UC Irvine UC Irvine Previously Published Works

Title

Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multi-modal stress

Permalink https://escholarship.org/uc/item/1mr03859

Journal Molecular Psychiatry, 19(7)

ISSN 1359-4184

Authors

Maras, PM Molet, J Chen, Y <u>et al.</u>

Publication Date

2014-07-01

DOI

10.1038/mp.2014.64

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

IMAGE Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multi-modal stress

PM Maras¹, J Molet^{2,5}, Y Chen^{1,5}, C Rice², SG Ji³, A Solodkin^{2,4} and TZ Baram^{1,2,4}

Molecular Psychiatry (2014) 19, 745; doi:10.1038/mp.2014.64

The image illustrates the cascade of events that follow short multi-modal, 'modern-life'-like stress or a less complex stress such as restraint or loud noise. These distinct pathways result in different outcomes: Whereas concurrent physical, psychological and 'social' stresses lasting several hours (multi-modal) impaired memory function tested 24 h later, a less complex stress ('uni-modal') did not. These divergent outcomes took place even though the intensities of the multi-modal and uni-modal stresses—measured by the output of stress hormones and by the activation of hypothalamic neurons—were indistinguishable. Looking at measures of network activation patterns, there was much overlap between multi-modal and less complex stresses. However, cross-correlation analyses demonstrated ventral-hippocampus-amygdala network predominance after the multimodal stress, and dorsal-hippocampus, sensory-processing network activation after the restraint stress. Analyses of the consequences of these stresses on synaptic integrity demonstrated that only multi-modal stress destroyed synapse-bearing dendritic spines in dorsal-hippocampus CA1, an area crucial for some forms of memory. Indeed, object memory, partially dependent on intact hippocampal function, was profoundly impaired only in mice experiencing multi-modal stress. For more information on this topic, please refer to the article by Maras *et al.* on pages 811–822.

¹Department of Pediatrics, University of California Irvine, Irvine, CA, USA; ²Department of Anatomy/Neurobiology, University of California Irvine, Irvine, CA, USA; ³Medical Scientist Training Program, University of California Irvine, Irvine, CA, USA and ⁴Department of Neurology, University of California Irvine, CA, USA ⁵These authors contributed equally to this work.