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DNA methylation: a mechanism linking environmental chemical 
exposures to risk of autism spectrum disorders?

Kimberly P. Keil and Pamela J. Lein*

Department of Molecular Biosciences, School of Veterinary Medicine, University of California 
Davis, Davis, CA, USA

Abstract

There is now compelling evidence that gene by environment interactions are important in the 

etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental 

factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant 

knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene 

expression regulatory mechanism in normal and pathogenic brain development. DNA methylation 

can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to 

environmental chemicals, suggesting that environmental factors may contribute to adverse 

neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the 

developing brain. In this review, we describe epidemiological and experimental evidence 

implicating altered DNA methylation as a potential mechanism by which environmental chemicals 

confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as 

examples. Understanding how environmental chemical exposures influence DNA methylation and 

how these epigenetic changes modulate the risk and/or severity of ASD will not only provide 

mechanistic insight regarding gene-environment interactions of relevance to ASD but may also 

suggest potential intervention strategies for these and potentially other neurodevelopmental 

disorders.
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Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by core 

deficits in social communication and interaction, restricted interests, and repetitive patterns 

of behavior. Symptoms typically present in the first 2 years of life, though there is 
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considerable clinical heterogeneity in severity, comorbidities, and response to treatment [1–

3]. According to the autism and developmental disabilities monitoring network of the 

Centers for Disease Control (CDC), 1 in 68 eight-year-old children is diagnosed with ASD 

[4]. Although ASD affects both sexes, it is almost five times more common among boys (1 

in 42) than girls (1 in 189) [4]. Alarmingly, the incidence of ASD continues to increase. 

Independent studies have reached the common conclusion that this trend cannot be 

explained in its entirety by increased awareness, broadening of diagnostic criteria, or 

improved detection of ASD [5–8]. In fact, these studies suggest that factors other than 

diagnostic drift likely account for more than one-half of new cases. Given that the economic 

cost of healthcare, schooling, and caregiver services for a child with ASD are estimated to 

start at $17, 000 more per year compared with a child without ASD [9], these sobering 

statistics underscore the need to identify factors that confer risk for ASD.

Evidence Suggesting Environmental Factors Influence ASD Risk

To date, much of the research on ASD etiology has focused on genetic factors [10, 11]. 

Although ASD is considered one of the most heritable neurodevelopmental disorders [12, 

13], single genetic anomalies account for only a small proportion of affected cases [14, 15]. 

Furthermore, genes linked to ASD rarely segregate in a simple Mendelian manner [12]. 

These results have been interpreted as an indication that genetic mutations are not 

necessarily causal but rather act as modifying risk factors that singly or in combination 

contribute to ASD risk and/or severity. Numerous mechanisms have been proposed to 

explain how genetic mutations influence ASD, including inheritance of multiple gene 

variants with small to moderate effects on ASD, rare de novo single gene mutations, copy 

number variants, or alterations in the epigenome [16–21].

An alternative hypothesis that is gaining consensus in the field is that the genetic substrate 

confers increased susceptibility to environmental factors that interfere with normal 

neurodevelopment. It is the interaction between genes and the environment that determines 

individual ASD risk, clinical phenotype, and/or treatment outcome. Evidence supporting 

environmental contributions to ASD risk include observations of incomplete concordance 

for autism among monozygotic twins and incomplete penetrance within individuals 

expressing a given ASD-linked gene mutation, whereby a significant percentage of carriers 

do not express autistic phenotypes [14, 19, 22]. Two large, independent twin studies that 

examined the relative contributions of genetic heritability versus the shared environment 

similarly concluded that environmental factors were more predominant than genetic factors 

in determining autism risk [23, 24]. A significant role for environmental factors in 

determining ASD risk is consistent with the clinical heterogeneity that is a hallmark 

characteristic of these neurodevelopmental disorders and suggests a plausible explanation 

for the exponential rise in ASD cases over the past several decades.

Diverse environmental factors have been implicated as risk factors for ASD, including 

maternal stress and drug use, paternal age, nutritional status, hormones, and environmental 

chemicals [14, 25–29]. In this review, we focus on environmental chemicals. Environmental 

chemicals that have been implicated as risk factors for ASD include polychlorinated 

biphenyls (PCBs), lead, bisphenol A (BPA), mercury, and pesticides (Tables 1–2) [52–62]. 
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However, mechanisms by which these environmental factors interact with genetic 

susceptibilities to confer individual risk for ASD remain largely speculative. Emerging 

evidence suggests that environmental chemicals can alter DNA methylation patterns in the 

developing brain, and these reports have led to a prevailing hypothesis in the field that 

environmental factors confer risk to genetically susceptible individuals via modulation of the 

developing brain methylome. Here, we review the evidence and the critical gaps in 

knowledge relevant to this hypothesis. In the following sections, we provide an overview of 

DNA methylation and its importance in neurodevelopment, then review experimental 

evidence demonstrating that environmental chemicals hypothesized to confer ASD risk alter 

the epigenome, specifically DNA methylation, using PCBs, lead, and BPA as examples 

(Table 1). We conclude with a discussion of the evidence linking effects of environmental 

chemicals on DNA methylation to increased risk of ASD.

An Overview of DNA Methylation and Its Importance in Neurodevelopment

Epigenetic modifications such as DNA methylation, histone protein modifications, and 

microRNAs function to regulate the transcriptional potential of a cell without altering its 

DNA sequence. The establishment, maintenance, and removal of epigenetic marks are 

critical during neurodevelopment and when disrupted can have significant impacts on 

neurodevelopment and cognitive function [63–66]. DNA methylation, the focus of this 

review is one of the most widely studied epigenetic modifications in development and 

disease, including ASD.

DNA methylation refers to the addition of a methyl group to the 5′ position of cytosine. This 

typically occurs at regions rich in CpG [67, 68]. DNA methylation is generally associated 

with transcriptional repression either through direct inhibition of transcription factor binding 

or the recruitment of methyl CpG binding domain (MBD) proteins, which interact with 

histone modifiers to confer a repressive chromatin state [69]. DNA methylation is catalysed 

by the DNA methyltransferase (DNMT) protein family. DNMT1 functions primarily in 

maintenance of DNA methylation whereas DNMT3A and DNMT3B are primarily involved 

in de novo DNA methylation [69]. Global deletion of mouse Dnmt1, Dnmt3b, or both 

Dnmt3a + Dnmt3b results in midgestation lethality [gestational day (GD) 9.5–11.5], while 

deletion of only Dnmt3a produces severe growth retardation and lethality by 4 weeks of age 

[70–72].

Pharmacological approaches and conditional deletion studies confirm roles for Dnmts in the 

developing central nervous system [73, 74]. Conditional deletion of Dnmt1 in developing 

excitatory neurons and astroglia of the mouse cortex and hippocampus results in neuronal 

cell death between GD14.5 to 3 weeks postnatally and results in deficits in learning and 

memory in adulthood [63]. A fraction of hypomethylated neurons survive postnatally but 

exhibit increased dendritic branching and impaired excitability, likely through mechanisms 

related to neuronal layer specification, cell death, and ion channel function [63]. Mice 

lacking Dnmt1 and Dnmt3a in postmitotic neurons show abnormal long-term plasticity in 

CA1 hippocampal neurons along with deficits in learning and memory [75]. Additionally, 

inhibiting DNMT activity increases miniature excitatory postsynaptic currents in cultured 

cortical neurons, suggesting that DNA methylation regulates glutamatergic synaptic strength 
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[76]. Together, these studies not only demonstrate the requirement for DNA methylation 

during neurodevelopment but also suggest that tight spatial and temporal regulation of 

Dnmts is important for activity-dependent synaptic plasticity. The relevance of these 

observations to ASD is indicated by recent advances in defining the molecular and cellular 

pathology of ASD that point to altered patterns of neuronal connectivity and synaptic 

plasticity in the developing brain as the neurobiological substrate underlying these disorders 

[11, 77, 78].

Epigenetic alterations can be stable and heritable and they can also be malleable and 

surprisingly dynamic in a spatially and temporally defined manner. The dynamic nature of 

DNA methylation is especially evident following fertilization in preimplantation embryos 

when a rapid wave of paternal genome demethylation occurs, followed by reestablishment of 

DNA methylation patterns to permit embryonic specification in the blastocyst [79, 80]. The 

ability to alter DNA methylation patterns in a cell- and stage-specific fashion is retained 

throughout life and is a key component of cell differentiation, specification, and maturation. 

Altered patterns of DNA methylation are often a hallmark of disease onset and progression 

[66, 69].

The fact that DNA methylation is malleable suggests that DNA methylation marks can also 

be removed. Identification of passive and active mechanisms by which DNA methylation 

marks can be lost has significantly impacted our understanding of transcriptional control of 

gene expression. Passive mechanisms of DNA demethylation include a reduction or loss of 

DNMT abundance or activity that reduce DNA methylation during subsequent rounds of 

DNA replication. In terms of active mechanisms of DNA demethylation, evidence points to 

MBD2, and even the DNMTs themselves, as having demethylase capability [81–83]; 

however, this is still controversial and does not preclude the participation of other factors 

leading to demethylation.

Significantly more is known about removal of DNA methylation through base modification 

of methylated cytosines followed by base excision and repair pathways [84, 85]. One 

example is the conversion of methylated cytosine to hydroxymethylcytosine. This is 

catalysed by members of the 10 eleven translocation (Tet) gene family and is the primary 

mechanism responsible for paternal erasure of DNA methylation during fertilization [84–

88]. Hydroxymethylation is found at a relatively high level in neurons compared with other 

cell types and accumulates over time. Importantly, the Tet genes have been implicated in 

activity-dependent learning and memory [89–91]. DNA hydroxymethylation has also been 

shown to regulate gene expression in the cerebellum of patients with autism [92]. Our 

understanding of DNA hydroxymethylation is in its infancy and will no doubt evolve as 

previously unrecognized mechanisms are discovered, some of which may be important for 

understanding ASD etiology.

Although the dynamic nature of DNA methylation is necessary for normal development and 

differentiation, it also renders these events susceptible to modulation by environmental 

factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals. In the 

following sections, we discuss: (i) the effects of environmental chemicals implicated as ASD 

risk factors on DNA methylation; (ii) evidence implicating DNA methylation as a critical 
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gene expression regulatory mechanism in ASD; and (iii) why environmentally induced 

changes in DNA methylation may underlie gene by environment interactions that determine 

individual risk of ASD (see also Tables 1–2).

Effect of Environmental Chemicals on DNA Methylation

Polychlorinated Biphenyls

PCBs are persistent organic pollutants that were initially synthesized in the 1930s for use in 

industrial mixtures as coolants and lubricants. Despite being banned from production in the 

1970s, PCBs remain a current and significant public health risk due to the release of legacy 

PCBs from aging structures and landfills, and the inadvertent production of contemporary 

PCBs by industrial processes, primarily commercial paint pigments [93]. Recent studies 

have documented PCBs levels in excess of Environmental Protection Agency (EPA) 

standards in indoor air samples from elementary schools in USA [94], and the latest 

National Health and Nutrition Examination Survey (NHANES) data confirm widespread 

PCB exposures in women of childbearing age [58].

The weight of evidence from epidemiological studies supports a negative association 

between developmental exposure to PCBs and neuropsychological function in infancy and 

childhood [56, 95–99]. Identifying the mechanism(s) by which PCBs interfere with normal 

neurodevelopment has been confounded by the existence of 209 PCB congeners, which are 

grouped according to their molecular structure as dioxin-like (DL) and non-dioxin like 

(NDL). DL PCBs are so named because like dioxin, these congeners bind to and activate the 

aryl hydrocarbon receptor (AHR); in contrast, NDL PCBs have negligible AHR activity 

[100]. Although both DL and NDL PCBs are ubiquitous in the environment, recent evidence 

indicates that NDL PCBs predominate over DL PCBs in environmental samples and human 

tissues [101–103]. This is of significant concern because data from experimental models 

suggest that PCB developmental neurotoxicity is mediated predominantly by NDL PCBs 

[27, 104]. NDL PCBs are thought to disrupt normal neurodevelopment via modulation of 

signaling by biogenic amines, thyroid hormone, and intracellular calcium during critical 

windows of brain development [105]. Although PCBs have yet to be causally linked to ASD, 

several lines of evidence implicate PCBs as risk factors for ASD. First, studies in rodent 

models have shown that developmental PCB exposure causes deficits in social behavior 

[106]. Second, NDL PCB congeners modulate dendritic arborization and spine formation 

[107, 108], and similar changes in neuronal connectivity have been observed in the autistic 

brain [109, 110]. Third, NDL PCBs have been reported to activate calcium-dependent 

signaling pathways implicated in the pathogenesis of ASD [27].

PCBs and Altered DNA Methylation

Emerging evidence from in vitro, in vivo, and epidemiological studies suggest that PCB 

developmental neurotoxicity may be mediated in part by PCB effects on DNA methylation 

in the developing brain. Exposure to the NDL congener PCB 153 decreases DNMT activity 

in preimplantation mouse blastocytes [30], and decreases global DNA methylation levels in 

the N2A murine neuroblastoma cell line [31]. However, the latter finding may be unique to 

mouse cell lines since the DNA hypomethylating effects of PCB 153 were not observed in 
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the human SK-N-AS neuroblastoma cell line [31]. Animal studies also link PCBs to reduced 

Dnmt abundance. In utero and lactational exposure to a mixture of 14 NDL + DL PCBs at 

1.1 mg/kg/day from GD1 to postnatal day (P) 21 reduced levels of the methyl donor S-

adenosylmethionine as well as levels of Dnmt1, 3a, and 3b to 4, 54, and 17 of control values, 

respectively, in liver of prepubertal female Sprague-Dawley rats [32]. Similarly, postnatal 

exposure (P1, 5, 10, 15, and 20) to a 1000 × mixture of AHR agonists detected in human 

breast milk, including 3 DL PCBs (77, 126, and 169), reduced Dnmt1 mRNA abundance 

levels to 32% of controls in the hypothalamus of P21 female Sprague-Dawley rats [33]. 

Although both of these studies demonstrate reduced Dnmt abundance following early life 

PCB exposure, it should be noted that the PCB mixtures used differed between the studies. 

The Desaulniers et al. [32] study employed a PCB mixture of NDL + DL PCBs comprised 

predominantly of NDL PCB congeners. In contrast, the Desaulniers et al. [33] study used a 

mixture containing three DL PCBs as well as non-PCB AhR agonists including 

polychlorinated dibenzodioxins and polychlorinated dibenzofurans. There was no overlap in 

the PCBs examined between the two studies. Whether the reduction in Dnmt mRNA 

abundance is a consequence of all or just a subset of PCB congeners remains to be 

determined. Since humans are exposed to complex PCB mixtures, this is an important 

consideration when analysing DNA methylation following PCB exposures.

PCB-associated changes in DNA methylation have been shown to influence sexual 

development and alter sex-specific patterns of gene expression in the brain [34]. This is 

important since many hormones are required for or have significant impacts on 

neurodevelopment. Indeed, endocrine disruption has been hypothesized to contribute to 

ASD, in part because ASD is more prevalent in males than females [111–113]. Exposure of 

Sprague-Dawley rats to Aroclor 1221, a technical mixture of PCBs, at 1 mg/kg on GD16 

and GD18 alters gene expression in a sex-specific manner, perturbing reproductive function 

by delaying time to puberty in males and altering cyclicity of estrous in females [35]. This 

study also examined impacts of PCB exposure on DNA methylation in the anteroventral 

periventricular (AVPV) nucleus and arcuate nucleus, which are regions of the brain known 

to regulate reproductive function. In female rats, PCB exposure increases gene expression 

profiles from P15–90 such that they are more similar to vehicle-treated male rats [35]. This 

masculinization pattern is seen in Dnmt1 expression as well, with PCB treatment increasing 

expression of Dnmt1 from P15–90 in the female rat AVPV to levels that are more typical of 

male expression [35]. The functional consequence of increased AVPV Dnmt1 transcript 

abundance in this study is unclear. Although PCB-induced changes in promoter DNA 

methylation were not detected in two genes upregulated by PCBs, including the androgen 

receptor (Ar), DNA methylation at 4 CpG sites of Ar was positively correlated with Ar 
mRNA expression uniquely in the AVPV of females exposed to PCBs versus control females 

[35]. These results are confounded by the fact that DNA methylation levels for genes 

expressed in the AVPV at P15 are already low, which could limit levels of detection [35]. 

Nonetheless, these results indicate that PCB-dependent changes in DNA methylation may 

impact endocrine function with consequences on gene expression in the brain.

The growing body of evidence from in vitro and experimental animal models indicating that 

PCBs alter the methylome extends to humans. In a cohort of 399 healthy Japanese women, 

serum levels of NDL PCBs 17, 52, 69, 74, 183, and DL PCB 114 were inversely associated 
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with global DNA methylation levels in leukocytes [36]. A similar trend was observed in a 

second population of healthy Koreans for NDL PCB 153, 183, and 187 [37] and in a 

population of Greenlandic Inuits [38]. Conversely, in a separate study of 524 elderly men 

and women (70 years of age) living in Uppsala, Sweden, high levels of DL PCBs were 

associated with global DNA hypermethylation [39]. While there were significant differences 

in age, geographical location, and lifetime exposure levels to different PCBs between these 

study populations, these studies raise the possibility that the composition or congener profile 

of the PCB exposure is an important determinant of the outcome on the methylome [114]. 

There is evidence to suggest that the DL and NDL PCBs have opposing actions on DNA 

methylation, with DL PCBs shifting the balance toward DNA hypermethylation, as was 

observed in the Sweden study [39], and NDL PCBs favoring DNA hypomethylation as 

observed in the Korean and Inuit studies [36, 38]. This possibility is further supported by 

reports that 2,3,7,8-tetrachlorodibenzo-p-dioxin induces DNA hypermethylation [30, 115]. 

Although it is known these NDL and DL PCB congeners act through different signaling 

pathways, the question of whether they differentially alter DNA methylation remains to be 

carefully investigated.

Lifetime exposure levels are also likely confounding variables in epidemiological studies. 

For example, in healthy Koreans, exposure to PCBs exhibits an inverted U-shape dose–

response relationship with DNA methylation of the promoter region of the DNA repair gene, 

O6-methylguanin-DNA methyltransferase [116]. Interestingly, a nonmonotonic dose–

response relationship has also been reported for NDL PCB effects on dendritic arborization 

of cultured rat hippocampal neurons [107] and learning and memory deficits in rats exposed 

throughout gestation and lactation to NDL PCBs in the maternal diet [117]. This raises the 

interesting question of whether there may be a link between PCB effects on DNA 

methylation and PCB effects on neurodevelopmental outcomes of relevance to autism.

Lead

Common sources of lead exposure include paint, household items, air, and water. Children 

are often exposed to higher levels than adults, with an estimated 535 000 US children aged 

1–5 years of age having blood lead levels higher than the reference level set by the CDC 

[118]. Studies of lead exposure in children provide evidence of impaired executive function 

and attention [119]. Animal models of developmental lead exposure also indicate changes in 

behavioral and neurochemical endpoints similar to those seen in children with ASD [119, 

120].

Lead and Altered DNA Methylation

There is evidence to implicate DNA methylation as a potential mechanism by which 

developmental lead exposure alters neurodevelopment and function throughout life [121, 

122]. In cultured human embryonic stem cells, physiologically relevant concentrations of 

lead (0.4–1.9 μM) cause dose-dependent changes in DNA methylation of 1275 genes during 

neural progenitor differentiation, with the majority displaying DNA hypomethylation [41]. 

The top hypomethylated genes are involved in neurological system processes, calcium ion 

import, and actin cytoskeleton arrangement while the top hypermethylated genes belong to 
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families responsible for calcium ion import and development of neuronal projections [41]. 

These are pathways that are also dysregulated in ASD [27, 105, 123].

Lead-induced changes in DNA methylation are stage specific, with the greatest number of 

changes observed in differentiating human embryonic stem cells relative to undifferentiated 

human embryonic stem cells or neural progenitor cells [41]. Consistent with this evidence of 

stage-specific changes in DNA methylation, lead exposure also produces differential effects 

on neurite outgrowth dependent upon the developmental stage at the time of exposure. Lead 

exposure during neural rosette formation produces shorter neurites and reduces branching 

compared with controls, whereas lead exposure during later developmental stages increases 

the number and length of neurites [41]. These findings are important for two reasons: (i) 

they reveal a sensitive developmental window during which lead exposure produces a 

greater number of changes in DNA methylation and (ii) they link altered DNA methylation 

to changes in neuronal morphology. Whether lead-induced changes in DNA methylation are 

causally linked to effects on neurite morphology has yet to be determined. Additional 

questions that remain include the functional consequences of lead-induced changes in DNA 

methylation and neurite morphology in terms of synaptic connectivity or higher orders of 

function, such as learning and memory or social interactions. Despite these challenges, the 

observation that lead changes DNA methylation in a human embryonic stem cell line 

supports the hypothesis that epigenetic mechanisms underlie lead developmental 

neurotoxicity in humans.

The findings of Senut et al. [41] in terms of developmental windows of lead sensitivity are 

corroborated by experimental animal studies. Analyses of Dnmt1 expression in rats exposed 

to lead throughout gestation and lactation versus only during lactation reveal that dose, 

developmental age during which exposure occurs, and sex influence the lasting impacts of 

lead on DNMT expression. Exposure to lead (150, 375, 750 ppm) in utero and throughout 

lactation significantly reduced DNMT1 protein abundance by ~25% uniquely in the female 

P55 Long Evans rat hippocampus [42]. In contrast, lactational exposure only (P1–21) had no 

effect on DNMT1 abundance in the female P55 hippocampus. However, in the male P55 

hippocampus, lactational exposure to lead diminished DNMT1 expression by 18–23% at the 

lower doses of 150, 375 ppm and enhanced DNMT1 expression by 20% at the highest dose 

of 750 ppm [42]. Sex- and stage-specific changes are also observed for DNMT3A and 

methyl CpG binding Protein 2 (MECP2) [42]. A serious caveat with these studies is that the 

levels of lead used are not relevant to most human lead exposures. However, consistent with 

these findings, developmental exposure to more physiologically relevant levels of lead (3, 30 

ppm) has been reported to cause differential DNA methylation in male versus female cortex 

and hippocampus of young adult mice [43]. In this study, developmental lead exposure (3, 

30 ppm) resulted in over 1000 differentially methylated CpG sites, predominantly DNA 

hypermethylation, in regions corresponding to 117 unique genes in the adult female mouse 

hippocampus whereas no changes were observed in male mice [43]. Importantly, differential 

DNA methylation is retained when blood levels of lead from developmentally exposed 

animals have returned to levels of unexposed control animals [43]. Thus, developmental 

exposure to lead is sufficient to induce persistent changes in DNA methylation in a sex- and 

brain region-specific fashion, with female mice showing greater changes than male mice, 

and hippocampus showing greater changes than cortex. The functional consequence of lead-
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induced DNA hypermethylation in this context has yet to be defined but may account for 

changes in gene expression important for synapse and memory formation [43].

Epidemiological studies also suggest that lead can induce changes in DNA methylation [44, 

46, 124]. In men, patellar lead levels are inversely associated with global LINE-1 DNA 

methylation levels in blood [44]. Similarly, maternal lead levels are inversely correlated with 

genomic DNA methylation of the LINE-1 element in umbilical cord blood [45]. Gene-

specific alterations in DNA methylation are also linked to lead exposure. In a study of adult 

men exposed to lead, those with the highest blood lead levels had complete DNA 

methylation of the p16 gene, a tumor suppressor gene involved in neurodegeneration [125]. 

In contrast, men with lower lead levels had partial to no DNA methylation of the p16 gene 

[46]. Thus, p16 DNA methylation may serve as a biomarker of lead exposure. These data 

also raise the intriguing hypothesis that changes in p16 expression in the brain may 

contribute to neurodevelopmental and/or neurodegenerative effects of lead. Together, these 

observations support the possibility that lead-induced changes in DNA methylation may play 

a role in developmental neurodevelopmental disorders, possibly by altering genes important 

for calcium ion import, neuron projection development, actin cytoskeletal arrangement, and 

neurodegeneration.

BPA

BPA is found in household plastics and other products, including food and beverage cans 

[126]. According to 2003–04 NHANES data, detectable levels of urinary BPA were found in 

over 92% of people 6 years of age or older sampled in USA [127]. Alarmingly, levels were 

highest among children [127]. BPA is thought to be an endocrine disruptor that acts as an 

estrogen mimetic [128–131], thus research has focused largely on its effects in reproductive 

tissues. However, BPA exposure has also been linked to effects in the developing brain, 

including altered synapse formation and abnormalities in neurite and dendrite morphology 

[132], and it is associated with cognitive and social impairments in rodents [48, 133–135]. In 

a cohort of 198 children ages 3–5, high levels of maternal BPA were associated with altered 

emotional reactivity including increased aggressive behavior in boys [136]. Furthermore, in 

a recent report of 46 children with ASD and 52 age-matched neurotypical control children, 

total urine BPA concentrations were higher in children with ASD compared with controls 

[137].

BPA and Altered DNA Methylation

Epigenetic alterations have been implicated in BPA-associated changes in pathology and 

function in several hormone-responsive tissues including the brain [49, 130, 138–141]. In 

embryonic hypothalamic mouse cell lines, BPA (200 μM) decreases Dnmt1 and 3a 
expression by ~30% but increases Dnmt3b abundance nearly 2-fold relative to control levels 

[47]. This is an interesting observation considering micromolar concentrations of BPA are 

also capable of decreasing synaptic density in cultured rat hypothalamic neurons [142]. 

Whether these two observations are causally linked is unknown but raises the intriguing 

hypothesis that DNA methylation mediates the effects of BPA on neuronal connectivity.
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In mouse models, gestational BPA exposure (1.25 mg/kg in the maternal diet; resulting in 5 

micrograms of BPA ingested daily) selectively decreased Dnmt1 abundance in the GD18 

female mouse brain while male levels were unaltered [48]. Importantly, this exposure 

produced blood BPA levels within the range detected in humans. Changes in Dnmt1 
abundance do not necessarily lead to changes in global or gene-specific DNA methylation 

but this question was not examined in this study. However, under this experimental 

paradigm, BPA exposure increased expression of the glutamate transporter Scl1a1 in female 

but not male brain at GD18 [48]. Gestational exposure to BPA also increased sex-dependent 

changes in social interaction, uniquely increasing social interaction among juvenile female 

mice [48]. Whether changes in Slc1a1 DNA methylation drive changes in protein expression 

and/or behavior can not be concluded from these studies but raises the possibility. An 

interesting observation in this study is that BPA uniquely impacted Dnmt3a expression in 

female but not male mouse brain, but unlike its effects on Dnmt1, BPA prevented female-

specific reduction in Dnmt3a expression [48]. Thus, in the female GD18 brain, BPA 

exposure resulted in Dnmt3a expression typical of male mice. This observation is consistent 

with BPA acting as an endocrine disruptor and is also reminiscent of masculinization 

phenotypes observed with PCB exposure as mentioned earlier [35]. The consequences of 

increased Dnmt1 but decreased Dnmt3a expression are not known but are likely gene, tissue, 

and stage specific.

Although not conclusive, these are among the first studies to provide evidence that there may 

be sex-dependent differences in sensitivity to BPA during brain development that translate to 

altered Dnmt gene expression and behavior in juvenile animals. Subsequent studies support 

this possibility. In utero exposure to BPA was shown to cause sex-, dose-, and brain region-

specific changes in Dnmt expression [49]. In utero BPA exposure (2, 20, 200 μg/kg/day) 

significantly decreased Dnmt1 expression in the prefrontal cortex of both male and female 

mice. This same exposure paradigm produced a nonmonotonic dose response for Dnmt1 
expression in the hypothalamus and Dnmt3a expression in the prefrontal cortex. 

Interestingly, a U-shaped dose–response relationship was observed in female mice, whereas 

an inverted U-shaped dose–response relationship was observed in male mice [49].

BPA exposure also alters social exploratory and anxiety-like behaviors in young adult mice 

(P30–70) by disrupting sexually dimorphic behaviors. Exposure to BPA reduced chasing 

behavior in males to levels similar to that of females and reversed the sex-dependent 

differences in open field behavior in distance traveled and inner area time such that each 

parameter was reduced in females and increased in male mice [49]. High doses of BPA are 

also associated with increasing aggressive behavior [49]. These sexually dimorphic changes 

were linked to BPA-induced alterations in DNA methylation and expression of estrogen 

Receptor 1 in the brain [49]. Why this study observed unique changes in male and female 

mice while the earlier study [48] only observed alterations in female mice is likely due to 

differences in BPA administration (dietary versus oral dosing), strain of mice used (C57Bl/6 

versus BALB/c), the developmental ages examined, and the endpoints measured. However, 

both studies are consistent in demonstrating that in utero exposure to BPA has epigenetic 

effects on the brain that are associated with permanent sex-dependent differences in Dnmt 
expression and behavior in mice. Considering ASD is more prevalent in boys than girls, 

examining mechanisms underlying sex-dependent differences in Dnmts and DNA 
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methylation are warranted. These studies further confirm a nonmonotonic dose–response 

relationship in regard to changes in Dnmt expression and mouse social behavior, important 

points to consider when conducting and analysing these types of studies.

Epigenetic “Memory” of Past Environmental Exposures

Environmental exposures have been linked to epigenetic mechanisms of transgenerational 

changes in gene expression and behavior. Transgenerational inheritance is considered a 

permanent alteration in the epigenome of the germ line that results in heritable transmission 

[143]. Evidence of transgenerational effects of environmental chemical exposures that are 

relevant to neurocognitive function come from studies using BPA and vinclozolin, an 

endocrine disruptor with antiandrogenic effects. One study examined mate preference in 

rats, a task that relies on multiple brain regions including amygdala, hippocampus, olfactory 

bulb, cingulated cortex, entorhinal cortex, and preoptic area-anterior hypothalamus [144, 

145]. Third generation female (F3) descendents of rats exposed to vehicle or vinclozolin 

(100 mg/kg) from GD8–14, preferred F3 vehicle lineage male rats versus F3 vinclozolin 

lineage male rats, suggesting differential mate preference [144]. F3 vinclozolin lineage male 

and female rats exhibited sexually dimorphic disruption of transcription in the hippocampus 

and amygdala, including changes in pathways involved in axon guidance and long-term 

potentiation [146]. Since these brain regions are associated with learning, memory, and 

anxiety, it is not surprising that vinclozolin transgenerational exposure is also linked to 

behavior. F3 vinclozolin male rats displayed a decrease in anxiety-like behaviors while F3 

vinclozolin female rats exhibited an increase in anxiety-like behaviors [146]. Thus, 

epigenetic reprogramming of the germline by environmental exposures can alter the brain 

transcriptome and influence behavior.

In utero BPA exposure has also been implicated in transgenerational effects on rodent brain 

development and behavior. In one study, compared with controls, F3 juvenile mice from the 

BPA exposed line (5 mg/kg diet) showed increased locomoter activity in the open field test 

and increased investigation of a stimulus mouse upon subsequent trials [147]. Despite intact 

olfactory senses, F3 mice from the BPA lineage did not become habituated to a familiar 

stimulus mouse and did not switch their interaction preference after the introduction of a 

novel mouse [147]. Reduced expression of estrogen receptor, oxytocin, and vasopressin in 

the brain were observed and postulated to underlie the deficits in behavior of mice in the 

BPA lineages [148]. Together, these results suggest that BPA exposure has transgenerational 

effects on brain transcript abundance and social recognition tasks in mice.

Neuroanatomic consequences have also been linked to transgenerational epigenetic 

reprogramming and altered learning and memory. Female F2 descendents of mice exposed 

to BPA (1, 10 mg/kg) on GD6–17 displayed a decreased number of newly generated 

hippocampal cells compared with vehicle lines [149]. This change was associated with 

deficits in learning and memory. Although Morris water maze testing did not reveal 

significant differences between treatment groups, F2 mice of the BPA lineage did exhibit 

reduced cross over latency in passive avoidance testing, suggesting impaired ability to 

remember past foot shock [149]. These mice also displayed deficits in brain-derived 

neurotrophic factor (BDNF), phosphorylated cAMP response element binding protein (p-
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CREB) and phosphorylated extracellular signal-regulated kinase, which were accompanied 

by changes in DNA methylation of the CREB regulated transcription factor coactivator 1 

gene [149]. These data are important because they establish the link between environmental 

exposures and transgenerational impacts on the brain transcriptome coincident with altered 

behavior.

The observation that effects of environmental exposures can be transgenerationally inherited 

via the germline epigenome further strengthens the hypothesis that the epigenome mediates 

the effects of gene by environment interactions on adverse neurodevelopmental outcomes of 

relevance to ASD. Further, it suggests the possibility that autism risk can change over 

generations. Understanding the complex epigenetic changes occurring in animal models will 

undoubtedly shed light on the etiology of brain development and ASD.

DNA Methylation Changes Observed in ASD

Several genetic disorders with high penetrance of ASD, including Rett, Fragile-X, Prader-

Willi, and Angelman syndromes, result from alterations in genes involved in epigenetic 

modifications. For example, Rett syndrome is associated with mutations in the MECP2 [150, 

151]. Independent of specific genetic mutations, changes in global DNA methylation and 

DNMT expression have also been observed in patients with ASD. In the cerebellum of 

autistic patients, DNMT1, 3A, and 3B expression are elevated compared with neurotypical 

controls [92, 152], which aligns with findings of increased global DNA methylation and 

hydroxymethylation in these patients [92, 152]. Additionally, there are numerous reports 

linking changes in DNA methylation to altered gene expression in patients with ASD versus 

neurotypical controls. Some examples are highlighted later and readers are referred to recent 

reviews on the topic [65, 151, 153–155].

Altered DNA methylation has been linked to reduced expression of genes in the GABAergic 

inhibitory system, a neurotransmitter system implicated in the pathophysiology of ASD 

[156]. Two examples include glutamate decarboxylase 67 (GAD1), which decarboxylates 

glutamate to form gamma-aminobutyric acid (GABA), and reelin, a gene expressed in 

GABAergic neurons that functions in neural migration and cortical lamination during 

development [157]. Both genes are reduced in patients with ASD relative to neurotypical 

controls and are associated with changes in DNA methylation and hydroxymethylation 

marks within the promoter region leading to MECP2-dependent repression [158].

Imbalances in synaptic connectivity have also been posited as a mechanism underlying ASD 

pathogenesis [77, 159] and may provide a biological substrate for enhanced susceptibility to 

environmental factors [27, 77, 159]. The synaptic protein SH3 and multiple repeat domains 

3, SHANK3, is a postsynaptic scaffolding protein of excitatory glutamatergic synapses. 

Translocation and breakpoint mutations in SHANK3 have been consistently implicated in 

developmental delays and ASD [160]. SHANK3 expression in brain and other tissues is 

regulated by DNA methylation [161, 162], and increased levels of SHANK3 DNA 

methylation, corresponding to decreased isoform-specific expression of SHANK3, have 

been observed in postmortem brain tissues of ASD patients compared with neurotypical 

control tissues [162].
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Neonatal levels of BDNF, a critically important gene in neural development, neuronal 

connectivity, and activity-dependent synaptic plasticity [50, 163], are reduced in children 

later diagnosed with ASD compared with age-matched controls [164]. However, when 

examined in older children (4 and 11 years of age), serum levels of BDNF are elevated in 

children with ASD versus neurotypical controls [165, 166]. The reason for the discrepancy 

in these two findings is unknown but may be specific to the developmental stage examined. 

BDNF transcription is regulated by DNA methylation [167, 168] and altered patterns of 

BDNF DNA methylation has been found in patients with cognitive impairments [167, 169, 

170]. Whether changes in BDNF DNA methylation contribute to altered BDNF expression 

observed in ASD patients has yet to be determined.

DNA methylation is complex and not always directly associated with decreased gene 

expression. For example, overexpression of engrailed 2 (EN2), another gene implicated in 

autism, is associated with DNA hypermethylation in the cerebellum of ASD patients [171]. 

Although seemingly counterintuitive, follow-up studies to distinguish DNA methylation 

from hydroxymethylation, confirmed elevated EN2 DNA hydroxymethylation in ASD 

cerebellum relative to controls [92]. The authors further showed that repressive MECP2 

binding was reduced in areas of DNA hydroxymethylation, likely due to MECP2’s lower 

affinity for DNA hydroxymethylation versus DNA methylation [172]. This observation 

provides a plausible mechanism for the elevated EN2 expression and increased DNA methyl 

marks in ASD cerebellum. These results are important because they highlight the complex 

interaction between DNA methyl marks and gene expression and serve as a reminder that 

elevated DNA methylation is not necessarily inconsistent with elevated gene expression.

Studies of monozygotic twins provide additional evidence that epigenetic mechanisms play 

a role in ASD etiology [21, 173]. Among 50 pairs of disease discordant monozygotic twins, 

several genes were found to be differentially methylated between the twin diagnosed with 

ASD and the nonsymptomatic twin, including genes previously implicated in ASD 

pathology such as GABRB3, AFF2, NLGN2, JMJD1C, SNRPN, SNURF, UBE3A, and 

KCNJ10 [21]. Further, there were significant DNA methylation differences between autistic 

twin pairs discordant for autistic traits (social, restrictive repetitive behaviors and interests, 

and communication) [21]. The changes in DNA methylation at differentially methylated 

CpG sites also correlated with total childhood autism symptoms test scores [21]. Together, 

these studies support a role for epigenetic mechanisms, and in particular, DNA methylation, 

in determining ASD susceptibility and raise new questions as to how environmentally 

mediated changes in the epigenome contribute to autism etiology.

DNA Methylation: Bridging the Gap between Environmental Exposure and 

ASD Susceptibility

In the sections earlier, we highlighted evidence demonstrating that: (i) environmental factors 

contribute to determining individual ASD risk and/or severity; (ii) developmental exposures 

to environmental chemicals can alter DNA methylation in multiple tissues, including the 

brain; and (iii) changes in DNA methylation have been documented in autistic individuals 

and implicated in ASD pathogenesis. The question remaining is whether these events are 
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causally linked. Currently, evidence pointing to changes in DNA methylation as a 

mechanism by which environmental chemicals contribute to ASD risk is limited (Table 2) 

but the few studies that have addressed this question have potentially significant implications 

regarding the importance of environmental epigenetics in the etiology of ASD. Perhaps most 

intriguing are recent data suggesting a link between PCB exposure, DNA methylation, and 

autism risk. The goal of this study [40] was to quantify levels of specific PCB and 

polybrominated diphenyl ether (PBDE) congeners in postmortem brain tissues from 

neurotypic controls versus patients with autism of unknown etiology and autistic patients 

comorbid for other neurodevelopmental disorders with a known genetic cause such as 

maternal Chromosome 15 q11–q13 duplication (15q duplication). Of the eight PCB 

congeners examined, the only environmental chemical that varied significantly between 

groups was the NDL congener PCB 95. 15q duplication was the strongest predictor of PCB 

95 exposure and these individuals also exhibited DNA hypomethylation of the LINE-1 
element [40]. Although it has yet to be determined whether there is a causal relationship 

between PCB 95 exposure and 15q duplication, and if so the nature of the relationship (e.g. 

did the PCB 95 exposure increase the risk of 15q duplication or did the genetic anomaly 

contribute to increased accumulation of PCB 95 in the brain), these findings are consistent 

with the hypothesis that complex genetic, epigenetic, and environmental factors interact to 

determine risk for autism. They further support the possibility that the epigenome may be a 

convergence point for effects of environmental neurotoxicants like PCBs on genes that 

confer susceptibility for ASD or other neurodevelopmental disorders.

In animal models, in utero exposure to BPA (200 μg/kg/day) produces sex-dependent 

alterations in DNA methylation and expression of mouse hippocampal genes [50]. Exposure 

to BPA increased hippocampal expression of Bdnf in female P28 mice but decreased it in 

male mice, and these effects persisted to at least P60 [50]. Concurrently, changes in Bdnf 
expression were associated with sex-specific changes in DNA methylation driven by male-

induced hypermethylation of a CpG site within the Bdnf promoter [50]. BPA-induced 

changes in hippocampal gene expression and DNA methylation were accompanied by 

decreased exploration of a novel object [50], an endpoint used to indicate deficits in learning 

and memory. BPA-induced changes in BDNF DNA methylation are also observed in 

humans. BDNF DNA methylation is higher in cord blood from boys whose mother had 

higher levels of BPA during pregnancy [50]. Intriguingly, these boys at 3–5 years of age 

displayed increased aggressive behavior and their emotionally reactive symptom scores were 

1.62 times higher compared with boys with low prenatal BPA concentrations [136]. Thus, 

BDNF DNA methylation may serve as a biomarker for BPA exposure, and potentially as an 

indicator of behavioral deficits in children [50]. These results corroborate findings that total 

BPA concentrations are positively associated with LINE-1 global DNA methylation in 

human placenta [51].

Together, these results link exposure to the environmental chemicals PCBs and BPA to 

changes in DNA methylation, gene expression, and behavior. Whether these events are 

causally linked is unknown but future studies aimed at addressing this important question are 

warranted.
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Challenges for the Future

The studies highlighted in this review identify a common theme: developmental exposures to 

environmental chemicals decrease Dnmt expression or decrease global DNA methylation 

levels (Table 1). This suggests two possible mechanisms by which environmental chemicals 

change DNA methylation: (i) altering Dnmt expression or activity or (ii) altering DNA base 

modifications and repair mechanisms known to participate in reducing DNA methylation. 

Since these processes themselves are not completely understood, how environmental 

chemicals produce these changes remains a significant knowledge gap in the field. These 

changes likely occur in a sex-, stage,- and gene-specific fashion providing a further 

challenge to understanding the functional consequences of the full battery of epigenetic 

changes elicited by environmental exposures during neurodevelopment.

The importance of addressing the impact of environmentally induced changes in the 

methylome on neurodevelopmental outcomes is heightened by the observation that the 

directional change in DNMT expression/DNA methylation upon exposure to environmental 

chemicals is not always consistent with that observed in ASD patients. These discrepancies 

highlight the necessity for moving away from assessment of global methylation toward 

assessment of gene-specific changes. Addressing these questions will be challenging, in part 

because of limitations in the tools currently available to address these questions. 

Pharmacological inhibitors of DNA methylation are available but lack gene or cell type 

specificity and can have off-target effects. Genetically modified animals that enable 

conditional deletion of Dnmts are available and have proven invaluable for understanding 

the role of Dnmts in a cell type and developmental stage-specific fashion; however, they do 

not provide the ability to alter DNA methylation in a gene-specific fashion. These limitations 

notwithstanding, studies examining the effects of environmental chemical exposures in these 

genetically modified animals would likely provide useful insights. Additionally, extending 

environmental epigenetic studies focused on neurodevelopmental outcomes to animal 

models such as guinea pig and nonhuman primates with primarily postnatal brain 

development will be important for addressing issues related to species differences in prenatal 

versus postnatal brain development [174, 175]. Finally, future epidemiological studies 

focused on environmental exposures, global DNA methylation, gene-specific DNA 

methylation in the brain, and ASD severity in cohorts of ASD patients versus neurotypic 

controls are needed. As the field of epigenetics continues to grow, integration of new 

techniques with proven approaches will no doubt enhance our understanding of epigenetic 

mechanisms underlying gene by environment interactions in ASD.

As indicated earlier, a critical knowledge gap is the paucity of evidence indicating whether 

environmental chemical effects on DNA methylation target genes specifically implicated in 

ASD. In other words, are DNA methylation changes induced by developmental exposures to 

environmental chemicals causally linked to adverse neurodevelopmental outcomes via 

altered expression of ASD susceptibility genes? Additionally, with a heterogeneous disease 

like ASD, how is the degree of impairment determined? This is an important area of future 

study with clinical significance. Finally, it is important to remember that differential DNA 

methylation is only one of a number of epigenetic mechanisms that may play a role in 

determining ASD risk.
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Conclusion

The epigenome may mediate effects of environmental risk factors on the developing brain, 

especially during developmental stages when epigenetic patterns are being established. 

These early life perturbations can have lasting impacts on gene expression and behavior and, 

thus, provide a plausible mechanism by which environmental factors converge on existing 

genetic mutations to determine the risk and severity of ASD.

The malleability of the epigenome is both negative, in that it increases susceptibility to the 

neurotoxic effects of environmental chemicals, and positive, in that the very fact that it can 

be modulated raises opportunities for therapeutic interventions. On the other hand, the 

dynamic nature of the epigenome suggests that each individual likely has a unique 

combination of epigenetic marks based on timing of exposures, frequency and dose of 

exposure, and the combination of environmental exposures, which in turn interacts with the 

individual’s unique genetic substrate. This makes an approach to reverse abnormal 

epigenetic marks very difficult and would likely manifest in a heterogeneous population 

response to any given therapeutic strategy. Nonetheless, one such approach has been to 

intervene with DNA methylation through modifying the availability of methyl donors in the 

diet. Folic acid along with methionine, choline, and others are essential methyl donors in the 

reaction catalysed by Dnmts to add methyl groups to DNA. Therefore, by altering levels of 

available methyl donors, changes in DNA methylation can be studied along with their 

downstream consequences. The use of diet in modulating ASD pathogenesis is an active 

area of research and readers are referred to reviews on the topic [153, 176]. The fact that 

chemical exposures are more readily controlled than genetic factors to prevent or mitigate 

deleterious traits related to neurodevelopmental disease, coupled with the fact that the 

epigenome is malleable, underscore the relevance, and potentially significant impact of 

investigating epigenetic mechanisms of environmentally induced adverse 

neurodevelopmental outcomes in ASD.
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