoming of the above codes Ck,d,w is their heavy reliance on

information bits in the BP decoding Ψso f t . Indeed, each parity check (4.5) forms a sequence of

degrading channels that multiply w−1 information offsets ui |ℓ(i′) and only one parity-bit offset

u j. We will now reduce the BER of BP decoding by repeating all information bits s times, where

we take small s ≤ 5. Clearly, using multiple copies, we can make all received symbols zk more

reliable. The resulting code Ck,d,w(s) has a generator matrix that includes s copies of Ik :

Gk,d,w(s) = [Ik,1|...|Ik,s|Jk,d,w] (4.9)

This gives the length nw(s) = k′d + sk = k(d/w+ s) and reduces the code rate R by a factor

nw/nw(s) = (d/w+1)(d/w+ s). For the same SNR, we now need to handle a slight increase in

noise power σ2. Note, however, that we use parameter d ≫ ws, in which case σ2 undergoes only

a slight increase. On the other hand, we can now begin BP decoding using s copies a(1)i ,...,a(s)i of

any symbol ai and combine s l.l.h. of the symbol ai into a single estimate

hi(s) := ∑
s
p=1 h(p)

i

We then convert hi(s) into ui(s) = tanh(hi(s)/2). Now the first round of our decoding Ψso f t(s)

employs the s-fold estimates ui |0( j) ≜ u j(s) instead of the single estimates u j. The following

rounds are identical to the algorithm Ψso f t .

Our simulation results in Figure 4.2 also indicate that the BER of BP decoding can be

reduced 2 to 3 times by taking s = 1, ...,4. To make codes Ck,d,w(s) have the same length N, we

will perform one more modification. Namely, we will keep s copies of identity matrix Ik in (4.9)

but will reduce the number d of blocks Ik′ to keep the former length n = k(d/w+1).
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Figure 4.2: BER of BP algorithms for w = 3 and code (8208,513) with different number of
repetitions s = {1, . . . ,4}.

We will now combine any LDPC code Ck,d,w with some polar code P[k, kr] that has

length k and code rate r, described in Figure (4.3). Recall that the algorithm Ψso f t outputs l.l.h.

hi |µ of k bits ai obtained after µ iterations. These l.l.h. will be passed to a SCL decoder of the

polar code. Following the theoretical analysis of [2], we assume here that l.l.h. hi |µ can be scaled

as independent Gaussian random variables obtained by sending quantities ±1 over a Gaussian

channel with pdf. N (0,σ2). Unlike [2], this assumption only follows simulation results without

theoretical justification.

Polar Precoder

LDPC Encoder +

N (0,σ2)

LDPC Encoder

Polar SCL Decoder

Figure 4.3: Polar-LDPC Design
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Let Q(x) denote the cumulative density function of the Gaussian pdf. N (0,1) in the

interval (−∞,−x). In our model with a Gaussian pdf. N (0,σ2), r.v. hi |µ have some BER P that

can be regarded as Q(1/σ). Thus, BER P of a BP decoder defines the input noise power

σ
2 : Q(1/σ) = P

of the SCL decoder. Then we consider any polar code P[k, kr] on the input channel N (0,σ2).

However, adding a polar code of some rate r < 1 reduces the overall SNR by a factor r. Thus,

to keep the overall SNR at a given value c, a polar code P[k, kr] must operate on the Gaussian

channel N (0,σ2/r).

Let PrP(k,r,σ2) denote the BER of a polar code P[k, kr] on a Gaussian channel

N (0,σ2/r). Then we can consider different codes P[k, kr] and select the optimal rate

r∗ = minr PrP(k,r,σ2)

Here we use one of the algorithms [67] or [75] to construct some polar code P[k, kr]. One

drawback of this procedure is that these programs estimate codes P[k, kr] using SC decoding

with the list size L = 1, whereas we use larger lists, typically, L = 32. We will also use various

CRC checks introduced in [76, 77].

Below we consider polar codes of length k = 512. We will then combine some polar

code P[k, kr] with the LDPC code Ck,d,w of a larger length n ≈ 8192. For these codes, we will

compare four different algorithms that use joint BP-SCL decoding. Two of them, A and B, use no

CRC checks, while two others use different CRCs. Also, two algorithms (A and C) will perform

a single run of BP decoding, while two others (B and D) will make two runs.

Our basic algorithm A performs BP decoding and then proceeds with the SCL decoding
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that processes L = 32 candidates. All L final candidates of length kr are encoded by the chosen

polar code P[k, kr] of length k. The obtained vectors a(1), ..., a(L) are then encoded to the full

length n. Finally, we select the best (most probable) candidate c ∈ Ck,d,w. Thus, we replace

inspection of codewords of length k in SCL decoding with ML decoding in the extended list of L

candidates.

Decoding complexity of algorithm A is dominated by the complexity Φk,d,w ∼ 2w(w+

4)n log2 k of the BP decoding (4.8). Indeed, SCL decoding has much smaller complexity Φk,L ≤

4kL log2 k (SCL decoding of [78] meets this bound). Also, encoding to the length n requires

about Lnw binary operations. Selection of the best candidate requires Ln operations with real

numbers. Both terms are still small relative to Φk,d,w. A slight reduction in complexity can also

be obtained by encoding L′ < L of the best candidates to the full length n. Note also that the

parallel BP decoding only depends on the number of iterations and has the latency of order logn.

The overall latency is then dominated by the latency k of SCL decoding. This compares favorably

to the SCL decoding of polar codes of length n that have latency of order n.

Our second algorithm B trades off BER for the higher complexity by performing

the second run of BP decoding. Here all L candidates a(1), ..., a(L) obtained by the SCL de-

coder are again encoded to the full length n. Let c ∈Ck,d,w be the most probable candidate and

a = (a1, ...,ak) ∈ P[k, kr] be its information set of length k. We then replace the received sym-

bols y1, ...,yk with the hard-decision inputs a1, ...,ak and perform the second round of BP/SCL

decoding. The best candidate c′ ∈Ck,d,w is selected similarly to the first run. Finally, we select

the better candidate of c and c′. One possible advantage of this approach is due to the fact that the

second round of SCL decoding can further eliminate some errors left in first round. Simulation

results show that the second round indeed reduces the output WER; however, the third round

brings virtually no improvements. Algorithm B has complexity order of 2Φk,d,w.

Our third algorithm C is similar to algorithm A but also performs the CRC checks on
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the length k. It proceeds with the final inspection of the best remaining candidates on the full

length n. Given a CRC-q check of degree q, we use notation P[k,kr,q] for a polar code that has

kr information bits and uses q other bits for the CRC check. Below we select q=11, 7, and 4, and

use polynomials x11 +x10 +x9 +x5 +1, x7 +x4 +1, and x4 +x+1. We first execute the BP-SCL

decoding of Algorithm A, and then perform CRC-11 check for all 32 candidates. Let a(1), ...,

a(L
′) denote the list of L′ ≤ 6 most probable candidates left after the CRC-11 check. Here we

keep the results of BP decoding if L′ = 0. Otherwise, we again encode all L′ candidates to the

full length n and select the best candidate c ∈Ck,d,w. Note that CRC check has low complexity of

order Lkq. Thus, algorithm C has complexity order Φk,d,w.

The fourth algorithm D uses the following observation. Consider some polar code P.

Let W− denote some degrading channel of the SC decoding, W+ be some upgrading channel, and

W =W−,W+ be either of them. For any polar code, generic SC decoding is first done on all k/2

“one-bit downgraded” sequences W (−) = W−
1 ,W2, ...,Wt of depth t = log2 k. It then proceeds

with k/2 “one-bit upgraded” sequences W (+) =W+
1 ,W2, ...,Wt . In terms of the Plotkin u,u+ v

construction, SC decoder first finds the vector v on the set W (−) and then proceeds with vector u

on the set W (+). Here the two corrupted copies of vector u are combined together on the first

channel W+
1 .

Let P = P[k,kr,q1,q2] be a polar code that employs a separate CRC-q1 check on W (−)

and then CRC-q2 check on W (+). Let (u∗,u∗+ v∗) ∈ P be the original vector encoded into the

code Ck,d,w and y be the received vector of length n. Algorithm D performs BP decoding of vector

y. It proceeds with SCL decoding of code P but stops after processing all sequences W (−). We

then select s ≤ 6 most probable candidates v = v(1), ...,v(s) that satisfy the CRC-q1. Let ṽ be the

most probable among them. We then proceed with SCL decoding on the remaining set W (+)

starting with only s candidates (0,v) left on W (−). Upon completion, we apply CRC-q2 to all

obtained vectors u and form the list of L′ ≤ 6 most probable candidates (u,u+v) on the length k.
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These may include different vectors u and v. We again encode these candidates to the length n

and select the best candidate c′. To this end, algorithm D is similar to B.

However, we will also apply extra processing to the most probable candidate (0, ṽ)

obtained after CRC-q1. Here we encode this vector into some code vector c ∈Ck,d,w. First, let us

assume that vector y is not corrupted by noise. Then we would obtain ṽ = v∗ and encode vector

(0,v∗) into the correct vector c. In this case, yc is formed by encoding vector u∗,u∗ and includes

k information bits a1, ...,ak, which form 2-bit couples a j = ak/2+ j for all j = 1, ...,k/2.

Next, consider the noisy versions of vectors y and yc. Let ã1, ..., ãk denote the first

k l.l.h. of yc. We then replace these l.l.h. with k new l.l.h. â j = âk/2+ j = ã j + ãk/2+ j. Then

BP decoding proceeds using the new vector yc. In each iteration i = 2, ...,µ, we repeat the

coupling â(i+1)
j = â(i+1)

k/2+ j = â(i)j + â(i)k/2+ j. The obtained vector of k l.l.h. is then processed with

SCL decoding on the sequences W (+). All possible candidates undergo a CRC-q2.

We again select L′′ ≤ 6 most probable candidates ũ′′. Then vectors (ũ′′, ũ′′+ ṽ) are

encoded to the full length n. Let c′′ be the most probable codeword among them. Finally, we

select the most probable candidate among the two remaining vectors, c′ and c′′. Clearly, algorithm

D has complexity order of 2Φk,d,w, since we perform two rounds of BP-SCL decoding.

Remark. All channels W (+) can be further decomposed into two subsets: W (+−) =

W+
1 ,W−

2 , ..., and W (++) =W+
1 ,W+

2 , .... Thus, we can similarly return to BP decoding after SCL

decoding on channels W (+−). However, in our simulations multiple returns to BP decoding

showed little improvement in BER while increasing complexity of algorithm D. We also avoided

the second round of BP decoding for all but the best candidate (0, ṽ) due to the extra complexity.
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4.5 Simulation results

The above algorithms A, B, C, and D were considered for two polar-LDPC codes. The

first design uses an LDPC code Ck,d,w(s) with parameters

k = 513, w = 3, s = 3, d = 39

Following (4.1) and (4.9), note that this code is formed using sub-matrix Jk,d,w that consists of

circulants Pi
k′ with k′ = 171. This gives an [8208,513] code. The second design uses an LDPC

code Ck,d,w(s) with parameters

k = 512, w = 4, s = 5, d = 44

Here matrix Jk,d,w consists of circulants Pi
k′ with k′ = 128. This gives an [8192,512]

code. We then select polar codes of length k using design of [67]. Here we also employ the

CRC-11 in algorithm B and two CRC checks of degrees q1 = 7 and q2 = 4 in algorithm D. The

selected polar codes have dimensions k1 = 400 and k2 = 450. This gives polar-LDPC codes

A1[8208,400] and A2[8192,450]. In Figure (4.4) and (4.5) we present simulation results for these

two codes. Interestingly, algorithms A and B slightly outperform algorithms C and D that employ

CRC checks (both C and D) and half-way correction (D). Here the CA-Polar codes used in

algorithms C and D improve the selection of the best candidates; however, our simulation shows

that extending this process to the full length n also performs efficient selection in algorithms A

and B. CA-Polar codes of algorithms C and D also have better weight spectra; however, extra

parity checks used here cause a slight channel degradation.

Observe also that algorithm D does not improve on algorithms A and B despite a more

powerful error correction of vectors u on the channel set W (+). This is due to the fact that BP
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Figure 4.4: WER of algorithms A, B, C, and D of SCL-BP decoding for a (8192,400)-code with
w = 3.

decoding - if incorrect - often keeps possible vectors v substantially corrupted. In this case, SCL

decoding fails to keep the correct vector v∗ among the survived candidates. Our simulation results

confirmed the fact that incorrect decoding of vectors v in the (u,u+ v) construction is indeed the

main source of the remaining errors.

In Figure 4.6, we also compare the WER of code A1[8208,400] with three other recently

constructed codes: two [8192,80]-codes, A3 of Figure 4a in [1] and A4 of [2], and a CA-Polar

code A5[8192,400] optimized using the software package [3]. Here codes A1 and A3 use polar

codes of length 512 as their components, while code A4 uses a polar code of length 128, which

reduces decoding latency about 4 times. All four codes use the lists of size L = 32. We see that

an LDPC-polar code A1 achieves the WER ∼ 10−4 at the SNR = 1 dB, which is on par with the

CA-Polar code A5. This code also substantially reduces decoding latency of A5, due to the much

shorter polar code of length 512 used in A1 instead of the length 8192 of code A5.

We also see that code A1 gains about 0.75 dB at the output WER of 10−4 compared to

66



0.0 0.2 0.4 0.6 0.8 1.0 1.2
SNR [dB]

10−5

10−4

10−3

10−2

10−1

W
E
R

Alg. A W4 (8192,450)
Alg. B W4 (8192,450)
Alg. C W4 (8192,450)
Alg. D W4 (8192,450)

Figure 4.5: WER of algorithms A, B, C, and D of SCL-BP decoding for a (8192,450)-code with
w = 4.

the code A3 [1]. Note, however, that this improvement is achieved at a much higher code rate of

about 0.05 instead of the rate below 0.01 used in [1, 2]. Our conjecture is that for a given length

n ∼ 213, codes of a rate 0.05 may achieve a much lower BER than the lower-rate codes. We

also assume that this conjecture is valid for ML decoding or SC decoding or BP decoding when

different codes are used on the AWGN channels with the same SNR.

4.6 Concluding remarks

We introduced a general low rate LDPC code Ck,d,w with parity checks of weight w

with flexible size and distance and presented simulation results for their BER performance. We

studied joint decoding of long low rate LDPC codes Ck,d,w combined with short polar codes.

We used the results of polar SCL decoder to improve the estimate of LDPC BP decoder in the

second run a subsequently improve the overall performance of this code . Two step decoding

algorithms increase the complexity of decoding but reduce WER for these codes. This design
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Figure 4.6: WER of four codes: (8208,400) polar-LDPC code A1, (8192,80) codes A3 [1] and
A4 [2], and (8192,400) polar code A5 [3].

yielded performance that is similar to that of SCL decoding of polar codes, while substantially

reducing decoding latency.
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Chapter 5

Conclusions and future work

In this thesis, we introduced low latency and low rate communication schemes that

can achieve the Shannon limit of a vanishing rate on the BI-AWGN channels. We first derived

theoretical boundaries for the probability of error for these codes and then modified our design to

consider practical cases of communication on limited block sizes and complexity. We demon-

strated that these new designs are on a par with CA-Polar codes in terms of performance and

complexity. For similar rates over the same block sizes, they achieved the same WER with much

smaller latency.

In Chapter 2, we introduced the modulation binary codes Cm,s and described their en-

coding and BP decoding algorithms on BSC and AWGN channels. We also presented boundaries

for BER of ML and BP algorithm and compared them with simulation results. We showed that

this simple design had the ability to outperform uncoded modulation for any SNR > −3 dB.

Then we used a polar code as precoding to further protect information bits and showed that this

design achieves exponential decline for WER on moderate SNR < 2 dB per information bit but

is unable to achieve the Shannon limit of −1.59 dB.

In Chapter 3, we introduced a multilevel protection scheme that used a number of
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polar precoders with different rates and combined them with modulation code Cm. Then we

presented boundaries for BER of this design with frozen information bits and showed that they

are practically identical to simulation results. Using these tight boundaries and capacity of the

BI-AWGN channel we demonstrated that this back and forth decoding algorithm can get as close

as we want to the Shannon limit of vanishing rates for a large number of polar precoders.

In Chapter 4, we proposed a design for low rate LDPC codes with parity checks of

small weight. This design can achieve better WERs than the polar-modulation codes, described

in Chapter 2, over the same block size. However, it is crucial to note that these codes have higher

rates and bigger decoding complexity than the previous design. We also offered a novel decoding

scheme for these designs by incorporating their polar-LDPC structure and provided simulation

results that are better than or on a par with the state of the art algorithms such as polar coded

repetition [1] codes and CA-Polar codes [3].

There are several open questions that could lead to interesting research problems. In

order to prove bounds on BER we assumed that log-likelihoods of partial terms in each iteration

are weakly dependent and used this assumption to prove our bounds. These bounds are practically

identical to the results of simulations; however, we did not prove their weak independence. We

also showed numerically that for a large number of capacity achieving polar precoders we can

achieve the Shannon limit of vanishing rates but did not present closed-form formulas. Finally,

we believe that the combination of parity checks of weight w where the majority of parity checks

are of weight 1,2 and a small portion of the parity checks are of higher weights can actually

achieve a much faster decline in WER on moderate blocks sizes.
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