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Abstract

Bayesian Analysis in Problems with High Dimensional Data and Complex

Dependence Structure

by

Wayne Tai Lee

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Cari G. Kaufman, Chair

This dissertation is a compilation of three di�erent applied statistical problems
from the Bayesian perspective. Although the statistical question in each problem
is di�erent, a common challenge is the high dimensionality of the data and the
complex dependence structure. These introduce challenges with standard statistical
techniques and computational issues. For each problem, we address the statistical
problem and resolve the computational issues in the implementation.

The �rst topic considers the problem of Bayesian inference for the location of
the global extreme of a nonparametric regression function given noisy observations.
We model the unknown function using a Gaussian Process (GP) prior. The un-
known function may be high dimensional and sampling posterior realizations of the
function can be computationally intensive. We introduce a novel algorithm that
makes use of existing optimization routines to simultaneously sample and optimize
the GP realizations in an e�cient manner. We demonstrate our method on a spatial
data sets with non-Gaussian observations as well as an application in astronomy in
which the location of the extreme varies temporally.

The second topic constructs a Bayesian Hierarchical Model for surface wind
�elds over the globe. Surface winds are intrinsically multivariate with spatially
heteroscedastic behavior over the globe. Our model is the �rst to model wind �elds
at the global scale over land and sea. Motivated by the geostrophic relationship, we
�t a varying coe�cient model to model wind �elds using the pressure gradient. We
apply our method on surface wind and sea level pressure products from a general
circulation model. We will show that our model can produce realistic wind �elds
that resemble the wind �elds from the climate model.

The third topic considers the problem of hierarchical multilabel classi�cation
(HMC) given existing single label classi�er outputs. In our problem setting, mul-
tiple labels can be assigned to each subject and the assignments have to respect a
given hierarchy. We want to utilize the existing local classi�ers to give assignments
consistent with the hierarchy. We rank each label assignment under a Bayesian
framework by its probability of being positive given all local classi�er outputs. We

1



use this ranking to sequentially assign labels according to a cuto�. However, we
also update the ranking after each assignment to ensure consistency. Our algorithm
outperforms existing HMC methods in various simulation studies and on a disease
diagnosis dataset with a large hierarchy with few independent observations.
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CHAPTER 1

Introduction:

This dissertation is a compilation of three di�erent applied statistical problems
from the Bayesian perspective. Although the statistical question in each problem
is di�erent, the common challenge is the high dimensionality of the data and the
complex dependence structure. These introduce challenges with standard statistical
techniques along with various computational issues. For each problem, we address
the statistical problem and resolve the computational issues in the implementation.
Overall, each chapter is a self-contained topic that covers the respective motivations,
methods, examples, and discussion.

This chapter �rst clari�es what is meant by the Bayesian perspective in this
dissertation. Then we introduce common concepts and techniques used for inference
in this dissertation. The chapter ends with an overview for each topic.

1.1. Bayesian Inference

In parametric statistics, the data Y is often assumed to be random variable
from a distribution F governed by certain parameters θ. We then denote this as

Y ∼ Fθ

A classic example is the number of heads from a single coin toss where the chance
of landing a head is unknown. The data is then Y ∈ {0, 1} where Fθ is a Bernoulli
distribution and θ ∈ [0, 1] is the chance the coin lands a head.

The di�erence between the Frequentist approach and the Bayesian approach
comes from the interpretation of probability and the inference on θ. From the
Frequentist perspective, the long-run frequency is the probability of an event. For
the same coin, θ is an unknown �xed parameter and is not random in the stochastic
sense. Therefore P (θ = a) = 0 for any a except the true value. From the Bayesian
perspective, however, uncertainty can be treated as a source of probability. The
lack of knowledge about θ allows us to treat it as a random variable and attach
probabilities to its possible values. Our lack of knowledge, however, is not always
uninformative. For example, since most coins are made roughly symmetric and
uniform in density, our prior belief about P (θ = a) is likely highest for a = 0.5
than any other value. Before observing any data, we can re�ect our prior belief
about the di�ernet possible values for θ using a Beta(b1, b2) distribution where
b1 = b2 = 2. This distribution is called the prior distribution for θ. Overall, the
Bayesian probability re�ects a degree of belief rather than the asymptotic frequency
interpretation for Frequentist probabilities.

This di�erence allows Bayesians to place probability distributions on unknown
but �xed quantities and update our beliefs as we observe data. After observing
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data, Y , our belief is updated according to Bayes rule

(1.1.1) P (θ|Y ) =
P (Y |θ)P (θ)

P (Y )

where P (Y |θ) is called the likelihood and describes the chance of seeing the data
with parameter θ, P (θ) is the prior and re�ects our prior belief about θ before
observing data, and lastly P (Y ) =

´
P (Y |θ)P (θ)dθ is a normalizing constant that

ensures P (θ|Y ) is a probability distribution. P (θ|Y ) is called the posterior dis-
tribution which is our updated belief about θ after observing Y . With no data,
Bayesian inference is completely based on the prior. However, even with limited
data, Bayesian inference formally re�ects the change in uncertainty in the posterior
distribution after updating the prior. Frequentist analysis on the other hand often
require ad hoc assumptions to perform meaningful analysis with limited data.

Overall, in this dissertation, the Baysian approach is appropriate since the goal
is often to portray the uncertainty in an unknown but possibly �xed quantity. Chap-
ter 2 performs inference on the global extreme for an unknown function, Chapter 3
characterizes the wind outputs from a deterministic numeric model, and Chapter
4 treats the unknown disease status for a patient as a random variable. Again,
the probability here re�ect the degree of belief and should not be mixed with the
Frequentist probability interpretation. In the follow sections we lay out some useful
concepts for the later chapters but do not attempt to cover the details of Bayesian
analysis. Gelman et al. (2004) o�ers a good overview of practical Bayesian data
analysis.

1.2. Modeling unknown functions through Gaussian process

For the problems in this dissertation, our data sometimes depend on an un-
known continuous function. For example, we can imagine scallop catches to depend
on the unknown scallop abundance (Chapter 2) and wind �elds to depend on an
underlying climate process (Chapter 3). In these cases, a reasonable prior distribu-
tion on continuous functions is the Gaussian process (GP). A GP, Z, is a stochastic
process over domain X where for any �nite locations {x1, . . . , xn} ⊂ X

(1.2.1) [Z(x1), . . . , Z(xn)] ∼MVN (m̃ , Σ)

where MVN is the multivariate Gaussian distribution with mean vector m̃T =
(m(x1; θ), . . .m(xn; θ)) and covariance matrix with entries Σij = K(xi, xj ; θ) for
i, j ∈ {1, . . . , n}. Here m(·; θ) is the mean function and K(·, ·; θ) is the covariance
function that governs Z. We usually denoted GPs as

Z ∼ GP ( m (·; θ) , K (·, ·; θ) )

where θ are parameters that govern the mean and covariance functions. The mean
function dictates the placement of the realizations where the covariance function
dictates the dependence between locations. The stronger the dependence, the
smoother the functions implied by the GP. We show some realizations from a
one dimension GP over a �ne grid with di�erent mean functions and covariance
functions in Figure 1.2.1.

GPs are attractive because they de�ne a distribution over an in�nite collection
of functions with the speci�cation of the mean and covariance function. With these
two functions, GPs can capture a wide range of continuous functions. Di�erent
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Figure 1.2.1. Independent GP Realizations under di�erent
mean and covariance functions over a �ne grid where x ∈ [0, 1].
The black line indicates the mean functions where the colored lines
are independent realizations over a �ne grid. (a) and (b) have a
constant mean function m(x) = 0 where (c) and (d) have mean
function m(x) = 10x. (a) and (c) have a Matern covariance func-
tion with smoothness ν = 2 and range ρ = 0.01 where (b) and
(d) have a Matern covariance with smoothness ν = 2 and range
ρ = 0.1. A larger range parameter indicates distant values are
more correlated to each other and therefore produces smoother
curves.

types of covariance functions are discussed in Gelfand et al. (2010) but a popular
choice is the Matern covariance family de�ned in Equation 2.2.4 in Chapter 2. The
Matern covariance functions allow us to specify the degrees of di�erentiability of
the covariance function which is often useful. We do not dive into the details for
the Matern covariance family but details on the desirable properties of the Matern
covariances are discussed in Stein (1999).

Now that we can describe our uncertainty over smooth functions with GP
priors, we can also easily update our belief of possible functions when measurements
are collected. As a consequence of the de�nition in Equation 1.2.1, for any �nite
collection of locations x′1, . . . , x

′
k

[Z(x1), . . . , Z(xn)] |Z(x′1), . . . , Z(x′k) ∼MVN
(
m̃′k , Σ′k

)
In other words, the conditional distribution when the measurements are exact
(noise-free) remains Gaussian. The speci�c form for m̃′ and Σ′ will be explained in
Equation 2.2.3 in Chapter 2. Another special case that retains the Gaussian condi-
tional distribution is when the measurement error follows a Gaussian distribution.
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Figure 1.2.2 shows posterior realizations over a �ne grid after making observations
with and without Gaussian error for a �xed underlying function.

Figure 1.2.2. GP realizations over a �ne grid after observing
data. The red line denotes the true underlying function f where
f(x) = 2 sin(3x) for x ∈ [0, 2] and the red dots are the observa-
tions. The left �gure shows possible realizations of the GP over
a �ne grid when observations are made without error. The right
�gure shows possible realizations of the GP over a �ne grid when
observations are made with Gaussian error with a small variance.
The possible realizations are tighter around the locations with ob-
servations. When there is no measurement error, the realizations
pass through the data points.

Error-free observations are common when the unknown function is deterministic
as is the case for many optimization problems or simulations from a numeric model.
In this case, we expect the posterior realizations to pass through the observed data
which matches the outcome in Figure 1.2.2. The topics in this dissertation have
more complex cases. Each chapter describes the speci�c updates performed that
will not be elaborated here. For further details, Rasmussen and Williams (2006)
provides a good introduction and reviews various applications with GPs.

1.3. Inferring unknown status through local false discovery rate

Instead of modeling unknown functions, Chapter 4 handles the unknown status
for a label. For example, the status for cancer is �xed but unknown before rigorous
testing. The Bayesian approach allows us to attach uncertainties to the status, Q.
Chapter 4 tackles this in the context of hierarhical multilabel classi�cation but here
we introduce some concepts for binary classi�cation from the Bayesian perspective.

In the most basic classi�cation setting, the goal is to assign a label Q̂i ∈ {0, 1}
based on a single feature Si ∈ R for i = 1, . . . ,m where m is the total number of
label assignments possible. We assume the data S follows a mixture distribution

Si|Qi ∼ (1−Qi)F0 +QiF1
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where F0 and F1 are the respective distributions for S when Q = 0 and Q = 1.
Under the Bayesian framework, a suitable classi�cation quantity would be

P (Qi = 1|Si) =
P (Si|Qi = 1)P (Qi = 1)

P (Si)
=
π1f1(Si)

f(Si)

=
π1f1(Si)

π1(1− f1(Si)) + (1− π1)(1− f0(Si))

where π1 = P (Qi = 1) and f1, f0 respectively denote the density for S when Qi = 1
and Qi = 0. However, despite being a Bayesian quantity, the estimation for this
term sometimes take an empirical approach without specifying priors for π1. 1−π1
is often estimated from the empirical distribution where f and f0 are estimated
through kernel density estimators. This occurs most commonly in the multiple
hypothesis testing framework because P (Qi = 1|Si) is equivalent to the complement
of local false discovery rate (lfdr) studied in Efron and Tibshirani (2002); Efron
(2010). This empirical estimation approach is mostly because lfdr is derived from
the False Discovery Rate (Benjamini and Hochberg , 1995), a Frequentist concept
used to control the rate of false positives in multiple hypothesis testing. We do
not elaborate on this connection here and refer the interested readers to Efron and
Tibshirani (2002). This approach is also known as the empirical Bayes approach.

In other words, we use the Bayesian interpretation but do not implement the
full Bayesian analysis through the posterior distribution. In Chapter 4, we estimate
P (Qi = 1|Si) from a third approach motivated by maximizing the pooled precision
rate as shown in Jiang et al. (2013). However, we will show how the Bayesian
framework will naturally extend this simple quantity to our sequential classi�er in
the hierarchical setting.

1.4. Sampling from the Posterior Distribution through

Metropolis-Hastings Algorithm

As mentioned before, the full Bayesian approach derives the posterior distri-
bution to re�ect our uncertainties after observing data. However, obtaining the
posterior distribution is arguably the most di�cult task with Bayesian analysis.
The di�culty mostly comes from the inability to derive the normalizing constant in
Equation 1.1.1. Therefore we often perform analysis through Monte Carlo methods,
i.e. empirically estimating the statistic of interest using posterior samples from the
posterior distribution. To draw samples from the posterior distribution, a popular
method relies on the convergence of Markov chains. The Monte Carlo methods fol-
lowing the Markov chain sampling is often referred as Markov Chain Monte Carlo
(MCMC).

To draw posterior samples, MCMC methods set the stationary distribution
π(θ) for a Markov chain to equal the posterior distribution P (θ|Y ). To do so, we
set up a Markov chain to satisfy the detailed balanced equation

(1.4.1) P (θ|Y )r(θ, θ′) = P (θ′|Y )r(θ′, θ)

where r(θ, θ′) is the transition probability from θ to θ′ for the Markov chain. If
the chain is ergodic, i.e. aperiodic and positive recurrent, we know that the chain
{θt} will converge to the unique stationary distribution which is set to be P (θ|Y )
in Equation 1.4.1. At a high level, aperiodicity prevents periodic patterns for the
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chain. Positive recurrent ensures that the chain can always return to each pos-
sible state without getting stuck at certain states or diverging. Naturally, the
construction of r(·, ·) is crucial and one popular construction is provided by the
Metropolis-Hastings algorithm (Brooks et al., 2011).

The Metropolis-Hastings algorithm has two stages: the proposal and the ac-
ceptance. De�ne r(θ, θ′) = prop(θ, θ′)accept(θ, θ′), so the probability to transition
from θ to θ′ involves the probability of proposing θ′ starting at θ and the proba-
bility of accepting θ′ starting at θ. With regularity conditions, we can rearrange
Equation 1.4.1 to become

accept(θ, θ′)

accept(θ′, θ)
=
P (θ′|Y )prop(θ′, θ)

P (θ|Y )prop(θ, θ′)

This equation can be satis�ed if we set the acceptance distribution as accept(θ, θ′) =

min
(

1, P (θ′|Y )prop(θ′,θ)
P (θ|Y )prop(θ,θ′)

)
and prop(θ, θ′) as a symmetric distribution that preserves

the ergodic conditions. In this dissertation, we often convert our parameters to
be de�ned over the real line so a reasonable proposal is the Gaussian distribution.
Recall that we do not have the posterior distribution P (θ|Y ) but the posterior is pro-
portional to the product between the prior and likelihood, P (θ|Y ) ∝ P (θ)P (Y |θ).
A consequence from the de�nition of the acceptance distribution then allows the
normalizing constants to cancel. In the end, we only need to work with the prior
and likelihood which we determine in the model speci�cation.

For a multivariate dimensional parameter example, the algorithm then becomes

(1) Initiate the chain with θ0 corresponding to high values of P (θ)P (Y |θ)
(2) Propose θ′ ∼MVN(θt,Σ) based on some Σ and the current θt
(3) Sample U ∼ Unif [0, 1]

(4) If U < P (θ′)P (Y |θ′)
P (θt)P (Y |θt) , set θt+1 = θ′, otherwise θt+1 = θt

(5) Increment t and repeat step 2 through step 4.

We repeat the algorithm until we collect enough samples after the chain converges.
Convergence is often determined by visually examing θt over the iterations t to
ensure there are no linear trends in the chain. After the chain converges to the
stationary distribution, the sampled θt values are correlated draws from the desired
posterior distribution. To obtain roughly independent samples, we perform thinning
by only collecting every nth sample from the converged chain. The value of n is
usually determined by evaluating autocorrelation plots of the chain. The initiation
in step 1 can be arbitrary but the convergence will be faster if we start at probable
values of θ under P (θ|Y ). Since the posterior is proportional to the likelihood and
the prior, reasonable starting values are the maximum likelihood estimator (MLE)
for θ, i.e. θMLE = arg maxθ P (Y |θ). With enough data, P (Y |θ) should dominate
the posterior and our beliefs will be mostly based on the data instead of the prior.

By default, Σ is set to be a diagonal matrix where its variance is highly cor-
related with the acceptance rate of the chain. Large variance tends to yield lower
acceptance with less correlation chains where small variances produces the opposite
result. Low acceptance is not desirable because the number of di�erent samples is
small and the convergence for the chain is often slow. On the other hand, highly
correlated chains are not desirable because we would need to perform more thinning
to obtain roughly independent samples and the chain might take longer to converge
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if θt can only vary slightly from iteration to iteration. Some theoretical work on
optimal accetance rates can be found in Roberts and Rosenthal (2001).

1.4.1. Adaptive Metropolis-Hastings Algorithm. In this dissertation we
use a modi�ed Metropolis-Hastings algorithm that adapts the proposal covariance
structure to achieve desirable acceptance rates. Based on the algorithm speci�ed
in Shaby and Wells (2010), we �rst specifying a desired acceptance rate αopt, some
parameters γ0 = 1 and γ1 = 0.8γ0, and initialize the proposal distribution Σ0 = Id
and σ2

0 = 2.42

d where d is the dimension of θ. The speci�c value settings here are
just suggestive based on the same suggestions in the technical report by Shaby and
Wells (2010). With these speci�cations, for each adaptive Metropolis-Hastings step
t

(1) Take k Metropolis-Hastings steps using σ2
t and Σt

(2) Calculate the empirical acceptance rate from the k steps, αempt =
#accepted

k
(3) Calculate the sample covariance matrix based on the k Metropolis-

Hastings samples Σ̂t = 1
k−1

(
Xd×k − X̄(t)

) (
Xd×k − X̄(t)

)T
(4) Update σ2

t+1 = exp
[
log σ2

t + γ0
tγ1 (αempt − αopt)

]
(5) Update Σt+1 = Σt + 1

tγ1

(
Σ̂t − Σt

)
where the columns of Xd×k hold θi from the k standard Metropolis-Hastings steps
and X̄(t) is a matrix of the same size with the rows contain the row means of Xd×k.
This adaptive strategy in�ates the proposal variance when the acceptance rate is
too high and encourages the chain to explore farther values. The proposal variance
shrinks when the acceptance rate is too low. The proposal covariance matrix also
adapts according to the chain. If di�erent components of θ are correlated in the
posterior, then the proposal distribution should also pick up this correlation and
propose correlated values for those components. In our experience, the adaptive
Metropolis-Hastings algorithm works well for θ with d < 200 but the convergence
is noticably slower for higher dimensional parameter spaces.

1.5. The Problems

Now that we have covered some concepts for Bayesian inference used in this
dissertation, we quickly summarize each statistical problem here.

1.5.1. Bayesian inference for global extreme. Chapter 2 investigates ef-
�cient Bayesian inference for the location of the global extreme for an unknown
function given noisy measurements. In other words, given noisy observations for an
unknown function, we want the posterior distribution for the location of the global
extreme. The posterior distribution is more desirable than traditional point esti-
mates because it portrays the full uncertainty with limited data. In our example,
it is possible that the posterior distribution for the location of the global extreme
is multimodal with limited data. This information cannot be re�ected in a typical
point estimate which can be useful to researchers.

An important distinction to make is our focus is on inference for the location of
the global extreme instead of developing a new optimization routine. Traditional
optimization assumes there exists a �xed objective function that is expensive to
evaluate so maximizing the information from each evaluation is essential. In other
words, the question in optimization is often �where to search next?� for the next
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function evaluation or measurement. However, when no more function evaluations
or measurements are possible, Bayesian inference portrays the full uncertainty in
the location for the global extreme location given the limited data.

In general, we model the unknown function using a Gaussian Process prior then
search for the global extreme in the posterior realizations. Sampling the location
of the global extreme can be broken down into a two stage process. This involves
drawing posterior sample of the unknown function then searching for the global
extreme over a �ne grid. However, sampling continuous functions over a �ne grid
is computationally demanding in multiple dimensions. Instead, we utilize existing
optimization routines that dynamically sample and search for global extreme.

Several challenges arise when inferring the location of the global extreme
through sampling methods. The �rst challenge is numerical stability. To obtain
accuracy, the samples are necessarily close to one another which makes covariance
matrices approach singularity in the sampling. The second is cohesively capturing
the di�erent sources of uncertainties from the noisy data and from the model for the
unknown function. Most methods that use GPs in optimization �x the model pa-
rameters at the MLEs then perform sampling (Forrester et al., 2006; Villemonteix
et al., 2008). This ignores the uncertainty in the unknown function which can alter
the results signi�cantly. We perform the full Bayesian approach that cohesively
incorporate both sources of uncertainty in our inference.

1.5.2. Varying Coe�cient Model for Global Surface Winds. Chapter
3 constructs a Bayesian hierarchical model for global surface wind �elds. Surface
winds models have important applications in wind energy and climate modeling.

Genton and Hering (2007) have argued that statistical models for wind is im-
portant for the future of wind energy. Wind energy is a viable source of sustainable
electricity that can compete in the marketplace. Unfortunately, storing the energy
is di�cult so wind energy is only available when the wind is blowing. Moreover, the
turbine plants that harvest wind energy require early notice to begin production.
Therefore accurate forecasts are bene�tial for e�cient energy production. Overall,
the intermittent nature of wind prevents energy suppliers from relying on wind en-
ergy. A good statistical model for wind can produce wind predictions that decrease
the uncertainty with wind speeds and even identify potential wind farm locations
(Hering and Genton, 2010).

Climate models, on the other hand, are complex numerical models that in-
corporate various physics, parameters, and approximations to help understand the
climate system. However, quantifying the e�ects of each di�erent speci�cation
on the output is di�cult. E�orts such as the Program for Climate Model Diag-
nosis and Intercomparison (PCMDI) and the North American Regional Climate
Change Assessment Program (NARCCAP) are responses to help understand the
complex nature of these models. To quantify the uncertainty e�ciently and cohe-
sively, statistical techniques are often employed. For example, Kaufman and Sain
(2010); Sain et al. (2011) have quanti�ed the e�ects of downscaling for temperature
and precipitation under a Bayesian framework. To implement similar analysis for
surface winds, however, we need a statistical model that can capture the spatial
heterscedastic behavior and intrinsically multivariate nature of surface winds.

Past work on surface wind modeling focused on wind �elds strictly over the
ocean or on wind records from a few weather stations. Our model is the �rst to
model wind �elds over the entire globe that includes land surfaces. Overall, we have
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surface wind �elds at 8192 locations over 40 years for Winter and Summer. In ad-
ditional to the large data size, wind �elds over large regions exhibit heteroscedastic
behavior that require �exible models. These models unfortunately introduce many
computational challenges. We use the geostrophic relationship along with a varying
coe�cient model to construct a �exible surface wind model. We then utilize the
Gaussian Random Markov Field methods in Lindgren et al. (2011) to resolve the
computational issues. We will show that this model can simulate wind �elds that
resemble the wind �elds from our data.

1.5.3. Hierarhical Multilabel Classi�cation Through Local False Dis-

covery Rate. Chapter 4 proposes a sequential classi�cation method for hierar-
chical multilabel classi�cation (HMC) based on a Bayesian framework. HMC is
a type of classi�cation where multiple labels can be assigned to each subject and
the assignments have to respect a given hierarchy. For example, a patient may be
diagnosed with multiple diseases but these diseases have to respect a hierarchical
relationship � one with lung cancer must also have cancer. Our framework further
focuses on the case when outputs from existing single label classi�ers are given.
Single label classi�ers can be highly tailored to the subject matter but the collec-
tive assignments may not be consistent with respect to the hierarchy. Instead of
discarding these past e�orts, we want to utilize these outputs to create a consistent
classi�er.

Jiang et al. (2013) tackled multilabel classi�cation under a similar situation
where the single label classi�ers are given but the labels were independent from one
another. They developed an optimal ranking for all the label assignments where
assigning the top k labels as positive would maximize the pooled precision rate.
Unfortunately, the same method is unlikely produce consistent label assignments
with respect to the hierarchy.

To obtain consistency, we propose a sequential classi�cation method motivated
under a Bayesian framework. More speci�cally, we �rst rank each label assignment
by the probability of the label being positive given all local classi�er outputs. We
follow this ranking to assign labels according to a cuto�. We then update the
ranking after each assignment. The updating naturally produces consistent label
assignments where the ranking provides accurate classi�cation results. Our method
is more e�cient than existing HMC methods without making any distributional
assumptions on the single label classi�er scores. We will show that our algorithm
outperforms the existing HMC methods in various simulation studies and on a
disease diagnosis dataset that has limited independent samples over 110 diseases.

9



CHAPTER 2

E�cient Bayesian Inference for Global Extreme

Using Gaussian Processes

2.1. Introduction

This chapter considers the problem of Bayesian inference for the quantity x∗ =
arg maxx∈X f(x) for a nonparametric regression function f de�ned on X ⊆ Rd

(or, equivalently, arg min x∈Xf(x)). Finding the location of the global maximum
or minimum of f is of interest in a variety of applied problems. For example, this
problem has arisen in the context of agriculture (?Board and Modali , 2005), public
health (Facer and Müller , 2003), chemistry (Box and Wilson, 1951), and astronomy
(Williams et al., 1994). As another example, Figure 2.1.1 shows data on scallop
catches o� Long Island, New York. Given such data, one could infer the location
of maximum abundance to guide future locations to target. We will see that the
posterior distribution for x∗ under our model is multi-modal which highlights the
need for a statistical approach that can capture such features.

The problem of inferring x∗ has been well studied using estimators derived
from kernel estimators of f (Müller , 1985, 1989; Müller et al., 1996; Facer and
Müller , 2003), and these estimators can be shown to possess desirable asymptotic
properties (Müller , 1985, 1989; Facer and Müller , 2003). However, we are interested
in specifying a Bayesian model for f and then deriving the posterior distribution
for x∗. If we are given a �xed number of noisy observations, as in the applications
above, it is quite possible that the posterior distribution for x∗ is widely dispersed,
perhaps even multi-modal, and this kind of information is not re�ected in a point
estimate.

Various authors, e.g. Jones et al. (1998); Booker et al. (1999); Forrester et al.
(2006); Villemonteix et al. (2008), have taken up a related problem from a Bayesian
perspective: stochastic algorithms for global function optimization, in which f is
observed without noise and the goal is to determine where to next evaluate f
in an iterative optimization routine. Our motivating examples, and the resulting
statistical concerns, are di�erent. Rather than using Bayesian models to guide an
optimization routine to converge to x∗, we instead want to accurately portray our
uncertainty about x∗ after observing f with error at a �xed number of locations.

From a conceptual standpoint, this problem is straightforward. One simply
speci�es a prior distribution for f and a likelihood for the observations, then derives
the posterior for f and hence the posterior for x∗. However, achieving this in
practice may be di�cult. In particular, we will consider using Gaussian process
(GP) models for f . As a simple example, suppose we take Yi = f(xi) + εi for

i = 1, . . . , n, with ε1, . . . , εn|τ2
iid∼ N(0, τ2) and f to have a GP prior distribution

governed by parameters θ. Conditioning on θ, τ , and observations Y1, . . . , Yn, f has
another GP distribution, whose mean and covariance function may be calculated
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Figure 2.1.1. Scallop catches (log transformed) based on a 1990
survey cruise in the Atlantic continental shelf o� Long Island, New
York, U.S.A (Ecker and Heltshe, 1994). The locations are pro-
jected from longitude and latitude to UTM coordinates. The con-
tour plot re�ects the estimated posterior distribution of peak lo-
cations for high scallop abundance. There are two modes in the
posterior samples which is a feature that cannot be captured by a
typical point estimate for the location of global extreme.

using the well-known kriging equations (see e.g. Stein, 1999). Note that collecting
posterior samples of x∗ is di�erent from optimizing the posterior mean of the GP.
In general

arg max
x

E (f(x)|Y1, . . . Yn, τ, θ) 6= E
(

arg max
x

f(x)|Y1, . . . Yn, τ, θ
)

so optimizing the GP mean function is not necessarily a reasonable point estimate
for x∗ under the Bayesian framework. This estimate has been used by Simpson
et al. (1998b) in optimizing computer models since the GP mean coincides with
the kriging estimate for unknown functions. Even E (arg maxx f(x)|Y1, . . . Yn, τ, θ)
may not be sensible if the posterior is multi-modal.

In this chapter, the posterior distribution will be empirically estimated using
posterior samples. To generate a posterior sample of x∗, we could draw a posterior
realization of f over a �ne grid over X, then choose the value that maximizes the
realization (Villemonteix et al., 2008). This unfortunately introduces a trade-o�
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between e�ciency and accuracy in the sampling. Increasing the resolution greatly
increases the computational burden, particularly in high dimensions, while also
introducing numerical stability issues due to large near-singular covariance matrices.

In this chapter we provide a novel method that e�ciently samples from the
posterior of x∗. This method can utilize any existing optimization routine to simul-
taneously sample f and search for x∗. The basic concept is to replace joint sampling
of f at �xed input values x(1), . . . , x(m) with a sequential sampling scheme that al-
lows the input values x(1), . . . , x(m) to be dynamically determined. We also carry
out the full Bayesian nonparametric analysis for x∗, whereas most previous work
has ignored the variability that comes from the estimation of θ (Jones et al., 1998;
Simpson et al., 1998a; Forrester et al., 2006; Villemonteix et al., 2008).

The chapter describes the algorithm in detail, then applies it to generate sam-
ples from the posterior for x∗ conditional on two very di�erent datasets. Section
2.2 describes the algorithm with implementation details along with an illustrative
example. Section 2.3 showcases the e�ciency of this algorithm relative to grid
searches. In Section 2.4, we apply the method to the scallop data shown in Figure
2.1.1. This example is interesting because the data itself is not Gaussian. Code
for the illustration and the scallop example are available at http://www.stat.

berkeley.edu/~lwtai/Waynes_Stat_Website/Tech_Reports.html. Our last ex-
ample in Section 2.5 is on the spectrophotometric time series of the Type Ia super-
nova SN 2011fe (Pereira et al., 2013). This dataset is interesting because the goal
of the analysis is to infer x∗ over multiple time points. The last section discusses
possible improvements and challenges of performing the full Bayesian analysis for
this problem.

2.2. Methods and Illustration:

The goal is to derive the posterior distribution P (arg maxx∈X f(x)|Y1, . . . , Yn).
To provide the Bayesian solution, we �rst need to specify the data generating
process. We observe Y1, . . . , Yn at locations x1, . . . , xn ∈ X. These observations are
noisy measurements of the true objective function f(x) that we want to optimize.
We adopt the generalized linear model (Diggle et al., 2002):

E (Yi) = f(xi)

x∗ = arg max
x

f(x)

h(f(x)) = Z(x)

Z(·) ∼ GP (m( · ; θ) | k( · , · ; θ) )(2.2.1)

where the prior for f is a transformed GP with mean and covariance functionm(·; θ)
and k(·, ·; θ) governed by parameters θ. h(·) is a link function and is assumed to be
invertible and monotonic. These assumptions guarantee that optimizing over Z(.)
is the same as optimizing over f(.).

Our task is now to approximate the posterior of x∗ under this model. That is,
we generate samples from

p (x∗|Y1, . . . , Yn) =

ˆ
p (x∗|Y1, . . . , Yn, θ) p (θ|Y1, . . . , Yn) dθ

by �rst sampling θi ∼ P (θ|Y1, . . . , Yn) for i = 1, . . . B then sampling x∗i ∼
P
(
x∗|θi, Y1, . . . , Yn

)
. The samples from P (θ|Y1, . . . , Yn) can be obtained through
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various standard Bayesian inference techniques, but in this chapter we use Adaptive
Metropolis Hastings (Shaby and Wells, 2010).

Our main contribution is to propose an e�cient method of sampling from
P
(
x∗|θi, Y1, . . . , Yn

)
. A simple approach draws f(.) ∼ P

(
f(.)|θi, Y1, . . . , Yn

)
over a

�ne grid x(1), . . . , x(m) then reports arg maxx∈{x(1),...,x(m)} f(x) (Villemonteix et al.,
2008). However, most locations on the �ne grid are not of interest, and the reso-
lution of the grid is typically limited. Optimization routines, on the other hand,
intelligently select the evaluation locations x(1), . . . , x(m), but their sequential be-
havior prohibits jointly sampling the posterior realization of f .

Jointly sampling the realization, however, is just a convenience to guarantee
consistency of the realization of f . Basic conditional probability suggests a natural
transition from jointly sampling f to sequential sampling. In particular,

p
(
f(x(1)), . . . , f(x(m))|θ, Y1, . . . , Yn

)
= p(f(x(1))|θ, Y1, . . . , Yn) . . . p(f(x(m))|f(x(1)), . . . , f(x(m−1)), θ, Y1, . . . , Yn)

In other words, to sample a consistent realization at arbitrary inputs, x(1), . . . , x(m),
we can sample sequentially, as long as we condition on the previous function evalu-
ations for the same realization. By carefully constructing a self-updating objective
function, the optimization routine will �rst draw from p(f(x(1))|θ, Y1, . . . , Yn) then
draw from p(f(x(2))|f(x(1)), θ, Y1, . . . , Yn) when evaluating f at x(2). Iterating this
process allows the input sequence x(1), . . . , x(m) to be sequentially and dynami-
cally determined. This results in the optimization routine simultaneously sampling
the posterior realization of f and �nding the corresponding x∗. This method can
be easily parallelized to generate multiple samples and works well with existing
optimization routines.

One challenge is then to e�ciently sample from needed conditional distribu-
tions. Since optimizing f(·) is equivalent to optimizing Z(·), we will instead con-
struct the objective function by sampling Z(.) which is modeled as a GP. More
speci�cally, at the k + 1 evaluation, the objective function should return a sample
from

(2.2.2) P (Z(x(k+1))|θ, Y1, . . . , Yn, Z(x(1)), . . . , Z(x(k)))

where Z(x(1)), . . . , Z(x(k)) are the previous k evaluations of the same realization
of Z(·). The mean and covariance functions are provided by the standard kriging
equations

Z(x′)|Z(x(1)), . . . , Z(x(k+1)) ∼ MVN( m(x′, θ) + Σ(x′, x̃) [Σ(x̃, x̃)]
−1
(
Z̃ − m̃

)
,

Σ(x′, x′)− Σ(x′, x̃) [Σ(x̃, x̃)]
−1

Σ(x̃, x′))(2.2.3)

where x̃ = {x1, . . . xn}, Z̃ = (Z(x(1)), . . . , Z(x(k)))T , and m̃ =
(m(x1; θ), . . . ,m(xn; θ))T (Rasmussen and Williams, 2006).

So again the basic steps are

(1) Obtain samples {θ1, . . . , θB} ∼ P (θ|Y1, . . . , Yn) via Bayesian inference
techniques, e.g. MCMC or variational methods.
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(2) Construct the self-updating objective function that samples from the con-
ditional distribution in equation 2.2.2 if asked to evaluate x(k+1), given
θ.

(3) Provide a sample of θi to the objective function and run the optimization
routine to obtain x∗i for a realization from the GP governed by θi.

(4) Repeat step (3) for θj ∈ {θ1, . . . , θB}
(5) Discard the parameter samples{θ1, . . . , θB} and report {x∗1, . . . , x∗B} ∼

P (x∗|Y1, . . . , Yn)

2.2.1. Prior Choice: The Bayesian methodology requires speci�cations for
the parameter priors. Throughout this chapter, we assume a constant mean
function m(x; θ) = β for simplicity so Z(·) ∼ GP

(
β, σ2Σ(ρ)

)
. Reference priors

exist for this model (Berger et al., 2001) but can be slow to compute. We take
ρ ∼ Uniform[0, ρ∗], where ρ∗ is chosen such that the Corrρ∗(Y (x), Y (x+Dmax)) ≈
.9999 where Dmax is the largest possible distance in the respective input space. We
take p(σ2, β) ∝ 1

σ2 . As the prior for ρ is proper, so is the posterior (Berger et al.,
2001). For the illustrations and examples below, unless speci�ed otherwise, the
prior speci�cations are all set accordingly.

2.2.2. Numerical Implementation . To capture the uncertainty from the
parameters, one should sample many realizations from P (θ|Y1, . . . , Yn). In this pa-
per we obtain samples mostly using the adaptive Metropolis Hastings algorithm
described by Shaby and Wells (2010). We determine the chain has reached station-
arity when the trace plots show no obvious trends. After discarding the burn-in
samples, we only use the parameter samples that have less than .1 autocorrelation
to obtain uncorrelated samples from P (x∗|θ, Y1, . . . , Yn).

The MCMC will bene�t from some tuning and good starting values. In general
we recommend using the maximum likelihood estimates (MLE) for θ as starting val-
ues if possible. For the proposal distribution, running a short chain using the naive
adaptive Metropolis Hastings algorithm then estimating the proposal covariance
based on the short chain can improve the e�ciency drastically. Lastly, although
the adaptive Metropolis Hastings algorithm �auto-tunes� itself, it is often desir-
able to tune the algorithm so the starting acceptance rate is greater than zero. In
general, we set the optimal acceptance rate to be between 0.25 and 0.3.

As mentioned before, sampling from equation 2.2.3 needs to be e�cient. This
can be di�cult since we are drawing GP realizations at x(k+1) given the data and the
k previous GP evaluations. However, we can introduce another computational trick
here, which is to use the Cholesky method of sampling, noting that the Cholesky
matrix can be recursively updated as we evaluate more locations simply by adding
additional rows to the previous Cholesky matrix, Lx̃. If the new Cholesky matrix
for the locations (x̃, x′) is L(x̃,x′) then we want Q and Lx′ such that

L(x̃,x′) =

[
Lx̃ 0
Q Lx′

]
⇒
[
Lx̃L

T
x̃ Lx̃Q

T

QLTx̃ QQT + Lx′L
T
x′

]
=

[
Σ(x̃, x̃) Σ(x̃, x′)
Σ(x̃, x′) Σ(x′, x′)

]
= Σ ((x̃, x′), (x̃, x′))
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From the expression above, clearly Q =
[
L−1x̃ Σ(x̃, x′)

]T
and Lx′ is the Cholesky

decomposition of Σ(x′, x′)−QQT . The term
[
L−1x̃ Σ(x̃, x∗)

]T
can also be recycled to

compute the GP mean and draw GP realizations to avoid unnecessary computation.
The reason the Cholesky factor helps computationally is because it can be

recycled into many places throughout the process in place of the full covariance
matrix Σ. For example, the posterior variance, Σ(x∗, x̃) [Σ(x̃, x̃)]

−1
Σ(x̃, x∗), can

be expressed as Σ(x̃, x∗)
[
Lx̃L

T
x̃

]−1
Σ(x∗, x̃) =

[
L−1x̃ Σ(x̃, x∗)

]T
L−1x̃ Σ(x̃, x∗). In-

stead of inverting [Σ(x̃, x̃)], we simply back-solve a triangular matrix into a vector

which is much faster. The term
[
L−1x̃ Σ(x̃, x∗)

]T
can also be used to compute the

GP mean: β + Σ(x∗, x̃) [Σ(x̃, x̃)]
−1
(
Z̃ − β

)
= β +

[
L−1x̃ Σ(x̃, x∗)

]T
L−1x̃

(
Z̃ − β

)
.

Overall, to e�ciently draw a GP sample at �nite locations we compute β +[
L−1x̃ Σ(x̃, x∗)

]T [
L−1x̃

(
Z̃ − β

)
+ U

]
where U ∼MVN(0, I).

We also need to specify an optimization routine. For the demonstrations and
applications below, we will use a hybrid of global and local optimizers, speci�cally
simulated annealing followed by a quasi-Newton method as our default optimization
routine. However, our algorithm is suitable for any optimization routine. Our
choice of the hybrid optimizer is due to convenience and because it strikes a balance
between speed and accuracy for our applications.

Since optimization routines converge, they evaluate points that are closer and
closer to each other to produce a precise x∗. This, however, can result in a near-
singular posterior covariance matrix. To resolve this issue, Booker et al. (1999)
regularized the matrix by adding an ad hoc diagonal term. In this paper, when
numerical singularity is reached (here de�ned as the conditional variance being
less than the Cov(x′, x′) ∗ 10−8), we treat Z(x′) as known with zero uncertainty
given the previous data and GP evaluations. In this case, the objective function
reports the GP mean instead of drawing a sample from the posterior. However,
the objective function is not updated, i.e. Z(x′) is not included in the list of
previous GP evaluations since Z(x′) provides no additional information. This makes
sense because singularity implies Y (x′) is known given the data and the existing
GP evaluations. This also guarantees the updated Cholesky matrix is numerically
positive de�nite without losing information.

We note that it is possible to obtain samples of x∗ outside the convex hull of
the data, which may or may not be appropriate in a given example. For example,
this occurs for the scallop data in Figure 2.1.1. This makes sense because the GP
realizations can �uctuate in the boundary beyond the extrema in the regions with
data just by chance. This can be remedied by imposing restrictions on the opti-
mization routine or the objective function. In our scallop example below, we made
the objective function return −∞ (without updating the objective function) when
the point of evaluation is further from all data locations beyond some threshold. To
set the threshold, for each data point, we �nd its distance with its nearest neighbor
then choose the maximum over those distances. This works well for our examples
but other restrictions can be imposed into the objective function if necessary.

2.2.3. Incorporating Derivatives. A bene�t from GP modeling is that the
derivative process is also a GP (assuming the original GP covariance function is
twice di�erentiable at distance 0). The derivative process can be useful in optimiza-
tion routines to speed up the search for the extrema. Solak et al. (2003) has used
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the derivative process to improve prediction but it can also be used for optimiza-
tion routines that require gradient evaluations. More importantly, the analytical
forms of the necessary covariance functions to sample the derivative process can be
computed from the original covariance function (Rasmussen and Williams, 2006):

Cov (Z(xi), Z(xj)) = k(xi, xj);

Cov

(
∂Z(xi)

∂xih
, Z(xj)

)
=

∂k(xi, xj)

∂xih
;

Cov

(
∂Z(xi)

∂xih
,
∂Z(xj)

∂xjk

)
=

∂2k(xi, xj)

∂xih∂xjk
;

Here xjk is the k element in the location xj . Conveniently, the same parameters used
for sampling the GP realizations are used for sampling realizations of the derivative
process. For GPs with constant means the mean for the derivative process is 0.
With the mean and covariance function de�ned, we have �nished specifying the
derivative process. If we denote realizations from the derivative process as V (x) at
inputs x(w

′+1) then we can use equation 2.2.3 again to construct a self-updating
and stochastic derivative function that returns a sample from

P
(
V (x(w

′+1))|θ, Y1, . . . , Yn, Z(x(1)), . . . , Y (x(k)), V (x(1
′)), . . . , V (x(w

′))
)

where k is the number of GP samples and w′ is the number of derivative sam-
ples drawn so far and the previous Z̃ in Equation 2.2.3 now contains data, GP
realizations, and corresponding derivative realizations. From this expression, note
that sampling from the derivative process also updates the original GP process.
Although this is just a draw from a multivariate Gaussian distribution where the
updating remains the same, careful indexing is required to di�erentiate the deriva-
tive realizations from the original process realizations.

2.2.4. Derivative �eld covariance functions with the Matern covari-

ance function. One common covariance function is the Matern covariance

(2.2.4)
σ2

Γ(ν)2ν−1

(
d

ρ

)ν
Kν(

d

ρ
)

where σ2 is the variance parameter, ρ is the range parameter, and ν speci�es the
di�erentiability of the process. d = distance(x, x′) is the distance where Kν(.)
is the modi�ed bessel function of the second kind with degree ν. For the de-
rivative process to be de�ned, we require ν ≥ 1.5. Using the identities that
∂
∂zKν(z) = − 1

2 [Kν−1(z) +Kν+1(z)] and Kν(z) = Kν+2(z) − 2(ν+1)
z Kν+1(z) =

Kν−2(z) + 2(ν−1)
z Kν−1(z), the corresponding covariance functions are
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∂k(xi, xj)

∂xih
=

−σ2

ρΓ(ν)2ν−1︸ ︷︷ ︸
=A

(
d

ρ

)ν
Kν−1(

d

ρ
)
∂d

∂xih

∂2k(xi, xj)

∂xih∂xjk
= A

(
d

ρ

)ν−1
{ 1

ρ

∂d

∂xih

∂d

∂xjk

[
Kν−1(

d

ρ
)− d

ρ
Kν−2(

d

ρ
)

]
+
d

ρ

∂2d

∂xih∂xjk
Kν−1(

d

ρ
) }

Using these expressions we can construct the stochastic gradient function to sample
from the derivative process when the optimization routine requires it. In the algo-
rithm, both the objective function and the gradient function are provided to the
optimization routine but they update each other since the conditional distribution
changes as the GP and derivative realizations are sampled.

2.2.5. 1D Illustration. We illustrate our method using a one dimensional
example that is easily generalized to higher dimensions. The true objective function
to minimize is f(x) = cos(2πx) exp(−x) whereX = [0, 1]. However, we only observe

Yi = f(xi) + εi where εi
i.i.d.∼ N

(
0, τ2

)
and xi are equally spaced over [0, 1] for

i = 1, . . . , 20. Under the generalized linear model framework, h(.) is the identify
function and f(x) is modeled as a GP with constant mean β and the Matern
covariance function with smoothness parameter ν = 3

2 . Here the parameters θ
include β, σ, and ρ for the GP, and τ for the noise level. ν is assumed known.

Here we compute the necessary covariance functions to perform the sampling
with derivatives. An alternative expression for the Matern ν = 3

2 is

Cov (Y (xi), Y (xj)) = σ2(1 +

√
3‖xi − xj‖

ρ
) exp(−

√
3‖xi − xj‖

ρ
)

σ2 and ρ are parameters we need to estimate through the data. Since we
chose a Matern covariance function that is twice di�erentiable, the covariance of
the derivative process is (where d = ‖xi − xj‖ is the Euclidean distance)

Cov

(
∂

∂xih
Y (xi), Y (xj)

)
= −σ2 3(xih − xjh)

ρ2
exp(−

√
3d

ρ
)

Cov

(
∂Y (xi)

∂xih
,
∂Y (xj)

∂xjk

)
=

3σ2

ρ2
exp(−

√
3d

ρ
)

[
δhk −

√
3(xih − xjh)(xik − xjk)

ρd

]

where δhk =

{
1 if k = h

0 otherwise
but here δhk = 1 since we are working in one dimension

only.
To obtain samples from P (θ|Y1, . . . , Yn), we �rst �nd the MLEs for β, σ, ρ , and

τ as starting values. Then we run the Metropolis Hastings algorithm. The proposal
distribution for all parameters is a Gaussian distribution with variance chosen to
have rounghly 0.25 acceptance rate for each parameter. We run the algorithm until
all 4 trace plots do not have obvious trends.

Figure 2.2.1 illustrates one run from the algorithm. We picked a random θ from
the MCMC chain then ran the hybrid optimization routine, allowing the routine to
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determine the sampling locations for the realization. Notice that the curve is only
one realization from the GP so other realizations would produce di�erent minimum
locations.

Figure 2.2.1. One dimension Illustration of Jointly Sampling
and Optimizing GP realization. The solid curve is the true f(·). +
denotes the observed noisy data points. ◦ denotes evaluations from
the global optimization algorithm, and • denotes evaluations from
the local optimization algorithm. The vertical line is the output
from the hybrid optimization: the minimizing value, x∗, for this
sampled realization.

As mentioned, one run of the optimization routine returns only one x∗, whereas
the goal is to obtain samples from the posterior distribution of x∗. To get another
sample, we run the optimization again using the same data but a di�erent sample of
θ from the MCMC. Since our objective function is stochastic, the optima produced
will be di�erent. Figure 2.2.2 shows two examples after running the optimization
500 times for data generated either with τ = 0.2 or τ = 0.3.
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Figure 2.2.2. One dimensional illustration of x∗ under di�erent
noise levels. Left: Low noise level τ = 0.2. Right: High noise level
τ = 0.3. The solid curve is the true function f(·). + denote the
observed data points. The rug plot re�ect the posterior samples of
x∗. The higher noise level re�ects more uncertainty in x∗ since the
samples are more dispersed.

Intuitively, the posterior samples concentrate around regions with small obser-
vation values. The comparison in Figure 2.2.2 shows that higher noise levels lead to
more uncertainty in the posterior distribution and indeed a more noticable second
mode. This is entirely appropriate for this data and would not be captured by
simply minimizing E(Z(·) | Y1, . . . , Yn).

2.3. E�ciency Gains

Intuitively, we expect most optimization routines to outperform a grid search
for �nding the extrema locations. We will show in our examples that the e�ciency
gains are higher in higher dimensions. Unfortunately, to create a fair comparison
between grid searches and optimization routines is not trivial. The di�culty comes
from the fact that grid searches are tuned by the granularity between locations
while optimization routines are tuned by the level of improvement between function
evaluations. More stringent tuning parameters in both cases will result in more
function evaluations. To connect the two dimensions, our examples will work with
Lipschitz functions that have the property

|f(x1)− f(x2)| ≤ LipX ∗ ‖x1 − x2‖, ∀x1, x2 ∈ Ω

for some constant LipX over the domain X. With this assumption, we can infer
the granularity necessary between locations to achieve any level of improvement in
the function. Note that any function with a bounded �rst derivative is naturally
Lipschitz where LipX = supx∈X |f ′(x)|.

The demonstration is a simple multimodal function f(x) =
∑p
i=1 x

2
i where

x = (x1, . . . xp) over the domain [−0.5, 0.5]p. The true minimum is at the origin and
the gradient is f ′(x) = [2x1, . . . , 2xp]. Given our domain, the derivative is bounded
by LipX = 1. We observe 10p points over an evenly spaced grid throughout the
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domain with some noise from N(0, τ2) as shown in Figure 2.3.1 (τ is set to 0.03 that
is unknown to the algorithm). We run the adaptive Metropolis Hastings algorithm
to obtain the parameters and run the local optimization (quasi-Newton method)
routine alone with the self-updating objective function.

Figure 2.3.1. Extrema Location Density Estimate vs Data. The
contour shows the density estimation for the posterior in the 2D
case where the grid colors shows the data values. The contour
centers the true minimum which is promising.

Table 2.3.1 reports the average number of function evaluations over 301 runs
with di�erent relative tolerance levels. A relative tolerance ε indicates that the
function improvement must be less than ε(|y| + ε) to conclude convergence. In
other words, we conclude convergence if

∣∣yt+1 − yt
∣∣ ≤ ε(|yt| + ε) when evaluating

yt+1. For our example, the least stringent threshhold is

10−4

sup
X
f(x)︸ ︷︷ ︸

=0.52p

+10−4

 = zp

To reach the same precision for a naive grid search, the Lipschitz condition suggests
zp ≤ LipX ∗ ‖t1 − t2‖ so the granularity needs to be at least zp

LipX
(2.501 ∗ 10−5

for 1D example and 5.001 ∗ 10−5 for the 2D example). This implies at least
[range(X)/ (zp/LipX)]

p function evaluations over the grid (assuming the domain
is a cube) for the same precision. Notice as zP gets smaller and p gets larger, the
number of function evaluations increases which agrees with our intuition that more
stringent thresholds and large dimensions optimization is more challenging. Larger
LipX values also have the same e�ect since the function can �uctuate more easily.

The number of function evaluations for the grid search only requires the Lips-
chitz number, the relative tolerance level, the domain size, and the maximum value
within the domain. This allows us to estimate the resources needed for a grid
search.
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ε p = 1 p = 2 p = 3

10−3 24.0± 9.0 vs 4 ∗ 103 52.0± 8 vs 4 ∗ 106 52.7± 8 vs 2.4 ∗ 109

10−4 28.6± 10.7 vs 4 ∗ 104 50.99± 8.69 vs 4 ∗ 108 52.7± 7.8 vs 2.4 ∗ 1012

Table 2.3.1. Function Evaluation Comparisons. p is the dimen-
sion of the input space where ε is the relative tolerance. Function
counts from our stochastic method are reported as mean ± 1SD
over 301 runs. The grid search evaluations are derived from the
conservative estimates using LipX and the relative tolerance pa-
rameter ε. The function evaluations are much lower for our al-
gorithm relative to the grid search. The di�erence is even more
noticable in higher dimensions.

To make the comparison fair, we can assume the grid search would perform
a coarse grid search before conducting a detailed grid search. This coarse search
however can correspond to the number of iterations we allow the global optimizer to
search the domain. In this example we assumed we have found the best grid where
now a local search would su�ce. Table 2.3.1 shows the number of GP evaluations
using the local optimization algorithm is much fewer than the grid search. The
savings is even greater as p increases.

2.4. Latent Gaussian Field: Harvesting Scallops

Our �rst data example is the scallop data set from Ecker and Heltshe (1994)
shown in Figure 2.1.1. The dataset is publicly available in the R package SemiPar
and our code is available online. The dataset contains longitude, latitude, and total
catches of scallops (counts) Y1, . . . , Yn at locations x1, . . . xn where n = 148. This
dataset is interesting because the data is not Gaussian, but we can still model the
underlying intensity as a transformed GP.

We model the total catches as independent Poisson random variables given the
underlying intensity. We will model the log transformation of the scallop abun-
dance, log(λ(x)) as a GP which we will denote as Z(x). For this example, we
project the latitude and longitude into UTM coordinates and treat the locations as
if they were in R2 (all distances are in Euclidean distances). Given the small area
this assumption should be reasonable. Our model for the scallop catches is

Yi|λ(xi)
independent∼ Poisson(λ(xi)) i = 1, . . . , 148

log(λ(x)) = Z(x) ∼ GP
(
β, σ2Σ(ρ)

)
(2.4.1)

where Σ(·) is the Matern covariance function in equation 2.2.4. In words, the
scallop catches, Yi, at location xi is modeled as independent Poissons condition-
ing on the abundance level f(x), i.e. Yi|f(xi) ∼ Poisson (f(xi)). The abun-
dance level is treated as the intensity function for the Poisson catches. We set
h(.) = log(.), so the log of the intensity function is modeled as a GP. To infer
the log abundance level Z(xn+1) at any unobserved location xn+1, we calculate
P (Z(xn+1)|Y1, . . . , Yn, Z(x1), . . . , Z(xn)). This completes the speci�cation for the
scallop catches and allows inference for scallop catches and abundence level at all
other input values in X.
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The goal is to �nd P (arg minx λ(x)|Y1, . . . , Yn) which is the same as
P (arg minx Z(x)|Y1, . . . , Yn) since log is monotone. In contrast to the illustra-
tion in Section 2.2.5, the likelihood now involves the Poisson density and the in-
tensity function λ(x) needs to be estimated. To estimate λ(x) through the gen-
eralized model, they will be inferred like the parameters θ (that govern the GP
itself). In other words, we will �rst sample P (Z̃, θ|Ỹ ) then draw P (x∗|θ, Z̃, Ỹ )

where Z̃ = Z(x1), . . . , Z(xn).
To �t this model, we run adaptive Metropolis Hastings on β, σ2, ρ, and Z̃ at the

148 locations where we observe data (again assume ν = 3
2 , the smallest value that

allows derivative inference to be incorporated). This results in 151 parameters for
the MCMC algorithm that we jointly propose. We initialize the MCMC algorithm
by estimating Z(xi) ≈ log(Yi + 1) then use these values to estimate β, σ2, ρ
via maximum likelihood for good starting values. Moreover, instead of initiating
the proposal with the naive adaptive Metropolis Hasting algorithm, the proposal
covariance matrix is made block diagonal composed of two blocks. The �rst block
is simply a diagonal matrix with the square of the MLE coe�cients where the
second block is the Matern covariance for the abundance level using the MLE
coe�cients. We then run a short chain then adjust the proposal covariance and
rerun the adaptive Metropolis Hastings algorithm. Convergence is determined when
no clear trends appear in the long chain. The acceptance rate after burn-in is
roughly .249. For this example, running an overall of 3,000,000 iterations took two
days and the chain reached stationarity roughly around 1,000,000 iterations. Our
processor is a Quad-Core AMD Opteron(tm) Processor 8384 with 2692.847 MHz.

Then we use samples from the MCMC, θi, Zi(x1), . . . , Zi(xn) for i = 1, . . . B

to obtain samples from P (x∗|θ, Ỹ , Z̃) via the algorithm described in Section 2.2.
The resulting density estimation from these samples are re�ected in the contour in
Figure 2.1.1. There is clear multimodality.

One major issue with this dataset is that the data is not evenly distributed
around the domain. This allows the sampled x∗ to be outside of the region with
data. The posterior mean does not have this issue because it converge to the prior
mean at regions without data and this is typically not extreme. Again, as mentioned
in the methodology section, we take the domain X over which to maximize to be
the set of locations {s : ‖s − xi‖ < r, i = 1, . . . n}, where r is the largest nearest
neighbor distance among all data points.

2.5. Estimating Absorption Minima in Spectroscopy Data

Our last example data set is the public spectrophotometric time series of the
Type Ia supernova SN 2011fe (Pereira et al., 2013), obtained by the Nearby Super-
nova Factory (Aldering et al., 2002). The data is available at http://snfactory.
lbl.gov/snf/data/index.html. The time series itself is a sequence of spectra,
each consisting of �ux and �ux error in units of erg s−1 cm−2 Å−1 tabulated
as a function of wavelength in Å. Each spectrum was obtained on a di�erent
night. There are 25 nights of observation in the time series. We work with a
subset of 438 �ux (and �ux error) measurements for each night in the region
wavelength ∈ (5625.134, 6667.498) in which we know the minima will be. This
yields a sizable 10950 values in the dataset. The time coverage is not uniform but
the wavelength grid is regularly spaced and the same from night to night. The
�ux values themselves have been calibrated so that di�erences in the brightness
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of the supernova from night to night and wavelength to wavelength are physically
meaningful.

We are interested in obtaining the wavelengths of absorption feature min-
ima in the �ux of SN 2011fe as a function of phase (t, de�ned as days
relative to the time of maximum luminosity) and wavelength, i.e. x∗ti =
arg minwavelength [flux(wavelength, ti)] for i = 1, . . . J . The spectrum of a su-
pernova contains broad absorption and emission features whose appearance is the
result of physical processes and conditions in the expanding stellar ejecta. The
widths, depths, and heights of such features change with time as the supernova
expands and cools. The wavelengths of absorption feature minima are physically
interesting quantities to extract from spectral time series as a function of time.
These translate to a characteristic ejecta velocity that provides an estimate of the
kinetic energy of the supernova explosion, something of great interest to those that
study exploding stars.

Overall, estimating {x∗ti}i=1,...,J provides an estimate for the ejecta velocity.
We model the spectrum as a GP with a mean derived from a standard template
Type Ia supernova spectral time series (Hsiao et al., 2008). We take the correlation
function to be a product of two Materns correlations, one for each dimension, each
with smoothness parameter ν = 2. We then introduce random e�ects for each phase
(time point) to adjust for the systmatic deviation from the mean for each phase.
Lastly, there is measurement error from photon noise.

The model we propose for the �ux measurements is

Yi = Z(ti, wavelengthi) + αti + εi

α1, . . . αJ
i.i.d.∼ N(0, τ2)

Z ∼ GP
(
µ(·;κ, λ), σ2K(·, ·; ρphase, ρwavelength)

)
εi ∼ N

(
0, ξ2i

)
where ε1, . . . , εn are independent

µ(wavelength, ti;κ, λ) = κg(
ti
λ

)

Here K(ρphase, ρwavelength) = K1(ρphase)K2(ρwavelength) where K1 and K2 are
both Matern correlation functions with smoothness parameter ν = 2, J is the
total number of phases in the dataset, and n is the number of �ux measurements.
µ(wavelength, ti;κ, λ) is a template based on aggregating many di�erent spectral
time series that are transformed to match observed luminosities (Hsiao et al., 2008).
αti is a random e�ect shared among �ux values in the same phase that represents
a systematic deviation from the template. Z is the light curve that is modeled as a
GP. ε is measurement error in the �ux values and its standard errors ξi are derived
through the image extraction process and are �xed and known. Priors for the mean
parameters were chosen to be κ ∼ Uniform[0, 2] and λ ∼ Uniform[0, 3] based on
conservative bounds given by our collaborator. The other priors are all speci�ed as
described in Section 2.2.1.

The goal is to derive the joint posterior for P (x∗t1 , . . . , x
∗
tJ |Y1, . . . , Yn). To do

this, we need to record the function evaluations for all previous k phases when
sequentially searching for x∗tk+1

. This quickly increases the computational burden
and numerical stability issues for this example, but implementation is still feasible
using the techniques described in Section 2.2.2.
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We run the adaptive Metropolis Hastings algorithm to obtain posterior samples
for θ = {σ2, ρphase, ρwavelength, τ

2, κ, λ}. The algorithm is initiated at the MLEs
and the convergence is judged by looking at the trace plots. Then we run the
hybrid optimization routines using those parameter samples. One detail in the
implementation is that we only implement simulated annealing in the search for
x∗t1 , and for j > 1, the search for x∗tj begins at the converged value for x∗tj−1

. This
utilizes the smoothness over phases in the light curves and avoids the computational
burden of the global optimizer. We derived x∗ti at 0.5 intervals over the input space
including times with and without observations.

The output from each run is the wavelengths corresponding to the minimum
�uxes for each phase. To translate each wavelength value to the ejecta velocity,
we calculate vti = c(λR/x

∗
ti − 1) where λR = 6355 is the rest wavelength of an

important silicon ion transition and c is speed of light 3 ∗ 108ms .
To quantify the uncertainty, we generate a 95% credible band, for which 95% of

the posterior samples are within the band for all phases (see Figure 2.5.1). There
is no unique way to de�ne this credible band. Some phases have asymmetrical
posterior distributions, so we construct the credible band using phase-wise posterior
sample percentiles. At each phase, the band ranges from the 100 ∗ α

∗

2 percentile
to the 100 ∗ (1 − α∗

2 ) percentile where α∗ ∈ [0, 1] (same α∗ for all phases). We
pick the largest α∗ that contains 95% of the runs within the credible band for all
phases. This construction centers the credible band around the phase-wise median
and accounts for the dependency over phases. Notice that the width of the interval
is not constant over di�erent phases. The width, a measure for the uncertainty, has
an inverse relationship with the amount of data near each phase. Some x∗ti are also
easier to predict due to the concavity of the spectrum.

The method in the chapter provides the ability to extract not just the position
of the absorption minimum in an isolated spectrum, but to follow the shift in
the position of the absorption minimum with time. Modeling the data as a GP
allows us to interpolate the absorption minimum position between observations in a
principled way as well. This is in marked contrast to the standard technique, which
is to measure the position of absorption minima in each spectrum independently
(with some error estimate) then interpolate the results afterwards. Finding the
posterior distribution of x∗ instead of a point estimate at each spectrum �lls in the
spaces between the observations in a more principled way that uses the covariance
structure instead of treating each spectrum as independent.

2.6. Discussion

In this chapter, we combined optimization with GP sampling by constructing
a self-updating objective function. This creates an e�cient method to obtain the
posterior samples of x∗. Under the Bayesian framework, we incorportated both the
uncertainty in the parameters and the data to obtain the posterior distribution of
x∗. We demonstrated our method on non-Gasussian data and a large dataset with
promising results.

When the input domain is large, drawing samples from P (θ|Y1, . . . , Yn) or GP
realizations are time consuming. However, if the entries in the covariance are
small for distant points, it might be appropriate to taper the covariance matrix
to speed up computations with sparse matrices algorithms as shown in Kaufman
et al. (2008). For example, for phases or wavelengths that are far apart, we could
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Figure 2.5.1. 95% Ejecta Velocity Credible Band Over Phases.
We transform {x∗ti}i=1,...,J into velocities using the transformation:
vti = c(λR/x

∗
ti − 1) where λR = 6355 is the rest wavelength of an

important silicon ion transition, and c is speed of light 3 ∗ 108ms .
The center line mark the phase-wise medians.

taper the covariance entries to 0 and retain the di�erentiability of the GP. This
allows for fast computation and e�cient storage with the sparse matrix algorithms.
However, the corresponding derivative process covariance function will be di�erent
after tapering and needs to be recalculated. Other similar strategies exist where
covariance functions with compact support can be used as shown in Kaufman et al.
(2011). In particular, the Bohman covariance function has compact support and is
twice di�erentiable. We explored these strategies for the large SN2011 dataset but
the estimated e�ective ranges were too large for these approaches to provide signif-
icant reduction in the computation without impacting the quality of the results.

Although drawing posterior parameters is time consuming, it is how uncertainty
in the GP parameters are introduced in the results. It is tempting to simply
�x the parameters at the MLE and perform the optimization. We believe this
practice will ignore the variability of the unknown parameters and can lead to overly
con�dent results. However, if there is enough data, the posterior distribution for
the parameters might be concentrated enough that the resulting posterior will not
di�er markedly by using the MLE. In some of our examples, di�erent parameters
produced a wide variety of GP realizations so the variability should not be ignored
in general.

One possibility to use the MLE parameters is to carry out a hypothesis test
and test if the posterior samples of x∗ using either parameters have a di�erent
distribution. Bickel (1969); Hall (2002) have proposed permutation based rank
tests for high dimensional distributions with limited samples. To implement these
methods, we need to �rst compute a statistic for each sample generated from the
MLE and Bayesian parameters then perform a rank test on the sorted statistics. If
the change is not detectable then one might be justi�ed to use the MLE parameters.
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The method we have proposed is conceptually applicable to most optimization
algorithms although we have not systematically explored the choices of algorithms
here. The choice of the hybrid optimization routine was purely due to convenience
but worked well for our applications. The one concern about the hybrid optimiza-
tion routine is whether the global optimizer su�ciently explores the domain. If few
global optimization steps were allowed, it is possible to miss the global extreme
and get stuck at a local extreme. This has not happened in our examples after
examining the data and global optimizer behavior. Unfortunately, there is no quick
way to determine whether unexpected extremes are due to insu�cient exploration
from the optimizers or simply volatile GP realizations.

Naturally, the choice of the optimization routine depends on the dataset. If one
believes multiple peak locations exist then the global optimization routine might be
necessary although it is often slow. If that is not a concern, then implementing the
local optimization routine alone will be faster and su�cient. Di�erent optimization
routines excel in di�erent situations so we leave this question open.
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CHAPTER 3

Varying Coe�cient Model for Global Surface Wind

Fields over Land and Sea

3.1. Introduction

We propose a statistical model for surface wind �elds over the globe. This
model has many potential applications, such as prediction of wind energy and
uncertainty quanti�cation for climate models. The intermittent nature of wind
prevents energy suppliers from relying on wind energy. A statistical model can
produce wind predictions that identify potential wind farm locations and decrease
the uncertainty with wind energy (Hering and Genton, 2010). Moreover, surface
wind is a major driver for the ocean and critical for climate models (Kerr , 1998;
Milli� et al., 1999). Climate models each have di�erent physics and parameters
that produce surface winds with di�erent behaviors. Quantifying the e�ects of
these di�erences has been a major challenge in climate science that often relied on
statistical techniques. For example, Kaufman and Sain (2010); Sain et al. (2011)
have quanti�ed the e�ects of downscaling for temperature and precipitation. To
implement similar analysis for surface winds, however, we need a statistical model
that can capture the spatially heterscedastic and intrinsically multivariate nature
of surface winds.

To help elucidate the challenges in surface wind modeling, we show a sampled
global wind �eld in Figure 3.1.1. Unlike temperature and precipitation, wind is
intrinsically multivariate with varying speeds and directions. Modeling multivariate
spatial �elds is an active �eld in spatial statistics that can lead to complex models
(Gelfand et al., 2010). Figure 3.1.1 also shows that surface winds are spatially
heteroscedastic. The heteroscedasticity is most apparent when comparing wind
vectors over land and sea and di�erent latitudes. The wind �eld over the ocean
is often larger in magnitude and smoother where the opposite is true over land
surfaces. There is also a negative correlation between wind speed and the distance
from the equator. Capturing these features require a �exible statistical model which
comes with many computational issues. The computational issues are worsened as
the resolution for wind �elds increase over di�erent generations of climate models.
In face of these challenges, some surface wind models have been applied to limited
locations while others have been restricted to regions over the ocean. We review
these approaches in Section 3.2.

In this chapter, we construct a novel statistical model for global surface
winds that will addresses all of these challenges. The model is motivated by the
geostrophic relationship between surface wind and pressure gradient (Royle et al.,
1998; Milli� et al., 2011). This relationship attributes the dependency between
eastward and northward wind velocities to a shared variable, pressure. To capture
the heteroscedasticity, we introduce a spatially varying coe�cient model (Gelfand
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Figure 3.1.1. Sub-sampled Global Wind Field. The length and
darkness of the arrows are positively correlated to the wind ve-
locities. This example demonstrates the spatially heteroscedastic
and multivariate nature of wind �elds. The �eld is smoother over
the ocean than land surfaces. There is also a negative correlation
between speed and the distance from the equator.

et al., 2003) that allows the geostrophic relationship to vary spatially. We model
the wind �elds and varying coe�cients with Gaussian Processes (GPs). Although
both spatial �elds produce dense covariance matrices, we resolve the computational
demands by implementing the Gaussian Markov Random Field (GMRF) methods
proposed by Lindgren et al. (2011). The idea is to construct sparse precision ma-
trices (inverse of the covariance matrix) that correspond to the smooth Matern
covariance matrices. This allows e�cient computation with sparse matrix routines.
We will show that our posterior sample wind �elds can capture the behavior of the
wind �elds from the climate models.

Section 3.2 reviews the statistical literature on wind. Section 3.3 describes
the data we use for this chapter. Section 3.4 details the model and distributional
assumptions. Section 3.5 lays out the details of how we �tted the model since this
is a major challenge for statistical models that involve GPs. Section 3.6 validates
our model and �nally Section 3.7 covers potential extensions and limitations for
our model.

3.2. Literature Synthesis

Statistical models on surface winds have been motivated by applications in
harvesting wind energy (see e.g. Haslett and Raftery (1989); Hering and Genton
(2010); Salameh et al. (2009)). The data in these papers were wind records from
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weather stations for a few locations. These statistical models perform well locally
but in general cannot extend to global wind �elds. The coe�cients are often not
constant over space at the global scale. Moreover, the dependence structure for
wind �elds is high dimensional and requires di�erent modeling approaches.

Cornford (1997, 1998) modeled the high dimensional dependence in wind �elds
using GPs. The key was to decompose the wind into uncorrelated components
(stream function and velocity potential) then model each component using GPs in
a hierarchical Bayesian framework. This avoids the dependency structure between
the di�erent wind components and gives physically meaningful interpretations to
the model. Later work also tackled the dependency structure using a similar hier-
archical Bayesian model (BHM) framework but attributing the wind dependencies
to a shared variable between the components such as pressure. An issue with mod-
eling the stream function and velocity potential is the resulting wind �elds can be
quite unstable. In our attempts, simulating wind �elds from this method can yield
unreasonably large variances. The use of GPs to re�ect the smooth patterns in
wind �elds was also widely adapted in later work. The computational challenges
from modeling the smooth wind �elds however often restricts the size of possible
datasets.

Royle et al. (1998); Milli� et al. (2011) constructed hierarchical models with
GPs conditioning on pressure, which was unobserved and treated as a latent process.
They used pressure to explain the dependency between the di�erent components
of wind. However, their models were restricted to the sea surface since the e�ects
from the pressure gradients dominates surface wind behaviors over low friction
regions. Their models also focused on a relatively small region where the e�ects of
pressure gradient did not vary much within the region of interest. However, our
explorations on global wind �elds show that this assumption does not hold over
larger regions. We will generalize their model using a varying coe�cient model
that can, surprisingly, capture the variability of surface winds over land as well.

To tackle the computational demands from GPs, Wikle et al. (2001) used basis
functions to reduce the dimensionality of wind �elds. The key is to project the wind
�elds onto a few basis functions then model the data on this low dimensional space.
One issue with basis functions is the various ad hoc choices involved in selecting
a basis function class, the number of basis functions, and whether each basis is
modeling the covariance structure or the mean patterns. Shi and Cressie (2007)
provides general guidance to these questions. Even so, the spatial basis in Wikle
et al. (2001) were chosen for the tropical ocean and may not extend easily to the
land surfaces. Poor selection of basis functions can lead to patterns in the posterior
distribution as an artifact of the basis instead of the data as shown in Figure 5 in
Cressie and Johannesson (2008).

Lastly, Reich and Fuentes (2007) proposed a semiparametric model using stick-
breaking methods instead of GPs to model hurricane surface winds. In their results,
their model could adapt to the asymmetries and complex hurricane patterns better
than GP based wind models. Unfortunately, the �exibility in the stick breaking
methods comes with great computational demands that are not suitable for global
scale wind �elds.
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3.3. Data

We demonstrate our model using the data products from the PCMDI database
over the globe. The data is de�ned over a regular grid with resolution roughly
2.8 by 2.8 degrees both in longitude and latitude. This yields 128 longitudes for
each 64 latitudes with a total of 8192 locations. More speci�cally, we took the daily
frequency sea level pressure and surface winds from the Japanese Model MIROC3.2
at medium resolution under the pre-industrial experiment scenario.

In this analysis, we work with average wind �elds over each season for each
year. Since the relationship with pressure gradients is linear (see Equation 3.4.2),
the relationship should hold for the averaged �elds. This yields 40 years of average
surface wind �elds for Winter and Summer. We treat the separate years as replicates
since no forcings were introduced to the runs. We also have the 40 years of sea
level pressure that was averaged over each season for each year. The sea level
pressure gradient is approximated by taking the di�erence of sea level pressure in
neighboring locations divided by the respective great circle distance (Royle et al.,
1998). Lastly, the locations of each observation is transformed to �t over a unit
sphere to implement the GMRF algorithm built by Lindgren et al. (2011).

In climate science, wind �elds are generally decomposed into U , the eastward
winds (zonal winds), V , the northward winds (meridional winds), and W , the ver-
tical wind. Most researchers (see e.g. Royle et al. (1998); Wikle et al. (2001); Reich
and Fuentes (2007); Milli� et al. (2011)) have focused their e�orts on modeling U
and V and ignored W . Through our exploration on surface winds, the magnitude
of W is insigni�cant relative to the magnitudes in U and V unless a storm system
is formed. In other words, the velocity in the prevailing winds mostly come from
U and V so we will ignore W as well for simplicity.

Finally, we withhold the latest 10 years of wind �elds as a test set. We will �t
the model using the �rst 30 years of data then predict the next 10 years of data for
validation.

3.4. Methods

To tackle the dependency structure between U and V , we model U and V as
functions of pressure gradient. This is useful because sea level pressure is usually
considered a stationary univariate variable where its gradient can explain complex
variations within the multivariate wind �elds. This physical relationship was �rst
used by Royle et al. (1998) to approximate the �rst order relationship between
pressure gradient and the velocity of each wind component. The geostrophic rela-
tionship is

(3.4.1) −flatV = −1

ρ

∂P

∂x
; flatU = −1

ρ

∂P

∂y

where P is the sea level pressure, ρ is the air density which depends on the local
ratio between dry and wet air, flat is the Coriolis parameter that varies based on
latitude (Neelin, 2010), and ∂P

∂x and ∂P
∂y are the pressure gradients. Royle et al.

(1998), however, built a linear model where each wind component depended on
both pressure gradient terms. This model was later justi�ed by Milli� et al. (2011)
through expanding the Rayleigh friction equations to introduce the e�ects of fric-
tion. Speci�cally, the resulting equation used in Milli� et al. (2011) was
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U = − γ

ρ(f2lat + γ2)

∂P

∂x
− flat
ρ(f2lat + γ2)

∂P

∂y

V =
flat

ρ(f2lat + γ2)

∂P

∂x
− γ

ρ(f2lat + γ2)

∂P

∂y
(3.4.2)

where γ is the Rayleigh friction term which depends on the underlying surface.
Notice that without friction, i.e. γ = 0, then we retrieve the geostrophic equation
in Equation 3.4.1. Interestingly, Chiang and Zebiak (2000) have shown that γ has
di�erent magnitudes for U and V under a linear friction assumption. This suggests
that the coe�cients for the pressure gradients should di�er between U and V .

With these physical motivations, the implied linear equation then becomes

V = βv,1(flat, ρ, γv)
∂P

∂x
+ βv,2(flat, ρ, γv)

∂P

∂y
;

U = βu,2(flat, ρ, γu)
∂P

∂x
+ βu,1(flat, ρ, γu)

∂P

∂y
(3.4.3)

The interpretations for the parameters, however, suggest that the coe�cients for
the linear relationship should change spatially by latitude, air density, and friction.
Friction depends on the underlying surface which is stronger over mountainous
areas and weaker over the ocean. Broadly speaking, air density is a function of
temperature, pressure, and moisture which all varies spatially.

To handle the spatial heterscedasticity, we propose a spatially varying coef-
�cient model where the coe�cients in the linear relationship are allowed to vary
spatially. This adjustment is often not done because most examples in the litera-
ture focus on a reasonably small region over the ocean. Our model covers winds
at the global scale and extends over land surfaces which necessarily has varying
parameters.

Spatially varying coe�eint models have typically been applied on smaller
datasets (Assunçao, 2003) although Gelfand et al. (2003) have implemented this
for more sizable problems with speci�c covariance structures. The idea is to allow
the coe�cients in a linear model to change smoothly over the spatial domain. With
the spatial dependence, coe�cients can be inferred using neighboring data while
restricting the total degrees of freedom of the varying coe�cient �eld. This results
in �exible models that do not over�t the data. This method is straightforward to
understand but its computational burden on large datasets makes it di�cult to
implement. We will discuss solutions for this in Section 3.5.

Through our data exploration, the pressure gradient is not the only source of
variability for surface winds so we include an intercept and error terms to the �nal
linear model. The intercept should capture consistent deviations from Equation
3.4.3 where the error term is the variability that cannot be captured otherwise.

Ut(s) = βu,0(s) + βu,2(s)
∂Pt
∂x

(s) + βu,1(s)
∂Pt
∂y

(s) + εt(s)

Vt(s) = βv,0(s) + βv,1(s)
∂Pt
∂x

(s) + βv,2(s)
∂Pt
∂y

(s) + εt(s)(3.4.4)

s indicates the locations and t are indices for di�erent years. Notice that the
coe�cients depend on s so they vary spatially. Similar to Cornford (1997, 1998),
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we �t a BHM to facilitate inference. A graphical overview of the model is shown
in Figure 3.4.1.

Figure 3.4.1. Graphical Model for Varying Coe�cient Model For
Surface Winds. The gray nodes are observed from the data. The
other parameters are derived from �tting the model in Section 3.5.
This graph details all of our conditional independence assumptions
in our model.

Based on the model in Equation 3.4.4, we model U and V as conditionally inde-
pendent given the sea level pressure, i.e. p (U, V |P ) = p (U |P ) p (V |P ). This choice
was also made by Milli� et al. (2011) who commented that this decision did not
a�ect their results and made their model much more e�cient. We further validate
this assumption in our exploratory analysis by �tting a naive version of the model
in Equation 3.4.4. We perform a ordinary least squares regression separately for U
and V with respect to the pressure gradient for each location treating di�erent years
as replicates. This completely ignores the spatial dependence between the coe�-
cients and data but serves as a reasonable proxity for the �nal model. Figure 3.4.2
compares the residuals for U and V from this naive �t. No relationship is visible
between the residuals which supports our conditional independence assumption.

Throughout we assume that pressure will be given and omit it from our no-
tation. To detail our BHM, we break the data generating process into the data
model, the process model, and the prior model.

The data model for U focuses on the observations given the underlying pro-
cesses, i.e. the coe�cient �elds (V is similarly de�ned). We model the residuals
from the varying coe�cient model as a GP with variance that changes spatially.

U |βu, κu,ε ∼ GP
(
X(·)Tβu(·), σ2

u,ε(·)Kνε(·, ·;κu,ε)
)

log(σu,ε) ∼ GP
(
0, b2σKνσ (·, ·;κσ)

)
(3.4.5)
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Figure 3.4.2. Graphical Examination of Conditional Indepen-
dence between U and V given P . A least square regression was
�tted separately for U and V for each location treating di�erent
years as replicates and ignoring any spatial dependence. If U and
V were not independent given P , we should expect heterscedastic
or linear relationships between these residuals.

For location s, let X(s)T be a feature vector
(

1, ∂P
∂x (s), ∂P

∂y (s)
)
and βu(s)T =

(βu,0(s), βu,1(s), βu,2(s)). νε and νσ are the smoothness parameters for the Matern
correlation function K and will be assumed to be 1 based on our explorations with
the data. κu,ε is the inverse of the range parameter in Matern covariance functions.
The mean is the linear relationship as described in Equation 3.4.4. We also allow the
variance of the residual �eld to varying spatially since our explorations and Neelin
(2010) has suggested that the relationship with pressure gradient does not hold
well beyond the mid-latitude regions. In response, we model the log transformed
standard deviations, log(σu,ε), as a GP. In our analysis, κσ and b2σ will be �xed to
create a sensible weakly informative prior based on physical bounds. Details setting
for these hyperparameters are detailed in Appendix A.1 and Appendix A.3.

The process model for the coe�cient �eld is also modeled as a GP (coe�cients
for V are similarly de�ned).

(3.4.6) βu,i|κu,i ∼ GP
(
mu,i(·), s2u,iKνu,i(·, ·; κu,i)

)
We assume that the βu,i for i = 0, 1, 2 are a prior all independent of one another.
From our exploratory data analysis, our naive �t for Equation 3.4.4 shows that the
intercept �eld βu,0 is noticably coarser than βu,1 and βu,2. We �x νu,0 = 1 and
νu,1 = νu,2 = 2 after visually comparing these �elds to simulated Matern �elds
generated from the model by Lindgren et al. (2011). Similar to the residual �elds,
each κu,i is the inverse of the range parameter in standard Matern Covariance
speci�cation. su,i is the standard deviation for the coe�cient �eld but will be �xed
to be one half of the upper bound for the largest possible βu,i values (details in
Appendix A.1). mu,i(·) is the mean function which is a constant 0 for i = 0, 2.
For βu,1, mu,1(s) = flat(s)

(ρ(f2
lat(s)+γ

2)
based on Equation 3.4.2. The calculations for

ρ, flat, and γ are explained in Appendix A.1. In our experience, the results are
not sensitive to changes in mu,i(·) and su,i as long as su,i is �xed su�ciently large.
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Notice that β0 and the residual �eld have the same Matern smoothness. To ensure
identi�ability, �xing su,0 is necessary for allowing σu,ε to vary spatially.

Finally, we detail our prior speci�cations to complete the BHM. The prior
model for the parameters for the coe�cient and residual �eld is

log(s2u,iκ
2νi
u,i ) = cu,i ∼ N

(
au,i, b

2
u,i

)
log(κu,ε) ∼ N

(
aε, b

2
ε

)
(3.4.7)

Instead of modeling κu,i directly, we model cu,i. In our experience, cu,i is robust to
di�erent prior speci�cations and Zhang (2004) has shown that cu,i is consistently
estimable for Matern �elds. κu,ε was treated di�erently since the spatially varying
σu,ε does not allow the same de�nition. The hyperparameters are again chosen to
create weakly informative priors (details in the Appendix A.1) and our results are
overall quite robust to these speci�cations.

The above relationships between V and pressure gradient is similarly de�ned
by replacing the subscripts of u to v. One key here is although the covariance for
the βu,i and βv,i �elds are all a priori stationary Materns. Given the number of
replicates and the size of the data, however, we expect the posterior to re�ect the
non-stationarity in the data even though our prior is stationary. Moreover, Reich
et al. (2011) showed little prediction improvement by using �exible nonstationary
priors. We discuss possible extentions for this in Section 3.7.

3.5. Fitting the Model

As mentioned in Section 3.4, �tting a spatially varying coe�cient model is
computationally demanding. This section details how we �t the model using the
methods from Lindgren et al. (2011).

We use MCMC methods to perform our inference on this model. . Since
U and V are assumed to be conditionally independent given P , we can obtain the
posterior for P (σu,ε, cu,i, κu,ε, βu|U,P ) and P (σv,ε, cv,i, κv,ε, βv|V, P ) separately. For
the implementation details we will focus on U alone and drop the subscript but the
procedure is the same for V .

To clarify some notation, our model starts with the linear model

Ut = XT
t β + εt

for t = 1, . . . , N where N is the number of years in the data. Let n indicate the
number of spatial locations then for each year t, Ut is a n× 1 vector that contains
the wind speed, εt is a n × 1 vector that contains the residuals, and XT

t is a
n×(3n) matrix that contains the pressure gradients and intercept. More speci�cally,

XT
t =

[
In×n : diag(∂Pt∂x ) : diag(∂Pt∂y )

]
n×(3n)

where diag(∂Pt∂x ) indicate a diagonal

matrix where the diagonal holds the n pressure gradient values. Naturally βT =(
βT0 , β

T
1 , β

T
2

)
is a vector of length 3n where βi = (βi(s1), . . . , βi(sn))T for i = 0, 1, 2

each contains the spatially varying coe�cients.
Since our data only exists over �nite locations, β is a multivariate Gaussian

with mean m and covariance Σβ . The 3n× 1 mean vector is mT = (mT
0 ,m

T
1 ,m

T
2 )

wheremi = (mi(s1), . . . ,mi(sn))T . Σβ is a 3n×3n block diagonal matrix composed
of Σβ0 , Σβ1 , and Σβ2 . Each Σβi is the prior covariance matrix for βi based on the
Matern covariance function speci�ed in Section 3.4. Similarly we de�ne Σε to be

34



the n×n covariance matrix for the residuals, ε. Lastly, we introduce the short hand
notation c = {c0, c1, c2} for brevity.

To obtain the posterior samples from P (σε, c, κε, β|U), we implement a
Gibbs sampler by repeatedly sampling from p (σε|c, κε, U, β), p (c, κε|σε, U, β), and
p (β|σε, c, κε, U). The last term has an analytical distribution we can easily sample
where the former two terms do not. The former two distribution will be sam-
pled using the adaptive Metropolis Hastings algorithm (Shaby and Wells, 2010) in
blocks.

The analytical term is just a multivariate Gaussian distribution

p (β|σε, c, κε, U)

∝ p (β|σε, c, κε)︸ ︷︷ ︸
MVN

p (U |β, σε, c, κε, U)︸ ︷︷ ︸
MVN

The full conditional mean for this MVN is

(Σ−1β +

N∑
t=1

{XT
t Σ−1ε Xt})−1(Σ−1β m+

N∑
t=1

XT
t Σ−1ε Ut)

The full conditional covariance matrix is

(Σ−1β +

N∑
t=1

{XT
t Σ−1ε Xt})−1

All the matrices here are of considerable size (Σβ is 24576× 24576!) but the com-
putation involves only the precision matrices instead of the covariance matrices.
This allows us to implement the Gaussian Markov Random Fields (GMRF) algo-
rithms provided in Lindgren et al. (2011) where the exact sampling techniques can
be found in Rue and Held (2005).

GMRF methods rely on the Markov property for Gaussians random variables
that induces sparse precision matrices (Rue and Held , 2005; Lindgren et al., 2011).
This allows the use of sparse matrix algorithms to speed up computation. The
biggest limitation for GMRF methods is the Gaussian or latent Gaussian assump-
tion within the model. However, our smooth spatial �elds are modeled as GPs
which satis�es this assumption. The other issues with GMRF methods was its dif-
�culty in producing precision matrices that corresponded to smooth spatial �elds
(Wall , 2004; Rue and Held , 2005). Fortunately, Lindgren et al. (2011) discovered
the link between GMRF and smooth Gaussian �elds via Stochastic Partial Di�eren-
tial Equations (SPDEs). This resolves the computational challenges while avoiding
ad hoc choices with low rank methods. For details, many packages and examples
are available at the R-INLA project http://www.r-inla.org/.

The next term in the Gibbs sampler is p (σε|c, κε, U, β). Unfortunately, the
prior log normal distribution for σε does not have the same conjugate relationship
with U so we implement the adaptive Metropolis Hastings algorithm instead. The
density for the full conditional is
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p (σε|c, κε, U, β)

∝ p(σε|c, κε, β)p(U |β, σε, kε)
= p(σε)p(U |β, σε, kε)

=
∣∣Σ−1σ ∣∣ 12 exp

[
−1

2
(log(σε))

T
Σ−1σ (log(σε))

]
∣∣Σ−1ε ∣∣N2 exp

[
−1

2

N∑
t=1

(Ut −Xtβ) Σ−1ε (Ut −Xtβ)

]
Σσ is the covariance matrix based on the covariance function speci�cations in Equa-
tion 3.4.5. Notice that σε is a high dimensional smooth �eld which is di�cult to
sample with adaptive Metropolis Hastings. The challenge comes from updating the
proposal covariance matrix which is dense and high dimensional. Instead, we run
the adaptive Metropolis Hastings algorithm by only updating the proposal variance
parameter while �xing the proposal precision matrix. We discuss the details for this
section in Appendix A.3.

The �nal term in the Gibbs sampler is p (c, κε|σε, U, β). We again draw samples
using the adaptive Metropolis Hasting algorithm since no analytical distribution is
known. The full conditional can be partitioned into independent blocks for faster
mixing

p (c, κε|U, β, σε)
= p (κε|U, β, σε)

∏
i

p (ci|βi)

By assuming the di�erent years are independent replicates of one another, the �rst
block becomes

p (κε|U, β, σε)

∝ p (κε|β, σε)
N∏
t=1

p (Ut|β, σε, κε)

= p (κε)

N∏
t=1

p (Ut|β, θε, κε)

∝
∣∣Σ−1ε ∣∣N2 exp

[
−1

2

N∑
t=1

(Ut −Xtβ) Σ−1ε (Ut −Xtβ)

]
p(κε)

p (ci|βi) for i = 0, 1, 2 breaks down similarly

p (ci|βi)
∝ p (βi|ci) p (ci)

∝
∣∣∣Σ−1βi ∣∣∣ 12 exp

[
−1

2
(βi −mi)

T
Σ−1βi (βi −mi)

]
p (ci)

The product form implies we can run the adaptive Metropolis Hasting algorithm
separately in blocks for each parameter set.

36



Overall, we have two adaptive Metropolis Hastings routines embedded within
a three step Gibb Sampler. The adaptive Metropolis Hastings algorithm is ap-
pealing because it adjusts its proporsal distribution to control the acceptance rate.
This yields posterior samples that are not strongly correlated over di�erent iter-
ations which may occur in standard Gibb samplers such as those in Milli� et al.
(2011). Moreover, the adaptive Metropolis Hasting algorithm is relatively straight-
forward to code in multidimensions than other algorithms such as slice samplers
used Gelfand et al. (2003).

To initialize the algorithm, good starting values are important. In our experi-
ence, �rst running a short MCMC with reasonable starting values followed by a long
chain produces promising results. The �nal iteration in the short chain yields good
starting values where the covariance based on the short chain provides e�cient
proposal distributions for the long chain. We re-initiate the Gibb Sampler after
stopping the short chain then determine convergence by evaluating the parameter
trace plots. We discuss the selection of reasonable starting values in Appendix A.2.

3.6. Results and Evaluation

After obtaining posterior samples from the MCMC chain we now validate our
model. Figure 3.6.1 and Figure 3.6.2 show the posterior means for βu and βv
for the Winter wind �elds (the βu and βv for Summer wind �elds are shown in
Appendix). One quick sanity check is the agreement with Equation 3.4.2. Given
that the Coriolis force switches sign at the equator, the sign change for βu,1 and
βv,1 at the equator is promising. Moreover, the Coriolis e�ect is inversely related to
the coe�cients so the higher magnitudes at the equator and decreasing magnitudes
towards the polar regions is reassuring. Another promising aspect is the fact that
the βu,1 and βv,1 are larger in magnitude over the ocean than land. This con�rms
our understanding about the e�ect of friction on wind velocity. The coe�eint
process also shows a discontinuous behavior when the topography changes between
land and sea which is a feature we wanted to capture in this model. Another
assuring fact is that βu,2 and βv,2 are consistently negative if not zero. This also
agrees qualitatively with the results in Milli� et al. (2011).

Besides the qualitative agreement with Equation 3.4.2, prediction accuracy is
also useful to help evaluate models. Figure 3.6.3 shows the predicted wind velocities
vs the actual wind velocities in the 10 years we set aside at the beginning. The
predicted wind velocities is E(Xβ + ε|U) = XE(β|U). In other words, we average
the posterior samples of β and apply them to the last 10 years of Xt to predict
the wind velocities. Relative to the overall variability in the wind components, the
prediction error is quite small.

Lastly, for each year, we construct a 95% credible band based on 374 posterior
sample wind �elds. The credible band will cover 95% of the posterior samples
at all 8192 locations. This band summarizes the general center and spread of
possible wind �elds under the posterior distribution. Unfortunately this band is
not uniquely de�ned. To construct a reasonable credible band, we center the band
at the location-wise average over the posterior samples. We then compute the
corresponding location-wise SD to create a symmetric credible band. We then
expand this band by a factor of 1.04 iteratively until we obtain a credible band
that covers 95% of all posterior samples. Figure 3.6.4 shows the width of this band
is larger around regions where the land-sea surface changes, near the polar regions,
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Figure 3.6.1. Posterior means of βU terms for Winter. βu,1 has
a larger magnitude as we expected. Moreover, the sign change of
the coe�cients and decreasing magnitude away from the equator is
consistent with Equation 3.4.2. The coe�cients �jump� when the
underlying surface changes between land and sea. This is consis-
tent with our observations of surface wind behavior.

Figure 3.6.2. Posterior means of βV terms for Winter. βv,1 has
a larger magnitude as we expected. Moreover, the sign change of
the coe�cients and decreasing magnitude away from the equator is
consistent with Equation 3.4.2. The coe�cients �jump� when the
underlying surface changes between land and sea. This is consis-
tent with our observations of surface wind behavior.

and Greenland. This is a desirable property since the wind velocities indeed become
more sporadic around these locations. For each year, over 99% of the locations are
all within this credible band. The coverage rate over 10 years for each location
is quite high which suggests that our posterior samples resemble the actual wind
�elds from the climate model with a few exceptions.

Recall one of the goals for our model is to compare wind �elds from di�erent
distributions or climate models. To detect these di�erences, we can check if the
credible interval for U in the Winter covers the samples for U in the summer.
Figure 3.6.5 is a strong contrast relative to Figure 3.6.4 where few locations are
covered in the credible interval over 10 years. This shows that our high coverage
rate in Figure 3.6.4 is not a result of overly in�ated credible band widths.
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Figure 3.6.3. 10 Year Surface Prediction vs Wind Velocity. The
vertical deviation from the 45 degree line is small relative to the
overall variability in the data. This suggests that the predictions
are quite good.

Figure 3.6.4. Credible Interval for Winter U and Location-wise
Coverage Rate over 10 years. Left �gure shows the width of the
credible interval for Year 1 on the log scale. Right �gure shows, for
each location, the proportion of points covered in their respective
credible intervals over all 10 years. Most locations have very narrow
credible band widths which suggests the posterior samples have low
uncertainty. Moreover, the coverage rate over 10 years is high over
most locations with a few exceptions. This shows that our credible
interval captures most of the variability in the data.

3.7. Discussion

Overall, we developed a statistical model for surface winds that extends over
the entire globe. Motivated by the geostrophic relationship, our model e�ciently
handles the multivariate and the spatial heterscedastic nature of surface winds.
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Figure 3.6.5. Credible Interval for U in Winter does not capture
U from Summer. The low location speci�c coverage rate implies
that our coverage rate in Figure 3.6.4 is not a result of overly
in�ated credible band widths.

However, there are many possible improvements for this model. First of all,
throughout we have assumed that the sea level pressure, P , was given. This seems
like a strong condition especially because we have relied on the pressure gradient
to explain most of the variability within the wind components. However, a quick
examination of the sea level pressure shows that an assumption of stationarity
is reasonable. Thus modeling the sea level pressure should be straightforward to
incorporate into the hierarchical model. Moreover, modeling the pressure gradient
should provide better estimates for the pressure gradient since the derivative process
for a GP is another GP that depends on the same parameters (Rasmussen et al.,
2006).

Surprisingly, �tting the varying coe�cient model is more di�cult over smaller
regions on the globe with non-circular boundaries. These regions are commonly
used in regional climate models (RCM) for higher resolution climate patterns. The
challenge comes from specifying the boundary conditions when constructing the
precision matrix on a �nite region. By working over the globe, we exploit the
circular boundary condition and avoided this question. One solution is to embed
the boundary entries with the correct precision values obtained from inverting the
corresponding covariance matrix (Rue and Held , 2005). Unfortunately, inverting
the boundary regions for a dense covariance matrix is still often very computational
for large datasets. Another proposal is to greatly extend the boundary and embed
the region of interest on the globe. The model then reduces back to our global
model with circular boundary conditions.

In this chapter we have employed a stationary prior for the β �elds even though
we know a priori that the �elds are non-stationary based on lattitude and topog-
raphy. This choice was mostly due to computational convenience. We relied on
the data to inform the posterior distribution of β to be non-stationary. There are
many ways to construct a non-stationary prior for the β �eld (see e.g. Higdon
(1998); Fuentes (2001); Paciorek and Schervish (2006); Reich et al. (2011)), but
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most are not computationally feasible for datasets the size used in this chapter.
With the GMRF representation, we recommend constructing nonstationary covari-
ances using additive methods based on the topography. In other words, we could
model Σβ = Σglobe + 1landΣland1land where 1land is a diagonal matrix with 0-1
entries along the diagonal indicating whether si is over land. The corresponding
precision matrix can be expressed using the Sherman-Morrison-Woodbury formula
that will remain sparse. This construction is theoretically a special case of the
feature-dependent nonstationary covariance models by Reich et al. (2011). How-
ever, the GMRF methods with sparse matrix routines make these nonstationary
models much more computationally feasible.

Throughout, we have ignored the temporal e�ects here even though we had
wind �elds from di�erent seasons. In our experience, the β �elds from year to
year are stable but the season to season variation is noticable. Gelfand et al.
(2010) compiled several approaches used to extend spatial models to incorpoate
the temporal dimension. We again leave this for future developments.

41



CHAPTER 4

Ranking in Hierarchical Multilabel Classi�cation

using Local False Discovery Rate

4.1. Introduction:

This chapter considers the question of classi�cation where each subject can
be assigned multiple labels and the label assignments have to respect a given hi-
erarchical relationship, also known as hierarchical multilabel classi�cation (HMC).
HMC has many applications in �elds like astronomy (Richards et al., 2011), biology
(Barutcuoglu et al., 2006; Huang et al., 2010; Dimitrovski et al., 2011), and com-
puter science (Sun and Lim, 2001). However, often custom classi�ers have been
built to determine the status for certain topics, e.g. breast cancer (Sotiriou et al.,
2003) and Alzheimer's disease (Klöppel et al., 2008). These single label classi�ers
are highly tailored to the subject matter but their label assignments may not be
consistent with respect to the hierarchy. Instead of discarding these past e�orts,
we approach HMC from the view of constructing a consistent classi�er based on
outputs from existing single label classi�ers.

Figure 4.1.1. Example hierarchy for simulation: directed acyclic
graph (DAG)

For example, Figure 4.1.1 shows a possible hierarchy between eight nodes (or
classes). Under the hierarchical constraint, if node 1 is negative, then all its descen-
dants (all nodes but node 2) must also be negative. On the other hand, if node 8
is positive, then its ancestors (node 1 and 4) must also be positive. If a single label
classi�er is trained for each node, then it is possible that the resulting assignments
may not respect the hierarchical constraints.

HMC problems often have additional requirements beyond the hierarchical con-
straint. To understand the type of HMC we are targeting, it is convenient to put
our problem in the context of disease diagnosis. Besides the hierarchical constraint,
each patient can be diagnosed for diseases down di�erent paths of the hierarchy
since having cancer does not prevent one from having diabetes. Moreover, one
may not have the terminal form of a disease so the diagnosis may not reach the leaf
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nodes in the hierarchy. Lastly, the hierarchy follows a directed acyclic graph (DAG)
where each disease can have multiple parent diseases (Uni�ed Medical Language
System Bodenreider , 2004). This is in contrast to supernovae classi�cation done
by Richards et al. (2011). Supernovae are separated into exclusive classes down a
single path on the hierarhcy. Each classi�cation necessarily reaches the leaf node
of the hierarchy and the hierarchy follows a tree structure where each node has at
most one parent node.

One unique issue with HMC is the prevalence of imbalanced data sets. As
we move down the hierarchy, the proportion of positive example drops quickly
relative to negative examples. Classi�ers are then trained on imbalanced data sets
where most examples are negative cases and few positive cases are available. This
often causes methods that minimize classi�cation error to ignore the positive cases
altogether but still achieve high classi�cation performance. In response to this,
most papers promote the use of precision and recall to evaluate HMC methods
which focuses on the positive cases (Vens et al., 2008; Silla Jr and Freitas, 2011).
With this focus, we will show that our method can yield high precision performance
relative to existing HMC methods.

The main contribution of this chapter introduces ranking into HMC under
a statistical framework. Ranking is used in multilabel classi�cation (MC) where
the labels are independent from one another Tsoumakas and Katakis, 2007; Jiang
et al., 2013. The approach �rst ranks the label assignments by their likelihood
of a positive status then assigns the top k ranked labels as positive. In HMC,
ranking is di�cult because of the constraint and dependencies between the labels.
We propose to rank each label by its chance of being positive given all outputs, i.e.
p(Qj = 1|S1, . . . , Sp) for j = 1, . . . , p (p is the number of classes, Qj is the label for
class j, and Sj is the single label classi�er output for class j). For classi�cation,
however, instead of treating the top k ranked labels as positive, we classify only
the highest ranked unassigned label by a cuto�, then update the rankings, and
repeat. More speci�cally, after classifying the highest ranked label, e.g. Q̂z = q,
then we update the ranking by P (Qj = 1|S1, . . . , Sp, Qz = q) for j 6= z. The
ranking avoids single label classi�er outputs with weak signals where the updating
naturally accounts for the dependency structure. We will show that this ranking
also gives useful insights for understanding the di�erence between MC and HMC.

The structure of this chapter is summarized here. Section 4.2 reviews the HMC
literature. Section 4.3 introduces our method along with estimation details. Section
4.4 compares the performance of our method to predictive clustering trees under
a simulation study. Section 4.5 applies our method on the disease classi�cation
dataset shown in Huang et al. (2010). Finally, Section 4.6 discusses the limitations
and improvements for our ranking framework and sequential classi�cation method.

4.2. Literature Review

There are many existing HMC methods that tackle di�erent problems with dif-
ferent approaches. Silla Jr and Freitas (2011) give a good overview of the di�erent
HMC methods which we summarize below.

There are three general approaches to HMC: �at classi�cation, local classi�ca-
tion, and global classi�cation. Flat classi�cation ignores the hierarchy and performs
classi�cation on all the leaf-nodes. Naturally, the ancestors of each leaf-node is as-
sumed to be positive if the leaf node is positive. The appeal for this method is its
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simplicity but it is only appropriate for cases when the assigned label must reach
the leaf nodes in the hierarchy.

Local classi�cation trains separate classi�ers locally then adjusts or propagates
the classi�cations with respect to the hierarchy. The local classi�ers can be a
collection of single label classi�ers, multi-label classi�ers for a level in the hierarchy,
or multi-label classi�ers for nodes that share a parent. Each of these local classi�ers
will give assignments over the hierarchy for di�erent nodes without accounting for
the assignments from one another. To ensure consistency with the hierarchy, a
second stage process is usually built into the local classi�cation routines.

There are two main approaches for ensuring the hierarchical constraints for the
label assignments. The heuristic approach is a top-down process where lower level
classi�cations are only performed if all of their parent nodes are �rst classi�ed as
positive. This avoids inconsistencies in the hierarchy and saves computation for
low level classes in the hierarchy (Koller and Sahami , 1997; Wu et al., 2005). This,
however, su�ers from blocking issues where misclassi�cations at high level nodes
drastically hinder the performance of the classi�er. Sun et al. (2004) proposed
several heuristics to remedy blocking but none are theoretically driven.

In contrast, Barutcuoglu et al. (2006) used a Bayesian framework to obtain the
distribution of all possible label combinations given all the existing classi�er out-
puts, i.e. p(Q1, . . . , Qp|S1, . . . , Sp). This resolves inconsistencies over the hierarchy
and theoretically provides an optimal label assignment under a cohesive framework.
The downside to their method is in the implementation. Numeric under�ow issues
and computational time both increase as p grows. Distributional assumptions were
made to compute the necessary probabilities which are often unknown in practice.
Moreover, in our experience, outputs from poor classi�ers often introduce more er-
ror for neighboring label assignments. Thus using all classi�er scores is sometimes
sub-optimal. We will motivate our method under a similar statistical framework
that avoids most of these issues.

Instead of adjusting for inconsistencies after the classi�ers are built, global clas-
si�ers consider the entire hierarchy during the training phase of the classi�er. Vens
et al. (2008) argued that global classi�cation methods are more e�cient because
they require fewer decision rules overall than local classi�cation methods. The gen-
eral approach is to �nd e�cient decision rules that quickly split the training data
into similar clusters with similar hierarchical labels. Since the labels respect the
entire hierarchical structure, the classi�er will build decisions implicitly respect-
ing the hierarchy. The challenge for these methods comes from the computational
demands that exhaustively searches for good decision rules.

Another way to approach HMC is to perform a hypothesis test for the status
of each label. From the multiple hypothesis testing literature, Yekutieli (2008)
proposed a top-down procedure that bounds the overall false discovery rate when
testing hypotheses that respect a hierarchy. If we consider each null hypothesis
to be the label is negative then this procedure is also applicable for classi�cation.
Unfortunately, the top-down procedure still su�ers from blocking issues as the other
top-down classi�cation methods. Theoretically bounding the false discovery rate
does not guarantee high precision and thus this may not be best for classi�cation
purposes.

Our method falls under the local classi�cation methods and relies on the outputs
from existing single label classi�ers. We believe this is a reasonable approach since
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local classi�ers can be more tailored to the data and it prevents duplicated e�orts.
Moreover, using local classi�ers sequentially often avoids the in�uences of poor
classi�er outputs. Using the hierarchy, our method often allows informative outputs
from quality classi�ers to ignore the noisy outputs from poor classi�ers. We will
compare our sequential approach to the global classi�er based on bagging predictive
clustering trees. To make the algorithms comparable for our problem setting, the
global classi�er can only utilize the outputs from the same single label classi�ers.
The predictive clustering trees have shown great success in HMC and few methods
in the literature have been able to outperform their results (Silla Jr and Freitas,
2011).

Our ranking approach is largely inspired by the work in Jiang et al., 2013.
They developed a ranking scheme for MC that optimizes precision for any recall
value. The quantity to rank the label assignments was coined Local Precision
Rate (LPR) which is theoretically equivalent to the complement of Local False
Discovery Rate (1−lfdr) by Efron and Tibshirani (2002). 1−lfdr has an empirical
Bayes interpretations: the chance of a positive status given the classi�er output, i.e.
p(Qj = 1|Sj). For brevity we will denote 1− lfdr as lfdr′. The biggest challenge
with lfdr′ is in its computation requires density estimations. The derivation of
LPR o�ers a robust method of estimating the necessary density ratios directly
while avoiding densities estimation with limited samples. In this chapter, we also
extend the existing estimation methods for LPR which slightly improves the results
from the original work. Overall, our ranking extends LPR ot lfdr′ to the HMC
setting.

4.3. Methodology

We propose a sequential classi�cation method by using outputs from existing
single label classi�ers. Single label classi�ers often output a score that re�ects
the con�dence or uncertainty for a label assignment of being positive (e.g. logit
probabilities from a logistic regression). However, these are often not comparable
between di�erent classi�ers so ranking according to these raw outputs will be sub-
optimal. To achieve consistent ranking, we rank each label assignment according to
the posterior probability of the label being positive given all classi�er outputs. This
ranking creates an order for the sequential classi�cation method. We then classify
the highest ranked label according to a cuto�, update the ranking according to all
the previous classi�cations, and repeat until all labels are assigned. The ranking
produces high precision assignments by avoiding outputs with uninformative signal
where the updates will ensure the assignments are consistent with the hierarchy.

Here we �rst de�ne some notation and the general problem setting. There are
p nodes with n subjects. Without loss of generality, assume each class has one best
classi�er so there are p classi�ers. The true status for each subject i for class k is
denoted as Qk,i ∈ {0, 1} where 0 and 1 respectively indicate a negative and positive
status. We will assume the classi�er scores for subject i and node k, Sk,i, to be
a mixture distribution depending on the true label status. Overall, we believe the
data is generated as
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Qk,i ∼

{
0 if Qj,i = 0 for any j ∈ par(k)

Bernoulli(pk) otherwise

Sk,i|Qk,i ∼ Qk,iFk,1 + (1−Qk,i)Fk,0

where par(k) denote the parents of node k where pk, Fk,1, Fk,0 is unknown for
all k = 1, . . . , p. We further de�ne πk = P (Qk,i = 1) for i = 1, . . . , n which is
equivalent to pk if there were no hierarchy. Our calls/predictions/classi�cations
for each status is denoted Q̂k,i ∈ {0, 1}. For simplicity below, we will omit the i
subscript in the follow derivations.

4.3.1. Ranking Framework. The ranking quantity proposed by Jiang et al.,
2013 is lfdr′ = 1− lfdr. This has three di�erent expressions

lfdr′(Sk) =
πkfk,1(Sk)

πk fk,1(Sk) + (1− πk) fk,0(Sk)

=

[
1 +

(
1− πk
πk

)
fk,0(Sk)

fk,1(Sk)

]−1
(4.3.1)

= p(Qk = 1 | Sk)

This quantity is di�cult to estimate in practice since HMC problems su�er from im-
balanced data sets where the number of positive samples are extremely limited. In
particular, the estimation of fk,1 is very di�cult and problematic. Jiang et al., 2013
however proposed a robust method to estimate the lfdr′ directly without comput-
ing the individual densities. We will elaborate on this detail in the implementations
in Section 4.3.3.

An important result from Jiang et al., 2013 is that lfdr′ provides an optimal
ranking when assigning labels using a uniform cuto� in the MC setting. Unfortu-
nately, the assignments from a uniform cuto� may produce label assignments that
are inconsistent with the hierarchy. To extend lfdr′ to the hierarchical setting,
we could rank the hierarchical label assignments for k = 1, . . . , p using a similar
quantity

p (Qk = 1 | S1, . . . , Sp)

=
p(Qk = 1 | Sk) p(S−k | Sk, Qk = 1)

p(S−k| Sk)

= [lfdr′(Sk)]
p(S−k | Sk, Qk = 1)

p(S−k | Sk)
(4.3.2)

where S−k = {S1, . . . , Sk−1, Sk+1, . . . Sp}, i.e. all but the output from classi�er
k. Equation 4.3.2 shows that our ranking is just an adjusted value of the optimal
ranking in the MC setting. For the adjustment term, notice if Sk is high for a
quality classi�er, conditioning on Sk essentially implies Qk = 1 then the ranking in
the MC setting will agree with the ranking in HMC setting.

Based on the mixture distribution assumption, we can expand the adjustment
term as
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p(S−k | Qk = 1)

P (Qk = 1|Sk) p(S−k | Qk = 1) + (1− P (Qk = 1|Sk)) p(S−k | Qk = 0)

=

[
lfdr′(Sk) + (1− lfdr′(Sk))

p(S−k | Qk = 0)

p(S−k | Qk = 1)

]−1
(4.3.3)

=

[
lfdr′(Sk) + (1− lfdr′(Sk)) (

πk
1− πk

)
p(Qk = 0 | S−k)

p(Qk = 1 | S−k)

]−1
(4.3.4)

Equation 4.3.3 shows that the adjustment term is bounded in the interval[
0, [lfdr′(Sk)]

−1
]
. So assignments that have high lfdr′ values will be a�ect by

neighboring nodes less than nodes assignments with low lfdr′ values. This agrees
with the intuition that the ranking in the HMC setting will be similar to the ranking
in the MC setting for high values of lfdr′(Sk).

For now, assume that we could compute Equation 4.3.2 (implementation details
will be elaborated in Section 4.3.3). What should happen to the ranking if we were
informed that Qk∗ was positive or negative? Without loss of generality, let's assume
we were informed Qk∗ = 1. With this knowledge, we should update the ranking for
j ∈ {1, . . . , p}\k∗ as

p (Qj = 1 | S1, . . . , Sp, Qk∗ = 1)

Notice that if j is an ancestor node of k∗ then this probability is 1. Thus the
ranking for all the ancestor nodes of k∗ jumps to the top of the ranking and will
be immediately be classi�ed as 1 as well. On the other hand, if Q̃k∗ = 0 then this
probability is 0 for any j that is a descendant node of k∗ which must be negative.
This update naturally enforces the hierarchical constraints and prevents possible
inconsistencies.

After classifying the ancestor nodes as positive, denote D = k∗∪ancestors{k∗}
then for a non-ancestor node of k∗, the ranking quantity becomes

p (Qj = 1|Sj , QD = 1)
p (S−j |Sj , QD = 1, Qj = 1)

p(S−j |QD = 1, Sj)

which is similar to Equation 4.3.2 factoring in the e�ects from knowing Qk∗ = 1.
Under our generative model for the data, denote πj|D = p(Qj = 1|QD = 1) then
the conditional independence suggests that

p (Qj = 1 | Sj , QD = 1)

=
πj|Dp(Sj | Qj = 1, QD = 1)

p(Sj | QD = 1)

=
πj|Dp(Sj | Qj = 1)

πj|Dp(Sj | Qj = 1) + (1− πj|D)p(Sj | Qj = 0)

=

[
1 +

(1− πj|D)

πj|D

fj,0(Sj)

fj,1(Sj)

]−1
(4.3.5)

Notice that Equation 4.3.5 is the same as Equation 4.3.1 except the marginal prob-
ability has changed. This is useful because updating the marginal probability is a
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simple counting problem with the training data. The mixture assumption ensures
that the density ratio will remain unchanged after assigning the labels for D.

The updating and conditional independence yields further desirable properties
for the adjustment term as well.

p (S−j | Sj , QD = 1, Qj = 1)

p(S−j | QD = 1, Sj)
=

p
(
S−{j,D} | Sj , QD = 1, Qj = 1

)
p(S−{j,D} | QD = 1, Sj)

(4.3.6)

where −{j,D} = {1, . . . , p}\j ∪D. This means that once we have the labels for D,
SD no longer a�ects the future rankings. This simpli�es the computation necessary
for the adjustment term considerably if |D| is large. More importantly, if the
ancestor of node k∗ was a poor classi�er, then our ranking method will not be
a�ected by its classi�er outputs in further calculations.

4.3.2. Classi�cation Algorithm. Under this ranking framework, we now lay
out a corresponding classi�cation algorithm. With e�ciency and implementation
constraints in mind, we exploit the simpli�cations and approximations whenever
possible. The general form for the ranking quantity is

lfdr∗k,i(Di) = p (Qk,i = 1 | S1, . . . , Sp, QDi)

where Di = {j : j ∈ {1, . . . , p} & Q̂j,i is assigned}. Naturally D = ∅ if no
classi�cation has been made.

First, our proposed method begins with the estimation of lfdr∗k,i(∅) for all
i = 1, . . . , ntest and k = 1, . . . , p where ntest is the number of the examples in the
test set. This can be separated into estimating lfdr′ and the adjustment terms.
The estimation for lfdr′ involves nonparametric curve �tting for each node k using
the training data which will be elaborated in Section 4.3.3. The adjustment on the
other hand depends on lfdr′, πk, and

P (Qk=0|S−k)
P (Qk=1|S−k) according to Equation 4.3.4. πk

can be easily estimated from the training data and lfdr′ will be estimated. The
ratio however is di�cult to estimate in general so we simplify it to

P (Qk,i = 0|S−k,i)
P (Qk,i = 1|S−k,i)

=
P (Qk,i = 0|Sfam(k),i)

P (Qk,i = 1|Sfam(k),i)

where fam(k) are all the parents and children of node k. We naively estimate
this quantity with a logistic regression using Sfam(k),i as regressors along with an
intercept. If a node does not have any neighbors, the quantity trivially becomes
1−πk
πk

.
This yields lfdr∗k,i(Di) for i = 1, . . . , ntest and k = 1, . . . , p. To en-

sure high precision, we �rst classify the highest ranked label assignment, k∗i =
arg maxk{lfdr∗k,i(Di) : k 6∈ Di} for i = 1, . . . , ntest. By starting with k∗, our
method often by-passes blocking issues from poor classi�ers or outputs with poor
signal.

Secondly, we will make a classi�cation decision based on lfdr∗k∗,i(Di). For a
given cuto� value, αcutoff ∈ (0, 1) , we classify values above αcutoff as positive and
negative otherwise. So our classi�cation rule for k∗i for i = 1, . . . , ntest is

(4.3.7) Q̂k∗,i =

{
1 if lfdr∗k∗,i(Di) > αcutoff

0 otherwise
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so αcutoff is applied only to the highest ranked value among those without an
assigned label. To evaluate our method we simply apply many di�erent cuto�s.
However, we give a some guidance in selecting a single cuto� for researchers later
in this section.

After classifying Q̂k∗,i, immediately we have Di = {k∗i } and we need to update
our ranking for j ∈ {1, . . . , p}\k∗. This update is a two stage process: enforcing the
hierarchical constraints then updating lfdr∗·,i(Di) for all i. Recall that ancestors
or descendants of the classi�ed node will be immediately classi�ed as positive or
negative based on the hierarchical relationship. In other words, the �rst step in the
update process is

(1) If a Q̂k∗,i = 1, then Q̂ancestors(k∗),i = 1 and Di = {k∗, ancestors(k∗)}
(2) Otherwise, Q̂k∗,i = 0, then Q̂descendants(k∗),i = 0 and Di =
{k∗, descendants(k∗)}

for i = 1, . . . , ntest.
The second step updates lfdr∗·,i(Di) for all i for the unclassi�ed cases according

to the assigned labels. Recall that Equation 4.3.5 implies that we can express
lfdr′ value as a function of the density ratio, fk0 (Sk,i)fk1 (Sk,i)

, and the updated marginal
probability. Since the update only a�ects the marginal probabilities, we only need
to estimate the new marginal probability using the training data. Speci�cally, �nd
all the cases in the training set that match the current assigned labels for each i,
then update the weight πk,i according to the proportions seen in the training set.
In other words, for some i = 1, . . . , ntest

(4.3.8) πnewk,i =

∑
j∈train I(Qk,j = 1 & QDi,j = Q̂Di,i)∑

j∈train I(QDi,j = Q̂Di,i)

where train is the examples in the training set. One note is that when many nodes
are classi�ed, |Di| is large and the number of matching cases in the training set
decreases. We recommend to only update this quantity if the number of matching
cases exceeds some threshold (set to be 10 for all of our examples below). Notice
that we also update the lfdr′ values for nodes that do not have a hierarchical
relationship with D. The reason for this choice was because in practice the DAG
may not be perfect and hidden factors could a�ect the prevalence of 2 unrelated
classes. If the classes were indeed independent, the update should not a�ect the
marginal probabilities by much.

As for the adjustment term, this term should be recomputed since Equation
4.3.6 suggests that SDi no longer a�ect the adjustment. However, the computa-
tional burden will increase quickly if we recompute the ratio term in the adjustment
after each classi�cation. Therefore we keep the ratio term �xed without updating
it but update lfdr′ and πk within the adjustment term.

The updates for lfdr′ and πk produce new lfdr∗·,i(Di) for all i which creates a
new ranking. To complete the classi�cation for all labels, we iterate the process from
selecting k∗i from k ∈ {1, . . . , p}\Di for i = 1, . . . ntest again until all assignments
are determined.

We summarize the algorithm in 7 steps:

(1) Estimate each lfdr∗·,i(Di) for all i from lfdr′ and the adjustment term
using the training data.

(2) Choose a αcutoff (see Section 4.6).
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(3) For each i = 1, . . . , ntest, among all labels without an assignment, choose
the node with the highest ranking, i.e. k∗i = arg maxk{lfdr∗k,i(Di) : k 6∈
Di}

(4) Classify Q̂k∗,i according to αcutoff according Equation 4.3.7.
(5) Enforce the hierarchical constraints implied by the hierarchy.
(6) Update each lfdr′ accoring to Equation 4.3.8 and πk according to Equa-

tion 4.3.8.
(7) Repeat (3) through (6) until all labels for the test set have been assigned.

For brevity we will denote lfdr∗ = {lfdr∗k,i(Di)} for k = 1, . . . , p and i =
1, . . . , ntest.

We gave little guidance to the choice of the cuto� value when a single cuto� is
necessary. In this case, the researcher should specify a desirable recall level enable
to select a cuto�, αcutoff ∈ (0, 1) for actual classi�cation. We recommend using
the training data to select αcutoff via cross validation.

α
(z)
cutoff = arg min

α∈[0,1]

{
recalldesired =

∑
k,i∈train(z) I(Q̂k,i(α) = 1 and Qk,i = 1)∑

k,i I(Qk,i = 1)

}

Each cross validation will provide one α(z)
cutoff based on the di�erent training sam-

ples train(z). A simple average of these cuto�s should produce a sensible �nal cuto�
value, αcutoff . This cross validation method can be used to choose αcutoff based
on other criteria such as the F-measure (Musicant et al., 2003) as well. The choice
of the criteria should be based on the goal of the classi�cation.

4.3.3. Estimation of lfdr′ . Jiang et al., 2013 has shown that lfdr′ is theo-
retically equivalent to their LPR in the MC setting. Intuitively, LPR measures the
trade-o� between precision and recall for di�erent cuto�s applied to the classi�er
scores. Estimating this trade-o� is much more robust than estimating densities
under the local false discovery rate de�nition by Efron and Tibshirani (2002).

Here we �rst de�ne some notation for their derivation. De�ne uk(λk) to be the
probability that a random person will have a classi�er score less than or equal to
λk for class k, i.e. uk(λk) = P (Sk,· ≤ λk). Intuitively, uk(λk) places the di�erent
classi�er scores on the same scale between [0, 1]. Then de�ne the precision function
for class k as Gk(λk) = P (Qk,· = 1|Sk,· > λk) when we classify a positive status for
scores above λk. Based on the one to one relationship between λk and uk, however,
we can denote the precision function as a function of the uk as Gk(uk). This makes
the precision functions comparable over the classi�ers. Finally, LPR is de�ned as

lprk(uk) = − d

duk
[(1− uk)Gk(uk)](4.3.9)

Equation 4.3.9 is derived from maximizing the pooled precision rate
∑
k(1−uk)Gk(uk)∑

k(1−uk)
after �xing

∑
k(1 − uk) (the negative sign is to simply make high LPR values

correspond to higher rankings). Intuitively, when the classes are independent, LPR
measures the gain in probability of a true positive calls for each unit decrease in
uk for k = 1, . . . , p. When the trade-o�s of these gains are equal over each class,
then there can be no more gains in the pooled precision rate with a �xed expected
number of positive assignments, i.e.

∑
k(1− uk).
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For estimation, Jiang et al., 2013 recommended re-expressing Equation 4.3.9
as

(4.3.10) lprk,i = Gk(uk,i)− (1− uk,i)
d

duk
Gk(uk,i)

then obtain lpr by estimating Gk(·) through kernel smoothing methods and ob-
taining the implied derivative d

duk
Gk(·). Here we propose an estimation for Gk(·)

via splines (Hastie and Tibshirani , 1990) comebined with bagging to estimate LPR.
Splines can �t complex curves quickly and have many existing algorithms with sensi-
ble default values. Moreover, the derivative value is easily obtainable through most
spline �tting algorithms. Next, the empirical estimation of Gk(·) is heteroscedastic
which can be factored into the spline �tting and not by kernel methods with a
constant bandwidth.

Our contribution to the estimation is to introduce bagging and factoring the
heteroscedasticity of the empirical Gk(·). Bagging makes the estimation more ro-
bust and accurate where adjusting for heteroscedasticity provides better estimates.

To implement bagging eventually, we �rst resample our data to create B batches
of samples each with size n. We then follow Jiang et al., 2013 and estimate uk and
Gk(·) empirically

ûk,i =
1

n

n∑
j=1

I(Sk,j ≤ Sk,i)(4.3.11)

Ĝk(ûk,i) =
∑
j

I(Qk,j = 1&Sk,j > Sk,i)/

n∑
j=1

I(Sk,j > Sk,i)

Under Equation 4.3.11, large Sk,i values have few samples to estimate Gk(uk,i) and
thus should exhibit larger variance. Figure 4.3.1 demonstrates that as ûk,i increases,
the variability increases in Ĝk(ûk,i). This heterscedastic behavior is ampli�ed when
the positive cases is low since Ĝk(ûk,i) will vary greatly with the loss of one positive
case when ûk,i increases.

To accomodate this heteroscedastic bahvior, we put weights to be inversely
proportional to the sample size used to compute ûk,i. To choose the smoothing
parameter for the splines, we implement a 5 fold cross-validation where each turn
we use 1

5 of the data as training to predict the remaining 4
5 of the data. This yields

larger smoothing parameters which works better in our simulations. The reason to
prefer larger smoothing parameters is because Ĝk(ûk,i) can decrease drastically due
to the loss of a single positive case so more smoothing is often bene�cial. Another
reason is because the deviations of Ĝk(ûk,i) from Gk(uk,i) is highly correlated. This
smoothness is due to the sorted nature of the Sk,· and leads to underestimating the
smoothing parameter. By using a small subsample of the training set, we arti�cially
create less correlated data which leads to higher smoothing parameters.

The bagging provides the most improvement in the new estimation of LPR.
Recall that the estimation for Ĝk and ûk came from the baggin samples so we have
B estimates for lprk,i. Bagging simply averages over the B batches to create a
robust estimation for lprk,i.
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Figure 4.3.1. Empirical Estimation of Gk(uk) and uk vs. the
truth with 70% positive cases. × represent the values from Ĝk(ûk)
and ûk where • represent values from the true Gk(uk) and uk
knowing the underlying distribution. With fewer positive cases,
the �uctuation is even worst with the loss of a single positive case.

˜lprk,i,b = Ĝk(ûk,i)− (1− ûk,i)Ĝ′k(ûk,i)

ˆlprk,i =
1

B

∑
b

˜lprk,i,b

In our implementation, we use all n cases for the �rst bagging sample (i.e. no resam-
pling) for determining the smoothing parameter. We then recycle the smoothing
parameter from this �rst sample for all remaining B − 1 estimates of Ĝk(·). This
avoids unnecessary cross validation and greatly speeds up the estimation.

4.4. Simulation Study: Hierarchical Gaussian Mixture

We demonstrate our algorithm on a simulation study. Our code for this section
is available at http://www.stat.berkeley.edu/~lwtai/Waynes_Stat_Website/

Tech_Reports.html.
We �rst generate the true class statuses as speci�ed in the methodology section

with pk = 0.7 for all k. The DAG structure that identi�es the parent and child re-
lationships is as illustrated in Figure 4.1.1. To match our disease diagnosis example
below, the training set will have 196 samples only and the testing set will have 20
samples.

After generating the class statuses, we then produce classi�er scores for each
class. We assume that

52



Sk,i|Qk,i = 0 ∼ Gaussian(0, 1)

Sk,i|Qk,i = 1 ∼ Gaussian(mk, 1)

for k = 1, . . . p and i = 1, . . . , n. Here, mk determines the quality of the data or
local classi�er. If class k has poor data quality or a weak local classi�er, then mk is
set to be 0.5. This makes the scores between the positive and negative cases more
similar and harder to di�erentiate. Otherwise, a well-trained classi�er will have
mk = 1.5.

To make the simulation more meaningful, we compare it to the global classi�er
based on predictive cluster trees. Speci�cally, predictive cluster trees with bagging
proposed in Dimitrovski et al. (2011). The original algorithm builds a decision tree
that maximizes the label similarities between the training samples (?). At each
branch of the tree, the training samples are separated by the feature that creates
groups that most improves some cluster-similarity measure on the labels. The tree
stops growing when number of training samples in the branch is too small or when
the label similarities increase less than a certain threshold after the split. The leaf
nodes are formed when any of these stopping criteria are met then the proportion
of positive labels for each class is computed. These proportions then become the
classi�er scores for all test examples that land in that leaf node after being passed
down the decision tree. A cuto� is then chosen to provide an assignment for all
labels. Notice that since all the labels in the training data respect the hierarchical
constraints, the label assignments will also be consistent.

This algorithm was extended to DAGs by Vens et al. (2008) where Dimitrovski
et al. (2011) added the bagging component to remedy errors early in the decision
tree. Here we treat the local classi�er outputs as features so all algorithms are pro-
vided with the same information. Intuitively, the predictive clustering tree should
be able to recover the a decent solution with its exhaustive searches. For decent
classi�cation, the algorithm needs to identify the split at mk

2 for each node k and
start the branching with the node with the strongest signal, i.e. largest πk and mk.
Even so, we will show that our algorithm is shows better performance. We will
refer this algorihm as the ClusHMC algorithm from here on for convenience.

We can also treat the problem as a MC problem as in Jiang et al., 2013 and
apply a uniform cuto� to the lfdr′ values. This completely ignores the hierarchy but
will serve as a good comparison to know the bene�ts from introducing the hierarchy.
Naturally, we implement the sequential classi�caiton method based on lfdr∗ in
Section 4.3 using the estimated lfdr

′
. To understand the e�ects of estimation

lfdr′, we also implement the sequential classi�caiton method knowing the true
Gaussian densities and parameters.

Finally, to make the classi�ers comparable, we restrict the number of bagging
for ClsHMC and the lfdr′ estimation to be the same. Overall, our method can
perform well with limited bagging where the tree based methods need signi�cantly
more bagging to produce consistent results.

To compare the performance, we calculate the precision and recall curve de�ned
in Equation 4.4.1.
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Precisionk =

∑
i I(Qk,i = 1&Q̂k,i = 1)∑

i I(Q̂k,i = 1)

Recallk =

∑
i I(Qk,i = 1&Q̂k,i = 1)∑

i I(Qk,i = 1)
(4.4.1)

To represent the average performance, we repeat this simulation over 20 indepen-
dent simulations and show the average precision and average recall curve in Figure
4.4.1.

Figure 4.4.1. Precision and recall curve for each node with
Gaussian distribution scores. In this example, m2 = m3 = m6 =
1.5 and the rest all have mk = 0.5. The curves are averages over
20 repetitions where each repetition has 196 training points and
20 testing points. ClusHMC is the predictive cluster trees method
with bagging, NaiveLFDR is the MC method of using a uniform
cuto� for all true lfdr

′
values (not estimated) ignoring the hier-

archical structure, Sequential is our sequential method while we
estimate lfdr′, SeqCheat is our sequential method knowing the
mixture distribution of the scores.

Most algorithms perform very well when the signal is strong, i.e. the distri-
bution between the negative and positive cases are very di�erent. The comparison
between the uniform cuto�s for lfdr′ and the sequential method with lfdr∗ shows
that neighboring nodes can help drastically. For example, node 4 has a weak sig-
nals but most algorithms perform very well due to the signal from node 6. The
performance for node 7 shows that strong signals from the parent node can also be
bene�cial. Node 5 and 8 on the other hand are di�cult cases for most algorithms.
This is expected since their neighboring nodes have weak signals, their own signal
is weak, and there are limited positive cases in the training set in these leaf nodes.
One surprise is that although node 5 has one parent node with a strong signal, its
performance is still poor. This is likely due to the e�ects from node 1 that makes
the estimation for P (Qk=0|S−k)

P (Qk=1|S−k) di�cult. We rule out the possibility of imbalanced
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dataset issues since node 7 is low in the hierarchy and also depends on two ancestors
nodes. This raises questions about neighbor selection which we will not discuss in
this chapter.

Overall, our sequential method achieves higher precision rates than ClusHMC
for most recall values but the performance is comparable at high levels of recall.
Lastly, the di�erence between the sequential classi�cation based on the true lfdr∗

and estimated lfdr∗ shows that knowing the distribution can further improve the
performance of our method.

We believe the di�erence in performance between ClusHMC and our sequential
method is because the global classi�er builds decisions for all outputs from the
same local classi�er at once where our algorithm works with the individual outputs
separately. The global algorithm avoids poor outputs from poor classi�ers but can
su�er from uninformative outputs from quality classi�ers. With poor data, quality
classi�ers can also produce uninformative outputs that do not help determine the
label status. In this case, outputs from lesser quality classi�ers might be more
informative that can produce more accurate results. Our ranking captures this
concept by ranking the individual label assignments instead of creating a single
order for all outputs.

When the number of nodes increase, individually evaluating the precision and
recall is no longer feasible. To accomodate this, Vens et al. (2008); Silla Jr and
Freitas (2011); Jiang et al. (2013) all used a measure that considers all the nodes
jointly as shown in Equation 4.4.2. Under this measure, the results for the same
simulation is shown in Figure 4.4.2.

Precision∗ =

∑
i

∣∣∣Q·,i = 1&Q̂·,i = 1
∣∣∣∑

i

∣∣∣Q̂·,i = 1
∣∣∣ =

∑
k

∑
i I(Qk,i = 1&Q̂k,i = 1)∑
k

∑
i I(Q̂k,i = 1)

Recall∗ =

∑
i

∣∣∣Q·,i = 1&Q̂·,i = 1
∣∣∣∑

i |Q·,i = 1|
=

∑
k

∑
i I(Qk,i = 1&Q̂k,i = 1)∑
k

∑
i I(Qk,i = 1)

(4.4.2)

When considering the classes jointly, the comparison is consistent with our
observations before. Our sequential method still achieves higher precision values
than the global classi�er at most recall value. One interesting fact is that the
precision performance for the uniform cuto� for lfdr′ is comparable at low recall
regions with the sequential method. Again, the label assignments from this will not
be consistent with the hierarchy so is not desirable for our HMC. The comparable
results is likely a result of the similar rankings produced by lfdr′ and lfdr∗ when
lfdr′ is high.

To demonstrate the �exibility of our algorithm, we can repeat the same simula-
tion by replacing the Gaussian distributions with Beta distributions but maintaining
the same DAG structure. Speci�cally, we create classi�er scores as

Sk,i|Qk,i = 0 ∼ Beta(1, 1.3)

Sk,i|Qk,i = 1 ∼ Beta(1,mk)

This will produce classi�er scores all between [0, 1] which can be di�cult for clas-
si�ers. The smaller values of mk will put more mass on the higher end of the unit
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Figure 4.4.2. Joint Evaluation over all Nodes of Simulation us-
ing Recall and Precision with Gaussian distribution scores. Our
algorithm outperforms ClusHMC at lower recall values but is com-
parable at high recall values.

interval and di�erentiate the positive and negative score distributions better. We
perform the same evaluations and show the results in Figure 4.4.3 and Figure 4.4.4.

Figure 4.4.3. Precision and recall curve for each node with
Beta distribution scores. In this example, m2 = m3 = m6 = 0.5
and the rest all have mk = 0.9. The curves are averages over 20
repetitions where each repetition has 196 training points and 20
testing points. ClusHMC is the predictive cluster trees method
with bagging, NaiveLFDR is the MC method of using a uniform
cuto� for all true lfdr

′
values (not estimated) ignoring the hier-

archical structure, Sequential is our sequential method while we
estimate lfdr′, SeqCheat is our sequential method knowing the
mixture distribution of the scores.
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Figure 4.4.4. Joint Evaluation over all Nodes using Recall and
Precision with Beta distribution scores.

With all the classi�er scores in the unit interval, the performance is overall
worse than the Gaussian score example. One di�erence from the Gaussian case is
that node 7 did not show the same bene�t from the parent node. However, the
overall comparison is roughly the same which shows that our sequential method is
quite adaptive to di�erent distributions of data.

4.5. GEO Disease Database

We apply our algorithm to the National Center for Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO). The goal is to predict the disease
statuses in each data sets based on the genetic information of its subjects. The
annotation is positive for a dataset if at least one of the subjects has the particular
disease. The initial classi�er results are from Huang et al. (2010) along with the
annotations derived from the documentation on the GEO database. The derived
annotations are noisy and do not strictly follow the hierarchical structure speci�ed
in the UMLS. However, according to the authors, positive annotations should be
accurate but certain negative annotations might be false due to poor documenta-
tion and possible text mining errors. This yields 196 datasets over 110 diseases,
each with a particular classi�er score.

To evaluate the methods, we performed a leave-one-out method over all 196
datasets where 195 were used for training and the remaining one data set was used
as a test set. The �nal precision and recall curve is then based on all 196*110 label
assignments. The results over the 110 diseases are summarized into one precision
recall curve as calculated in Equation 4.4.2.

We implement similar comparisons as those mentioned in the simulation study.
lfdr∗ values are again estimated by calculating the adjustment term and estimating
lfdr′ as speci�ed in Section 4.3.3. But here we compare these to the lfdr′ values
estimated in Jiang et al. (2013) using the same uniform cuto�. We also implement
ClusHMC on this dataset. Each method is provided with the classi�er scores from
Huang et al. (2010) which improved the results from the local classi�ers drastically.
The results are shown in Figure 4.5.1.
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Figure 4.5.1. GEO Disease Classi�cation Comparisons. Naive
Local Score is the result from using the local classi�er outputs
with a uniform cuto�. LPR by Jiang et al. (2013) is the results
from Jiang et al. 2013 for comparison. The rest is similar to
the simulation notation. Our method again outperforms all other
methods at most recall values. The improvement from LPR is
mostly at mid-recall regions. The improvement is not huge but
our label assignments are consistent with the UMLS hierarchy.

Our lfdr′ estimation method slightly improved the results from Jiang et al.
2013 for recall values beyond 0.4. Our sequential method further improved those
results by producing higher precision values for most recall regions. The only ex-
ception is around 0.3 and 0.4 recall rate. We believe this is a consequence from the
noisy annotations because the sequential method should perform at least as well as
the naive lfdr∗ method as long as the lfdr∗ values were updated sensibly.

The global classi�er surprisingly did not have comparable performance to our
sequential classi�er at any recall value. In addition to the reasons mentioned in
the simulation, possible reasons for the poor performance for ClusHMC are due to
the high dimension of the data set, the noisy annotation, and the limited sample
and bagging size. Since ClusHMC does not explicitly use the hierarchy in their
clustering, noisy annotations in the training set can lead to poor classi�cations.

4.6. Discussion

Overall, we introduce a Bayesian framework for ranking individual label as-
signments in the HMC setting that extends from the optimal ranking in the MC
setting. We also provided a sequential classi�cation algorithm that highlights the
role of neighbors in HMC in our problem setting. The algorithm is greedy and
does not consider the joint assignment of all labels but its sequential nature acco-
modates for these �aws. We also introduce new estimation methods for lfdr′ that
is more robust than the existing method. Through simulation and real data, we
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have shown that our classi�cation method requires little computational e�ort and
provides robust results when compared against popular existing global classi�ers.

The biggest limitation of our method is that it relies on classi�er scores from
existing local classi�ers. While facing new classes, a single global classi�er might be
more simplistic and faster than building individual local classi�ers and aggregating
the results (Vens et al., 2008). On the other hand, our framework allows researchers
to construct customized local classi�ers without needing to worry how to extend
their method to other classes. Our framework also allows recycling the e�orts from
well documented work which can be bene�cial.

A second minor limitation is that di�erent cuto�s require re-running the al-
gorithm since the method is sequential. MC methods can typically trivially apply
di�erent cuto�s to obtain di�erent classi�cation results where our classi�cation each
depends on the previous assignment. Fortunately the lfdr∗ values do not need to
be re-estimated so the computational e�ort from this issue is quite small.

Many improvements can be implemented for this method. The �rst is a better
estimation for P (Qk=0|S−k)

P (Qk=1|S−k) for the adjustment term. The logistic regression limited
to the family nodes is fast and convenient but the simulation study raised the
question of neighbor selection. Updating this term e�ciently is also challenging
which we ignored in this chapter.

It is possible that the classi�er scores do not follow a simple mixture distribu-
tion. More importantly, the conditional independence assumption of the classi�er
output given the label status is quite strong and provided many simpli�cations.
ClusHMC on the other hand performs an exhaustive search over all the feature
at each split to accomodate this possible dependency. Moreover, extending our
method to the case where label assignments necessarily reach a leaf-node is not
trivial. Ad-hoc constraints in the algorithm might produce sensible answers but we
do not explore these possibilities here.

Lastly, if a disease could have multiple statuses instead of the binary status we
assumed here, e.g. {negative, curable, hopeless}, it is not clear how our algorithm
and estimation would be a�ected in this case. One possibility is to treat the mul-
tiple statuses as di�erernt stages of a disease, e.g. a new disease down the DAG.
This, however, could greatly increase the dimensionality of the DAG and break the
conditional independence assumption between the status and classi�er scores. We
also leave this for future extensions on this topic.
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CHAPTER 5

Concluding Remarks

We tackled three di�erent applied statistical problems from the Bayesian per-
spective: inference for the global extreme with limited data, a spatial model for
global surface winds, and a sequential method for hierarchical multilabel classi�-
cation on DAGs. Each had a complicated dependence structure where the data
was often high dimensional. For the �rst two topics, the Bayesian interpretation
allowed us to formally quantify our uncertainty given di�erent prior beliefs and
observations. This allows researchers to introduce their prior beliefs and knowledge
to resolve issues with limited independent observations that are high dimensional.
The multidimensional dependence was mostly handled by GPs. For the last topic,
the Bayesian interpretation was used as a motivation and framework to design a
consistent classi�er on complicated DAGs. Overall, the Bayesian perspective on
statistical problems is cohesive, intuitive, and �exible.

The biggest challenge we encountered in this dissertation is in the compu-
tational demands from the MCMC methods and the speci�cation of priors. We
speci�ed many methods to decrease the computational burden. However, we did
not explore other inference techniques such as variational Bayes which approxi-
mates the posterior distribution with great computational performances (Ormerod
and Wand , 2010). Moreover, we have tested our sensitivity to many di�erent prior
speci�cations but this process was extremely taxing in terms of time and resources.
E�cient guidance or theory on when the prior might in�uence the results would
helpful. We leave these challenges for future explorations.
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APPENDIX A

Global Surface Wind Model

A.1. Weakly Informative Priors

To create a weakly informative prior for β in Equation 3.4.6, we derive the
upper bound for |βi| for all i. We then apply half of this upper bound to be su,i
and sv,i for all i. Based on the Rayleigh Equation approximations presented by
Milli� et al. (2011), we know the upper bound will be determined β·,1

flat
ρ(f2lat + γ2)

where the Coriolis parameter flat = 2∗7.2921∗10−5 sin(Latitude) which equals to 0
at the equator. Fortunately γ ensures the quantity is �nite. The physical meaning
of γ is the inverse of the damping time scale for winds in the boundary layer. The
damping time is, in the absence of forces other than friction, the seconds taken for
wind to reduce by a factor of 1

e . To obtain a reasonable γ, we reverse engineer the
Rayleigh friction value implied in the prior speci�cations by Milli� et al. (2011).
In their work, they speci�ed

8690 =
flat

ρ(f2lat + γ2)

4380 =
γ

ρ(f2lat + γ2)

The implied γ value is then 4380
8690flat. Since their region of interest is Latitude ∈

[34, 46] over the ocean, the smallest possible γ is then 4.11 ∗ 10−5.
Lastly, we �nd a lower bound for ρ value to be 0.6 using our data and extreme

climate records. The bound for ρ was derived as a function P
Temp∗R . The smallest

P in our data was 92103.82, the highest temperature on earth from web searches
was 330.95K, and R, the ideal gas constant for air was set to match water vapor at
461.5 Jkg−1K−1. Using the latitude values in our data, this yields an upper bound
of 20236.1 so we set su,i = sv,i = 10118.05 for i = 0, 1, 2.

On the other hand, the mean function for βu,1 and βv,1 are calculated similarly
except ρ is replaced with 1.25 according to the average sea level air density by
Wallace et al. (2006). β·,0 and β·,2 are assumed to have mean 0.

Now we discuss the construction for the weakly informative priors for κ. This
is the inverse of the range parameter for the usual Matern covariance function.
Recall that we scaled the data to �t on a unit sphere. The largest great circle
distance between any two locations is then π. The smallest distance between any
two distinct locations is calculated based on our data. This limits sensible log(κ)
values to be in the interval [−1.14473, 6.525477]. For Equation 3.4.7, we then set
au,ε = av,ε to be the midpoint of this interval and b2u,ε = b2v,ε = 42.58186 which is
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the square of the upper bound. We use similar logic to create weakly informative
priors for cu,i and cv,i in Equation 3.4.7 by using these upper bounds for log κu,i
and s2u,i to create b2u,i and b

2
v,i for i = 0, 1, 2. au,i and av,i on the other hand are

set to 0.
Lastly, the prior for Equation 3.4.5 is found using upper bounds on the wind

velocity data. In other words, bσ was �xed to be the largest di�erence between
wind velocities in the data.

κσ on the other hand is di�cult to �x. To obtain a robust quantity, we instead
�x cσ = log(b2σκ

2νσ
σ ) at a sensible value. To �x cσ, we �rst place a prior N(0, bc′)

where bc′ is set similarly as bu,i. We then sample this in the same adaptive Me-
tropolis Hasting step with κε as speci�ed in Section 3.5 during the short chain of
our Gibbs sampler. We then calculate the implied κσ using cσ at the �nal iteration
value in the sampler when some form of convergence is reached. κσ is then �xed
for the remaining inferences.

A.2. Starting Values for Surface Wind Model Gibb Sampler

To obtain reasonable starting values for β, we �rst ignore spatial dependence
and regress U and V locally (using only the data from the same location) against the
pressure gradients treating time as replicates. This naive �tting has produced rea-
sonable coe�cients for mid-latitude and high latitude regions but not for equatorial
regions. To smooth out the high variance in the equatorial regions, we performed a
naive smoothing by averaging the regression coe�cients within 7 degrees latitude
and 15 degrees longitude. We smooth more over longitude since the coe�cients is
expected to change more over latitude than longitude. Then we use these smoothed
coe�cients from the naive �t to obtain MLE for c. The estimated β values also
provide initial ε̂ values. With these, we estimate σε by calculating the standard
deviation of ε̂ for each location. We then again derive the MLE for the necessary
parameters for the residual �eld and variance �eld.

A.3. Sampling for σε in Surface Wind Model

κσ is �xed using the methods mentioned in Section A.1 by running a short
chain of the Gibb Sampler. While obtaining κσ, we also obtain samples for σε. We
then use these samples for σε to estimate the proposal precision matrix for σε. We
�x this proposal precision matrix for the long chain but allow the proposal variance
parameter to adapt as in the usual adaptive Metropolis Hasting algorithm. To
estimate the proposal precision based on the limited samples, we use the banded
sample precision matrices constructed in Bickel and Levina (2008). This method
requires the users to specify the relevant neighbors to each location. These neigh-
bors can be inferred using the GMRF representation of the precision matrix from
Lindgren et al. (2011) which provide very sparse precision matrices.

A.4. Posterior Means for βu and βv for Summer Winds

Here we show the posterior means for βu and βv for Summer winds. These look
qualitatively very similar to the coe�cients from Winter. Overall, the di�erence
between the spatially varying variances is more obvious between the seasons than
the coe�cient �elds.
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Figure A.4.1. Posterior means of βU terms for Summer. βu,1 has
a larger magnitude as we expected. Moreover, the sign change of
the coe�cients and decreasing magnitude away from the equator is
consistent with Equation 3.4.2. The coe�cients �jump� when the
underlying surface changes between land and sea. This is consis-
tent with our observations of surface wind behavior.

Figure A.4.2. Posterior means of βV terms for Summer. βv,1
has a larger magnitude as expected. Moreover, the sign change of
the coe�cients and decreasing magnitude away from the equator is
consistent with Equation 3.4.2. The coe�cients �jump� when the
underlying surface changes between land and sea. This is consis-
tent with our observations of surface wind behavior.
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