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ABSTRACT OF THE DISSERTATION 

 
Disentangling the relationship between bacterial diversity and its functioning: plant litter 

communities as a model system 
 

By 
 

Michaeline Burr Nelson Albright 
 

Doctor of Philosophy in Biological Sciences 
 

 University of California, Irvine, 2017 
 

Professor Jennifer B.H. Martiny, Chair 
 
 
 

Microbes are key players in global biogeochemical cycles. Despite their 

importance, many ecosystem models do not explicitly consider microbial communities 

and their functions. One reason for this is that we lack a quantitative understanding of 

the role that microbes play in biogeochemical processes, making their incorporation into 

models difficult. My dissertation takes a step towards establishing these links between 

microbial community composition and ecosystem function using two different 

approaches.  The first approach was characterizing the patterns and drivers of a handful 

of traits associated with a key biogeochemical process, the nitrogen (N) cycle and then 

asking which taxa were associated with this trait. I tested this approach in one 

ecosystem and provided a blueprint of the nitrogen cycling potential of a grassland litter 

microbial community (Chapter 1). I then extended this work to characterize the global 

biogeography of microbial N cycling traits and investigated what environmental drivers 

might underlie these patterns (Chapter 2). Moving beyond patterns, understanding the 

processes driving the distribution of microbial communities presents a further challenge. 
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Thus, the second approach taken in my dissertation was an experimental approach to 

investigate the local processes driving variation in bacterial community composition and 

functioning. More specifically, I focused on disentangling the effects of selection, drift, 

and dispersal on community assembly. First, I investigated how dispersal influences the 

assembly of this natural bacterial community using time series data from a field 

experiment (Chapter 3). I found that changing dispersal rate altered bacterial 

colonization rates and led to differences in the abundance, richness, evenness, and 

composition of communities. I then used another field experiment to quantify the role of 

stochastic processes in shaping microbial communities (Chapter 4). Here, I identified 

stochastic variation in bacterial community composition even after accounting for 

measurement error. Furthermore, stochastic variation in community composition 

translated into variation in functional parameters. Ultimately, the ability to accurately 

quantify stochastic processes is paramount to determining the predictability of 

community composition and functioning, whether focused on bacteria that degrade plant 

litter, microbes in the human gut, or patterns of global biodiversity.  
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INTRODUCTION 

 Bacteria drive many key biogeochemical processes, however, it can be 

difficult to link functioning to changes in bacterial communities under field conditions. 

One reason for this is that bacterial communities are often highly diverse, especially in 

terrestrial ecosystems such as plant litter and soils. A single gram of soil is estimated to 

house ~1010 bacterial cells with an estimated species diversity of between 2000 and 

8.3x106 species (Gans et al. 2005; Schloss & Handelsman 2006; Roesch et al. 2007). 

Linking bacterial diversity and its functioning is an important challenge as it can give 

insight into how current ecosystems work. In addition, this information allows for 

predictions as to how an ecosystem will look in the future, for example in response to 

global change (Gubry-Rangin et al. 2011; Raes et al. 2011; Zhou et al. 2013). My 

dissertation uses a combination of recent advances in sequencing technology 

(metagenomics) and new experimental approaches to explore links in variation in 

taxonomic composition to functional metrics.  

Building on early studies in plant and animal biogeography, the field of microbial 

biogeography took off with the ability to characterize and quantify microbial diversity 

across space in natural environments (Green et al. 2008).  As with early macroorganism 

studies, microbial biogeography initially used a taxonomic approach (Martiny et al. 

2006). Most of these studies investigated how the environment influenced microbial 

community composition. To do this, they assayed community composition across many 

different sites and spatial scales ranging from centimeters to kilometers. Variation in 

taxonomic composition was then associated to variability in the physical template, 

including parameters such as pH, salinity, organic C, and C:N ratios (Fierer & Jackson 
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2006; Lozupone & Knight 2007; Rousk et al. 2010; Bates et al. 2011; Nemergut et al. 

2011). These studies have demonstrated, that as with macro-organisms such as plants, 

the composition of microbial communities varies over space and time (Martiny et al. 

2006; Fierer & Ladau 2012). They have also revealed information on the environmental 

processes underlying community composition. However, it is still unclear how these 

communities might contribute to ecosystem functioning. 

To address this gap, biogeographic studies are increasingly considering 

functional traits. This movement has been driven by the goal of predicting changes in 

terrestrial ecosystem function in response to global changes (Lavorel & Garnier 2002; 

McGill et al. 2006; Green et al. 2008; Krause et al. 2014). Furthermore, for 

microorganisms, new technologies such as metagenomic sequencing are rapidly 

expanding the information available about microbial communities, including their 

functional traits (Tringe & Rubin 2005; Raes & Bork 2008). Metagenomic data provide 

information about the taxa present as well as a blueprint of their potential to contribute 

to functional processes, where underlying information on the genomic structuring of key 

organismal traits is well known. While it remains a challenge to interpret the large 

amount of data produced, metagenomes provide an opportunity to consider microbial 

traits in an environmental context (Barberan et al. 2012). Ultimately, incorporating trait-

based approaches in microbial biogeography may provide insight into the links between 

microbial community composition and ecosystem function (Green et al. 2008; Raes et 

al. 2011; Louca et al. 2016b). 

Most previous studies linking microbial community composition and function to 

environmental parameters have taken the approach of identifying factors that select on 
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the entire suite of microbial traits (Louca et al. 2016a). I reversed this direction of 

inquiry, instead first characterizing the patterns and drivers of a handful of traits 

associated with a key biogeochemical process and then asking which taxa are 

associated with this trait. Taking this approach, I focused on the nitrogen (N) cycle. 

There are several reasons why N cycling traits are important to consider: 1) N is a key 

element for all of life, 2) In the environment, microbes are largely responsible for many 

of the N compound transformations or pathways in the N cycle 3) Humans are altering 

the N cycle through factory and automobile emissions and the production of inorganic 

fertilizers. I first characterized N cycling traits representing eight different N cycling 

pathways in one ecosystem, a southern California grassland, using metagenomic data 

spanning 2 years and 3 global change treatments (Chapter 1; (Nelson et al. 2015)). 

With this work I showed that seasonal variation impacts the abundance and composition 

of N cycling traits in this grassland. This study provided a baseline for comparison to 

other systems. I then extended this approach using 365 publicly available 

metagenomes to provide the first characterization of the global biogeographic patterns 

of microbial N cycling traits in soil (Chapter 2; (Nelson et al. 2016)). 

Biogeographic studies, whether focused on taxonomic or trait composition, 

demonstrate that the abiotic environment plays a large role in determining microbial 

composition. However, moving beyond patterns, understanding the processes driving 

the distribution of microbial communities presents a further challenge. The four 

processes driving patterns observed in microbial biogeography include, selection, 

dispersal, drift, and mutation (Hanson et al. 2012). Generally, these processes are 

categorized as either stochastic or deterministic. Deterministic variability in community 
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composition arises from environmental factors and biotic interactions that select for 

predictable differences in composition. In contrast, stochastic variability emerges from 

random differences in replication, death, mutation, and dispersal among individuals in a 

community (Hubbell 2001; Vellend 2010; Chase & Myers 2011). The role of dispersal is 

particularly complex, as dispersal may be stochastic or deterministic. Dispersal rates 

also have the potential to impact ecological drift, stochastic changes in the relative 

abundance of organisms in a community (Vellend 2010; Nemergut et al. 2013a). 

Specifically, high dispersal rates can limit drift in communities, as migration between 

locations can homogenize variation in species composition among locations.  

Quantifying the dispersal of microorganisms is a challenge due to their small size 

and high abundance (Nemergut et al. 2013a), therefore the relationship between 

dispersal rates and microbial diversity or composition remains to be tested. 

Furthermore, these relationships are likely complex and dependent on environmental 

context (Chase 2007; Louca et al. 2016a; Evans et al. 2017). More broadly, a solid 

foundation has accumulated recognizing the importance of both stochastic and 

deterministic processes in influencing diversity. This foundation has been built on both 

observational studies and field experiments that track changes in communities across 

spatial and temporal gradients, while measuring numerous deterministic, potentially 

selective biotic and abiotic variables (Bell 2010; Ferrenberg et al. 2013; Lee et al. 2013; 

Brown & Jumpponen 2014; Hao et al. 2016; Louca et al. 2016a). Statistical methods, 

including null-deviation models (Ferrenberg et al. 2013; Brown & Jumpponen 2014; 

Dini-Andreote et al. 2015) or variance partitioning (Dumbrell et al. 2010; Hanson et al. 

2012; Langenheder et al. 2012), are then used to infer deterministic and stochastic 
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processes. Still, these studies have been limited to making comparisons on the relative 

importance of stochastic and deterministic processes. Furthermore, since they often 

take place across large environmental gradients where variation is likely high, studies 

may not measure key abiotic and biotic (deterministic) factors driving community 

composition (Bell 2010). Lastly, they do not quantify measurement error, thereby likely 

inflating measures of stochasticity (Evans et al. 2017).  

Thus, my third and fourth dissertation chapters shift from focusing on patterns in 

the distribution of microbial traits, to using an experimental approach to delve into the 

local processes driving microbial community composition and functioning. For my third 

chapter I conducted a field experiment where I manipulated a bacterial community’s 

dispersal rate and tracked responses in the community weekly over five months. In this 

study I found that bacterial dispersal, like selection by the litter substrate, contributes to 

the diversity and composition of the bacterial community on grassland litter (Chapter 3; 

Albright & Martiny, In press ISME). My fourth chapter is the first field experiment that 

directly attempts to disentangle the role of stochastic processes, environmental 

selection, and dispersal on microbial community composition and functioning. I further 

provide the first estimate of stochastic variation in microbial community composition and 

functioning that accounts for measurement error (Chapter 4).  Overall, insight gained 

from mapping current patterns in microbial community distributions and understanding 

the processes behind those patterns will improve predictions as to how ecosystems will 

look in the future, for example in response to global change. 
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CHAPTER 1 

Nitrogen cycling potential of a grassland litter microbial community 

ABSTRACT  

Because microorganisms have different abilities to utilize nitrogen (N) through 

various assimilatory and dissimilatory pathways, microbial composition and diversity 

likely influences N cycling in an ecosystem. Terrestrial plant litter decomposition is often 

limited by N availability; however, little is known about the microorganisms involved in 

litter N cycling.  In this study, we used metagenomics to characterize potential N 

utilization of microbial communities in grassland plant litter. The overall frequency of 

sequences associated with eight N cycling pathways differed by several orders of 

magnitude. Within a pathway, the distribution of these sequences among bacterial 

orders varied greatly. Many orders within the Actinobacteria and Proteobacteria 

appeared to be N cycling generalists, carrying genes from most (5 or 6) of the 

pathways. In contrast, orders from the Bacteriodetes were more specialized and carried 

genes for fewer (2 or 3) pathways. We also investigated how the abundance and 

composition of microbial N cycling genes varied over time and in response to two global 

change manipulations (drought and N addition). For many pathways, the abundance 

and composition of N cycling taxa varied over time, apparently reflecting precipitation 

patterns. In contrast to temporal variability, simulated global change had minor effects 

on N cycling potential. Overall, this study provides a blueprint for the genetic potential of 

N cycle processes in plant litter and a baseline for comparisons to other ecosystems. 

 

INTRODUCTION 
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 Microorganims play a key role in the decomposition of terrestrial plant litter(Raich 

& Schlesinger 1992; Aerts 1997; Chapin et al. 2002), a process that controls the 

balance of plant carbon (C) released in the atmosphere as CO2 versus stored in the 

soil. Less often considered is the role that litter microorganisms play in nitrogen (N) 

cycling. N available to microorganisms degrading plant litter comes primarily from 

several sources. One source is organic N bound in plant tissues and microorganisms. 

Because the average C:N ratio is much higher in plant litter than in microbial 

decomposers, N availability is thought to limit litter decomposition (Paul & Clark 1996; 

Cleveland & Liptzin 2007; Mouginot et al. 2014). Fungal hyphae can further translocate 

N from the soil into plant litter (Boberg et al. 2010). And in some ecosystems, 

atmospheric deposition of inorganic N from human-driven NOx emissions can also be an 

important source (Boonpragob & Nash 1990; Fenn & Bytnerowicz 1997; Schimel & 

Bennett 2004). 

 Microbes can rapidly alter the forms of N in plant litter through a variety of different 

N cycle pathways, and these changes in N availability can feedback to influence overall 

ecosystem functioning (Schimel & Hattenschwiler 2007; Miki et al. 2010). During 

decomposition, bacteria utilize N in both assimilatory and dissimilatory pathways. 

Assimilatory pathways require energy and lead to the conversion of inorganic N to 

organic N in microbes (e.g., utilizing N for protein, nucleic acid, and cellular component 

assembly). Dissimilatory pathways use N compounds to provide energy to microbes. 

Thus the pathways by which microbes use N impact the fate of N in the ecosystem and 

specifically, whether it is converted into microbial biomass or converted to new forms 

and released into the environment. For example, through the ammonia assimilation 
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pathway, organic N in plant litter may be used by microorganisms for growth (Geisseler 

et al. 2010). Through the denitrification pathway, N may be removed from the plant 

litter-soil system and lost into the atmosphere as N2O or N2 (Brown et al. 2012) 

 Environmental conditions also influence plant litter decomposition and therefore N 

cycling  (Aerts 1997; Gholz et al. 2000; Knorr et al. 2005; Parton & Silver 2007; 

Petersen et al. 2012). In particular, moisture availability is known to be important to 

plant litter decomposition rates (Moore 1986; Cisneros-Dozal et al. 2007). Climate 

models predict decreased precipitation in the southwestern U.S. in the next century 

(Seager et al. 2007), a change that may also alter decomposition indirectly via changes 

in plant composition and litter quality in grasslands ecosystems (Potts et al. 2012; 

Allison et al. 2013). In addition, N availability also plays a role in plant litter 

decomposition (Frey et al. 2004; Knorr et al. 2005). N loading from anthropogenic 

sources (in Southern CA estimated between 20-45 kg ha-1 yr-1) is expected to continue 

to increase (Fenn et al. 2003) and to affect plant communities and ecosystem 

functioning (Allen et al. 1998; Egerton-Warburton & Allen 2000; Fenn et al. 2010). 

 To investigate the effect of such changes on grasslands, an experiment 

manipulating nitrogen and precipitation was established in 2007 at Loma Ridge in Irvine, 

CA (Potts et al. 2012; Kimball et al. 2014). Previous work indicates that both drought 

and added N, as well as seasonal and annual climate variation, affects litter microbial 

composition (Berlemont et al. 2014; Matulich et al. 2015). Moreover, these shifts in 

microbial composition have functional consequences (Matulich & Martiny 2015). A 

reciprocal transplant experiment demonstrated that microbial communities altered by 

drought had lower rates of plant litter decomposition even under ambient environmental 
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conditions (Allison et al. 2013). Further, taxonomic changes in the litter community were 

correlated with changes in frequency of glycoside hydrolases, genes responsible for C 

utilization (Berlemont et al. 2014). 

 Given the intertwined nature of N and C cycling during litter decomposition, we 

investigated the genetic potential of N utilization in plant litter microbial communities. 

We analyzed metagenomic samples to identify genes for N cycling in microbial 

communities from the Loma Ridge experimental plots. We focused our work on 

prokaryotes because they are the most abundant organisms on the litter (Alster et al. 

2013), but we also quantified sequences associated with Fungi. Although metagenomic 

sequences only indicate the functional potential of a community, they provide a holistic 

description of potential N utilization across many pathways in the N cycle. Specifically, 

we asked: (1) How does the abundance, taxonomic composition, and diversity of N 

cycling genes vary among pathways? (2) Within a pathway, do these patterns vary over 

time? and (3) Does N cycling potential respond to global change manipulations (drought 

and N addition)? 

 

METHODS 

Field Experiment and DNA sequencing 

 The Loma Ridge global change experiment, Irvine, CA, USA (33°44’N, 117°42’E, 

365 m elevation) was established in 2007 with precipitation and N manipulations 

(Allison et al. 2013; Berlemont et al. 2014). The precipitation manipulation reduced 

water by 50%, creating drought plots. Surface soil moisture was significantly lower in 

drought plots than ambient treatment plots (Matulich et al. 2015). The nitrogen addition 
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plots received 60 kg CaNO3 ha-1 yr-1. Previous studies at the site have shown that litter 

from nitrogen addition plots contained significantly more nitrogen and lower 

concentrations of carbon substrates, such as cellulose, hemicellulose, and lignin, than 

control plots (Allison et al. 2013).  And furthermore plant-available nitrogen in soil was 

significantly lower in drought plots, than in control or nitrogen plots (Potts et al. 2012). 

Compared to control plots drought treatments reduced and nitrogen addition plots 

increased decomposition rates, as measured by mass loss (Allison et al. 2013). 

The climate in this southern California grassland ecosystem is semi-arid, with 

mean annual precipitation of 325 mm, most of which occurs between October and April. 

Beginning in 2010, plant litter samples were taken seasonally for two years in control, 

drought, and N addition plots. Sampling dates were April 14th, August 20th, and 

December 17th 2010; February 29th, June 10th, September 21st, and December 14th 

2011; and March 12th 2012.   

 For each of the three treatments (ambient, drought, and N addition), eight plots 

were sampled at 8 times points (for a total of 192 samples). To balance replication with 

sequencing costs, we pooled equal concentrations of DNA extracts from 4 plots 

undergoing the same treatment, where the same plots were pooled on each date 

(Berlemont et al. 2014). Thus, six metagenomic libraries (two replicate libraries per 

treatment) were sequenced at eight time points for a total of 48 libraries. Although two 

replicates per treatment is not ideal and limits our statistical power to test for treatment 

effects, pooling four independent plots into two composite “replicates” provides 

improved mean estimates (such as the mean abundance of a particular gene) 

compared to sampling only two plots (Brumelle et al. 1984). Further, sampling over 8 
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time points also gives us additional statistical power to test for treatment effects by 

reducing the error variance (Sokal & Rohlf 2012). 

 Metagenomic libraries were prepared using a Truseq(r) library kit (Illumina, Part 

#15026484 Rev. C - July 2012), sequenced with an Illumina HiSeq2000 (100bp-paired 

ends), and yielded 107.4 Gbp (passed QC) (Berlemont et al. 2014). In total, 46 libraries 

were analyzed with two libraries excluded due to low sequence counts (April 2010 

reduced precipitation (4511045); August 2010 increased N deposition (4511064) (Table 

S1)). Sequences were uploaded onto the MG-RAST server, where 53% of the 

sequences were annotated (Berlemont et al. 2014).  

Taxonomic assignment for the metagenomic libraries was performed by MG-

RAST (Meyer et al. 2008) using the Kegg database (Kanehisa et al. 2010) and 

downloaded using the MG-RAST API version 3.2 (Meyer et al. 2008). Taxonomic 

annotation was considered for sequences with an e-value of less than or equal to 10-5 

(Berlemont et al. 2014). Each sequence was assigned to the closest related species in 

the database; however, to be conservative in our taxonomic assignment, we report 

bacterial taxonomy at the corresponding order level.  

 

N-cycle Pathway Identification 

 Eight N cycling pathways were defined for this analysis:  nitrification (number of 

genes targeted: n=2), N fixation (n=20), denitrification (n=20), dissimilatory nitrate to 

nitrite reduction (DNRA(NO3
- → NO2

-)) (n=9), dissimilatory nitrite to ammonia reduction 

(DNRA(NO2
- → NH4

+)) (n=4),  assimilatory nitrate to nitrite reduction (ANR(NO3
- → NO2

-

)) (n=2), assimilatory nitrite to ammonia reduction (ANR(NO2
- → NH4

+)) (n=2), and 
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(ammonia assimilation (n=10) (Figure 1.1, Table S2). Although nitrification includes both 

ammonia oxidation and nitrite oxidation, we combined them here because of their low 

representation in the samples. Finally, we excluded the anammox pathway from our 

analyses. The functional genes for this pathway are poorly represented in genome 

databases (and currently not defined in the KEGG or SEED databases). After some 

analysis, we were not confident in our ability to distinguish between genes in the 

annamox pathway and related, non-annamox genes. 

To detect genes in the eight pathways, we first identified the corresponding 

genes in the Kegg (Kanehisa et al. 2010) and SEED (Overbeek et al. 2005) databases. 

For the Kegg database, Kegg orthology (KO) numbers (Kanehisa et al. 2010) were 

obtained from the Functional Ontology Assignment for Metagenomes (FOAM) database 

(Prestat et al. 2014). For the SEED database, figfam numbers (FIG) were obtained for 

the N fixation and denitrification pathways. Next, MD5 IDs for each KO and FIG number 

sequence were retrieved from the non-redundant M5nr database (Wilke et al. 2012). 

Finally, we searched for the MD5 IDs in our samples annotated by the MG-RAST 

server. For each pathway, we checked the functional assignments of a subset of 

sequences using the BLAST algorithm against the MicrobesOnline database. This 

allowed us to compare the annotations and genome context of those hits in fully 

sequenced genomes (Dehal et al. 2010). 

  

Data Standardization and Statistical Analyses  

We first compared the relative abundance of prokaryotic and fungal reads across 

the different N cycle pathways. To do this, we took the average number of sequences 
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associated with each pathway across all 46 samples, then divided by the number of 

different genes searched in the pathway. While we recognize it is common to also 

standardize by gene length (e.g., (Batmalle et al. 2014)), the variation in copy number 

and gene length for all 80 genes across a wide range of microbial taxa makes this 

infeasible. Conveniently, our results show that most pathway average abundances differ 

in orders of magnitude, while gene lengths usually vary to a lesser degree. This 

suggests that the observed relative differences would likely persist even with such 

standardization. 

All statistical analyses were performed using the ‘nlme’ and ‘vegan’ packages in 

the R software environment (Team 2011; Oksanen et al. 2013). To test for differences 

in abundance of bacterial communities across treatments and sampling date, we used 

one-way repeated measures ANOVA with plot included as an error term. For this 

analysis, we standardized the number of read numbers associated with each pathway 

by the total number of annotated bacterial reads in that library. We standardized fungal 

read abundances for each sample by the total fungal reads in each library.  

 Taxonomic diversity of the genes associated with each pathway was quantified 

using the Shannon evenness index and observed richness of the number of orders. To 

test whether evenness changed over time, we performed one-way repeated measures 

ANOVA as described previously.  

 To assess the effects of treatment and time on bacterial community composition, 

we performed a permutational multivariate analysis of variance (PERMANOVA) 

including treatment and sampling date as fixed effects ( (Clarke & Warwick 2001; 

Anderson et al. 2008). Taxa were first standardized by their relative frequency within 
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each pathway, then the analysis was run for each pathway.  The analyses were run 

using partial sums of squares on 999 permutations of residuals under a reduced model. 

If the model returned non-significant variables, the variables were removed, and the 

model was tested again. This procedure does not alter the significance of the remaining 

variables, but reduces the effect of spurious relationships between variables (Harell 

2001). To identify the taxa contributing to significant compositional differences, we used 

similarity percentages analysis (SIMPER) (Clarke & Gorley 2006). Specifically, we 

tested which taxa accounted for differences between the rainy (winter/spring) versus dry 

(summer/fall) samples. Lastly, Pearson’s correlations were used to test whether the 

number of sequences attributed to an N cycling pathway were distributed among 

bacterial orders in proportion to their total abundance in the metagenomes. 

 

Extracellular Enzyme Activity 

To assay the functional potential of the litter microbial community, we measured 

the potential activities of nine extracellular enzymes including, A-Glucosidase (AG), acid 

phosphatase (AP), B-Glucosidase (BG), B-Xylosidase (BX), cellobiohydrolase (CBH), 

leucine aminopeptidase (LAP), N-acetyl-B-D-glucosaminidase (NAG), polyphenol 

oxidase (PPO), and peroxidase (PER), on litter from all treatments at seven sample 

dates between September 2011 and March 2013. Fluorimetric and oxidative enzyme 

assays were conducted as described in (Alster et al. 2013) and initial results from these 

analyses are reported in (Matulich et al. 2015). For this study we used the same data to 

calculate the ratio of C and N acquiring enzymes (NAG:Cenz) (Stone 2014). The ratio of 

these two metrics has been proposed to estimate relative allocation to energy versus 
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nutrient acquisition (Sinsabaugh et al. 2009; Stone 2014). The extracellular enzyme N-

acetyl-β-D-glucosaminidase (NAG) measures potential chitinase activity, a proxy for the 

conversion of organic N to ammonium for assimilation. Cenz is defined as the sum of four 

extracellular enzymes involved in C cycling (AG BG, CBH, BX). We used a repeated 

measures ANOVA to test for differences in NAG:Cenz  ratios across all treatments and 

enzyme sampling dates. 

To test for correlations between potential enzyme activities and genomic 

potential, we examined data from three sampling dates when both types of data were 

collected (September 2011, December 2011, March 2012). Specifically, we tested 

whether the NAG:Cenz ratio could be predicted by the ratio of the abundance of 

Assimilatory: Dissimilatory (A:D) N cycling genes, as a genomic index for allocation of 

energy versus nutrient acquisition. We used an ANCOVA with NAG:Cenz activity as the 

independent variable, the A:D ratio as the dependent variable, and time as a covariate. 

(We excluded treatment as a covariate because treatment did not significantly affect the 

NAG:Cenz ratio in the test described above.) 

 

RESULTS  

Across all the plant litter metagenomic libraries, 59% of the annotated sequences 

were bacterial (294,674,419 reads). Of the annotated sequences, 0.31% were 

associated with an N cycling pathway, and of these, 896,943, 197,944, and 3,278 were 

assigned to Bacteria, Fungi, and Archaea, respectively. The vast majority of these 

sequences were associated with ammonia assimilation (84%, 75%, and 98%, from 
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Bacteria, Fungi, and Archaea, respectively). All N cycling fungal sequences were 

associated with two phyla, Ascomycota (94.5%) and Basidiomycota (5.5%).  

 

Abundance 

 The total abundance of prokaryotic reads related to different N cycling pathways 

differed by several orders of magnitude (Figure 1.2). Broadly, assimilatory pathways 

were much more prevalent (96.5%) than dissimilatory pathways (3.5%). After ammonia 

assimilation, ANR(NO3
- → NH4

+) and DNRA(NO3
- → NO2

-) were the next most detected 

pathways, while the nitrification pathway was the least detected (Table 1.1). All fungal N 

cycling sequences were associated with assimilatory pathways (Figure 1.2).  

The frequency of prokaryotic genes in each pathway varied significantly over 

time for 5 of the 8 pathways: ammonia assimilation, ANR(NO2
- → NH4

+), DNRA(NO3
- → 

NO2
-), N fixation, and denitrification pathways (repeated measures ANOVA; Table 1, 

Figure 3a). Gene abundances in these pathways tended to covary over time and were 

lowest in August 2010 and June 2011. This pattern correlated with cumulative 

precipitation at the site in the two weeks prior to sampling (Figure 1.3b). The only fungal 

pathway that varied significantly over time was that associated with ANR(NO2
- → NH4

+). 

In contrast to prokaryotic sequences from this pathway, the frequency of fungal 

sequences was highest in August 2010 and June 2011 (Figure 1.3a). 

 

Composition 

The distribution of N cycling potential among prokaryotic taxa differed distinctly 

by pathway (comparing the columns in Figure 1.4).  Genes involved in ammonia 
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assimilation, were generally detected in proportion to each bacterial order’s abundance 

(R2 = 0.877, P<.0001), as were genes involved in ANR(NO2
- → NH4

+) and DNRA (NO3
- 

→ NO2
-) (R2 = 0.714, 0.657, P<.0001). ANR(NO3

- → NO2
-) was the most taxonomically 

restricted pathway. Even though genes for this process were relatively abundant in the 

metagenomic libraries (Figure 1.2), they were detected for only five bacterial orders and 

thus were not well correlated with total abundance of each order (R2 = 0.459, P<.0001). 

Finally, genes for DNRA(NO2
-→ NH4

+), were rare among abundant orders, but common 

among some rare orders and hence were poorly correlated with overall abundance (R2 

= 0.084, P>0.05; Figure 1.4).  

In an intermediate case, denitrification genes were common amongst many 

abundant bacterial orders (e.g., Rhizobiales, Burkholderiales, and Actinomycetales), but 

were also found in other less abundant orders including Archaea (Halobacteriales, 

Methanosarcinales, and Cenarchaeales) and known ammonia-oxidizers 

(Nitrosomonadales and Nitrosopumilales) (R2= 0.539, P <.0001, Figure 1.4). This was 

also true for N fixation (R2= 0.497, P<.0001), which was common in some the most 

abundant taxa (e.g., Rhizobiales and Burkholderiales), but absent in the most abundant 

order (Actinomycetales). 

Distinct bacterial taxa appeared to have different N cycling potential in these 

plant litter communities (comparing rows in Figure 1.4). The most abundant taxa (e.g., 

Actinomycetales, Rhizobiales, Burkholderiales, and Sphingomonadales) appeared to be 

N cycling generalists in that they carried genes from most (5-6) of the seven pathways. 

Other taxa seemed to be more specialized. Notably, the orders from phylum 

Bacteriodetes (Bacteriodales, Cytophagales, Flavobacteriales, and Sphingobacteriales) 
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carried genes for only a couple (2-3) pathways, even thought the taxa were relatively 

abundant (Figure 1.4).  

Beyond these average trends, the composition of potential N cycling litter 

prokaryotes varied among litter samples. Much of this variation could be attributed to 

temporal variability (Figure S1). In 5 of the 8 examined pathways, time explained 

between 12% and 45% of the compositional variation among samples (Figure 1.5; 

Table S3). These trends were largely driven by seasonal differences in a few abundant 

bacterial orders. For instance, across all N pathways, the relative abundance of 

Burkholderiales and Sphingomonadales was higher, and Enterobacteriales lower, in the 

rainy (winter/spring) versus dry (summer/fall) seasons (SIMPER analysis; Table S4). 

However, the seasonal abundance of at least two orders depended on the N pathway 

examined. Actinomycetales ANR(NO2
- → NH4

+) genes were relatively abundant in 

winter/spring, but Actinomycetales ANR(NO3
- → NO2

-), DNRA(NO3
- → NO2

-), and 

ammonia assimilation genes were higher in summer/fall (Table S4). 

 In contrast to time, treatment (drought or N addition) had minor effects on the 

composition of N cycling prokaryotes, explaining only a small percentage of variation in 

the DNRA(NO3
- → NO2

-) (2.9%) and ANR(NO2
- → NH4

+) (4.4%) pathways (Figure 1.5).  

This result was similar to analyses of community composition using 16S, where 

treatment explained ~3% of estimated variations (Matulich et al. 2015). Treatment also 

interacted with sampling date to account for 11% to 15% of compositional variation in 

the denitrification, DNRA(NO3
- → NO2

-), and ANR(NO2
- → NH4

+) pathways (Fig. 5). For 

instance, N addition altered the bacterial orders carrying ANR(NO2
- → NH4

+) pathway 

genes during the dry season, but not the rainy season (Figure S1).  
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Diversity 

 Prokaryotic evenness at the order level was relatively constant over time for all 

pathways examined (Figure 1.6). The richness and evenness of prokaryotic orders 

associated with each N pathway were highly correlated; pathways encoded by a higher 

number of orders also tended to be more evenly distributed across those orders. 

Generally, evenness was low for the communities with the potential for N fixation, 

ANR(NO3
- → NO2), and DNRA(NO2

- → NH4
+) (Figure 1.6). In the case of N fixation and 

DNRA(NO2
- → NH4

+), this reduced diversity may be due to under sampling, as the total 

number of sequences detected was in the hundreds (Table 1.1). As mentioned above, 

however, only 5 bacterial orders appeared to carry genes for ANR(NO3
- → NO2

-) even 

though thousands of sequences were sampled. Most (81%) of these genes were 

attributed to one order, the Actinomycetales.  

 

Extracellular Enzymes  

Like the abundance of N cycling genes, the potential activity of nine extracellular 

enzymes varied over time, but not by treatment in this leaf litter system (Matulich et al. 

2015). In particular, the ratio of C and N acquiring enzymes (NAG:Cenz) varied by month 

(repeated measures ANOVA; p<0.0001), with the lowest NAG:Cenz ratios in the dry fall 

months (September 2012 and 2013). Further, the ratio of A:D gene abundance 

explained almost half of the variation in NAG:Cenz (ANCOVA; p=0.045; adjusted 

R2=0.47 )(Fig S2).  
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DISCUSSION 

Our analysis provides a blueprint for the genetic potential of N cycle processes in 

plant litter without the biases associated with targeting individual genes or a subset of 

microbial communities. Of course, there are a number of caveats to interpreting 

metagenomic data (Prosser 2015). Most importantly, for many pathways, gene 

abundance in a community has not been found to consistently correlate with 

environmental process rates, which limits our ability to draw conclusions about activity 

(Gubry-Rangin et al. 2010; Attard et al. 2011; Graham et al. 2014). Still, a powerful 

feature of metagenomics data is the ability to compare across many functional 

pathways and taxa at the same time. Indeed, we found that the abundance, 

composition, and diversity of N cycling genes differed greatly among the eight targeted 

pathways. Aggregating across pathways, prokaryotes and fungi appear to play an 

equally important role in N assimilation in this system. Assimilatory pathways were 

much more prevalent than dissimilatory pathways. And orders within the Actinobacteria 

and Proteobacteria appeared to be N cycling generalists, carrying genes from most 

pathways relative to those from the Bacteriodetes, despite also being relatively 

abundant in the litter. 

The metagenomic picture of N cycling potential was further correlated with the 

functional potential of the community, as assayed by extracellular enzyme activities. 

Specifically, the ratio of assimilatory to dissimilatory gene abundance explained almost 

half of the variation in the ratio of C and N acquiring enzymes (NAG:Cenz), an index of 

the relative allocation to energy versus nutrient acquisition (Sinsabaugh et al. 2009; 
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Stone 2014). This relationship indicates that the metagenomic variation observed may 

have direct functional relevance for the leaf litter community. 

 

Comparisons across N cycling pathways 

 The three most abundant N cycling pathways (i.e., ammonia assimilation, 

ANR(NO2
- → NH4

+), and DNRA(NO3
- → NO2

-)) were associated with bacterial orders in 

proportion to their total abundance, indicating that the pathways are broadly distributed 

across the Bacteria. For instance, ammonia assimilation is an ability shared by virtually 

all microorganisms made up the majority of N cycling sequences, similar to that found in 

other metagenomic studies across various environments (Varin et al. 2010; Yu & Zhang 

2012; Quinn et al. 2014).  

The high abundance of ANR pathways suggests that NO3
- and NO2

- may be 

important sources of N on the plant litter. This availability may be due in part to high 

rates of atmospheric N deposition that occur in the southern California region (Fenn & 

Bytnerowicz 1997), although microbial ANR appears to be an important process in a 

wide range of terrestrial systems including undisturbed soils and agricultural fields 

(Burger & Jackson 2003; Booth et al. 2005; Myrold & Posavatz 2007). In terrestrial 

systems, heterotrophic bacteria seem to prefer ammonium (NH4
+) over NO3

- /NO2
- due 

to energetic costs (Rice & Tiedje 1989; Recous et al. 1990), unless they are limited by 

NH4
+, in which case they may also use NO3

- /NO2
- (Nishio et al. 2001; Booth et al. 

2005). Thus, the ability to assimilate NO3
- /NO2

- may provide an advantage in an N-

limited ecosystem (Rediers et al. 2009).  
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The DNRA(NO3
- → NO2

-) pathway was also abundant in the plant litter.  

Relatively little is known about DNRA in terrestrial systems (Rutting et al. 2011). While 

the DNRA pathway in soil bacteria was discovered in the 1930’s (Woods), until recently 

many studies considered denitrification as the only dissimilatory reduction process in 

soil (Cole 1990). Indeed, DNRA and denitrification are competitive processes, which 

occur primarily under anaerobic conditions (Rutting et al. 2011). DNRA is now 

recognized as a key process in wetlands and has been observed in moist tropical soils 

(Silver et al. 2001). Modelling studies suggest that DNRA may be important in 

temperate grassland soils (Muller et al. 2004; Muller et al. 2007), but its general 

significance in aerobic upland soils remains unclear (Butterbach-Bahl & Gundersen 

2011).  

There are several reasons why the plant litter environment may be a conducive 

for DNRA. First, while the process is most likely to occur under anaerobic conditions, 

some studies have shown that DNRA is less sensitive to variable O2 and redox 

conditions than denitrification (Fazzolari et al. 1998; Pett-Ridge et al. 2006). Second, 

DNRA is thought to be favored in high C:N environments (Rutting et al. 2011), like that 

of leaf litter. Finally, oxygen gradients that range from 100 to 0% saturation within a few 

micrometers have been measured in plant litter layers (van der Lee et al. 1999; Reith et 

al. 2002). Thus, we speculate that plant litter could be suitable for DNRA, particularly 

after rains when the wet, matted down litter may contain anaerobic pockets. Indeed, the 

highest abundances of DNRA(NO3
- → NO2

-) sequences in the litter samples were 

correlated with increased precipitation at the site. In the future, it would be useful to 

verify the activity of the pathway at the site by transcriptomics.  
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While less abundant, denitrification and N fixation genes were also present in the 

leaf litter metagenomes. Denitrification is known to be an important process in terrestrial 

grasslands, where soils are a major source of N2O emissions to the atmosphere (Brown 

et al. 2012; Bouwman et al. 2013). Denitrification in soils occurs primarily after 

precipitation events (Hartley & Schlesinger 2000; Nielsen & Ball 2014). Like DNRA, the 

denitrification pathway was detected across a wide range of bacterial orders, but it was 

most common in orders from the phylum Proteobacteria.  

N fixation appears to be the rarest of the pathways targeted in the litter 

community, second only to nitrification. Although N fixation does occur during litter 

decomposition, estimated rates in the litter/soil layer are low, between <0.5 - 20 kg N ha-

1 yr-1 (Cleveland et al. 1999), much smaller than symbiotic N fixation in various 

agricultural crops (Smil 1999). Like DNRA(NO3
- → NO2

-), the genetic potential for N 

fixation was distributed across a distinct group of bacterial orders, many of which were 

present at low abundance in the community. It is often assumed that Rhizobiales carry 

out most N fixation in soils (Resendis-Antonio et al. 2011; Wang et al. 2013); while 18% 

of all N fixation genes were classified as Rhizobiales, 82% were from other orders, 

including Pseudomonadales, Enterobacteriales, and Burkholderiales.  

 

Temporal variation and sensitivity to global change manipulations 

In addition to the broad patterns of prokaryotic diversity supporting N cycling in 

plant litter, we investigated how these communities varied across the seasons and in 

response to drought and N addition treatments. Within pathways, gene abundance and 

taxonomic composition varied over time, but little in response to the global change 
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manipulations. Specifically, the manipulations did not impact N-cycle pathway 

abundance and only altered composition within the DNRA(NO3
- → NO2) and ANR(NO2

- 

→ NH4
+)  pathways. This limited response of the N cycling pathways is somewhat 

surprising considering that N content (%N) in the leaf litter increased significantly in the 

nitrogen addition plots (Allison et al. 2013). However, we may have missed some 

responses because of low statistical power and/or our focus on primarily inorganic 

pathways. 

Previous metagenomic studies have detected changes in potential N cycling in 

response to environmental perturbations such as N addition (e.g.,(Thurber et al. 2009; 

Fierer et al. 2012a)); however, many of these studies consider the N cycle quite broadly, 

making direct comparisons difficult. A few studies highlight mixed responses by pathway 

(Luo et al. 2014; Mason et al. 2014; Cobo-Díaz et al. 2015); for instance, burning 

tended to increase the relative abundance of dissimilatory processes and decrease that 

on assimilatory processes (Tas et al. 2014).  

In contrast to the response to global change manipulations, N cycling pathway 

abundance showed significant temporal variability. Other global change experiments 

have also observed this pattern of strong temporal versus treatment effects on microbial 

communities (Cruz-Martinez et al. 2009; Yuste et al. 2011; Cregger et al. 2012; 

Gutknecht et al. 2012). Such a result is perhaps not unexpected; annual mean 

precipitation at the Loma Ridge site is 30 cm, and almost all of this rainfall falls between 

November and April (Kimball et al. 2014). As a result, microbial biomass on plant litter is 

reduced to less than 25% of peak levels during the summer dry season (Allison et al. 

2013). Indeed, the abundance of some N-cycling pathways followed this broad trend. In 
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these cases, the frequency of the pathway (relative to all prokaryotes) was stable over 

time (no significant time effect), indicating there was no differential selection for the 

pathway across seasons above and beyond the fluctuations in total prokaryotic 

abundance.  

However, for the majority of the N pathways, the frequency of gene abundance 

varied significantly over time, generally increasing during the wetter months. 

Corresponding with this trend, the NAG:Cenz enzyme activity ratio was lowest during the 

driest months. Thus, in wet conditions, selection may favor traits allowing for rapid N 

assimilation, whereas dry conditions may select for drought tolerance traits associated 

with different taxa (Schimel et al. 2007).  

 Similar to the overall taxonomic composition of the litter community (Matulich et 

al. 2015), the diversity and composition of bacterial lineages involved in most N-cycling 

pathways also varied across seasons. Compositional differences were driven by 

changes in the relative abundances of the most abundant taxa in the system.  For 

example, some potential NO2
- assimilators (e.g., Actinomycetales, Enterobacteriales, 

and Burkholderiales) displayed a seasonal signal whereas others (e.g., Cytophagales 

and Rhodocyclales) were less affected by seasons. This pattern suggests that this 

pathway itself may not be selected for by season but instead may be linked to other 

traits having a distinct distribution in bacterial lineages.  

 

Conclusions 

This study provides an overview of microbial N cycling potential in a plant litter 

system and points to several directions for future research. In particular, the high 
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abundance of DNRA pathway genes is intriguing and suggests that further work on this 

process in grassland ecosystems is warranted. We also observed that the degree of N 

pathway specialization among bacterial orders tended to increase with its abundance in 

the plant litter, suggesting that N cycling generalists may have an advantage in plant 

litter. However, it is unclear whether this pattern is specific to this environment or may 

be a general feature of N limited environments. Indeed, the results described here will 

be most useful in direct comparison to other ecosystems.  
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Tables and Figures 

Table 1.1 Effect of treatment, sample date (time), and their interaction on the 
abundance of sequences from each N cycle pathway for prokaryotes and fungi.  
 
 

 

 

N Cycle Pathway Treatment Timeb 
Interaction 

of 
treatment 
and time 

Total no. of 
sequences 
detected 

 
Prokaryotes     
Dissimilatory Nitrate to Nitrite  NS <.0001 0.07 35,920 
Dissimilatory Nitrite to Ammonia  NS NS NS 130 
Denitrification NS <0.01 NS 1,846 
Nitrification -- -- -- 17 
Assimilatory Nitrate to Nitrite NS NS NS 2,009 
Assimilatory Nitrite to Ammonia  NS <.0001 NS 102,360 
Ammonia Assimilation NS <.0001 0.05 757,470 
Nitrogen Fixation NS <0.01 0.02 413 

Fungi     
Assimilatory Nitrite to Ammonia  NS <0.01 0.05 32,172 
Assimilatory Nitrate to Nitrite  NS NS 0.06 17,169 
Ammonia Assimilation NS NS NS 148,602 

 

a based on repeated measures ANOVA.  NS, not significant; --, not tested. 
b Sample date. 
 

Significance (P value)a of effect of: 
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Figure 1.1 Nitrogen cycling pathways considered in this study. Pathways in gray are 
categorized as dissimilatory, and pathways in black are categorized as assimilatory. 
 

vironmental conditions (22). Further, taxonomic changes in the
litter community were correlated with changes in the frequency of
glycoside hydrolases, genes responsible for C utilization (31).

Given the intertwined nature of N and C cycling during litter
decomposition, we investigated the genetic potential of N utiliza-
tion in plant litter microbial communities. We analyzed metag-
enomic samples to identify genes for N cycling in microbial com-
munities from the Loma Ridge experimental plots. We focused
our work on prokaryotes, because they are the most abundant
organisms on the litter (33), but we also quantified sequences
associated with Fungi. Although metagenomic sequences indicate
only the functional potential of a community, they provide a ho-
listic description of potential N utilization across many pathways
in the N cycle. Specifically, we asked the following questions. (i)
How do the abundance, taxonomic composition, and diversity of
N cycling genes differ among pathways? (ii) Within a pathway, do
these patterns differ over time? (iii) Does N cycling potential re-
spond to global change manipulations (drought and N addition)?

MATERIALS AND METHODS
Field experiment and DNA sequencing. The Loma Ridge global change
experiment, Irvine, CA (33°44=N, 117°42=E; elevation, 365 m), was estab-
lished in 2007 with precipitation and N manipulations (22, 31). The pre-
cipitation manipulation reduced the amount of water by 50%, creating
drought plots. Surface soil moisture was significantly lower in drought
plots than in ambient treatment plots (30). The nitrogen addition plots
received 60 kg CaNO3 ha!1 year!1. Previous studies at the site have shown
that litter from nitrogen addition plots contained significantly more ni-
trogen and lower concentrations of carbon substrates, such as cellulose,
hemicellulose, and lignin, than control plots (22). Furthermore, the level
of plant-available nitrogen in soil was significantly lower in drought plots
than in control or nitrogen addition plots (23). Drought treatment re-
duced, and nitrogen addition increased, decomposition rates, as mea-
sured by mass loss, over those in control plots (22).

The climate in this Southern California grassland ecosystem is semi-
arid, with mean annual precipitation of 325 mm, most of which occurs
between October and April. Beginning in 2010, plant litter samples were
taken seasonally for 2 years in control, drought, and N addition plots.
Sampling dates were 14 April, 20 August, and 17 December 2010; 29
February, 10 June, 21 September, and 14 December 2011; and 12 March
2012.

For each of the three treatments (ambient, drought, and N addition),
eight plots were sampled at 8 time points (for a total of 192 samples). To
balance replication with sequencing costs, we pooled equal concentra-
tions of DNA extracts from four plots undergoing the same treatment;
extracts from the same plots were pooled on all dates (31). Thus, six
metagenomic libraries (two replicate libraries per treatment) were se-
quenced at 8 time points, for a total of 48 libraries. Although two replicates
per treatment is not ideal and limits our statistical power to test for treat-
ment effects, pooling four independent plots into two composite “repli-
cates” provides improved mean estimates (such as the mean abundance of
a particular gene) over those obtained by sampling only two plots (34).
Further, sampling over 8 time points also gives us additional statistical
power to test for treatment effects by reducing the error variance (35).

Metagenomic libraries were prepared using a TruSeq library kit (part
15026484, revision C, July 2012; Illumina), were sequenced with an Illu-
mina HiSeq 2000 system (100-bp paired ends), and yielded 107.4 Gbp
(which passed quality control [QC]) (31). In total, 46 libraries were ana-
lyzed, of which 2 libraries were excluded due to low sequence counts
(April 2010, reduced precipitation [MG-RAST accession no. 4511045];
August 2010, increased N deposition [MG-RAST accession no. 4511064]
[see Table S1 in the supplemental material]). Sequences were uploaded
onto the MG-RAST server, where 53% of the sequences were annotated
(31).

Taxonomic assignment for the metagenomic libraries was performed
by MG-RAST (36) using the KEGG database (37), and annotations were
downloaded using the MG-RAST API, version 3.2 (36). Taxonomic an-
notation was considered for sequences with an E value of !10!5 (31).
Each sequence was assigned to the closest related species in the database;
however, in order to be conservative in our taxonomic assignment, we
report bacterial taxonomy at the corresponding order level.

N cycle pathway identification. Eight N cycling pathways were de-
fined for this analysis: nitrification (number of genes targeted [n], 2), N
fixation (n " 20), denitrification (n " 20), dissimilatory nitrate reduction
to nitrite [DNRA(NO3

! ¡ NO2
!)] (n " 9), dissimilatory nitrite reduc-

tion to ammonia [DNRA(NO2
! ¡ NH3)] (n " 4), assimilatory nitrate

reduction to nitrite [ANR(NO3
! ¡ NO2

!)] (n " 2), assimilatory nitrite
reduction to ammonia [ANR(NO2

! ¡ NH3)] (n " 2), and ammonia
assimilation (n " 10) (Fig. 1; see also Table S2 in the supplemental mate-
rial). Although nitrification includes both ammonia oxidation and nitrite
oxidation, we combined them here because of their low level of represen-
tation in the samples. Finally, we excluded the anammox pathway from
our analyses. The functional genes for this pathway are poorly represented
in genome databases (and currently are not defined in the KEGG or SEED
database). After some analysis, we were not confident in our ability to
distinguish between genes in the annamox pathway and related non-an-
namox genes.

To detect genes in the eight pathways, we first identified the corre-
sponding genes in the KEGG (37) and SEED (38) databases. For the
KEGG database, KEGG Orthology (KO) numbers (37) were obtained
from the Functional Ontology Assignments for Metagenomes (FOAM)
database (39). For the SEED database, FIGfam numbers were obtained for
the N fixation and denitrification pathways. Next, MD5 identifiers (IDs)
for each KO and FIGfam number sequence were retrieved from the
nonredundant M5nr database (40). Finally, we searched for the MD5 IDs
in our samples annotated by the MG-RAST server. For each pathway, we
checked the functional assignments of a subset of sequences using the
BLAST algorithm against the MicrobesOnline database. This allowed us
to compare the annotations and genome contexts of those hits in fully
sequenced genomes (41).

Data standardization and statistical analyses. We first compared the
relative abundances of prokaryotic and fungal reads across the different N
cycle pathways. To do this, we first took the average number of sequences
associated with each pathway across all 46 samples and then divided it by
the number of different genes searched in the pathway. While we recog-
nize that it is common to standardize by gene length as well (see, e.g.,
reference 42), the variation in copy number and gene length for all 80
genes across a wide range of microbial taxa makes this infeasible. Conve-
niently, our results show that the average abundances of microbial taxa
differ between most pathways by orders of magnitude, while gene lengths
usually differ to a lesser degree. This suggests that the relative differences
observed would likely persist even with such standardization.

FIG 1 Nitrogen cycling pathways considered in this study. Pathways in gray
are categorized as dissimilatory, and pathways in black are categorized as as-
similatory.

Nitrogen Cycling by Plant Litter Microbes
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Figure 1.2 Log abundances of prokaryotic and fungal reads for each N cycle pathway. 
Abundance was calculated as the average across all samples (n=46), standardized by 
the number of genes targeted in the pathway (see Table S2). 
 
 

All statistical analyses were performed using the “nlme” and “vegan”
packages in the R software environment (43, 44). To test for differences in
the abundances of bacterial communities across treatments and sampling
dates, we used one-way repeated-measures analysis of variance (ANOVA)
with “plot” included as an error term. For this analysis, we standardized
the number of reads associated with each pathway by the total number of
annotated bacterial reads in that library. We standardized fungal read
abundances for each sample by the total fungal reads in each library.

The taxonomic diversity of the genes associated with each pathway was
quantified using the Shannon evenness index and the observed richness of
the number of orders. To test whether evenness changed over time, we
performed one-way repeated-measures ANOVA as described above.

To assess the effects of treatment and time on bacterial community
composition, we performed a permutational multivariate analysis of vari-
ance (PERMANOVA) (45) including treatment and sampling date as
fixed effects (45, 46). Taxa were first standardized by their relative fre-
quencies within each pathway; then the analysis was run for each pathway.
The analyses were run using partial sums of squares on 999 permutations
of residuals under a reduced model. If the model returned nonsignificant
variables, the variables were removed, and the model was tested again.
This procedure does not alter the significance of the remaining variables
but reduces the effect of spurious relationships between variables (47). To
identify the taxa contributing to significant compositional differences, we
used similarity percentage (SIMPER) analysis (48). Specifically, we tested
which taxa accounted for differences between the samples from rainy
(winter/spring) and dry (summer/fall) seasons. Lastly, Pearson’s correla-
tions were used to test whether the number of sequences attributed to an
N cycling pathway was distributed among bacterial orders in proportion
to the total abundances of those orders in the metagenomes.

Extracellular enzyme activity. To assay the functional potential of the
litter microbial community, we measured the potential activities of
nine extracellular enzymes—!-glucosidase (AG), acid phosphatase (AP),
"-glucosidase (BG), "-xylosidase (BX), cellobiohydrolase (CBH), leucine
aminopeptidase (LAP), N-acetyl-"-D-glucosaminidase (NAG), polyphe-
nol oxidase (PPO), and peroxidase (PER)— on litter from all treatments
on seven sample dates between September 2011 and March 2013. Fluori-
metric and oxidative enzyme assays were conducted as described in refer-
ence 33, and the initial results from these analyses are reported in refer-
ences 2 and 30. For this study, we used the same data to calculate the ratio

of N-acquiring enzymes to C-acquiring enzymes (NAG/Cenz ratio) (49).
The ratio of these two metrics has been proposed for the estimation of
relative allocation to nutrient acquisition versus energy (49, 50). The ex-
tracellular enzyme NAG measures potential chitinase activity, a proxy for
the conversion of organic N to ammonium for assimilation. Cenz is de-
fined as the sum of four extracellular enzymes involved in C cycling (AG,
BG, CBH, BX). We used a repeated-measures ANOVA to test for differ-
ences in NAG/Cenz ratios across all treatments and enzyme sampling
dates.

To test for correlations between potential enzyme activities and
genomic potential, we examined data from three sampling dates when
both types of data were collected (September 2011, December 2011,
March 2012). Specifically, we tested whether the NAG/Cenz ratio could be
predicted by the ratio of the abundance of assimilatory N cycling genes to
that of dissimilatory N cycling genes (A/D ratio), as a genomic index for
the allocation of nutrient acquisition versus energy. We used analysis of
covariance (ANCOVA) with NAG/Cenz activity as the independent vari-
able, the A/D ratio as the dependent variable, and time as a covariate. (We
excluded treatment as a covariate, because treatment did not significantly
affect the NAG/Cenz ratio in the test described above.)

RESULTS
Across all the plant litter metagenomic libraries, 59% of the anno-
tated sequences were bacterial (294,674,419 reads). Of the anno-
tated sequences, 0.31% were associated with an N cycling path-
way, and of these, 896,943, 197,944, and 3,278 were assigned to
Bacteria, Fungi, and Archaea, respectively. The vast majority of
these sequences were associated with ammonia assimilation (84%,
75%, and 98%, from Bacteria, Fungi, and Archaea, respectively).
All N cycling fungal sequences were associated with two phyla,
Ascomycota (94.5%) and Basidiomycota (5.5%).

Abundance. The total abundances of prokaryotic reads related
to different N cycling pathways differed by several orders of mag-
nitude (Fig. 2). Broadly, assimilatory pathways were much more
prevalent (96.5%) than dissimilatory pathways (3.5%). After am-
monia assimilation, ANR(NO3

# ¡ NH3) and DNRA(NO3
# ¡

NO2
#) were the next most frequently detected pathways, while

FIG 2 Log abundances of prokaryotic and fungal reads for each N cycle pathway. Abundance was calculated as the average across all samples (n $ 46),
standardized by the number of genes targeted in the pathway (see Table S2 in the supplemental material).

Nelson et al.

7014 aem.asm.org October 2015 Volume 81 Number 20Applied and Environmental Microbiology
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Figure 1.4 Bacterial and archaeal composition at the order level by N pathway. Data 
are combined across all sampling dates. A coarse phylogeny at left is shown to highlight 
the major phyla (iToL; (Letunic & Bork)). (a) The orange heat map represents the 
relative distribution of sequence reads by order for each pathway. (b) For comparison, 
the blue heat map shows the relative abundance of all bacterial and archaeal 
sequences (all predicted proteins and ribosomal RNA genes) by order. (Relative 
abundance was calculated with all bacterial/archaeal taxa, however only orders with 
predicted N cycle reads (101/130) are included in the figure). 

FIG 4 Bacterial and archaeal composition at the order level by N pathway. Data are combined across all sampling dates. A coarse phylogeny is shown on the left
to highlight the major phyla (Interactive Tree of Life [iToL]) (94). (a) The orange heat map represents the relative distribution of sequence reads by order for each
pathway. (b) For comparison, the blue heat map shows the relative abundances of all bacterial and archaeal sequences (all predicted proteins and rRNA genes)
by order. (Relative abundance was calculated with all bacterial/archaeal taxa; however, only orders with predicted N cycle reads [101/130] are included in this
figure.)
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Figure 1.5 Percentages of the estimated variation in prokaryotic community 
composition explained by time, treatment and their interaction for each N cycle pathway. 
Estimates were derived from PERMANOVA models, where NS means the test result 
was not significant (P≥0.1). 

 

 

 

 

ANR(NO3
! ¡ NO2

!) was the most taxonomically restricted
pathway. Even though genes for this process were relatively abun-
dant in the metagenomic libraries (Fig. 2), they were detected for
only five bacterial orders and thus were not well correlated with
the total abundance in each order (R2 " 0.459; P # 0.0001). Fi-
nally, genes for DNRA(NO2

!¡ NH3), were rare among abun-
dant orders but common among some rare orders and hence were
poorly correlated with overall abundance (R2 " 0.084; P $ 0.05)
(Fig. 4).

In an intermediate case, denitrification genes were common
among many abundant bacterial orders (e.g., Rhizobiales, Burk-
holderiales, and Actinomycetales) but were also found in other, less
abundant orders, including orders of Archaea (Halobacteriales,
Methanosarcinales, and Cenarchaeales) and known ammonia oxi-
dizers (Nitrosomonadales and Nitrosopumilales) (R2 " 0.539; P #
0.0001) (Fig. 4). This was also true for N fixation (R2 " 0.497; P #
0.0001), which was common in some the most abundant taxa
(e.g., Rhizobiales and Burkholderiales) but absent in the most
abundant order (Actinomycetales).

Distinct bacterial taxa appeared to have different N cycling
potentials in these plant litter communities (Fig. 4). The most
abundant taxa (e.g., Actinomycetales, Rhizobiales, Burkholderiales,
and Sphingomonadales) appeared to be N cycling generalists in
that they carried genes from most (five to six) of the seven path-
ways. Other taxa seemed to be more specialized. Notably, the or-
ders from the phylum Bacteroidetes (Bacteroidales, Cytophagales,
Flavobacteriales, and Sphingobacteriales) carried genes for only a
couple of pathways (two to three), even though the taxa were
relatively abundant (Fig. 4).

Beyond these average trends, the composition of potential N
cycling litter prokaryotes differed among litter samples. Much of
this variation could be attributed to temporal variability (see Fig.
S1 in the supplemental material). In 5 of the 8 pathways examined,
time explained 12% to 45% of the compositional variation among
samples (Fig. 5; see also Table S3 in the supplemental material).
These trends were driven largely by seasonal differences in a few
abundant bacterial orders. For instance, across all N pathways, the
relative abundances of Burkholderiales and Sphingomonadales

were higher, and that of Enterobacteriales was lower, in the rainy
(winter/spring) than in the dry (summer/fall) seasons (by
SIMPER analysis; see Table S4 in the supplemental material).
However, the seasonal abundances of at least two orders, Actino-
mycetales and Rhizobiales, depended on the N pathway examined.
For example, for Actinomycetales, ANR(NO2

! ¡ NH3) genes
were relatively abundant in winter/spring, but Actinomycetales
ANR(NO3

! ¡ NO2
!), DNRA(NO3

! ¡ NO2
!), and ammonia

assimilation genes were higher in summer/fall (see Table S4).
In contrast to time, treatment (drought or N addition) had

minor effects on the composition of N cycling prokaryotes,
explaining only a small percentage of variation in the
DNRA(NO3

! ¡ NO2
!) (2.9%) and ANR(NO2

! ¡ NH3) (4.4%)
pathways (Fig. 5). This result was similar to that for analyses of
community composition using 16S rRNA, where treatment ex-
plained %3% of estimated variation (30). Treatment also inter-
acted with sampling date to account for 11% to 15% of composi-
tional variation in the denitrification, DNRA(NO3

! ¡ NO2
!),

and ANR(NO2
! ¡ NH3) pathways (Fig. 5). For instance, N ad-

dition altered the composition of bacterial orders carrying
ANR(NO2

! ¡ NH3) pathway genes during the dry season, but
not during the rainy season (see Fig. S1 in the supplemental ma-
terial).

Diversity. Prokaryotic evenness at the order level was relatively
constant over time for all pathways examined (Fig. 6). The rich-
ness and evenness of prokaryotic orders associated with each N
pathway were highly correlated; pathways encoded by a higher
number of orders also tended to be more evenly distributed across
those orders. Generally, evenness was low for the communities
with the potential for N fixation, ANR(NO3

! ¡ NO2), and
DNRA(NO2

! ¡ NH3) (Fig. 6). In the case of N fixation and
DNRA(NO2

! ¡ NH3), this reduced diversity may be due to un-
dersampling, since the total number of sequences detected was in
the hundreds (Table 1). As mentioned above, however, only five
bacterial orders appeared to carry genes for ANR(NO3

! ¡
NO2

!), even though thousands of sequences were sampled. Most
(81%) of these genes were attributed to one order, the Actinomy-
cetales.

Extracellular enzymes. Like the abundances of N cycling
genes, the potential activities of nine extracellular enzymes dif-
fered over time, but not by treatment, in this plant litter system
(30). In particular, the ratio of N- to C-acquiring enzymes (NAG/
Cenz ratio) differed by month (P, #0.0001 by repeated-measures
ANOVA), with the lowest NAG/Cenz ratios in the dry fall months
(September 2012 and 2013). Further, the A/D gene abundance
ratio explained almost half of the variation in the NAG/Cenz ratio
(P, 0.045 by ANCOVA; adjusted R2, 0.47) (see Fig. S2 in the sup-
plemental material).

DISCUSSION
Our analysis provides a blueprint for the genetic potential of N
cycle processes in plant litter without the biases associated with
targeting individual genes or a subset of microbial communities
(47, 48). Of course, there are a number of caveats to interpreting
metagenomic data (51). Most importantly, for many pathways,
gene abundance in a community has not been found to correlate
consistently with environmental process rates, which limits our
ability to draw conclusions about activity (52–54). Still, a pow-
erful feature of metagenomics data is the ability to make com-
parisons across many functional pathways and taxa at the same

FIG 5 Percentages of the estimated variation in prokaryotic community com-
position explained by time, treatment, and their interaction for each N cycle
pathway. Estimates were derived from PERMANOVA models, where NS
means the test result was not significant (P, !0.1).

Nitrogen Cycling by Plant Litter Microbes
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Figure 1.6 Diversity of orders (calculated by the Shannon index) for each N-cycling 
pathway by collection date. The total number of orders for each pathway is also noted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time. Indeed, we found that the abundance, composition, and
diversity of N cycling genes differed greatly among the eight
targeted pathways. By aggregating the data across pathways,
prokaryotes and fungi appear to play equally important roles in
N assimilation in this system. Assimilatory pathways were
much more prevalent than dissimilatory pathways. And orders
within the Actinobacteria and Proteobacteria appeared to be N
cycling generalists, carrying genes from most pathways, in con-
trast to those from the Bacteroidetes, which were also relatively
abundant in the litter.

The metagenomic picture of N cycling potential was further
correlated with the functional potential of the community, as as-
sayed by extracellular enzyme activities. Specifically, the ratio of
assimilatory to dissimilatory gene abundance explained almost
half of the variation in the ratio of N- to C-acquiring enzymes
(NAG/Cenz), an index of the relative allocation to nutrient acqui-
sition versus energy (49, 50). This relationship indicates that the
metagenomic variation observed may have direct functional rele-
vance for the plant litter community.

Comparisons across N cycling pathways. The three most
abundant N cycling pathways [i.e., ammonia assimilation,
ANR(NO2

! ¡ NH3), and DNRA(NO3
! ¡ NO2

!)] were associ-
ated with prokaryotes in proportion to their total abundances,
indicating that the pathways are broadly distributed across the
prokaryotes. For instance, ammonia assimilation is an ability
shared by virtually all microorganisms, and sequences in this
pathway made up the majority of N cycling sequences, a finding
similar to those in other metagenomic studies across various en-
vironments (55–57).

The high abundance of ANR pathways suggests that NO3
! and

NO2
! may be important sources of N on plant litter. This avail-

ability may be due in part to the high rates of atmospheric N
deposition that occur in the Southern California region (28), al-
though microbial ANR appears to be an important process in a
wide range of terrestrial systems, including undisturbed soils and
agricultural fields (58–60). In terrestrial systems, heterotrophic
bacteria seem to prefer ammonium (NH4

") over NO3
! or NO2

!

due to energetic costs (61, 62), unless they are limited by NH4
", in

which case they may also use NO3
! or NO2

! (58, 63). Thus, the

ability to assimilate NO3
! and NO2

! may provide an advantage in
an N-limited ecosystem (64).

The DNRA(NO3
!¡NO2

!) pathway was also abundant in the
plant litter. Relatively little is known about DNRA in terrestrial
systems (65). While the DNRA pathway in soil bacteria was dis-
covered in the 1930s (66), until recently many studies considered
denitrification the only dissimilatory reduction process in soil
(67). Indeed, DNRA and denitrification are competitive pro-
cesses, which occur primarily under anaerobic conditions (65).
DNRA is now recognized as a key process in wetlands and has been
observed in moist tropical soils (68). Modeling studies suggest
that DNRA may be important in temperate grassland soils (69,
70), but its general significance in aerobic upland soils remains
unclear (71).

There are several reasons why the plant litter environment may
be conducive to DNRA. First, while the process is most likely to
occur under anaerobic conditions, some studies have shown that
DNRA is less sensitive to variable O2 and redox conditions than
denitrification (72, 73). Second, DNRA is thought to be favored in
high-C/N-ratio environments (65), like that of plant litter. Finally,
oxygen gradients that range from 100 to 0% saturation within a
few micrometers have been measured in plant litter layers (74, 75).
Thus, we speculate that plant litter could be suitable for DNRA,
particularly after rains, when the wet, matted-down litter may
contain anaerobic pockets. Indeed, the highest abundances of
DNRA(NO3

! ¡ NO2
!) sequences in the litter samples were cor-

related with increased precipitation at the site. In the future, it
would be useful to verify the activity of the pathway at the site by
transcriptomics.

While less abundant, denitrification and N fixation genes were
also present in the plant litter metagenomes. Denitrification is
known to be an important process in terrestrial grasslands, where
soils are a major source of N2O emissions to the atmosphere (15,
76). Denitrification in soils occurs primarily after precipitation
events (77, 78). Like DNRA, the denitrification pathway was de-
tected across a wide range of bacterial orders, but it was most
common in orders from the phylum Proteobacteria.

N fixation appears to be one of the rarest of the pathways tar-
geted in the litter community; only nitrification is less frequent.

FIG 6 Diversity of orders (calculated by the Shannon index) for each N cycling pathway by collection date. The total number of orders for each pathway is also
noted.

Nelson et al.
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Supporting Information 
 
This chapter contains supporting information that can be found online at 
http://aem.asm.org/content/suppl/2015/09/21/AEM.02222-
15.DCSupplemental/zam999116628so1.pdf (doi: 10.1128/AEM.02222-15). 
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CHAPTER 2 

Global biogeography of microbial nitrogen cycling traits in soil 

ABSTRACT 

Microorganisms drive much of the Earth’s nitrogen (N) cycle, but we still lack a 

global overview of the abundance and composition of the microorganisms carrying out 

soil N processes. To address this gap, we characterized the biogeography of microbial 

N traits, defined as eight N cycling pathways, using publically available soil 

metagenomes. The relative frequency of N pathways varied consistently across soils, 

such that the frequencies of the individual N pathways were positively correlated across 

the soil samples. Habitat type, soil carbon, and soil N largely explained the total N 

pathway frequency in a sample. In contrast, we could not identify major drivers of the 

taxonomic composition of the N functional groups.  Further, the dominant genera 

encoding a pathway were generally similar among habitat types. The soil samples also 

revealed an unexpectedly high frequency of Bacteria carrying the pathways required for 

dissimilatory nitrate reduction to ammonium (DNRA), a little studied N process in soil. 

Finally, phylogenetic analysis showed that some microbial groups appear to be N-

cycling specialists or generalists. For instance, taxa within the delta-Proteobacteria 

encoded all eight N pathways, whereas those within the Cyanobacteria primarily 

encoded three pathways. Overall, this trait-based approach provides a baseline for 

investigating the relationship between microbial diversity and N cycling across global 

soils. 
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SIGNFICANCE STATEMENT 

Microbes are key players in the Earth’s biogeochemical cycles, including the 

nitrogen (N) cycle. Despite their importance, however, we know little about the 

abundance and composition of microorganisms responsible for N transformations in 

soil. We present the first characterization of the global biogeography of soil N cycling 

microbes by investigating geographic patterns in their abundance and composition. Our 

analysis reveals the most prominent soil taxa harboring the genetic machinery for these 

processes. We also discover an unexpectedly high abundance of bacteria encoding 

dissimilatory nitrate reduction to ammonium, a little studied process in soil. In general, 

such a focus on the biogeography of microbial traits could improve efforts to connect 

biodiversity patterns and ecosystem processes. 
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INTRODUCTION 

A grand challenge for this century is to predict how environmental change will 

alter global biogeochemical cycles. The field of biogeography has an important role to 

play in this effort (Violle et al. 2014). Environmental change is altering the distribution of 

biodiversity, which in turn, is a key driver of biogeochemical processes (Naeem & 

Wright 2003; Cardinale et al. 2012). Historically, biogeography has viewed biodiversity 

through a taxonomic lens, primarily resolving species distributions. However, a focus on 

traits – particularly those involved in ecosystem processes – may offer a clearer link 

between biodiversity patterns and biogeochemistry (Diaz & Cabido 2001; McGill et al. 

2006; Reichstein et al. 2014). 

These ideas are particularly relevant for microorganisms. Microbes catalyze most 

of the biological transformations of the major elements of life (Falkowski et al. 2008), 

and because of their sheer abundance, they account for a large pool of elements in 

living matter (Whitman et al. 1998). Furthermore, like plants and animals, microbial 

taxonomic composition varies over space (Martiny et al. 2006; Fierer et al. 2012b), and 

this variation can influence ecosystem processes (van der Heijden et al. 2008; 

Strickland et al. 2009; Schimel & Schaeffer 2012; Reed & Martiny 2013). Thus, a 

consideration of microbial traits should improve efforts to connect biogeographic 

patterns and ecosystem processes (Green et al. 2008).  

Here, we provide a first characterization of the global biogeographic patterns of 

microbial nitrogen (N) cycling traits in soil. Microbially-driven transformations regulate 

biologically available N through exchange with the atmosphere (via N fixation and 

denitrification) and loss by nitrate leaching. They also influence the forms of N available 
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for plant uptake. At the same time, human activities have altered, and continue to alter, 

the nitrogen cycle by increasing the amount of reactive N in the biosphere (Vitousek et 

al. 1997; Fowler et al. 2013). At local scales, N addition consistently alters microbial 

composition in soils and other ecosystems (Allison & Martiny 2008; Ramirez et al. 

2012). The distribution of microbial traits might therefore be relevant for understanding 

current and future N cycling.  

The taxonomic composition of soil microorganisms is correlated with spatial 

variation in climate, plant diversity, pH, disturbance, and many other factors (Lauber et 

al. 2009; Philippot et al. 2009; Tedersoo et al. 2014; Prober et al. 2015). These 

biogeographic patterns help to identify factors that select on the entire suite of microbial 

traits. In this study, we reverse this direction of inquiry. We first characterize the patterns 

and drivers of just handful of traits associated with N cycling and then ask which taxa 

comprise these functional groups.  

To quantify the abundance and composition of N-cycling traits, we analyzed ~2.4 

billion short-read sequences from 365 soil metagenomes sampled from around the 

globe. From this dataset, we identified sequences that indicate the potential for a 

microorganism to perform one of eight N pathways that convert inorganic N to other 

inorganic forms or microbial biomass. We then quantified the frequency and taxonomic 

association of microorganisms carrying these pathways in each sample. If a gene from 

a pathway was detected, we assumed the presence of the entire pathway in the 

organism. To compare the frequencies among the N pathways, we standardized for the 

number of genes (2-20) in each pathway. While metagenomic sequences provide a 

measure of a community’s trait diversity (Barberan et al. 2012), the presence of a trait 
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does not indicate how it is being used in the community. Thus, we cannot determine 

whether genes in the N pathways are expressed or N transformation rates. However, 

assaying traits based on metagenomic sequences are parallel to other trait metrics used 

to describe an organism’s functional potential, such as nutrient uptake affinity or 

temperature optimum for growth.  

The global soil N trait dataset allowed us to address four main questions. First, 

what are the overall frequencies of the different N pathways in soil? We expected the 

frequencies to vary greatly by pathway. Indeed, the ability to perform nitrification is 

restricted to few microbial taxa, whereas ammonia assimilation is probably present in 

almost all taxa. Second, what drives variation in the frequencies of N pathways among 

soil samples? We hypothesized that N pathway frequencies would vary primarily by 

habitat type, which reflects major differences in plant communities and therefore N 

inputs into soils. Third, what are the main taxa encoding each N pathway? Surprisingly 

little is known about the dominant lineages encoding N-cycling traits across global soils. 

We therefore expected to find previously unrecognized, prominent players, particularly 

for the less-studied pathways such as dissimilatory nitrate to ammonium (DNRA). 

Finally, what underlies compositional variation among soil samples in microorganisms 

encoding N pathways? We hypothesized that the taxa responsible for each pathway 

would vary greatly by habitat type, because the habitat would select for specialized 

taxa. We further predicted that soil pH – previously identified as an important driver of 

soil composition (Rousk et al. 2010; Tsiknia et al. 2015) – would also influence 

compositional variation within microorganisms encoding N-cycling traits. 
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RESULTS  

Metagenomic data from surface soil samples were retrieved from the 

metagenomics analysis server (MG-RAST) (Meyer et al. 2008). After curating the 

samples for sequence and metadata quality, the final 365 samples represented 118 

unique locations from 10 distinct habitat types covering natural and human-dominated 

systems (Figure 2.1; Table S1). Sequencing depth varied greatly among the samples, 

but was not overtly biased towards any particular habitat type (Figure S1). To 

standardize for sequencing depth, we report the abundance of each N pathway as its 

frequency in a sample. The trends observed were similar whether pathway frequency 

was normalized as the number detected per annotated sequence or per marker gene 

(based on 30 conserved, single-copy genes) (Figure S1). 

Bacteria dominated the metagenomic libraries, comprising 95% of all sequences, 

followed by 2% for Archaea and only 3% for Fungi. The fraction of fungal sequences in 

metagenomic libraries is known to be lower than their contribution to soil microbial 

biomass (Fierer et al. 2012b). We therefore concentrate our analyses on Bacteria and 

Archaea and report only general trends for Fungi. For instance, the proportion of total 

sequences of Bacteria, Archaea, and Fungi varied across habitat type (G-test of 

independence; p<<0.001)(Figure S2). Archaea ranged from 0.9% to 11% of all 

sequences by habitat with the highest percentage detected in deserts. The ratio of 

fungal to bacterial sequences was particularly high in temperate forest soil, as 

previously observed (Fierer et al. 2009). 

 

Frequency of Soil N Pathways 
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On average, 0.5% of all annotated sequences in a soil sample were associated 

with one of the eight N pathways (Figure 2.2a), or an average of 3.3 and 4.7 N 

pathways per marker gene for Bacteria and Archaea, respectively. The frequency of the 

individual pathways varied by several orders of magnitude (one-way ANOVA p<0.001; 

F=74.21, df=7) (Figure 2.2b). Bacteria and Archaea displayed similar trends in their 

relative frequency of N pathways except for the absence of the dissimilatory nitrite 

reduction to ammonium pathway in Archaea. Fungal sequences were only associated 

with assimilatory pathways, including ammonia assimilation, assimilatory nitrate to 

nitrite, and assimilatory nitrite to ammonium.  

Across all domains, the most common pathway was ammonia assimilation 

(Figure 2.2b). For instance, among the Bacteria, an average of 280 ammonia 

assimilation pathways were detected for every million annotated bacterial sequences. In 

comparison, nitrification and nitrogen fixation were the least common pathways and 

detected only 6.1 and 4.6 times per million sequences, respectively. Notably, the 

relatively unstudied dissimilatory nitrite reduction to ammonium pathway was slightly 

more common that these two pathways, detected on average 9.3 times per million 

sequences. 

Across all soil samples, N pathway frequencies were overwhelmingly positively 

correlated for both the Bacteria and Archaea (Figure 2.3a&b). To examine difference in 

pathways beyond the trends shared by all, we calculated the residuals of the frequency 

of each pathway regressed against the frequency of all N pathways in a sample. This 

residual variation was also significantly correlated among many of the N pathways 

(Figure 2.3c&d). For instance, denitrification was highly positively correlated with 
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dissimilatory nitrate reduction to nitrite within both Bacteria and Archaea (R2=0.86 and 

0.97, respectively, p=<0.001). This relationship is expected, because dissimilatory 

nitrate reduction to nitrite is the first step of the complete denitrification process; 

however, we separated the two steps here, because nitrate reduction to nitrate is also 

the first step in dissimilatory nitrate reduction to ammonium (DNRA)(Yoon et al. 2015). 

Similarly, we separated DNRA into its two pathways: dissimilatory nitrate reduction to 

nitrite and dissimilatory nitrite reduction to ammonium (Figure 2.2a). Among Bacteria, 

the assimilatory nitrite to ammonium pathway residual was negatively correlated with all 

other pathways. Similarly, the residual frequency of the ammonia assimilation pathway 

was negatively correlated with all other N pathways in both Bacteria and Archaea. N 

fixation generally showed weak or no correlation with other pathways.  

 

Drivers of N Pathway Frequencies 

The frequency of all N-cycling traits (summing across all pathways) varied greatly 

among soil samples, and initial analyses revealed broad biogeographic patterns. On 

average, the highest frequencies of total bacteria N pathways were detected in tropical 

forest and human-dominated (pasture, lawn, and agriculture) soils, whereas the lowest 

frequency were observed in cold deserts (Figure S3). Total N pathway frequency also 

tended to decrease with increasing latitude (R2=0.22; p<0.05; Figure S4).  

To disentangle the drivers behind these patterns, we performed a multivariate 

regression analysis including habitat type and environmental parameters known to 

influence microbial abundance and composition (Fierer & Jackson 2006; Bru et al. 

2011). Local measurements were not available for most samples; instead, we estimated 
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these variables from secondary sources. For Bacteria, the regression model explained a 

large and significant proportion of the variability in the frequency of total N pathways 

(R2=0.58; p<<0.001; Table 2.1). Habitat type contributed most to this model, both 

directly (positively related to total N pathways) and through interactions with soil carbon 

and N. The regression model for Archaea explained less variability in total N pathway 

frequency than for Bacteria (R2=0.43; p<0.001; Table 2.1). An interactive effect between 

carbon and nitrogen contributed the most to the model, and habitat was only important 

through an interactive effect with temperature. 

We next examined the drivers of individual N pathway frequencies. Due to high 

covariance between pathways (Figure 2.3a&b), we fitted regression models to the total-

frequency-corrected residuals for each pathway. These models varied greatly in their 

ability to explain this additional variation (Table 2.1). For example, the models for the N 

fixation pathway explained 80% and 63% of the variation among samples in Bacteria 

and Archaea, respectively (p<<0.001). In contrast, the model parameters did not explain 

any variation in the frequency of the dissimilatory nitrite reduction to ammonium 

pathway in Bacteria. 

Among the significant models, habitat type was an important predictor of the 

individual pathway frequencies (Table 2.1). Habitat also interacted with other factors 

including precipitation, temperature, and soil nitrogen to influence the frequency of 

some pathways. For instance, denitrification frequency increased with temperature in 

deserts, but decreased with temperature in tropical forests. Similarly, ammonia 

assimilation frequency increased with soil nitrogen in temperate forests, but decreased 

with soil nitrogen in tropical forests. Soil carbon, which appeared to be a primary driver 
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of total N pathway frequency, did not explain differences in the frequency of individual 

pathways in Bacteria. Including estimates of N deposition in these models only 

improved the denitrification model (R2 increased from 0.41 to 0.48); denitrification 

frequency increased with increasing N deposition. 

 The models for individual pathway frequencies in Archaea generally explained 

less variation than those for Bacteria, perhaps due to the lower number of sequences 

per sample (Table S1). However, for the significant models, the individual N pathways 

were often best explained by the same parameters as the Bacteria. For instance, 

habitat type and habitat-by-temperature were the most important predictors of N fixation 

frequency within both domains. Likewise, habitat, habitat-by-precipitation, and habitat-

by-temperature contributed to the variation in assimilatory nitrate to nitrite frequency in 

both Archaea and Bacteria. 

 

Taxonomic and Phylogenetic Distribution of N Pathways 

A diverse range of microorganisms, encompassing 402 bacterial and 53 archaeal 

genera, encoded the N pathways. We first investigated the association of pathways 

within the same genera (Figure 2.4, Figure S5). All genera for which we detected over 

10 sequences carried the ammonia assimilation pathway. Genera carrying the pathway 

to complete the second half of denitrification also generally carried the first half of the 

pathway, dissimilatory nitrate to nitrite reduction. The same genera carrying these 

denitrification pathways sometimes, but not always, carried the dissimilatory nitrite 

reduction to ammonium pathway, or the second part of the complete DNRA process 

(Figure 2.4, Figure S5). Some genera within the gamma-, delta-, and epsilon-
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Proteobacteria (e.g., Edwardsiella, Wolinella, Anaeromyxobacter) contained all three 

pathways. Indeed, denitrification and DNRA has recently been shown to be present and 

functional in the same bacteria (Mania et al. 2014; Yoon et al. 2015).  We also detected 

genera that only carried the dissimilatory nitrite to ammonium pathway (in addition to 

ammonia assimilation), as was the case for five genera within the phylum 

Bacteriodetes. 

More broadly, soil genera, and the phyla they fall into, varied in their degree of 

pathway specialization. Genera within the delta-Proteobacteria appeared to be N-

cycling generalists, harboring up to six pathways (in addition to ammonia assimilation). 

Note, however, that these patterns do not distinguish between whether these genera 

are made up of generalists that encode many pathways or multiple specialists that 

encode specific pathways. In contrast, genera within the Cyanobacteria seemed to be 

specialists, carrying primarily the assimilatory nitrite to ammonium and N fixation 

pathways.  

Focusing on each pathway individually revealed the most prominent taxa 

carrying the pathway across all soil samples. Here we consider two contrasting 

pathways, both in terms of their taxonomic distribution and the degree to which they 

have been studied. First, the abundance of the N fixation pathway in the soil samples 

was distributed broadly among both Archaea and Bacteria (Figure 4, Figure S5). The 

most abundant N fixers detected were concentrated within the phylum Proteobacteria, 

with notable exceptions among the Chlorobi, Firmicutes, and Cyanobacteria (Figure 5a). 

Most sequences were closely related to N-fixing genera that might be predicted to be 

common in soil, such as Bradyrhizobium and Burkholderia. Other abundant genera 
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were less expected. For example, Azoarcus is an organism studied for its abilities to 

degrade soil contaminants (Sun & Cupples 2012), and Pectobacterium (gamma-

Proteobacteria) is known primarily as a plant pathogen (Ma et al. 2007). Indeed, while it 

is known that Pectobacterium encodes the suite of N fixation genes, it remains unclear if 

they are functional (Toth et al. 2015). 

Second, the pathway encoding dissimilatory nitrite reduction to ammonium was also 

broadly distributed across soil bacteria (Figure 2.4), as noted before (Welsh et al. 2014). 

However, the dominant soil taxa were restricted to two phyla, the delta-Proteobacteria 

and Verrucomicrobia (Figure 2.5b). Verrucomicrobia are known to be abundant in soils, 

but their ecological role remains unclear (Bergmann et al. 2011; Fierer et al. 2013). The 

pathway’s most abundant genus, Anaeromyxobacter (phylum delta-Proteobacteria), is 

common in agricultural soil and has recently been shown to carry out a previously 

unrecognized process of non-denitrifying N20 reduction to N2 (Sanford et al. 2012). The 

relative abundances of genera encoding the other six N pathways in the soil samples 

are reported in Figure S6.  

 

Drivers of Taxonomic Composition by N Pathway 

The same environmental variables that explained the overall frequency of the N 

pathways well, explained much less of the variation in the taxonomic composition of the 

organisms encoding the pathways. For the 8 pathways, the models only explained 7% 

to 19% of the composition variation of the individual N pathways (Table S2). However, 

as for pathway frequency, habitat type was the best predictor of composition, explaining 

up to 14% of the compositional variation in the assimilatory nitrite to ammonium 
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pathway. Temperature also explained 11% of the compositional variation for the 

nitrification pathway. All other predictors, including pH, explained at most 3% of the 

variation for any pathway.  

A closer examination of two pathways confirms weak compositional differences 

between the habitats. The 15 most abundant genera carrying the N fixation pathway 

were similarly abundant across all habitats except in cold deserts (Figure 2.5a). The 

most abundant genera encoding the dissimilatory nitrite reduction to ammonium 

pathway displayed greater variability among habitats (confirming the model results in 

Table S2), but of these, only one genus (Chlorobium) appeared specialized on a habitat 

(wetland) (Figure 2.5b).  

 

DISCUSSION 

Here, we used metagenomic data to characterize the biogeographic patterns of 

microbial N cycling traits in soil. The advantage of this approach is that it allows us to 

identify the traits – and the organisms harboring them – involved in many key functions 

at once.  Specifically, the analysis provides a comprehensive map of the dominant 

lineages involved in eight N processes in soil. The approach also allowed us to search 

all known genes in a pathway, while avoiding primer biases towards particular lineages 

(Myrold et al. 2014). 

The overall structure of microbial N traits – the relative frequency of the eight 

pathways – appears to be quite consistent across global soils. This is not unexpected, 

but had not been previously tested. For instance, the ammonia assimilation pathway 

was relatively common, and the pathways for nitrogen fixation and nitrification were 
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relatively rare, as observed previously in soil and other environments (Varin et al. 2010; 

Martiny et al. 2013; Quinn et al. 2014; Souza et al. 2015).  Less expected, however, 

was that N pathway frequencies within a soil sample were overwhelmingly positively 

correlated (Figure 3). This result suggests that soil communities with relative high 

numbers of cells able to use one N pathway also generally support higher numbers of 

cells that can use other N pathways. Greater numbers of metagenomic sequences 

associated with nutrient cycles have previously been interpreted to be indicative of 

faster nutrient cycling rates (Fierer et al. 2012b). The positive correlations between 

pathways within the N cycle would seem to support this hypothesis. We also found a 

high frequency of Bacteria encoding dissimilatory nitrite reduction to ammonium 

pathway, which leads to recycling of N in soils. The balance between DNRA and 

denitrification, which leads to the loss of N to the atmosphere, is thought to be key to 

soil N budgets. Our results confirm previous studies suggesting that this pathway may 

be more common than previously thought (Rutting et al. 2011; Nelson et al. 2015), but 

the taxa encoding the process in soil environments remain to be carefully characterized 

(Kraft et al. 2011).  

The frequency of N traits further displayed clear biogeographic patterns. At the 

broadest scale, N trait frequency in Bacteria tended to decrease at higher latitudes, 

perhaps reflecting a general trend in N limitation in high latitude ecosystems (Yergeau 

et al. 2007). Beyond latitude, the frequency of N cycling traits in soil communities 

depended largely on habitat type as well as soil carbon and nitrogen concentrations. N 

traits were highest in human-dominated habitats, where nitrogen inputs tend to be high, 

and tropical forests, which are generally thought to be less limited by nitrogen than 



49	
	

temperate ecosystems (Vitousek 1984). In contrast, N traits were lowest in cold deserts 

(Antarctic and Arctic), which are highly nutrient limited (Jonasson et al. 1999; Yergeau 

et al. 2007). However, given the low sample numbers for some habitat types, it will be 

important to retest these patterns as more data accumulates. 

Contrary to our hypothesis, the taxa responsible for each N pathway did not vary 

greatly by habitat type. Within a pathway, genera that were dominant in one habitat 

tended to be dominant in all habitats. More generally, the environmental variables in our 

analyses were poor predictors of the compositional variation of the N functional groups. 

One possible reason for this result is that environmental preferences are conserved 

below the genus level and therefore would not be detected by our analysis. However, 

this reasoning does not explain why soil pH appears to have little influence on 

composition, as pH preference seems to be conserved at a broader taxonomic level 

(Lauber et al. 2009; Martiny et al. 2015). Perhaps N functional groups are less 

specialized for a particular pH environment than microorganisms with other functional 

roles, but distinct pH-associated lineages in ammonia-oxidizing archaea (AOA) indicate 

that this is not always the case (Gubry-Rangin et al. 2011). Alternatively, the estimates 

of soil pH might have been too spatially coarse to detect a pattern.  

A well-recognized issue in calculating the frequencies of genes or pathways from 

metagenomic data is how to normalize for overall genome abundance in the library 

(Manor & Borenstein 2015). This normalization step is prone to uncertainties related to 

variation in mean genome size among communities. To address this issue, we 

estimated the frequencies of N pathways in two ways – using a set of conserved marker 

genes as well as the total number of annotated sequences within a domain. The first 
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approach should be sensitive to differences in genome size, whereas the second 

approach includes more sequence reads and is thus more statistically robust. Because 

the two approaches led to similar findings, we conclude that the overall patterns in N 

pathway frequencies are likely not an artifact of normalization. 

In sum, this study provides a foundation for future trait-based investigations of 

soil N cycling, but also highlights two major challenges. First, we still know very little 

about how variability in the frequency and composition of microbial N traits will affect 

process rates in soil environments (Prosser 2015). Indeed, a recent review found little 

correlation between an individual gene’s abundance and the process rates that such 

genes encode. However, assessment of these links using metagenomic datasets is still 

needed (Rocca et al. 2015). Second, assigning function and taxonomy from short read 

sequences is limited by genomic databases where annotations in some cases may be 

sparse and/or erroneous (Wu et al. 2009; Thomas et al. 2012). The N cycle is an 

archetype of this problem, as new N processes and lineages continue to be identified 

(Strous et al. 1999; Konneke et al. 2005; Farnelid et al. 2011; Sanford et al. 2012; van 

Kessel et al. 2015). Despite these challenges, the application of metagenomic data to a 

trait-based framework offers a powerful avenue for elucidating the role that microbial 

communities play in regulating biogeochemical processes (Barberan et al. 2012; Fierer 

et al. 2014).  

 

MATERIALS AND METHODS 
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Dataset and curation. Metagenomic samples (sequencing type “whole genome 

sequencing” and environmental package “soil”, n=809) in the MG-RAST database 

(Meyer et al. 2008) were classified into one of ten habitat types (Desert, Cold Desert, 

Grassland, Temperate Forest, Tropical Forest, Tundra, Wetland, Agriculture, Pasture, 

Lawn). Samples that could not be classified into these habitats (e.g., oil spill, mines, and 

microbial mats) were not considered further.  

GPS coordinates and sample date associated with each metagenome id were 

downloaded from MG-RAST via the R package matR (Team 2011; Braithwaite & 

Keegan 2013). To minimize the problem of pseudoreplication, we only considered 

samples from one date per location (the date with the most samples).  Based on the 

statistics provided by MG-RAST, we further removed samples if: 1) the number of 

uploaded sequences was equal to the number of post-QC sequences, which seemed to 

indicate a pre-processing step; 2) the number of identified protein features was <10,000; 

or 3) the total bacterial reads <10,000. The remaining metagenomic libraries (n=365) 

encompassed 118 unique locations. These were downloaded using the MG-RAST API 

version 3.2 with KEGG database annotations. Each sequence was assigned to the 

closest related genus in the database using an e-value of less than or equal to 10-5. 

 

Data standardization across metagenomic libraries. Because sequencing effort 

varied greatly among samples, we standardized the bacterial and archaeal sequences 

by a suite of conserved, single-copy (i.e., marker) genes to control for possible variation 

in average genome size among samples (Frank & Sorensen 2011)(Figure S1). The 

Kegg Orthology (KO) numbers for 30 Bacteria and Archaea marker genes (Frank & 
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Sorensen 2011) were matched to MD5 IDs using the non-redundant M5nr database. 

We then searched for these MD5 IDs in the samples annotated by the MG-RAST 

server.  

The number of marker genes was also highly correlated with the total number of 

annotated sequences in a sample (R2 = 0.86; Figure S1). Thus, when comparing across 

Archaea, Bacteria, and Fungi, we standardized the samples by total annotated 

sequences. Sequencing effort varied greatly among the samples, but was not overtly 

biased towards any particular habitat type (Figure 2.3). 

 

Identification of N cycle pathways. In each metagenomic library, we searched for 

sequences from eight N pathways, defined previously in (Nelson et al. 2015).  These 

pathways included nitrification (number of genes targeted: n=2), N fixation (n=20), 

denitrification (n=20), dissimilatory nitrate to nitrite reduction (n=9), dissimilatory nitrite to 

ammonia reduction  (n=4), assimilatory nitrate to nitrite reduction (n=2), assimilatory 

nitrite to ammonia reduction (n=2), and ammonia assimilation (n=10) (Figure 2a). If a 

gene from a pathway was detected, we assumed the presence of the entire pathway.  

 

Environmental Metadata. Environmental data was retrieved from a variety of publically 

available sources. In all cases, gridded spatial data files were downloaded, and data 

was extracted using the R packages raster, rdgal, and sp (Hijmans & van Etten 2012; 

Bivand et al. 2013). The data included average precipitation (mm) and temperature (˚C) 

from the month of sampling (Hijmans et al. 2005), soil pH (Batjes 2000), total organic 

carbon (kg/m2)(Batjes 2000) , total organic nitrogen (g/m2) (Group 2000), and nitrogen 
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deposition (mg N/m2/year) (Dentener et al. 2006). Approximate data grid resolution for 

precipitation and temperature was 0.01˚, for soil pH and organic carbon was 0.5˚, for 

total organic nitrogen was 0.1˚, and for nitrogen deposition was 4.0˚. Environmental 

metadata was assigned to each sample using the associated latitude and longitude 

coordinates. Where data was categorized into ranges (soil pH and total organic carbon), 

the average value from the range was used.  

 

Statistical Analyses. To compare the relative abundance of N pathways across 

samples, we calculated the frequency of each pathway in a sample for both the Bacteria 

and Archaea. This frequency is the estimated number of times the pathway was 

detected per marker gene detected, or: [# of pathway reads / # of pathway genes 

searched]/[# marker gene reads/30]. Thus, a pathway’s frequency of detection was also 

standardized for the number of genes in the pathway. 

To test for differences in the frequency across pathways, we used a one-way 

analysis of variance, using the aov function in R. To test for correlations between the 

frequencies of the individual pathways within a sample, we used Spearman’s correlation 

coefficient. To calculate the total N pathway frequency of each sample, we summed the 

frequency of all eight pathways. We used lm in R to calculate the residuals of each N 

pathway against a sample’s total N pathway frequency.  

To tease apart the relative importance of environmental variables on the 

frequency of N pathways, we used a multiple regression model (lm function in R) 

including the following variables: habitat type, temperature, precipitation, soil pH, 

organic carbon, total nitrogen. For this analysis, we averaged data across multiple 
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samples from the same location at just one sampling time, yielding 118 datasets. Based 

on a priori expectations (Ramette 2007), we also included the following interaction 

terms: habitat-by-temperature, habitat-by-precipitation, habitat-by-soil pH, habitat-by-

organic carbon, habitat-by-total nitrogen, precipitation-by-temperature, and organic 

carbon-by-total nitrogen. To determine the relative importance of the various significant 

environmental factors from our model in contributing to variation in the frequency of N 

pathways across samples, we used a backwards selection procedure (Mac Nally 2002; 

Ramette 2007). Starting with the significant terms (p<0.01) from our original model, we 

removed variables one at a time; the differences in R2 values between each step were 

used to calculate the relative importance of the independent variable removed from the 

model.  If there was no change or only a marginal change in R2 when the term was 

removed, the term was assigned a relative importance of <0.01. After the initial analysis, 

N deposition was added to test if this parameter improved the model. 

To analyze the composition within each pathway, we calculated the proportional 

abundance of the genera in a sample and averaged these proportions across multiple 

samples from the same location. We then calculated a Bray-Curtis distance matrix for 

all sample locations. We used a distance-based linear model (DISTLM; PRIMER v6; 

PERMANOVA ++, (Clarke & Warwick 2001; Anderson et al. 2008)) to test the 

significance and importance (an estimate of the proportion of R2 explained) of the 

predictor variables for each pathway’s composition, using a forward selection 

procedure. 
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Phylogenetic visualization. We constructed a phylogenetic tree including a 

representative species from all genera encoding N sequences using 16S rRNA 

amplicon data (chosen for their sequence quality and length of ~1400 bp) from the 

SILVA database (Quast et al. 2013). We aligned the sequences using SINA (Pruesse et 

al. 2012) and created a neighbor-joining tree with the default parameters in Geneious 

v9.0.5. We used the Interactive Tree of Life (iTOL) (Letunic & Bork 2007) to plot (1) the 

proportion of N pathways (excluding ammonia assimilation) detected within each genus 

and (2) the relative abundance of genera encoding each individual pathway across the 

unique sampling locations (n=118). For the N fixation and dissimilatory nitrate reduction 

pathways, we used the ggplot2 package (Wickham 2009) in R to plot heat maps of the 

relative frequencies of the 15 most abundant genera by habitat. 
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Tables and Figures 

Table 2.1 Variation explained by the environmental variables in the regression models 
of the frequency of all (total) and individual N pathways. 
 

The models for the individual pathways are based on the residual frequencies of the 
pathway after correcting for the Total N pathway frequency (see text). Estimates of the 
fraction of explained variation are only reported for significant variables (p <0.05). 
Samples were only included when all environmental variables could be obtained for that 
location (n=99). 
 
 
 
 
 
 
 
 
 

important predictors of N fixation frequency within both do-
mains. Likewise, habitat, habitat by precipitation, and habitat
by temperature contributed to the variation in assimilatory ni-
trate to nitrite frequency in both Archaea and Bacteria.

Taxonomic and Phylogenetic Distribution of N Pathways. A diverse
range of microorganisms, encompassing 402 bacterial and 53 ar-
chaeal genera, encoded the N pathways. We first investigated the
association of pathways within the same genera (Fig. 4 and Fig. S5).
All genera for which we detected over 10 sequences carried the
ammonia assimilation pathway. Genera carrying the pathway to
complete the second half of denitrification also generally carried
the first half of the pathway, dissimilatory nitrate to nitrite re-
duction. The same genera carrying these denitrification pathways
sometimes, but not always, carried the dissimilatory nitrite re-
duction to ammonium pathway, or the second part of the complete
DNRA process (Fig. 4 and Fig. S5). Some genera within the
Gamma-, Delta-, and Epsilonproteobacteria (e.g., Edward-
siella, Wolinella, and Anaeromyxobacter) contained all three
pathways. Indeed, denitrification and DNRA has recently
been shown to be present and functional in the same bacteria
(29, 32). We also detected genera that only carried the dis-
similatory nitrite to ammonium pathway (in addition to am-
monia assimilation), as was the case for five genera within the
phylum Bacteriodetes.

More broadly, soil genera, and the phyla they fall into, varied
in their degree of pathway specialization. Genera within the
Cyanobacteria seemed to be specialists, carrying primarily the
assimilatory nitrite to ammonium and N fixation pathways. In
contrast, genera within the Deltaproteobacteria seemed to be N-
cycling generalists, harboring up to six pathways (in addition to
ammonia assimilation). Note, however, that these patterns do not
distinguish between whether these genera are made up of gener-
alists that encode many pathways or multiple specialists that encode
specific pathways.
Focusing on each pathway individually revealed the most prom-

inent taxa carrying the pathway across all soil samples. Here we
consider two contrasting pathways, both in terms of their taxonomic
distribution and the degree to which they have been studied. First,
the abundance of the N fixation pathway in the soil samples was
distributed broadly among both Archaea and Bacteria (Fig. 4 and
Fig. S5). The most abundant N fixers detected were concentrated
within the phylum Proteobacteria, with notable exceptions among
the Chlorobi, Firmicutes, and Cyanobacteria (Fig. 5A). Most
sequences were closely related to N-fixing genera that might be
predicted to be common in soil, such as Bradyrhizobium and
Burkholderia. Other abundant genera were less expected. For ex-
ample, Azoarcus is an organism studied for its abilities to degrade
soil contaminants (33), and Pectobacterium (Gammaproteobac-
teria) is known primarily as a plant pathogen (34). Indeed, although

Table 1. Variation explained by the environmental variables in the regression models of the frequency of all (total) and
individual N pathways

Individual pathways (residuals)

Environmental
variables Total

Ammonia
assimilation

Assimilatory
nitrate to
nitrite

Assimilatory
nitrite to
ammonia N fixation Nitrification

Dissimilatory
nitrate to
nitrite Denitrification

Dissimilatory
nitrite to
ammonia

Bacteria
Habitat (H) 0.14 0.02 0.23 0.07 0.29 0.11 0.06 0.09
Precipitation (P) <0.01
Temperature (T) <0.01 0.02 0.02
pH
Organic carbon (C) 0.12 <0.01
Total N 0.05 0.13
H × P <0.01 0.07 0.08 0.32
H × T 0.09 0.23 0.31 0.21 0.03 0.31
H × pH <0.01 0.09 0.05
H × C 0.1
H × N 0.17 0.49 0.06
P × T 0.02 0.05 <0.01
C × N <0.01

Adjusted R2 0.58 0.51 0.5 0.36 0.8 0.45 0.41 0.41 NS

Archaea
Habitat 0.08 0.09 0.03 0.12
Precipitation <0.01
Temperature 0.02 0.03
pH <0.01
Organic carbon
Total N 0.05 0.04
H × P 0.21 0.09
H × T 0.09 0.18 0.33 0.13
H × pH 0.12 0.06
H × C
H × N
P × T
C × N 0.34

Adjusted R2 0.43 NS 0.52 NS 0.63 0.22 NS 0.21 NA

The models for the individual pathways are based on the residual frequencies of the pathway after correcting for the Total N pathway frequency (see text).
Estimates of the fraction of explained variation are only reported for significant variables (P < 0.05). Samples were only included when all environmental
variables could be obtained for that location (n = 99). NA, not assessed; NS, not statistically significant.

8036 | www.pnas.org/cgi/doi/10.1073/pnas.1601070113 Nelson et al.
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Figure 2.1 The locations (n=118) sampled to create the soil metagenomic libraries 
(n=365) used in this analysis. The samples represent 10 distinct habitats including 
Agriculture (n=19), Cold Desert (6), Desert (15), Grassland (14), Lawn (4), Pasture (2), 
Temperate Forest (12), Tropical Forest (34), Tundra (7), and Wetland (5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

further predicted that soil pH—previously identified as an im-
portant driver of soil composition (25, 26)—would also influence
compositional variation within microorganisms encoding N-cycling
traits.

Results
Metagenomic data from surface soil samples were retrieved from
the metagenomics analysis server (MG-RAST) (27). After cu-
rating the samples for sequence and metadata quality, the final
365 samples represented 118 unique locations from 10 distinct
habitat types covering natural and human-dominated systems
(Fig. 1 and Dataset S1). Sequencing depth varied greatly among
the samples but was not overtly biased toward any particular
habitat type (Fig. S1). To standardize for sequencing depth, we
report the abundance of each N pathway as its frequency in a
sample. The trends observed were similar whether pathway fre-
quency was normalized as the number detected per annotated
sequence or per marker gene (based on 30 conserved, single-
copy genes) (Fig. S1).
Bacteria dominated the metagenomic libraries, comprising 95%

of all sequences, followed by 3% for Fungi and only 2% for Ar-
chaea. The fraction of fungal sequences in metagenomic libraries
is known to be lower than their contribution to soil microbial
biomass (10). We therefore concentrate our analyses on Bacteria
and Archaea and report only general trends for Fungi. For in-
stance, the proportion of total sequences of Bacteria, Archaea,
and Fungi varied across habitat type (G-test of independence;
P << 0.001) (Fig. S2). Archaea ranged from 0.9 to 11% of all
sequences by habitat, with the highest percentage detected in
deserts. The ratio of fungal to bacterial sequences was particularly
high in temperate forest soil, as previously observed (28).

Frequency of Soil N Pathways. On average, 0.5% of all annotated
sequences in a soil sample were associated with one of the eight
N pathways (Fig. 2A), or an average of 3.3 and 4.7 N pathways
per marker gene for Bacteria and Archaea, respectively. The
frequency of the individual pathways varied by several orders of
magnitude (one-way ANOVA P < 0.001; F = 74.21, df = 7) (Fig.
2B). Bacteria and Archaea displayed similar trends in their rel-
ative frequency of N pathways except for the absence of the
dissimilatory nitrite reduction to ammonium pathway in Ar-
chaea. Fungal sequences were only associated with assimilatory
pathways, including ammonia assimilation, assimilatory nitrate to
nitrite, and assimilatory nitrite to ammonium.
Across all domains, the most common pathway was ammonia

assimilation (Fig. 2B). For instance, among the Bacteria, an av-
erage of 280 ammonia assimilation pathways were detected for
every million annotated bacterial sequences. In comparison, ni-
trification and N fixation were the least common pathways and
detected only 6.1 and 4.6 times per million sequences, respectively.
Notably, the relatively unstudied dissimilatory nitrite reduction to

ammonium pathway was slightly more common that these two
pathways, detected on average 9.3 times per million sequences.
Across all soil samples, N pathway frequencies were over-

whelmingly positively correlated for both the Bacteria and Ar-
chaea (Fig. 3 A and B). To examine differences in pathways
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Agriculture

Cold Desert

Desert

Grassland

Lawn

Pasture

Temperate Forest

Tropical Forest

Tundra

Wetland

Fig. 1. The locations (n = 118) sampled to create the soil metagenomic li-
braries (n = 365) used in this analysis. The samples represent 10 distinct
habitats including agriculture (n = 19), cold desert (n = 6), desert (n = 15),
grassland (n = 14), lawn (n = 4), pasture (n = 2), temperate forest (n = 12),
tropical forest (n = 34), tundra (n = 7), and wetland (n = 5).
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Fig. 2. N pathways and their frequencies. (A) N pathways considered in this
study. The numbers in parentheses are the number of genes targeted for
each pathway. Assimilatory pathways are in orange and dissimilatory
pathways in blue. (B) Box plot of the frequency of each N pathway in a
metagenomic library for Bacteria, Archaea, and Fungi. To compare across
domains, frequencies are calculated as per annotated sequence in each
domain. The upper and lower bounds of boxes correspond to the 25th and
75th percentiles, with a median line shown. Whiskers represent 1.5*IQR
(interquartile range). Dots represent outliers.
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Figure 2.2 N pathways and their frequencies.  A) N pathways considered in this study. 
The numbers in parentheses are the number of genes targeted for each pathway. 
Assimilatory pathways are in orange, and dissimilatory pathways in blue. B) Box plot of 
the frequency of each N pathway in a metagenomic library for Bacteria, Archaea, and 
Fungi. To compare across domains, frequencies are calculated as per annotated 
sequence in each domain. The upper and lower bounds of boxes correspond to the 25th 
and 75th percentiles, with a median line shown. Whiskers represent 1.5*IQR 
(interquartile range). Dots represent outliers. 

further predicted that soil pH—previously identified as an im-
portant driver of soil composition (25, 26)—would also influence
compositional variation within microorganisms encoding N-cycling
traits.

Results
Metagenomic data from surface soil samples were retrieved from
the metagenomics analysis server (MG-RAST) (27). After cu-
rating the samples for sequence and metadata quality, the final
365 samples represented 118 unique locations from 10 distinct
habitat types covering natural and human-dominated systems
(Fig. 1 and Dataset S1). Sequencing depth varied greatly among
the samples but was not overtly biased toward any particular
habitat type (Fig. S1). To standardize for sequencing depth, we
report the abundance of each N pathway as its frequency in a
sample. The trends observed were similar whether pathway fre-
quency was normalized as the number detected per annotated
sequence or per marker gene (based on 30 conserved, single-
copy genes) (Fig. S1).
Bacteria dominated the metagenomic libraries, comprising 95%

of all sequences, followed by 3% for Fungi and only 2% for Ar-
chaea. The fraction of fungal sequences in metagenomic libraries
is known to be lower than their contribution to soil microbial
biomass (10). We therefore concentrate our analyses on Bacteria
and Archaea and report only general trends for Fungi. For in-
stance, the proportion of total sequences of Bacteria, Archaea,
and Fungi varied across habitat type (G-test of independence;
P << 0.001) (Fig. S2). Archaea ranged from 0.9 to 11% of all
sequences by habitat, with the highest percentage detected in
deserts. The ratio of fungal to bacterial sequences was particularly
high in temperate forest soil, as previously observed (28).

Frequency of Soil N Pathways. On average, 0.5% of all annotated
sequences in a soil sample were associated with one of the eight
N pathways (Fig. 2A), or an average of 3.3 and 4.7 N pathways
per marker gene for Bacteria and Archaea, respectively. The
frequency of the individual pathways varied by several orders of
magnitude (one-way ANOVA P < 0.001; F = 74.21, df = 7) (Fig.
2B). Bacteria and Archaea displayed similar trends in their rel-
ative frequency of N pathways except for the absence of the
dissimilatory nitrite reduction to ammonium pathway in Ar-
chaea. Fungal sequences were only associated with assimilatory
pathways, including ammonia assimilation, assimilatory nitrate to
nitrite, and assimilatory nitrite to ammonium.
Across all domains, the most common pathway was ammonia

assimilation (Fig. 2B). For instance, among the Bacteria, an av-
erage of 280 ammonia assimilation pathways were detected for
every million annotated bacterial sequences. In comparison, ni-
trification and N fixation were the least common pathways and
detected only 6.1 and 4.6 times per million sequences, respectively.
Notably, the relatively unstudied dissimilatory nitrite reduction to

ammonium pathway was slightly more common that these two
pathways, detected on average 9.3 times per million sequences.
Across all soil samples, N pathway frequencies were over-

whelmingly positively correlated for both the Bacteria and Ar-
chaea (Fig. 3 A and B). To examine differences in pathways
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Fig. 1. The locations (n = 118) sampled to create the soil metagenomic li-
braries (n = 365) used in this analysis. The samples represent 10 distinct
habitats including agriculture (n = 19), cold desert (n = 6), desert (n = 15),
grassland (n = 14), lawn (n = 4), pasture (n = 2), temperate forest (n = 12),
tropical forest (n = 34), tundra (n = 7), and wetland (n = 5).
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Figure 2.3 The relationships between N pathway frequencies. Correlations between N 
pathways encoded by Bacteria (A) and Archaea (B) across the samples. (C and D) 
Correlations between the residuals of each pathway regressed against the total 
frequency of all N pathways. 
 
 
 
 
 
 
 
 
 

beyond the trends shared by all, we calculated the residuals of the
frequency of each pathway regressed against the frequency of all N
pathways in a sample. This residual variation was also significantly
correlated among many of the N pathways (Fig. 3 C and D). For
instance, denitrification was highly positively correlated with dis-
similatory nitrate reduction to nitrite within both Bacteria and
Archaea (R2 = 0.86 and 0.97, respectively, P ≤ 0.001). This re-
lationship is expected, because dissimilatory nitrate reduction to
nitrite is the first step of the complete denitrification process;
however, we separated the two steps here, because nitrate re-
duction to nitrate is also the first step in DNRA (29). Similarly, we
separated DNRA into its two pathways: dissimilatory nitrate re-
duction to nitrite and dissimilatory nitrite reduction to ammonium
(Fig. 2A). Among Bacteria, the assimilatory nitrite to ammonium
pathway residual was negatively correlated with all other path-
ways. Likewise, the residual frequency of the ammonia assimila-
tion pathway was negatively correlated with all other N pathways
in both Bacteria and Archaea. N fixation generally showed weak
or no correlation with other pathways.

Drivers of N Pathway Frequencies. The frequency of all N-cycling
traits (summing across all pathways) varied greatly among soil
samples, and initial analyses revealed broad biogeographic patterns.
On average, the highest frequencies of total N pathways were de-
tected in tropical forest and human-dominated (pasture, lawn, and
agriculture) soils, whereas the lowest frequency was observed in
cold deserts (Fig. S3). Total N pathway frequency also tended to
decrease with increasing latitude (R2 = 0.22, P < 0.05; Fig. S4).
To disentangle the drivers behind these patterns, we performed

a multivariate regression analysis including habitat type and en-
vironmental parameters known to influence microbial abundance
and composition (30, 31). Local measurements were not available
for most samples; instead, we estimated these variables from
secondary sources. For Bacteria, the regression model explained a
large and significant proportion of the variability in the frequency
of total N pathways (R2 = 0.58, P << 0.001; Table 1). Habitat type

contributed most to this model, both directly (positively related to
total N pathways) and through interactions with soil carbon and N.
The regression model for Archaea explained less variability in
total N pathway frequency than for Bacteria (R2 = 0.43, P < 0.001;
Table 1). An interactive effect between carbon and N contributed
the most to the model, and habitat was only important through an
interactive effect with temperature.
We next examined the drivers of individual N pathway fre-

quencies. Due to high covariance between pathways (Fig. 3 A and
B), we fitted regression models to the total-frequency-corrected
residuals for each pathway. These models varied greatly in their
ability to explain this additional variation (Table 1). For example,
the models for the N fixation pathway explained 80% and 63% of
the variation among samples in Bacteria and Archaea, respectively
(P << 0.001). In contrast, the same parameters did not explain any
variation in the frequency of the dissimilatory nitrite reduction to
ammonium pathway in Bacteria.
Among the significant models, habitat type was an important

predictor of the individual pathway frequencies (Table 1). Habitat
also interacted with other factors including precipitation, tempera-
ture, and soil N to influence the frequency of some pathways. For
instance, denitrification frequency increased with temperature in
deserts but decreased with temperature in tropical forests. Similarly,
ammonia assimilation frequency increased with soil N in temperate
forests but decreased with soil N in tropical forests. Soil carbon,
which seemed to be a primary driver of total N pathway frequency,
did not explain differences in the frequency of individual pathways in
Bacteria. Including estimates of N deposition in these models only
improved the denitrification model (R2 increased from 0.41 to 0.48);
denitrification frequency increased with increasing N deposition.
The models for individual pathway frequencies in Archaea gen-

erally explained less variation than those for Bacteria, perhaps due to
the lower number of sequences per sample (Dataset S1). However,
for the significant models, the individual N pathways were often
best explained by the same parameters as the Bacteria. For in-
stance, habitat type and habitat by temperature were the most
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Figure 2.4   Phylogenetic distribution of N pathways in the soil metagenomes. A 
neighbor-joining tree was constructed using 16S rRNA data (see Methods) and includes 
all archaea and bacteria genera associated with N cycling sequences in the dataset. 
The outer-circle plots the proportion of N cycle reads assigned to each pathway within 
the genus. The ammonia assimilation pathway is excluded, because it was found in all 
genera represented by at least 10 sequences. The inner-circle indicates major classes 
and phyla. See Figure S5 for a high-resolution figure with genus labels. 
 
 
 
 
 
 

it is known that Pectobacterium encodes the suite of N fixation
genes, it remains unclear whether they are functional (35).
Second, the pathway encoding dissimilatory nitrite reduction

to ammonium was also broadly distributed across soil bacteria
(Fig. 4), as noted before (36). However, the dominant soil taxa
were restricted to two phyla, the Deltaproteobacteria and
Verrucomicrobia (Fig. 5B). Verrucomicrobia are known to be
abundant in soils, but their ecological role remains unclear (37,
38). The pathway’s most abundant genus, Anaeromyxobacter
(phylum Deltaproteobacteria), is common in agricultural soil
and has recently been shown to carry out a previously un-
recognized process of nondenitrifying N2O reduction to N2
(39). The relative abundances of genera encoding the other six
N pathways in the soil samples are reported in Fig. S6.

Drivers of Taxonomic Composition by N Pathway. The same envi-
ronmental variables that explained the overall frequency of the N
pathways well explained much less of the variation in the taxo-
nomic composition of the organisms encoding the pathways. For
the eight pathways, the models only explained 7–19% of the
composition variation of the individual N pathways (Table S1).
However, as for pathway frequency, habitat type was the best
predictor of composition, explaining up to 14% of the composi-
tional variation in the assimilatory nitrite to ammonium pathway.
Temperature also explained 11% of the compositional variation
for the nitrification pathway. All other predictors, including pH,
explained at most 3% of the variation for any pathway.
A closer examination of two pathways confirms weak com-

positional differences between the habitats. The 15 most abun-
dant genera carrying the N fixation pathway were similarly
abundant across all habitats except in cold deserts (Fig. 5A). The
most abundant genera encoding the dissimilatory nitrite re-
duction to ammonium pathway displayed greater variability
among habitats (confirming the model results in Table S1), but
of these only one genus (Chlorobium) seemed specialized on a
habitat (wetland) (Fig. 5B).

Discussion
Here, we used metagenomic data to characterize the bio-
geographic patterns of microbial N cycling traits in soil. The
advantage of this approach is that it allows us to identify the
traits—and the organisms harboring them—involved in many
key functions at once. Specifically, the analysis provides a com-
prehensive map of the dominant lineages involved in eight N
processes. The approach also allowed us to search all known
genes in a pathway, while avoiding primer biases toward partic-
ular lineages (40).
The overall structure of microbial N traits—the relative fre-

quency of the eight pathways—seems to be quite consistent across
soils. This is not unexpected but had not been previously tested.
For instance, the ammonia assimilation pathway was relatively
common, and the pathways for N fixation and nitrification were
relatively rare, as observed previously in soil and other environ-
ments (41–44). Less expected, however, was that N pathway fre-
quencies within a soil sample were overwhelmingly positively
correlated (Fig. 3). This result suggests that soil communities with
high numbers of cells able to use one N pathway also generally
support higher numbers of cells that can use other N pathways.
Greater numbers of metagenomic sequences associated with nu-
trient cycles have previously been interpreted to be indicative of
faster nutrient cycling rates (10). The positive correlations between
pathways within the N cycle would seem to support this hypoth-
esis. We also found a high frequency of Bacteria encoding the
dissimilatory nitrite reduction to ammonium pathway, which leads
to recycling of N in soils. The balance between DNRA and de-
nitrification, which leads to the loss of N to the atmosphere, is
thought to be key to soil N budgets. Our results confirm previous
studies suggesting that this pathway may be more common than
previously thought (45, 46), but the taxa encoding the process in
soil environments remain to be carefully characterized (47).
The frequency of N traits further displayed clear biogeographic

patterns. At the broadest scale, N trait frequency in Bacteria tended
to decrease at higher latitudes, perhaps reflecting a general trend in
N limitation in high-latitude ecosystems (48). Beyond latitude, the
frequency of N cycling traits in soil communities depended largely
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figure with genus labels.

Nelson et al. PNAS | July 19, 2016 | vol. 113 | no. 29 | 8037

EC
O
LO

G
Y

CO
LL
O
Q
UI
UM

PA
PE

R



61	
	

 
 
Figure 2.5 Phylogenetic distribution of genera encoding specific pathways. The 
neighbor-joining tree was constructed using 16S rRNA data (see Methods). The relative 
abundance of genera associated with (a) nitrogen fixation and (b) dissimilatory nitrite 
reduction to ammonium. Within a pathway, the proportion of sequences associated with 
each genera was calculated for each sample. The proportions were averaged across 
libraries within each location and then averaged across the 10 habitat types (to provide 
equal weighting to the habitats). The heatmaps give the relative frequency by habitat for 
the 15 most abundant genera associated with each pathway. See Figure S6 for plots of 
the other 6 pathways.  
 
 
 
 
 
 
 
 
 

on habitat type as well as soil carbon and N concentrations. N traits
were highest in human-dominated habitats, where N inputs tend to
be high, and tropical forests, which are generally thought to be less
limited by N than temperate ecosystems (49). In contrast, N traits
were lowest in cold deserts (Antarctic and Arctic), which are highly
nutrient-limited (48, 50). However, given the low sample numbers
for some habitat types, it will be important to retest these patterns
as more data accumulate.
Contrary to our hypothesis, the taxa responsible for each N

pathway did not vary greatly by habitat type. Within a pathway,
genera that were dominant in one habitat tended to be dominant
in all habitats. More generally, the environmental variables in
our analyses were poor predictors of the compositional variation
of the N functional groups. One possible reason for this result is
that environmental preferences are conserved below the genus
level and therefore would not be detected by our analysis.
However, this reasoning does not explain why soil pH seems to
have little influence on composition, because pH preference
seems to be conserved at a broader taxonomic level (22, 51).
Perhaps N functional groups are less specialized for a particular
pH environment than microorganisms with other functional

roles, but distinct pH-associated lineages in ammonia-oxidizing
Archaea indicate that this is not always the case (52). Alterna-
tively, the estimates of soil pH might have been too spatially
coarse to detect a pattern.
A well-recognized issue in calculating the frequencies of genes

or pathways from metagenomic data is how to normalize for
overall genome abundance in the library (53). This normalization
step is prone to uncertainties related to variation in mean ge-
nome size among communities. To address this issue, we esti-
mated the frequencies of N pathways in two ways: using a set of
conserved marker genes as well as the total number of annotated
sequences within a domain. The first approach should be sensi-
tive to differences in genome size, whereas the second approach
includes more sequence reads and is thus more statistically ro-
bust. Because the two approaches led to similar findings, we
conclude that the overall patterns in N pathway frequencies are
likely not an artifact of normalization.
In sum, this study provides a foundation for future trait-based

investigations of soil N cycling but also highlights two major chal-
lenges. First, we still know very little about how variability in the
frequency and composition of microbial N traits will affect process
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Fig. 5. Phylogenetic distribution of genera encoding specific pathways. The neighbor-joining tree was constructed using 16S rRNA data (Materials and
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CHAPTER 3 

Dispersal alters bacterial diversity and composition in a natural community 

ABSTRACT 

Dispersal is central to the evolution and maintenance of microbial diversity.  

Quantifying microbial dispersal and its role in shaping communities remains a 

challenge, however. Here, we manipulated a bacterial community’s dispersal rate in a 

grassland ecosystem and test whether this altered diversity and composition. We 

constructed bags of two nylon mesh sizes that were closed or open to bacterial 

movement and filled them with an edible or inedible substrate, irradiated plant litter or 

nylon sheets. We measured changes in bacterial abundance (by flow cytometry) and 

composition (by 16S amplicon sequencing) in the bags weekly over five months. The 

dispersal treatment altered bacterial colonization rates and led to differences in the 

abundance, richness, evenness, and composition of communities. Overall, the study 

demonstrates that dispersal influences the assembly of this natural bacterial community.  

 

Introduction 

Dispersal, or the movement of organisms, plays an important role in the evolution 

and maintenance of biodiversity (Leibold et al. 2004; Cottenie 2005). Recent 

biogeographic studies and field experiments suggest that, as with larger organisms, 

microorganisms are dispersal limited (Bell 2010; Lindstrom & Ostman 2011; Hanson et 

al. 2012) or in other words, that the probability of a bacterium moving away from a 

location varies with distance. Because of this limitation, dispersal rates can influence 

both diversity (richness and evenness) and composition of microbial communities 
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(Whitaker et al. 2003; Horner-Devine et al. 2004; Martiny et al. 2011; Andam et al. 

2016). Additionally, dispersal may impact communities through mass effects (Evans et 

al. 2017). However, quantifying the dispersal of microorganisms is a challenge due to 

their small size and high abundance (Nemergut et al. 2013a), hence the relationship 

between dispersal rates and microbial diversity or composition remains to be tested. 

Indeed, these relationships are likely complex and dependent on environmental context 

(Chase 2007; Louca et al. 2016a; Evans et al. 2017). Thus, field experiments will be 

required to elucidate the role of dispersal in shaping microbial communities. 

Here, we tested if varying a community’s dispersal rate alters the diversity and 

composition of a bacterial community. We focused on bacterial communities on plant 

litter, the top layer of soil, in a southern California grassland (Evans et al. 2017). To 

manipulate dispersal rate (the number of cells migrating into/out of a community per 

time), we constructed bags from two nylon mesh sizes. The high dispersal rate 

treatment (18.0 µm; hereafter ‘open’) allowed for the migration of bacteria and larger 

microorganisms through the bags, whereas the low dispersal rate treatment (0.22 µm; 

‘closed’) substantially reduced dispersal (Allison et al. 2013; Evans et al. 2017). To 

disentangle the influence of dispersal alone versus growth and successional dynamics, 

we also manipulated the substrate inside the bags. Half of the bags within each 

dispersal treatment contained an edible substrate (irradiated plant litter), and half 

contained an inedible substrate (irradiated nylon sheet), where microbes could land but 

not grow. In total, we deployed 192 bags into the field and collected three replicates per 

treatment at 16 time points over the course of 5 months. For each bag, we measured 

total cell abundance by flow cytometry and characterized the bacterial community using 
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16S amplicon sequencing. During the last two months of the experiment, we also 

assayed samples from surrounding plant litter (detailed methods in Supplementary 

Information). 

 

Results & Discussion 

Bacterial abundance differed by dispersal treatment (Figure 3.1a).  In the litter-

containing bags, abundance was 151 times higher in the open versus closed treatment 

after just one week (2.3 x 107 per g dry litter and 1.5 x 105 per g dry litter, respectively; t-

test: t4=3.36, p=0.03). This difference persisted for the first 7 weeks of the experiment, 

indicating that the closed bags successfully lowered bacterial dispersal rates (Table S1). 

Notably, however, abundance also increased in the closed bags such that average 

abundance in the open and closed treatments did not significantly differ after 7 weeks 

(Table S1). After 11 weeks, bacterial cell counts leveled off in both open and closed 

bags at 2.1 x 108 cells/ g dry litter, similar to that observed in the surrounding plant litter 

(Figure 1a). Thus, as with the phyllosphere (Remus-Emsermann et al. 2012), litter 

communities appear to be subject to a carrying capacity, and the capacity in our litter 

bags was similar to that of the surrounding, litter environment.  

The open and closed nylon-containing bags also differed in their abundance; 

additionally, overall abundance was greatly reduced due to lack of growth. Bacterial 

abundance in the open bags (113 cells per cm2 nylon) was on average 330 times higher 

than in the closed bags (0.34 cells per cm2 nylon) (ANCOVA; dispersal treatment: 

F1,14=20.6, p<0.001; inset in Figure 3.1a). We were unable to PCR amplify DNA from 
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the closed nylon-containing bags, confirming that dispersal was greatly reduced by the 

smaller mesh size.  

 Higher community dispersal rates led to increased bacterial diversity.  Observed 

richness was significantly higher in the open versus closed litter-containing bags (Figure 

3.1c, Table S1). Richness also appeared limited by dispersal in the litter-containing 

bags, as it increased significantly over time. Furthermore, higher dispersal increased 

evenness in the litter-containing bags (Figure 3.1d, Table S1). In general, growth on the 

irradiated litter led to more even communities in the later stages of the experiment, 

similar to the successional dynamics of a sterile substrate by marine taxa (Datta et al. 

2016).  In contrast, evenness in the open nylon-containing bags decreased over time, 

reflecting the pattern of the surrounding litter community (Figure 1d). We suspect that 

this decline in evenness is due to typical seasonal changes at this grassland site (Figure 

S1) (Matulich et al. 2015). 

Dispersal rate also influenced bacterial composition (Figure 3.1b, 3.2, Table S2). 

The closed litter-containing bags had significantly higher within-treatment variation than 

either the open-litter containing bags or the environmental litter (PERMDISP; p=0.02 

and p=0.004, respectively).  Thus, lower bacterial dispersal rates appear to increase 

ecological drift and result in more divergent composition (Hanson et al. 2012)(Evans et 

al. 2017). The nylon-containing bags, which did not allow for growth, were more 

representative of the surrounding plant litter community than the litter-containing bags 

(Figure 3.1b, 3.2, Table S3). Presumably, the nylon-containing bags are a random 

subsample of the surrounding community whereas the communities in the litter-

containing bags are in the early stages of succession and therefore also influenced by 
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growth and competition. Still, relative abundance of individual taxa in both the open 

nylon- and open litter-containing bags was positively correlated with the relative 

abundance of taxa in the environment (R2= 0.77 and 0.76, respectively, both p<0.001; 

Figure S2). These strong correlations suggest that bacterial dispersal occurs primarily 

passively in this system, as taxa generally colonize the bags in proportion to their 

abundance in the surrounding plant litter. However, dispersal rates among taxa could 

depend on traits such as size, adhesive ability, and in the case of an edible substrate, 

competitive ability. Thus, it is notable that a Cytophagaceae taxon (genus 

Hymenobacter), previously characterized as a common atmospheric bacterium 

(Yooseph et al. 2013; Barberan et al. 2015), was more abundant on the nylon than in 

the environmental litter (Figure 3.2, S2).  Similarly, an Oxalobacteriaceae taxon (genus 

Massilia) was more abundant in the litter bag samples than in the environment (Figure 

3.2, S2), suggesting that this taxon has a growth advantage during early litter 

colonization. Finally, we note that although the mesh size of the open bags was small, 

we cannot exclude the possibility that they allowed a greater number of grazers to 

colonize, which may have contributed to differences in bacterial composition between 

the dispersal treatments. 

 

Conclusions 

This experiment reveals that bacterial dispersal, like selection by the litter 

substrate, contributes to the diversity and composition of this bacterial community on 

grassland litter. Our study also demonstrates the feasibility of manipulating bacterial 

dispersal in the field, offering the potential to disentangle the processes contributing to 
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microbial community assembly (Hanson et al. 2012; Nemergut et al. 2013a). Future 

work might consider the impacts of dispersal differences across ecosystems for 

community assembly and functioning.  
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Tables and Figures 

 

 
 
 
 
Figure 3.1 Effects of dispersal limitation on bacterial a) abundance, b) composition, as 
assayed by 16S sequencing, and c) richness and d) evenness, after rarefaction to 
standardize for sequencing effort among samples. Error bars in panel a) are 1 + 1SE. 
The four treatment types included litter-containing open bags (purple), litter-containing 
closed bags (orange), nylon-containing open bags (light blue), nylon-containing closed 
bags (dark blue). Plant litter samples from the surrounding environment (green) were 
also collected for comparison. 
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Figure 3.2 Relative abundance of bacterial families found in each treatment type (litter-
containing open bags, litter-containing closed bags, nylon-containing open bags) and 
the surrounding plant litter (environment), averaged across each time point. 
 

Acidobacteria_Subgroup 6_Other
Alcaligenaceae

All_Other

Alphaproteobacteria_Other

Bacillaceae

Bacteria_Other

Burkholderiaceae

Burkholderiales_Other

Chitinophagaceae

Comamonadaceae

Coxiellaceae

Cytophagaceae

Deinococcaceae

Enterobacteriaceae

Flavobacteriaceae
Kineosporiaceae
Methylobacteriaceae
Microbacteriaceae
Micromonosporaceae
Nocardioidaceae

Oxalobacteraceae

Proteobacteria_Other

Pseudomonadaceae

Rhizobiaceae

Rickettsiales_Other

Sphingobacteriaceae

Sphingomonadaceae

Sphingomonadales_Other

Streptococcaceae

Unclassified_Other

Xanthomonadaceae

Environm
ent

O
pen N

ylon
C

losed Litter
O

pen Litter

Co
m

po
sit

io
n 

(%
)

75

75

Family

MayAprApr

75

75

25

50

50

25

25

MarFeb

50

50

25

Date



71	
	

Supplementary Information 

Materials and Methods 

Field site 

The field experiment was conducted at East Loma Ridge, Irvine CA, USA 

(33°44’N, 117°42’E, 365 m elevation). This southern California grassland ecosystem is 

dominated by exotic annual grasses and forbs (Potts et al. 2012; Kimball et al. 2014). 

Over the dry months, grasses die and accumulate as thatch cover. Microbes break 

down this material as a source of carbon and nutrients, primarily during the wet months 

(usually December thru March (Allison et al. 2013).  

 

Dispersal manipulation 

Litterbags (n=192) of 10 cm x 10 cm were constructed from nylon mesh. To 

manipulate dispersal, half of the bags were made from 18.0 µm nylon mesh (open bags; 

Tisch Scientific), which allows for the migration of bacteria and fungi, but not larger 

organisms. The other 96 litterbags were made from 0.22 µm nylon mesh (closed bags; 

Tisch Scientific), to prevent most microorganism dispersal. Both mesh sizes appeared 

to allow water to pass through similarly, as we saw no difference in the water content of 

litter in the closed and open bags, when collected for sampling over the course of the 

experiment (ANCOVA; main effect of dispersal treatment, F3,89=0.40, p= 0.53). 

 

Initial litter collection and sterilization 

Surface litter was collected in November 2014 from the Loma Ridge site.  The 

litter was ground using a blade coffee grinder (KitchenAid model BCG111OB) and 
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homogenized. The litter was autoclaved, then wetted with saline (0.9 M NaCl), left 

overnight and autoclaved again. Half of the open (n=48) and half of the closed (n=48) 

bags were filled with 6 g of sterilized litter. In the remaining open and closed bags, we 

placed a single sheet of 8 cm x 8 cm, 0.22 µm nylon. Nylon sheets were used as an 

inert substrate, on which microbes could land but not grow (or at least grow very 

slowly). In contrast, microbial growth could occur in litter-filled bags after initial dispersal. 

All bags were were subjected  to  2.7 days of continuous exposure in a 137Cs irradiator 

(UCI Radiation Oncology, School of Medicine, Irvine, CA)  at a dose rate of 4Gy/min 

(~16000 Gy) with an additional estimated 6000 Gy picked up by samples over the 

exposure time due to scatter, leading to total dose of ~22 kGy. 

 

Field experiment 

Initially, 12 bags were collected as time 0 samples, and the remaining 180 bags 

were deployed at Loma Ridge, Irvine, CA on January 8th 2015. Bags were placed near 

one another (approximately 3 m x by 3 m area) to minimize environmental variation. 

Bags were collected weekly and then bi-weekly for 5 months, for a total of 16 

samplings, including the time 0 samples. At each sampling, 3 replicates of each bag 

type was collected. In addition, starting in mid-March, 3 plant litter samples were 

collected from within the experimental area at each sampling time. Environmental data 

from the field site including precipitation (mm), surface soil moisture (vol/vol), and air 

temperature (degrees C) were monitored over the course of the field experiment (Figure 

S1). From each litter-containing bag, 0.1 g of plant litter was collected for bacterial 

counts and stored in 5-mL 1% phosphate buffered glutaraldehyde solution in the dark at 
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4˚ C. Similarly, 0.1 g litter was collected for DNA extraction and stored at -80˚ C. In 

addition, we obtained the water content of each litter bag at the time of sampling by 

weighing a litter subsample before and after drying in an oven at 60˚ C overnight. From 

each nylon-containing bags, the nylon sheet was cut in half, and the halves were stored 

in the same way as the litter samples.  

 

Bacterial Cell Counts 

Bacterial abundance on the litter samples was measured using flow cytometry by 

modifying a procedure from Allison et al. (2013). The fixed samples were extracted by 

adding 0.55 mL of 0.1 mol/L tetrasodium pyrophosphate and gently sonicating for 30 

minutes in the dark at 4˚ C. Samples were then filtered through a 3.3-µm syringe filter to 

remove large particulates. 3 µL of SYBR Green (200x) was added to 600 µL of sample 

and incubated in the dark at room temperature for 10 min. Particle counts were 

performed using flow cytometry (BD Accuri C6; BD Biosciences, San Jose, California, 

USA). Each sample was run on the flow cytometer for 2 minutes at medium speed (45 

µL/min) and 2000 threshhold (minimum fluorescence level). The gating parameters 

were optimized to count particle sizes in the size range of bacterial cells (tested by 

positive additions of single and mixed cultured isolates to sterilized plant litter). Cell 

counts are reported as number of stained counts.  

The fixed nylon sheet samples were extracted and filtered in the same way as 

the litter samples. Low cell counts, combined with high background noise from nylon 

particulates, prevented us from using flow cytometry to estimate cell counts. Therefore, 

bacterial counts were assayed using fluorescence microscopy on a subset of samples 
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including 3 replicates of each bag type at 3 sampling dates (February 18, March 18, 

April 23). Microscopy slides were prepared by vacuum filtering 3 mL of the above 

processed samples on a filter. Filters were placed face down to incubate on a plastic 

petri dish containing 10 µL of SYBR green for 2 minutes in the dark and then mounted 

to a glass slide. Bacterial abundance was determined by counting stained cells for 12 

randomly selected fields on each filter with a Axioplan2 Imaging microscope (Scientific 

Imaging Corporation, Campbell, CA, USA) using a fluorescein (FITC) filter at 100x 

objective. 

 

DNA extraction and sequencing 

From each bag, a 0.05 g litter sample was collected for microbial DNA 

extractions and stored in a -80˚ C freezer. DNA was extracted following with the MoBIO 

Soil Kit, using the low biomass DNA extraction protocol. Given the large differences in 

cell abundances in the samples over the time course of the experiment, either 5 µL of 

undiluted or a 1:10 dilutions of DNA from the extracts was used for subsequent PCR 

amplification. 5 µL of DNA from each extract was added to a cocktail containing: 1 Unit 

per reaction of Hot Start Taq DNA polymerase (BioLabs, Inc), 1 × PCR Rxn Buffer (-

MgCl2) (Invitrogen), 1200 µM MgCl2 (Invitrogen), 200 µM dNTP, 0.2 µM Forward primer 

and 0.2 µM Reverse Primer, 200 mM Bovine Serum Albumin Acetylated (PROMEGA), 

and H2O to a final volume of 25 µl. Dilutions were sample dependent because of low 

DNA quantities obtained from samples. We used the 515 forward primer 

(GTGYCAGCMGCCGCGGTAA) and 926 reverse primer 

(CCGYCAATTYMTTTRAGTTT) designed by (Caporaso et al. 2012) and modified by 
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(Apprill et al. 2015) to target the V4-V5 region of the 16S region. Following an initial 

denaturation step at 94 °C for 3 min, PCR was cycled 35 times at 94 °C for 45 s, 55 °C 

for 30s, 68 °C for 20s, with a final extension at 68 °C for 10 min. We amplified each 

subsample in duplicate from the extracted DNA. 

All amplified samples were pooled based on gel pictures, with 1.0, 2.0, 3.0 µL 

added for strong, moderate, weak bands respectively, into a low binding tube. After 

pooling, PCR products were cleaned using the Agencourt AMPure XP PCR Purification 

Kit (Beckman Coulter Inc., Indianapolis IN, USA), following the standard manufacturer’s 

instructions. We then performed a gel extraction on the pooled and cleaned samples to 

isolate the target band. Specifically, the cleaned PCR products were run on a sodium 

borate agarose gel at 100V for 45 minutes. The DNA was then gel extracted and 

cleaned using the Agencourt AMPure XP PCR Purification Kit (Beckman Coulter Inc., 

Indianapolis IN, USA). PCR products were assessed for quality using a High Sensitivity 

DNA Assay on an Agilent Bioanalyzer at the Genome High-throughput Facility at 

University of California, Irvine. Products were then sequenced at the University of 

California, Davis Genome Center at the DNA Technologies Core using multiplexed 

paired-end Illumina MiSeq platform. Presumably because of low bacterial abundance, 

we were unable to amplify DNA from the closed nylon-containing bags or from time 0 of 

any of the bags. Consistent with this, we only amplified samples from the closed litter 

treatment after 4 weeks in the field, when cell abundance reached an average of 1.1 x 

107 per g dry litter (Figure 1a). 

 Illumina sequence data was processed using the QIIME (version 1.9.1) toolkit 

(Caporaso et al. 2010). Paired end files were joined and operational taxonomic units 
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(OTUs) were picked at 97% identity level using UCLUST (Edgar 2010) with the nearest 

neighbor method in QIIME. Taxonomy was assigned using SILVA v119 as the reference 

database (Quast et al. 2013) using QIIME scripts. We removed samples with <923 

reads from further analysis. For the remaining samples (n= 104) reads varied between 

923 and 163,485 with a median of 10,527. Using this data, 100 OTU-by-sample 

matrices were randomly subsampled at an even depth of 923 reads. This relatively low 

number was chosen for the rarefaction so as not to bias against samples from the early 

sampling points, as the low DNA yields from these samples led to these low number of 

reads. However, rarefaction curves suggest that the relative diversity among the 

treatments would not have changed with deeper sequencing (Figure S3).  

We applied a square root transformation to each rarified matrix (to down-weight 

the influence of the most abundant OTUs). Next for each the transformed OTU-by-

sample matrices, we calculated a sample-to-sample distance matrix using the Bray-

Curtis beta-diversity metric in QIIME . A final median Bray-Curtis matrix was creating by 

selecting the median value for each cell across the 100 distance matrices. Shannon 

diversity (alpha-diversity metric) of all rarified OTU matrix libraries was also calculated 

using QIIME (Caporaso et al. 2010). Unprocessed sequences are available through the 

NCBI’s Sequence Read Archive (accession number SRP102671). 

 

Statistical Analysis  

To test the trajectory of the abundance, richness, and evenness of microbial 

communities we used a generalized linear model to perform an ANCOVA. This model 

tested the effects of treatment, time, and their interaction (treatment x time) on bacterial 
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abundance and diversity (lm function, R Development Core (Team 2011). For 

abundance, the model compared only the dispersal treatment on the litter-containing 

bags (two levels of treatment), whereas for diversity it compared four levels of treatment 

including open litter-containing bags, closed litter-containing bags, open nylon-

containing bags, and environmental samples. In addition, for bacterial abundance, we 

split the data into two time periods for analysis, January 5th to February 25th, when 

abundances were rapidly increasing, and March 5th to June 5th, when abundances of 

the open and closed litter bags converged and leveled off (Table S1).  

To test for differences in bacterial community composition across sample groups, 

we performed a permutational multivariate analysis of variance (PERMANOVA) using 

PRIMER6 & PERMANOVA+ (Anderson 2001; Anderson et al. 2008), including 

treatment and time as fixed factors, and their interaction (treatment x time). Analyses 

were run using type III partial sums of squares under a reduced model with 999 

permutations. Ad-hoc pairwise tests were run to compare each of the four sample 

groups. We then used SIMPER and PERMDISP analyses to compare the average 

similarity between and within treatments, respectively (PRIMER6 & PERMANOVA).  

Lastly, we tested for correlations between the relative abundance of individual 

taxa between treatments.  For this analysis, we first found the mean relative abundance 

of each taxon across all samples within each treatment (including the environmental 

samples). We then compared mean relative abundances of taxa between treatments 

using Pearson’s correlations on cube root transformed data (rcorr function, Hmisc 

package R). For pairwise comparisons of treatments, only taxa found in both treatments 

were included in the analysis.  
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Supplementary Tables and Figures 
 
Table S3.1. ANCOVA statistics for abundance, richness, and evenness. Abundance 
comparisons are for open and closed litter-containing bags. Richness and evenness 
comparisons are across all treatment types (open-litter containing, closed-litter 
containing, open-nylon containing, environmental litter). 
 

 
 

 
*Note: Significant  p-values (<0.05) are shown in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S1. ANCOVA statistics for abundance, richness, and evenness. Abundance comparisons are for open and closed litter-
containing bags. Richness and evenness comparisons are across all treatment types (open-litter containing, closed-litter containing, 
open-nylon containing, environmental litter). 
 

	
Abundance		

(Jan	5th-	Feb	25th	)	
	 	Abundance	

	(March	5th-	June	5th)	
	 Richness	

	
	 Evenness	

	
Factor	 F	 P	 df	 	 F	 P	 df	 	 F	 P	 df	 	 F	 P	 df	

Treatment	 6.74	 0.01	 1,44	

	

16.0	 0.07	 1,44	

	

4.88	 0.003	 3,87	

	

78.1	 <0.001	 3,87	

Time	 7.05	 0.01	 1,44	
	

41.4	 <0.001	 1,44	
	

0.63	 0.43	 1,87	
	

2.53	 0.11	 1,87	

Treatment	x	Time	 0.07	 0.79	 1,44	
	

0.88	 0.04	 1,44	
	

5.82	 0.001	 3,87	
	

11.4	 <0.001	 3,87	
Note: Significant p values (<0.05) are shown in bold. 

Table S1. ANCOVA statistics for abundance, richness, and evenness. Abundance comparisons are for open and closed litter-
containing bags. Richness and evenness comparisons are across all treatment types (open-litter containing, closed-litter containing, 
open-nylon containing, environmental litter). 
 

	
Abundance		

(Jan	5th-	Feb	25th	)	
	 	Abundance	

	(March	5th-	June	5th)	
	 Richness	

	
	 Evenness	

	
Factor	 F	 P	 df	 	 F	 P	 df	 	 F	 P	 df	 	 F	 P	 df	

Treatment	 6.74	 0.01	 1,44	

	

16.0	 0.07	 1,44	

	

4.88	 0.003	 3,87	

	

78.1	 <0.001	 3,87	

Time	 7.05	 0.01	 1,44	
	

41.4	 <0.001	 1,44	
	

0.63	 0.43	 1,87	
	

2.53	 0.11	 1,87	

Treatment	x	Time	 0.07	 0.79	 1,44	
	

0.88	 0.04	 1,44	
	

5.82	 0.001	 3,87	
	

11.4	 <0.001	 3,87	
Note: Significant p values (<0.05) are shown in bold. 
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Table S3.2. PERMANOVA statistics and estimated multivariate components of variation 
for dispersal treatment (including environmental samples), time, and treatment-by-time 
interaction. 
 
 

Factor F p df 
%  Explained 

Variation 
Treatment 8.26 0.001 3,53 26.2 
Time 1.18 0.019 14,53 2.12 
Treatment x Time 1.10 0.064 24,53 3.11 
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Table S3.3. Average similarity in composition between sample groups (SIMPER), 
ordered from highest to lowest similarity. All treatments were significantly different from 
one another (PERMANOVA: p<0.01). 
 
Pairwise Comparison Average Similarity (%) 
Open Litter -- Closed Litter 70.4 
Open Nylon -- Environment 50.4 
Open Litter -- Environment 45.0 
Closed Litter -- Environment 37.1 
Open Litter -- Open Nylon 33.0 
Open Nylon -- Closed Litter 28.5 
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Figure S3.1. Precipitation (mm), surface soil moisture (vol/vol), and air temperature 
(degrees C) over the course of the field experiment, with bag collection dates denoted 
by red dots in the top panel. East Loma Ridge weather station data courtesy of Center 
for Environmental Biology, School of Biological Sciences, University of California, Irvine: 
http://128.200.14.200/index.html#. 
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Figure S3.2.  Correlation between relative abundance of individual taxa (OTU level) 
occurring in both sample types, for a) environmental litter versus open nylon-containing 
bags (n=301) and b) environmental litter versus open litter-containing bags (n=189). 
Relative abundances of taxa in each sample type represent the mean across sampling 
dates. The plots and Pearson’s correlations are based on normalized data, 
(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒)0 . Blue solid lines show a linear regression fit, while the red 

dotted lines illustrate a 1:1 correspondence. 
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Figure S3.3. Rarefaction curves of bacterial richness (observed OTUs ± sd) for nylon-
containing open bags (light blue), litter-containing open bags (purple), litter-containing 
closed bags (orange), and plant litter samples from the surrounding environment 
(green). 
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CHAPTER 4 

Quantifying stochastic variation in taxonomy and functioning 

ABSTRACT  

It is increasingly recognized that both stochastic and deterministic processes 

drive community composition. However, quantifying the role of stochastic processes in 

shaping communities remains a challenge. Here we used a field experiment to address 

the following questions: 1) Is there stochastic variation in community composition? 2) 

Does stochastic variation in bacterial communities translate to stochasticity in 

functioning? 3)Does dispersal rate alter stochasticity. To address these questions, we 

performed a field experiment focusing on plant litter microbial communities. We 

homogenized plant litter substrate and irradiated it in replicate litterbags of the two mesh 

sizes (open vs. closed to microbial dispersal). We inoculated the litterbags with 

homogenized microbial communities and placed them in the field in close proximity to 

limit environmental variation. We next manipulated an environmental (deterministic) 

parameter, water availability (ambient vs. added water). Our sampling design allowed 

us to quantify how variance in measures of taxonomic composition and functioning were 

distributed among our treatments (dispersal and water addition), stochasticity (bag 

replicates), and residual variation (measurement error). We found that stochastic 

processes contributed to a significant amount of variation in taxonomic composition. 

Furthermore, effects of stochasticity in community composition translated into 

stochasticity in functional parameters. Ultimately, the ability to accurately quantify 

stochastic processes is paramount to determining the predictability of ecosystem 
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structure and functioning, whether focused on bacteria that degrade plant litter, 

microbes in the human gut, or patterns of global biodiversity. 

 

Significance  

Assessing the role that stochastic processes— processes probabilistic in terms 

of species identity— play in shaping communities remains a challenge. This study is the 

first field experiment that directly attempts to disentangle the role of stochastic 

processes, environmental selection, and dispersal on microbial community composition 

and functioning. As such, we minimized overall environmental variation and starting 

community composition, to create conditions where we might be most likely to observe 

the effects of drift. This is in contrast to previous observational studies investigating the 

impact of stochastic and deterministic processes on communities performed in the 

context of spatial and temporal gradients which emphasize the strength of selection 

processes and where the effects of drift will more likely go undetected. We further 

provide the first estimate of stochastic variation in community composition and 

functioning that accounts for measurement error.  

 

Introduction 

A central goal in ecology is understanding the mechanisms that underlie patterns 

in community diversity. Much of the variability among communities is thought to arise 

deterministically, from environmental factors and biotic interactions that select for 

predictable differences in taxonomic composition, or beta-diversity. In contrast, 

stochastic variability emerges from random differences in replication, death, mutation, 
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and dispersal among individuals in a community (Hubbell 2001; Vellend 2010; Chase & 

Myers 2011). The role of dispersal in ecological communities is particularly complex, as 

it may contribute to both stochastic or deterministic variation. On the one hand, 

dispersal rates moderate the role of ecological drift, defined as stochastic fluctuations in 

the relative abundance of organisms in a community (Hubbell 2001; Vellend 2010); high 

dispersal rates are thought to limit drift, as migration between locations can homogenize 

variation in species composition among locations. On the other hand, species may differ 

in their dispersal ability and thereby contribute to deterministic variation among 

communities.  

In microbial communities, extensive evidence suggests that stochasticity 

influences beta-diversity in both free-living and host-associated communities (Hao et al. 

2016; Adair & Douglas 2017; Vega & Gore 2017). This evidence is derived from both 

observational studies and field experiments that track changes in composition across 

spatial and temporal gradients, while measuring numerous deterministic, potentially 

selective biotic and abiotic variables (Bell 2010; Ferrenberg et al. 2013; Lee et al. 2013; 

Brown & Jumpponen 2014; Louca et al. 2016b). Statistical methods, including null-

deviation models (Ferrenberg et al. 2013; Brown & Jumpponen 2014; Dini-Andreote et 

al. 2015) or variance partitioning (Dumbrell et al. 2010; Hanson et al. 2012; 

Langenheder et al. 2012), are then used to infer the relative importance of deterministic 

and stochastic processes. However, these studies likely overestimate the importance of 

stochasticity because of unmeasured deterministic variables and measurement error 

(Bell 2010; Evans et al. 2017). Here we define measurement error as variability due to 

spatial heterogeneity within a sampled community as well as technical error in 
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estimating community diversity. Both of these factors may be particularly important for 

microbial communities, which are highly under-sampled and assayed through molecular 

methods that introduce variability (e.g., variability added during DNA extraction, PCR 

amplification, and sequencing) (Hughes et al. 2001; Schloss et al. 2011; Brooks et al. 

2015); however, such error will also be present in studies of larger organisms if diversity 

is assayed on a subset of the community (Gotelli & Colwell 2001). 

Ultimately, however, the consequences of such stochasticity depend on whether 

this variability translates into variation in functioning at the ecosystem level. It is often 

argued that stochastic variation within communities will attenuate at the ecosystem 

level, because many microbial taxa perform common functional processes (e.g. (Burke 

et al. 2011; Louca et al. 2016a)). Alternatively, compositional stochasticity might lead to 

variation in ecosystem functioning, particularly for functions performed by a limited 

number of taxa (Schimel 1995). This has been demonstrated for microbial communities 

in a number of systems including including in bioreactors (Zhou et al. 2013), on 

decomposing plant material (Dickie et al. 2012), and in plant nectar (Vannette & Fukami 

2017). Thus, how stochasticity translates from the community to ecosystem level may 

depend in part on the choice of functional metric. 

Here, we quantified the importance of stochasticity for both composition and 

functioning of a natural microbial community on decomposing plant litter in a southern 

California grassland. The composition of microbial decomposers is known to influence 

the rate and quality of decomposition at this site (Allison et al. 2013; Martiny et al. 2017) 

and in other plant litter systems (Tiunov & Scheu 2005; Strickland et al. 2009). 

Compared to previous studies in the field, we made a concerted effort to minimize 
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biological and environmental heterogeneity within and between replicates, while also 

accounting for measurement error. To do this, we manipulated the communities within 

litterbags, which provided a convenient spatial scale for replication and allowed us to 

measure litter decomposition rates (mass loss over time). We then assayed an array of 

diversity and functioning metrics on three subsamples from each litterbag replicate. We 

hypothesized that measurement error would account for a large fraction of otherwise 

unexplained community variation (H1); however, any remaining variation among 

replicates we could then attribute to stochastic effects. We further hypothesized that 

stochastic variation would be higher for community composition than for functional 

processes, attenuating from the community to the ecosystem level (H2). 

Finally, we investigated if the rate of microbial dispersal altered these stochastic 

effects by varying the mesh size of the nylon bag material. We hypothesized that 

reduced dispersal would increase the effect of stochasticity via ecological drift (H3). For 

comparison, we also manipulated an environmental parameter, precipitation, known to 

influence the microbial community in this system (Matulich et al. 2015). Thus, our full 

experimental design included two treatments: dispersal (open versus closed litterbags) 

and precipitation (ambient versus added water).  Each litterbag was initially filled with a 

ground, irradiated litter substrate that was re-inoculated with a homogenized microbial 

community to minimize variation in substrate resources and initial community 

composition. We limited abiotic variation by placing the litterbags in close proximity 

(within 1m2) in the field. The four treatments (ambient-open, ambient-closed, 

precipitation-open, and precipitation-closed) were replicated eight times, while 

subsamples from within each litterbag at the end of the experiment allowed us to 
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quantify stochastic effects and importantly distinguish these effects from measurement 

error. 

 

Results 

Overall treatment effects 

The composition of bacterial communities in the litterbags was similar to earlier 

studies of the natural plant litter at this site (Figure S4.1)(Matulich et al. 2015). The 

same phyla, including, Actinobacteria, Proteobacteria, and Bacteriodetes, were 

dominant, and the composition observed in the 16S rRNA and metagenomic data were 

similar (Figure S4.1, S4.2).  

The dispersal and precipitation treatments had minimal effects on bacterial 

abundance and alpha diversity. On average bacterial cell densities were ~9 x 108 cells 

per gram of dry litter, and this density did not vary across treatments (ANOVA: p>0.05; 

Figure S4.3a). Fungal abundance, as assessed by hyphae counts, also did not differ 

(ANOVA: p>0.05; Figure S4.3b). As with abundance, the number of OTUs observed did 

not differ significantly among treatments (ANOVA: p>0.05; Figure S4.4a) and was 

similar to the richness observed (3320±2453 OTUs) in the initial inoculum. Likewise, 

evenness was similar among treatments (Figure S4.4b), although it did decline 

dramatically from the inoculum (Tukey’s test; p<0.001). 

Dispersal did alter bacterial composition as assessed by 16S rRNA amplicon 

sequencing (Figure 4.2a; PERMANOVA: p=0.001; Table S4.1a). Dispersal also 

interacted significantly with precipitation to affect composition (p = 0.029), whereas 

added precipitation had no effect (Table S4.1a). Finally, composition also varied 
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significantly among replicate litterbags within a treatment, as tested using the nested 

design of the experiment (p=0.001; Table S4.1a).  Very similar results were observed 

whether composition was assessed by 16S or metagenomic sequencing, although in 

this latter case, the dispersal-by-precipitation interaction was not significant (Table 

S4.1b).  

 

Stochasticity influences taxonomic composition  

We next asked how much of the observed variation in bacterial taxonomic 

composition could be attributed to each of the significant treatments described above. 

Although the dispersal treatment was highly significant, this effect explained a relatively 

small proportion of total compositional variation (4.5%; Figure 4.1a). Further, the 

dispersal-by-precipitation interaction explained only a small additional amount of 

compositional variation (2.5%). 

In contrast, variability among replicate litterbags within a treatment accounted for 

16.5% of total variation, or more than twice as much as all treatment effects combined 

(Figure 4.1a, Figure S4.8). This component of variation is our estimate of stochastic 

variation among the communities. Still, after accounting for treatment effects and 

stochasticity, approximately three quarters (76%) of the estimated variation in 

taxonomic composition remained unexplained and thus, can be attributed to 

measurement error (a combination of technical error and spatial heterogeneity within 

the litterbags).  

Similar trends were observed when taxonomic composition was assayed through 

metagenomic sequencing (Figure 4.1a). Stochastic variation among bacterial 
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composition was estimated to be 17.5% (versus 16.5% by 16S) and measurement error 

74% (versus 76%). However, it is worth noting that these estimates of variation are 

reported as relative proportions. Thus, the average compositional dissimilarity between 

any two samples was twice as high as when the community was assayed by 16S 

sequencing than when assayed by metagenomic sequencing. Thus, total variability was 

higher for the 16S data, but the relative amount of that variability that could be assigned 

to stochasticity (or the treatments or measurement error) was similar for the 

metagenomic data (Figure 4.1b).  

 

Stochasticity influences functional processes 

To test whether the stochastic variation in taxonomic composition translated into 

stochastic variation in functional processes, we measured community functioning in 

three ways: 1) functional potential from metagenomics sequences to characterize 

differences among litterbags; 2) potential extracellular enzyme activity (EEA) as a metric 

of overall community functioning; and 3) mass loss of the litter to assay decomposition 

rate. To assess functional potential, we annotated metagenomic sequences from each 

sample using the protein family (Pfam) database (Finn et al. 2016). We then used the 

Pfam annotations to create a Bray-Curtis dissimilarity matrix as for the taxonomic data 

(see Supplementary Methods). Thus, these data provide information on the composition 

of the genetic functional potential of the bacterial communities. 

As with taxonomic composition, dispersal and, to a lesser extent, an interaction 

between dispersal and precipitation significantly altered the functional potential of the 

litter communities (Figure 4.1a, Table S4.1c). Similarly, the distribution of the variability 
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assigned to treatment effects versus stochasticity (among bags) or measurement error 

(residual, or within bags) was almost identical to that observed for taxonomic 

composition. Treatment effects accounted for only 7.6% of variation in genetic functional 

potential, while 18.3 % was attributed to stochasticity and the remaining 74.3% to 

measurement error. It is again worth noting that despite the similarity in proportional 

assignments of variability, the average dissimilarity between samples in its functional 

potential was even lower still than metagenomic taxonomic composition; functional 

potential between two samples varied by only an average of 12% (Figure 4.1b). A 

similar average and a similar variability due to stochastic effects was observed even 

when we subset the data and only considered genes involved either in carbohydrate 

degradation (glycoside hydrolases and carbohydrate binding modules) or in the nitrogen 

cycle (data not shown).  

 We measured the potential activities of seven extracellular enzymes including, α-

Glucosidase (AG), acid phosphatase (AP), ß-Glucosidase (BG), ß-Xylosidase (BX), 

cellobiohydrolase (CBH), leucine aminopeptidase (LAP), and N-acetyl-ß-D-

glucosaminidase (NAG). The individual enzyme activities varied somewhat in their 

response to the dispersal and precipitation treatments (Table S4.2; Figure S4.5) 

although generally, higher activity levels were observed in the open-ambient and 

closed-precipitation treatments (Figure S4.5). Stochastic effects contributed to between 

0 and 35% of estimated variation for the individual EEA measurements, with the lowest 

stochasticity observed in BG and the highest in NAG (Figure S4.8). We next created a 

composite metric of EEA by calculating the Euclidean distance between each pairwise 

sample based on normalized measurements of the seven assays. Here, we saw a 
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significant effect of the precipitation-by-dispersal interaction on EEA composition among 

the litterbags (PERMANOVA: p=0.007; Figure 4.1b; Table S4.3). Treatment effects 

explained 27% of the estimated variation in EEA, while stochastic effects accounted for 

an additional 27% (Figure 4.1a). Measurement error was lower than for community 

composition, accounting for 46% of the estimated variation.  

Dispersal significantly affected the mass loss within each litterbag over the 

course of the experiment, such that open litterbags lost more mass than closed 

litterbags (ANOVA; dispersal treatment: F1,28=12.356, p=0.002, Figure S4.3c). Thus, 

dispersal and its interaction with precipitation accounted for 47% of the estimated 

variation in mass loss among litterbags. The remaining 53% of variation is a 

combination of among bag (stochastic) variation and measurement error (Figure 4.1a). 

Because we could not measure mass loss for subsamples within a litterbag, these two 

sources of variation cannot be separated.  

 

Variation in stochasticity between treatments 

Finally, we tested whether the degree of stochastic variation differed among the 

dispersal or precipitation treatments. In fact, beta-diversity within a treatment group 

(mean distance to the centroid) of replicate communities did not vary significantly 

between treatments (PERMDISP; p=0.818; Figure 4.2c).  However, the degree of 

stochastic variation in the EEA closed-precipitation treatment was higher than either the 

closed-ambient or open-ambient treatments (PERMDISP; p=0.004 & p=0.01, 

respectively). Furthermore, the pattern suggesting an interactive effect between the 

precipitation and dispersal treatment was qualitatively similar to that observed for both 
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community composition (4.2b and 4.2c) and genetic functional potential (Figure 4.2f). 

 

Discussion 

Effects of dispersal and precipitation on community diversity and functioning 

In this study our goal was to disentangle the role of environmental selection, 

dispersal, and stochastic processes on microbial community composition and 

functioning. In fact, our precipitation treatment had unexpectedly little effect on 

community composition and functional metrics. Previous work at this field site has 

shown small but significant impacts of drought on bacterial community composition on 

plant litter (Allison et al. 2013). Our rain water addition may not have been frequent 

enough to overwhelm the effects of the natural precipitation events, and/or may have 

been too short-lived due to rapid evaporation in this sunny and arid climate (Figure 

S4.7). 

In contrast, differences in dispersal rate in open versus closed bags led to 

differences in bacterial community composition and functioning. Dispersal rate altered 

community composition contributing to a small portion (4.5%) of estimated variation 

across samples. This altered composition under different dispersal rates may be 

mediated through changing biotic interactions and/or priority effects (Thompson & 

Gonzalez 2017; Vannette & Fukami 2017). Furthermore, higher mass loss in open 

versus closed bags may be a result of faster colonization or differences in the microbial 

taxa able to disperse into the litterbags (Bradford et al. 2002). Although we could not 

detect differences in bacterial or fungal abundance due to the dispersal treatment at the 

end of the experiment, it is likely that the open bags were colonized more quickly and 
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therefore had higher abundances early on in the experiment, as shown in a recent study 

measuring dispersal onto plant litter in this system (Albright & Martiny in Revision).  

An interaction of the dispersal and precipitation treatments, in fact, created 

communities that differed in their composition and functioning.  As mentioned above, 

while alone the precipitation treatment did not impact communities, we did see an effect 

of dispersal on composition. Thus, the precipitation treatment may have altered 

composition in the dispersal treatments in different and perhaps opposing ways. For 

example, maybe immigration into the open bags allowed for communities to respond to 

the added precipitation more quickly. Additionally, for the precipitation treatment we 

added rain water collected earlier in the season (see Supplementary Methods), this may 

have have contributed to dispersal of different additional bacterial taxa into the open 

versus closed bags, which again interacting with differences in dispersal rates, may 

have altered competition and successional dynamics.  

 

Measuring stochastic effects on community diversity  

Overall, our results support previous studies of macro- and micro- organisms that 

have highlighted the importance of stochastic processes in contributing to beta-diversity, 

or variation in community composition (Cottenie 2005; Hanson et al. 2012), while 

making crucial steps towards robustly quantifying these processes. Two key factors in 

our experimental approach allowed for this more robust quantification. First, rather than 

using statistical inference to account for the influence of environmental variation on 

beta-diversity, we manipulated the communities and environment to limit the influence 

of this variation. While removing all variability would be impossible, we purposely 
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homogenized microbial communities and limited environmental variability across 

replicate litterbags. This allowed us to better assume that variation not explained by 

treatment effects are likely due to stochasticity. Second, taking subsamples from each 

replicate allowed us to directly measure variability across the replicate bags and 

therefore tease apart the influence of measurement error (error in assessing 

composition in a replicate due to technical and spatial variability). Indeed, we show that 

without measuring this error, we would have overestimated the contribution of 

stochasticity by 1-4 times.  

After accounting for across bag effects, the remaining residual variation, or within 

bag variability, then captures the measurement error. This measurement error could be 

due to spatial variability within each litterbag or could be introduced during subsequent 

sample processing for example during DNA extraction and amplification, or for 

metagenomes during the bioinformatics and short-read processing (Hughes et al. 2001; 

Brooks et al. 2015). Measurement error accounted for a large portion, up to ~75%, of 

the variation in community composition (H1). Without this quantification, this variation 

might be mistakenly attributed to stochasticity, highlighting the importance of taking into 

account this variability, present to some extent in all ecological studies. Given that 

measurement error accounted for such a large portion of the variability in composition 

across communities, further studies are needed to partition the source of this 

measurement error between spatial variability from sampling and technical error during 

sample processing. However, despite the high measurement error, importantly, with this 

sampling design we are able to distinguish between stochasticity and measurement 

error. 
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 In this study stochasticity played a larger role, in shaping community 

composition than environmental effects (Figure 4.1a). The combined effects of the 

precipitation, dispersal, and precipitation-by-dispersal interactions explained a relatively 

small portion of estimated variation in bacterial community composition. There are a 

number of factors that likely contributed to this higher stochastic variation, and as other 

studies have pointed out, the relative influence of these factors should change under 

different conditions (Ferrenberg et al. 2013; Dini-Andreote et al. 2015). In particular, the 

precipitation treatment had an unexpectedly negligible effect on bacterial composition. A 

stronger environmental treatment, or perhaps running the experiment longer, would 

have likely changed the relative importance of stochastic effects (Chase & Myers 2011). 

Furthermore, the litterbags contained irradiated litter that was inoculated at the 

beginning of the field experiment; low initial community size relative to habitat size is 

predicted to enhance ecological drift (Hubbell 2001). Thus, we consider the estimates 

here to be an upper bound for the amount of that stochastic variation that is likely to be 

observed in other, natural bacterial communities. We also acknowledge that this 

estimate still includes effects that are feasible uncontrollable (micro-environmental 

variation between replicates) and not stochastic, but highly unpredictable (Huisman & 

Weissing 1999, 2001). 

 

Stochasticity in composition translates to functioning 

We hypothesized that stochastic effects observed at the community-level would 

translate to our measured functional metrics, but be relatively less important (H2). 

Contrary to these expectations, the relative fraction of stochasticity observed the 
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functional metrics was similar and possibly even higher than for composition (Figure 

4.1a, Figure S4.8). The relative contribution of stochastic effects to variation in 

metagenome taxonomic versus functional potential among communities was similar. 

However, an important point here is that these stochastic effects are measured in 

relative terms. As found in numerous other previous studies (Burke et al. 2011; Louca et 

al. 2016a; Louca et al. 2016b), average variation across samples was lower for 

functioning than composition (Figure 4.1b), which is likely because metrics for 

functioning are often coarser than those for composition. Thus, our measurement of 

stochasticity for functional potential was taken across the relatively small dissimilarity in 

genetic functional potential among the communities.  

Stochasticity in community composition also translated into stochasticity as 

assessed by EEA potential and was in fact even higher for the composite EEA potential 

than for community composition. One possible mechanism driving the functional 

variation could be that variation in community composition alters the biotic interactions 

in the litterbags leading to higher variability in functioning. Regardless of the 

mechanism, the fact that a significant portion of observed variation in EEA potential may 

be due to stochastic effects is important to consider. Extracellular enzymes often control 

rate limiting steps in organic matter turnover, and thus shifts in enzyme activity could 

have major consequences for carbon cycling (Allison et al. 2011). However, calculating 

stochasticity of EEA potential in different ways, for example by instead using an average 

value of stochastic effects across the seven individual enzymes, or measuring a 

different subset of enzymes, would have resulted in different conclusions as to the 

relative amount of stochasticity in community versus functional metrics. This possibility 
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is highlighted by the large range in the contribution of stochastic effects to individual 

potential EEA, where in fact, in some cases stochasticity in functioning might be lower 

than for community metrics (Figure S4.8). Thus, overall, we see a different perspective 

of the influence of stochasticity on community taxonomic composition versus functioning 

depending on the choice of functional metric. This highlights that traits of the functional 

or community metric of choice may influence the the outcome of comparisons between 

taxonomy and functioning. Despite this uncertainty, regardless of the method of 

calculating variation in functioning, we would have observed some measureable portion 

of this variation due to stochastic effects. 

 

Impact of dispersal and precipitation on stochasticity 

Finally, in contrast to our hypothesis (H3), dispersal rate did not consistently alter 

stochastic effects on community composition or functioning. If anything, we only 

detected a trend that dispersal interacted with precipitation to influence the degree of 

stochasticity. Across all assays at both the community- and ecosystem- levels, 

replicates in the closed precipitation were more variable than the open precipitation 

treatment. We speculate that water addition may have allowed for more turnover 

(growth and death) in the litterbags over the course of the experiment, and thus allowed 

for greater ecological drift of the closed communities (Nemergut et al. 2013b). 

Supporting this hypothesis is the observation that stochasticity was also generally 

higher in the water addition bags compared to the ambient bags, even in the litterbags 

with higher dispersal. Alternatively, bacteria dispersing into the bags from the rainwater 

addition may have increased beta-diversity due to stronger priority effects under 
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increased dispersal (Vannette & Fukami 2017). 

 

Conclusions 

By minimizing initial differences in the bacterial communities and the 

environment, and taking replicate measurements at multiple levels, we successfully 

quantified the contribution of stochastic effects across multiple levels of biodiversity in a 

natural environment. This field experiment is parallel to powerful population level 

laboratory experiments with bacteria investigating the impact of drift on genetic variation 

(Travisano et al. 1995). We demonstrate that previous studies likely greatly 

overestimate the importance of stochastic effects on microbial communities, because 

they do not consider measurement error among their replicates. Still, we demonstrate 

that stochasticity can be a major component of variation in bacterial composition and its 

functioning - in our case, often twice as strong as other measured deterministic 

treatments.  Overall, this study is a step towards better assessing the predictability of 

ecosystem structure and functioning, which requires the ability to robustly quantify the 

roles of stochastic and deterministic processes.  
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Tables and Figures 

	
	
Figure 4.1.  a) Percentage of estimated variation across a variety of community 
composition and ecosystem function metrics explained by the environment, dispersal, 
environment-by-dispersal, within bag (measurement error), and residual (stochastic 
effects). For community composition and extracellular enzyme activity estimates were 
derived from a permutational MANOVA model, and for mass loss a two-way ANOVA. b) 
Average Bray-Curtis dissimilarity between samples for for 16S and metagenomic 
sequence data. 
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Figure 4.2. Nonmetric multidimensional scaling (NMDS) ordinations showing variability 
in a) 16S bacterial community composition (Bray-Curtis dissimilarity) and d) extracellular 
enzyme activity (Euclidean distance). Each point represents the median of the 3 
replicates from the bag (n=32). Within-group distance for b) 16S bacterial community 
composition (Bray-Curtis dissimilarity), c) metagenome bacterial community 
composition e) extracellular enzyme activity (Euclidean distance), and f) functional 
genetic potential of replicate litterbags within treatments (closed-ambient, closed-
precipitation, open-ambient, open-precipitation). 
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Supplementary Information 

Materials and Methods 

Field Experiment 

The field experiment was conducted in a grassland at Loma Ridge in Irvine, CA 

(33°44’N, 117°42’E, 365 m elevation).  The site has a semi-arid Mediterranean climate, 

with mean annual precipitation of 325 mm, most of which occurs between October and 

April and is dominated by non-native annual grasses (Bromus diandrus, Avena 

fatua)(Potts et al. 2012; Kimball et al. 2014).  

We placed 32 litterbags into the field to assay the assembly of plant litter 

microbial communities. The litterbags (10 cm x 8 cm) were constructed from nylon 

mesh. Half of the litterbags were made from 18.0 um mesh (Tisch International), which 

allows for the dispersal of bacteria and fungi into and out of the bags. We refer to these 

as “open” litterbags. The other half were “closed” litterbags, made from 0.22 um nylon 

mesh (Tisch International) to prevent bacterial and fungal dispersal. Both litterbag types 

allowed water to pass through similarly (Albright & Martiny in revision). 

Surface leaf litter was collected in November 2014 from several spots across the 

field site to capture a mix of plant species.  The litter was ground using a blade coffee 

grinder (KitchenAid model BCG111OB). To sterilize the litter, we used both autoclaving 

and gamma irradiation. The litter was autoclaved, then wetted down with 0.9 M NaCl, 

left overnight, and autoclaved again. Next, 4.7 grams of litter was added to each of the 

40 litterbags, and the filled bags were gamma irradiated with > 22 kGy gamma 

irradiation. We reinoculated all the sterile litterbags with 0.12 grams of ground and 

homogenized inoculum litter (freshly collected in January 2015).  
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The inoculated litterbags were deployed at Loma Ridge on January 8th 2015, to 

coincide with most of the annual rains and litter decomposition. To minimize 

environmental variation, the litterbags were placed in close proximity to one another 

(within 1m2).  Precipitation was manipulated by adding 120 mL of rainwater to half of the 

open and closed litterbags at 5 time points during the 5 months the bags were in the 

field. This volume was equivalent to half of the rainfall of the first storm of the season, 

and was slightly higher than the rainfall of each subsequent storm during the experiment 

(Figure S4.7).  This volume completely soaked the litter inside the bags. Rainwater for 

the experiment was collected in December 2014 and stored at 4C until use. Litterbags 

were collected on June 5th 2015. Upon collection, we weighed the litter remaining in 

each bag and dried a subsample at 60˚ C to obtain dry mass. Mass losses are reported 

as the percentage loss of initial dry mass.  

 

DNA extraction and 16S sequencing 

All assays (except mass loss) were performed on eight inoculum samples and 

three subsamples from each litterbag to assess measurement error. From each bag, 

three 0.05 g litter subsamples were collected for microbial DNA extractions and stored 

in a -80˚ C freezer. Overall the 104 samples, included 96 final collection samples (4 

treatments x 8 bags x 3 samples per bag) and 8 initial inoculum samples. DNA was 

extracted following the FastDNA Spin Kit for Soil (MP Biomedicals, LLC) protocol, with 

two modifications. 1) After the addition of sodium phosphate and MT buffer, samples 

were subjected to a freeze-thaw cycle three times, immersing the samples for 30 

second in liquid nitrogen and 3 minutes in a 60 C water bath and 2) bead-beating was 
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done in a FastPrep FP120 (Bio101, Vista, CA, USA) at 5.5 m s−1 for 45 s. 

To PCR amplify the bacterial 16S rRNA gene, 5 uL of a 1:50 dilution of DNA 

(average 2.95±0.88 ng DNA) from each extract was added to a cocktail containing: 1 

Unit per reaction of Hot Start Taq DNA polymerase (BioLabs, Inc), 1 × PCR Rxn Buffer 

(-MgCl2) (Invitrogen), 1200 uM MgCl2 (Invitrogen), 200 uM dNTP, 0.2 uM Forward 

primer and 0.2 uM Reverse Primer, 200 mM Bovine Serum Albumin Acetylated 

(PROMEGA), and H2O to a final volume of 25 μl. We used the 515 forward primer 

(GTGYCAGCMGCCGCGGTAA) and 926 reverse primer 

(CCGYCAATTYMTTTRAGTTT) designed by (Caporaso et al. 2012) and modified by 

(Apprill et al. 2015) to target the V4-V5 region of the 16S gene. Following an initial 

denaturation step at 94 °C for 3 min, PCR was cycled 35 times at 94 °C for 45 s, 55 °C 

for 30s, 68 °C for 20s, with a final extension at 68 °C for 10 min. We amplified each 

subsample in duplicate from the extracted DNA. 

All amplified samples were pooled based on gel pictures, with 1.0, 2.0, 3.0 uL 

added for strong, moderate, weak bands respectively, into a low binding tube. After 

pooling, PCR products were cleaned using the Agencourt AMPure XP PCR Purification 

Kit (Beckman Coulter Inc., Indianapolis IN, USA), following the standard manufacturer’s 

instructions. We then performed a gel extraction on the pooled and cleaned samples to 

isolate the target band. Specifically, the cleaned PCR products were run on a TAE 

agarose gel at 80V for 1 hour. The DNA was then gel extracted and purified using the 

standard ZymocleanTM Gel DNA recovery Kit protocol (Zymo Research Corp). PCR 

products were assessed for quality using a High Sensitivity DNA Assay on an Agilent 

Bioanalyzer and quantified (10.7 ng/uL) on a Qubit at the Genome High-throughput 



106	
	

Facility at University of California, Irvine. Products were then sequenced at the 

University of California, Davis Genome Center at the DNA Technologies Core using 

multiplexed paired-end Illumina MiSeq platform. 

Illumina sequence data was processed using the QIIME (version 1.9.1) toolkit 

(Caporaso et al. 2010). Paired end files were joined and operational taxonomic units 

(OTUs) were picked at 97% identity level using UCLUST (Edgar 2010) with the nearest 

neighbor method in QIIME. Taxonomy was assigned using SILVA v119 as the reference 

database (Quast et al. 2013) using QIIME scripts. We removed samples with <5000 

reads from further analysis. For the remaining samples (n= 99) reads varied between 

5187 and 120,158 with a median of 21,883. Using this data, 100 OTU-by-sample 

matrices were randomly subsampled at an even depth of 5187 reads. Square root 

transformations were applied to matrices, subsequently pairwise sample-to-sample 

comparisons were generated and the median value across the 100 distance matrices 

was used to create a final median Bray–Curtis matrix. Shannon diversity (alpha-diversity 

metric) of all rarified OTU matrix libraries was also determined using QIIME (Caporaso 

et al. 2010). Unprocessed sequences are available through the NCBI’s Sequence Read 

Archive (accession number). The relative abundance of families differed slightly in this 

16S data from previous surveys of plant litter bacterial communities at the site (Matulich 

et al. 2015). After several tests comparing samples among the studies, we attribute this 

difference primarily to less degenerate 16S primers with Illumina sequencing compared 

to previous 454 sequencing.  

 

Metagenomic Sequencing 



107	
	

Extracted DNA was quantified (Qubit dsDNA HS Assay, Invitrogen) and diluted to 

0.2 ng/ul. Subsequently, metagenomic libraries were prepared using the Nextera XT 

DNA Library Preparation Kit (Illumina, San Diego, CA, USA) and sequenced with an 

Illumina HiSeq 4000 (150-bp paired ends) (DNA Technologies Core, UC Davis, CA). 

Sequences were uploaded and are publically available through the MG-RAST server 

(add #’s) (Wilke et al. 2016). Paired-end metagenomic library reads were joined using 

PEAR (Zhang et al. 2014). Joined sequences and the remaining unassembled forward 

sequences were combined and filtered using fastq-mcf in the EA-UTILS software package 

(Aronesty 2011). The sequences were then translated with FragGeneScan-Plus (Kim et 

al. 2015).  

Taxonomic annotations of metagenomes were performed using a custom 

reference genomic database (https://github.com/alex-b-chase/LRGCE) constructed with 

phylogenetic marker genes from 3173 genomes which target soil microbes (Chase et al. 

unpublished). Metagenomic libraries were annotated for functional potential using 

hmmscan with HMMER software v3.1b2 (Eddy 1998), to search the Pfam family 

database (Finn et al. 2016), where top sequence matches with an e-value >e-04 were 

retained. 

Metagenomic composition and functional data was processed using a similar 

pipeline as 16S community composition using QIIME. ID (taxonomic or pfam family)-by-

sample matrices were converted to biom files and tables were filtered to remove 

singletons. We rarefied the ID-by-sample matrices at an even depth of 1001 reads and 

107,231 reads for the taxonomic and functional annotations respectively. For 

rarefaction, 100 ID-by-sample matrices were randomly subsampled at an even depth. 
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Further processing in QIIME was performed using the same steps as with the 16S 

amplicon sequencing data (see above section). 

 

Bacterial cell density 

Bacterial cell densities were measured using flow cytometry, using a procedure 

modified from (Allison et al. 2013). At the time of litterbag collection, three 0.1 g 

subsamples of the litter were fixed with 5-mL 1% phosphate buffered glutaraldehyde 

solution within 6 hours of collection. Fixed samples were stored in the dark at 4˚ C for 

up to 1 week. To extract cells from the litter, 0.55 mL of 0.1 mol/L tetrasodium 

pyrophosphate was added to the sample and gently sonicated for 30 minutes in the 

dark at 4˚ C. The samples were then filtered through a 3.3-µm syringe filter to remove 

large particulates. 3 µL of SYBR Green (200x) was added to 600 µL of sample and 

incubated in the dark at room temperature for 10 minutes. Stained particle counts were 

performed using flow cytometry (BD Accuri C6; BD Biosciences, San Jose, California, 

USA). Each subsample was run three times for technical replication on the flow 

cytometer. The flow cytometer was set to run for 2 minutes on medium speed, using a 

threshold of 2000. Flow cytometry gating parameters were optimized to count particle 

sizes in the size range of typical bacterial cells (unpublished data). Cell densities are 

reported as number of stained counts per g dry weight litter.  

 

Extracellular enzymes 

We used a spectrophotometric assay to characterize the potential extracellular 

enzyme activity of the litter samples. We performed assays on 8 inoculum samples and 
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3 subsamples from each of the 32 final litterbags (n=104). Samples were stored for in 

the -80˚ C freezer for up to 3 months before processing. Sample homogenate 

preparation and flourimetric enzyme assays were performed using methods described 

in (Alster et al. 2013). We measured the potential activities of seven extracellular 

enzymes including, α-Glucosidase (AG), acid phosphatase (AP), ß-Glucosidase (BG), 

ß-Xylosidase (BX), cellobiohydrolase (CBH), leucine aminopeptidase (LAP), N-acetyl-ß-

D-glucosaminidase (NAG). We then create a composite metric of the seven EEA 

assays, by calculating the Euclidean distance between each pairwise sample based on 

normalized measurements of the seven assays.  

 

Statistical analyses 

Our sampling design allowed us to estimate how variance in measures of 

community composition (16S data), abundance (bacterial cell counts), and EEA was 

distributed among the precipitation and dispersal treatments, stochastic effects (among 

bag replicates), and residuals (measurement error). For bacterial community 

composition and extracellular enzyme activity composition, we performed a 

permutational multivariate analysis of variance (PERMANOVA) (PRIMER6 & 

PERMANOVA+, Primer-E Ltd, Ivybridge, UK). This model included precipitation 

(ambient and added rainfall) and dispersal (open and closed) as main fixed factors, a 

precipitation-by-dispersal interaction, and bag replicates as a nested random factor. 

Analyses were run using type III partial sums of squares under a reduced model with 

999 permutations. For bacterial cell density and individual EEA activity measurements, 

we used a factorial nested ANOVA design. As with community composition, the model 
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included precipitation and dispersal as fixed effects, a precipitation-by-dispersal 

interaction and bag replicates as a nested random factor. To test for mass loss 

differences, we performed a two-way ANOVA, because we could not measure mass 

loss on subsamples within a bag. The ANOVA analyses were conducted in the R 

software environment (Team 2011). 

The above statistics provide a quantification of the among bag variation across 

all samples. However, they do not provide a measure of how this variation is distributed 

across the treatments. To measure relative variability within each treatment group 

(open-ambient, closed-ambient, open-precipitation, closed-precipitation), we quantified 

the distance to the centroid within each treatment combination (PERMDISP) (PRIMER6 

& PERMANOVA, Primer-E Ltd, Ivybridge, UK). This test was performed for bacterial 

community composition, and the composite potential EEA. For both the EEA Euclidean 

distance matrix and bacterial community composition Bray Curtis dissimilarity matrix, in 

order to avoid pseudoreplication, we collapsed the three subsamples from each bag by 

finding the centroid of the subsamples using the ‘Distances among centroids’ feature in 

PERMANOVA+ (Anderson et al. 2008). Thus, for this analysis each bag represented 

one sample (total samples, n=32). Using a permutation test we ran pairwise 

comparisons of group mean dispersions based on the four treatment groups 

(PERMDISP). A two-way model was not used for this analysis, as this computation is 

not advised given the difficulties in testing homogeneity of dispersions across multiple 

main effects (Anderson 2006). Models were run under 999 permutations.  
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Supplementary Tables and Figures 
 
Table S4.1. Nested Permutational MANOVA for a) bacterial community composition 
(16S amplicon sequencing) b) bacterial community composition from metagenomic data 
(marker genes) and c) functional composition from metagenomic data (Pfam protein 
families) 
 
a. Community composition (16S) 

 
b. Community composition (metagenomes) 

 
c. Functional composition (metagenomes) 

 
 
 
 
 
 
 
 
 
 
 
 

 df SS MS Pseudo-F P(perm) 
Precipitation 1 0.333 0.333 1.166 0.163 
Dispersal 1 0.756 0.756 2.649 0.001  
Precipitation X Dispersal 1 0.415 0.415 1.454   0.029 
Bag (Precipitation x Dispersal) 29 8.418 0.293 1.605   0.001 
Residual 59 10.67 0.181   
      

 df SS MS Pseudo-F P(perm) 
Precipitation 1 0.11 0.11 1.38     0.11 
Dispersal 1 0.27 0.27 3.48 0.001 
Precipitation X Dispersal 1 9.17E-2 9.17E-2 1.17 0.226 
Bag (Precipitation x Dispersal) 28 2.20 7.87E-2 1.69   0.001 
Residual 61 2.84 4.66E-2   
      

 df SS MS Pseudo-F P(perm) 
Precipitation 1 2.89E-2 2.89E-2 1.158 0.226 
Dispersal 1 5.43E-2 5.43E-2 2.177 0.006 
Precipitation  X Dispersal 1 3.93E-2 3.93E-2 1.577 0.04 
Bag (Precipitation x Dispersal) 27 0.69 2.56E-2 1.6813 0.01 
Residual 55 0.8374 1.53E-2   
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Table S4.2. Significance of the effects of precipitation, dispersal, precipitation x 
dispersal and bag on extracellular enzyme activity (EEA), which was assessed using a 
two-way nested ANOVA. Each treatment (open-precipitation, open-ambient, closed-
precipitation, closed-ambient) had 8 replicate bags and individual EEA assays were run 
on three subsamples of each bag. 
 

 AG  AP BG BX CBH LAP NAG 
Precipitation NS NS NS NS NS NS NS 
Dispersal NS NS NS NS NS **** NS 
Precipitation X Dispersal ** * * * • NS NS 
Bag (Precipitation x Dispersal) **** **** **** **** **** **** **** 

. 
  • < 0.1, * <0.05, ** <0.01, *** <0.001, ****<0.0001 
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Table S4.3. Nested Permutational MANOVA for extracellular enzyme activity (EEA) 
composition. To create a composite metric of the seven EEA assays, we calculated the 
Euclidean distance between each pairwise sample based on normalized measurements 
of the seven assays. 
 

 df SS MS F P 
Precipitation 1 2.7341 2.7341 0.25 0.89 
Dispersal 1 23.316 23.316 2.13 0.111 
Precipitation X Dispersal 1 58.728 58.728 5.37 0.007 
Bag (Precipitation x Dispersal) 28 308.91 11.033 2.69 0.001 
Residual 61 250.42 4.1053   
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Figure S4.1. Relative abundance of bacterial families (16S amplicon sequencing) found 
in each treatment type and the inoculum averaged across replicates. 
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Figure S4.2. Relative abundance of bacterial families (metagenomic sequencing) found 
in each treatment type and the inoculum averaged across replicates. 
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Figure S4.3. a) Bacterial cells counts per gram of dry litter, b) fungal hyphal lengths, 
and c) mass loss across the four treatments.  
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Figure S4.4. Effects of the dispersal and precipitation treatment on bacterial a) richness 
(number of OTUs) and b) evenness (Shannon diversity) as assayed by 16S 
sequencing, after rarefaction to standardize for sequencing effort among samples.  
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Figure S4.5. Potential activities of seven extracellular enzymes including, A-
Glucosidase (AG), acid phosphatase (AP), B-Glucosidase (BG), B-Xylosidase (BX), 
cellobiohydrolase (CBH), leucine aminopeptidase (LAP), N-acetyl-B-D-glucosaminidase 
(NAG). Measurements are shown for inoculum (n=8) and 3 replicates from each final 
litterbag (n=96). 
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Figure S4.6. Nonmetric multidimensional scaling (NMDS) ordinations showing 
variability in bacterial community composition (Bray-Curtis dissimilarity) with all replicate 
subsamples, as well as initial inoculum subsamples plotted.  
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Figure S4.7. Precipitation at Loma Ridge between January 2015 and June 2015. Red 
lines indicate water additions.  
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Figure S4.8. Percentage of estimated variation explained by treatment effects and 
measurement error for 7 individual extracellular enzymes including A-Glucosidase (AG), 
acid phosphatase (AP), B-Glucosidase (BG), B-Xylosidase (BX), cellobiohydrolase 
(CBH), leucine aminopeptidase (LAP), N-acetyl-B-D-glucosaminidase (NAG) and the 
average across the 7 enzymes 
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