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ABSTRACT OF THE DISSERTATION

Energy Storage Systems for High PV Penetration: Utility Spatial Allocation and
Customer Dispatch Strategies

by

Oytun Babacan

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Jan Kleissl, Chair

Climate change mitigation motivates the transformation of the electric power

sector towards a low carbon future. A successful and timely transformation depends on

robust and independent methods for understanding benefits and impacts of the integration

of renewable energy resources and energy storage technologies into the electric power

system. Therefore the objectives of this dissertation are to investigate how energy storage

technologies should be allocated and operated to mitigate the impacts of variable solar

photovoltaic (PV) resources in distribution systems while providing economic incentives

for storage owners, and to assess the indirect regional environmental impacts of economic

xiv



energy storage operation.

The allocation of energy storage systems (ESSs) in distribution systems for

voltage support under high penetration solar PV is investigated. A genetic algorithm

based bi-level optimization method is developed that reduces the voltage fluctuations

caused by PV penetration through deploying ESS among permitted nodes of a distribution

system while accounting for their capital, land-of-use, and installation costs using a

qualitative cost model.

A convex optimization based charge/discharge scheduling algorithm for dis-

tributed ESSs co-located with solar PV systems is developed. The daily charge/discharge

schedules reduce (1) peak net demand (that is, load minus PV generation) of the customer,

(2) power fluctuations in the customer net demand profile, and (3) the reliance of the

customer on the grid by way of promoting self-consumption of local solar PV generation.

Moreover, a novel idea of a “supply charge” tariff that incentivizes ESS customers to

store excess solar PV generation that may otherwise result in reverse power flow in the

distribution grid is investigated. Introduction of a supply charge successfully reduces the

maximum solar PV power supply to the grid and does not financially impact ESS owners.

Finally, the economic and emissions effects of residential ESS operation for cost

minimization in each of the eight regional electric reliability entities of the contiguous U.S.

is investigated. It is observed that the overall economic performance and environmental

impact of ESS varies considerably from region to region and is driven most by regional

emissions and utility tariff structure. Results indicate that policy makers seeking emission

reductions should carefully consider the interaction between emissions and rate structure

in future orders for net metering and residential rate reform.
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Introduction

The objectives of this dissertation are to investigate how energy storage tech-

nologies should be allocated and operated to mitigate the impacts of variable solar PV

resources in distribution systems while providing economic incentives for storage owners,

and to assess the regional environmental impacts of economic energy storage operation.

Chapter 1 describes a bi-level optimization method that reduces the voltage fluctuations

caused by PV penetration through deploying BESS among permitted nodes of a dis-

tribution system while accounting for their capital, land-of-use and installation costs

using a qualitative cost model. The optimization method is based on a genetic algorithm

(GA) that uses a linear programming (LP) routine that minimizes the daily coincident

peak demand. Chapter 2 develops a convex optimization (CO)-based charge/discharge

scheduling algorithm for distributed ESSs co-located with solar PV systems. The CO-

based scheduling algorithm minimizes the monthly electricity expenses of a customer

who owns an ESS and incorporates both a time-of-use volumetric tariff and a demand

charge tariff. This chapter also presents the novel idea of a “supply charge” tariff that

incentivizes ESS customers to store excess solar PV generation that may otherwise result

in reverse power flow in the distribution grid. The economic and emissions effects of

residential energy storage operation for cost minimization service in each of the eight

regional electric reliability entities of the contiguous U.S. is investigated in Chapter 3.

The CO-based scheduling algorithm from Chapter 2 is used here to determine the optimal

economic behavior of consumers. Concluding remarks are made in Chapter 4.
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The text and data in Chapter 1, in full, is a reprint of the material as it appears in

“Siting and sizing of distributed energy storage to mitigate voltage impact by solar PV in

distribution systems”, Babacan, Oytun; Torre, William, Kleissl, Jan, Solar Energy, 146

(2017), 199-208. The dissertation author is the primary investigator and author of this

article.

The text and data in Chapter 2, in full, is submitted for publication of the material

with the title “Distributed energy storage system scheduling considering tariff structure,

energy arbitrage and solar PV penetration”. Babacan, Oytun; Ratnam, Elizabeth L.;

Disfani, Vahid R.; Kleissl, Jan. The dissertation author is the primary investigator and

author of this article.

Chapter 3, in part, is currently being prepared for submission for publication of

material. Babacan, Oytun; Hanna, Ryan; Abdulla, Ahmed; Kleissl, Jan; Victor, David.

The dissertation author is the primary investigator and author of this article.



Chapter 1

Heuristic Optimization to Optimize
Energy Storage Sizing and Siting on
Distribution Feeders

1.1 Introduction

Grid-connected solar photovoltaic (PV) is among the fastest growing renewable

power generation technologies. Estimated global capacity additions for solar PV exceeded

40 GWdc in 2014 of which 6.2 GWdc PV installations happened in the United States.

Approximately 20% of U.S. installations were residential PV (REN21, 2015; GTM

Research and SEIA, 2015).

In the face of widespread distributed solar PV adoption, existing distribution

systems are often not ready for such transformation. Distribution systems are traditionally

structured and operated assuming power flowing from the distribution substation towards

commercial and residential customers. As penetration levels of PV increase power flow

direction can reverse, potentially causing power quality, protection, and reliability issues

due to local and intermittent electricity generation during daytime.

Commonly observed impacts with grid-connected solar PV include over-voltage

issues at the network connection points, voltage fluctuations due to intermittent local

power injections, and reversed power flow from load points. Baran et al. (2012) provides

3
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a comprehensive reference on operation and protection issues on distribution systems

under high PV penetration.

In most distribution systems, on-load tap-changing transformers (LTC) at the

substation are used to control the network voltage magnitude within permitted limits.

Traditionally, the DSO sets the tap setting of the distribution transformer sufficiently

high to ensure voltage at a feeder’s end is within limits (Carvalho et al., 2008). However,

high PV output usually coincides with low residential load demand—typically during

the middle of the day. This coincidence can cause voltage excursions at the end of

the feeder exceeding acceptable limits. Therefore, as PV penetration in a distribution

network increases, one single tap setting or even one single voltage regulator is unlikely

to maintain acceptable voltage quality at the end of a feeder. In addition, passing clouds

can cause PV generation to drop significantly and hence voltages to drop as well since PV

output is no longer increasing the voltage level. This intermittent nature of PV generation

can cause fluctuating voltages.

In addition, LTCs have a delay. They depend on mechanical devices that switch

between taps to change the effective transformer turn ratio while maintaining a continuous

current path—a sequential tap-change process that requires several seconds to move

each tap. Therefore, these devices are not suitable for addressing fast-occurring voltage

fluctuations (Baran and El-Markabi, 2007; Kabiri et al., 2014). Furthermore, voltage

regulators on the distribution circuit usually depend on the local current measurements to

estimate the voltage drop downstream on the feeder. When a significant part of the load

on a feeder is supplied by local power generation, conventional voltage control cannot

be executed effectively without additional measurements from the feeder (Baran and

El-Markabi, 2007).

Addressing these technical issues usually requires costly distribution reinforce-

ments. Nevertheless many technologies available today, such as smart inverters and
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battery energy storage systems (BESS), are able to mitigate many of the adverse impacts

of distributed solar PV penetration. Most methods to buffer PV impacts on distribution

systems utilize real power and/or reactive power injections or absorptions (Alam et al.,

2012).

This work addresses the “BESS allocation problem”—that is, the issue of locating,

and sizing BESS—to reduce voltage fluctuations caused by distributed PV through real

power injections and absorptions by BESS. Optimal allocation and operation of these

systems is an important task in distribution system engineering since deployment of

these systems is capital intensive. The solution space of BESS allocation in distribution

systems is fairly large and discontinuous. This optimization problem is usually nonlinear,

stochastic, highly constrained, multi-objective and multi-modal (Moradi and Abedini,

2012; Morvaj et al., 2016). Hence the optimization problem in hand is hard to solve. An

exhaustive enumeration of all possible solutions is guaranteed to give an optimal solution,

but the size of the problem makes this approach computationally prohibitive.

As an alternative to prohibitive exhaustive methods, heuristics are a class of

search methods that consist of sets of rules for deciding how the search will be done in a

search space to find the global optimal value. Population-based stochastic optimization

techniques such as Genetic Algorithms (GA) are an accepted and widely used method in

literature to model distributed generation (DG) and BESS allocation optimization (Celli

et al., 2005; Borges and Falcão, 2006; Chen et al., 2011; Moradi and Abedini, 2012).

Their ability to form a diverse solution set via an iterative solution process makes these

techniques capable of coping with large and discontinuous search spaces. Therefore, in

this work a GA-based bi-level optimization method for BESS adoption is formulated

to minimize voltage fluctuations in a distribution network caused by intermittent solar

PV systems. The goal of this work is to understand the benefit of BESS in distribution

networks with high PV penetration. A particular interest is to understand how sizing and
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siting influence the overall benefit of BESS.

There have been several attempts to investigate aspects of sizing and siting

problems. Many of the works (Celli et al., 2009) primarily focus on direct economic gains

such as minimizing the electrical network losses without considering ancillary BESS

services and many others (Atwa and El-Saadany, 2010) often do not use a formulation that

solves siting and sizing problem simultaneously. Moreover, studies utilizing stochastic

methods (Moradi and Abedini, 2012; Chen et al., 2011) usually lack validation studies to

showcase the performance of their algorithm in finding near-optimal (“good”) solutions.

This study contributes to the literature by providing a methodology and analyses to

overcome these drawbacks by formulating an objective function that is based on the

trade-off between costs associated with sizing and siting of BESS and grid health benefits

gained through mitigation of voltage fluctuations. In addition, the work presented here

includes a detailed validation study to showcase the algorithm’s ability to reach global

optimality.

1.2 Methodology

1.2.1 Problem formulation

The optimization goal in this study is to effectively site and size BESS for

a distribution system to mitigate voltage fluctuations caused by distributed solar PV

systems. The scenario can be summarized as following: In a given distribution system,

customers are adopting solar PV systems, so planners need to decide where a BESS

should be located (siting) and what capacity of a BESS would be needed at that location

(sizing) to mitigate voltage excursions caused by the newly adopted solar PV systems.

This scenario is referred to as the “allocation problem” throughout the paper. Without

loss of generality, we assume the following conditions to set up the allocation problem:
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• Solar PV is allocated randomly within the distribution system. Its power rating

is sized to the peak demand of the customer at the installation point. Existing

systems are kept fixed and new systems are randomly added to other locations to

accommodate higher PV scenarios.

• The Global Horizontal Irradiance (GHI) profile of each PV system follows a single

global GHI curve (spatial uniformity in solar resource).

• The load profile of each customer follows a global demand curve. (spatial unifor-

mity in demand)

• The reference distribution system is assumed to have no BESS.

• BESS installations are restricted to primary lines in the distribution network.

• A perfect daily forecast for solar and load profiles is input into the optimization

(i.e., perfect information). No forecast errors are taken into consideration in order

to decouple the performance of the allocation algorithm from the performance of

the BESS dispatch routine, which, in turn, is sensitive to forecast errors (Hanna

et al., 2014).

• Each BESS starts the day with 20% state of charge (their reserve energy) and

returns to that reserve energy at the end of the day. This ensures that no energy-

shift occurs between days, possibly creating a benefit bias in multi-day simulation

results compared to single-day simulation results.

• The dispatch signal for energy charge/discharge is optimized for system-level peak

demand reduction, i.e. it is identical for all BESS.

• Existing voltage regulators and capacitors operate with respect to their usual

operation parameters.
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These assumptions change the final siting and sizing decisions, but do not affect the

working principles of the algorithm.

1.2.2 Objective function

The optimization is formulated with two decision variables: BESS capacity and

network installation node. The term “BESS configuration” herein refers to a set of BESS

fleet configurations determined by these two decision variables. The single objective

optimization is then expressed as:

max λcost ·V̄dev-reduction , (1.1)

where

λcost = f (ns,ks) ,

V̄dev-reduction = f (ns,ks) ,

and such that ns is a set of nodes li in a distribution system with m number of BESS,

i.e. ns = {l1, . . . , lm},∀li ∈ IN>0, ks is the set of the energy and power ratings ki of each

respective BESS1, i.e. ks = {k1, . . . ,km},∀ki ∈ IR>0, and both sets belong to the set

C that contains all possible combinations of set of values, i.e. {ns,ks} ∈C(Nall,Kall).

V̄dev-reduction quantifies the reduction in total voltage fluctuation achieved through adoption

of the BESS fleet configuration. λcost is a multiplier that penalizes the objective function

for large aggregate system capacity and large total number of systems in the BESS fleet

configuration. In the following section these two objective terms are further detailed.

1For the remainder of this work energy and power ratings of each BESS will be considered equal and
the energy rating will be referred as BESS capacity in kWh.
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Calculating voltage fluctuations at local PV generation nodes

Voltage fluctuations are caused by local variations in power supply and/or demand.

A literature review reveals a wide variety of metrics to calculate voltage fluctuations. To

the knowledge of the authors, there is no consensus for quantifying voltage fluctuation

impacts of DG (or BESS) in distribution networks. Several attempts to formulate voltage

quality indices and metrics can be found in Chiradeja and Ramakumar (2004); Moradi

et al. (2015); Moradi and Abedini (2012); Nick et al. (2014). These formulations include

either computing the difference between fixed reference voltage or computing a voltage

index by dividing voltage at each bus with and without distributed generators. Our

formulation, which is partially inspired from such literature, focuses on voltage impacts

from PV generation at each PV interconnection point and is presented here.

The voltage fluctuation caused by solar PV is measured at each distribution

system node n against a reference voltage V ref = 1pu that is independent of time step i or

node n —i.e. the reference voltage is permanent and uniform. The voltage fluctuation is

computed at all nodes based on this per unit voltage difference:

∆V pv
n,i = |V

pv
n,i −V ref| ,

∆V pv+es
n,i = |V pv+es

n,i −V ref| .
(1.2)

At each time step i, the voltage fluctuation at each node n in the pv case is ranked

based on magnitude—from highest to lowest per unit voltage difference: |∆V pv
n,i |ranked .

The top of this ranked node set for the pv case is designated as “critical nodes”. That

sorted order is then applied to the pv+es case to obtain the voltage variation at the same

nodes: |∆V pv+es
n,i |ranked . The number of critical nodes ζ is selected to be equal to the total

number of installed PV systems in the network.

The objective function considers only these critical nodes so that the voltage
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fluctuation metric is not averaged out by less-effected nodes (typically located far from

PV systems) and BESS siting is more strongly coupled to the largest points of fluctuation.

Voltage fluctuation rankings are re-evaluated at each time step. Thus, the critical node

designation changes as different nodes of the distribution system are getting impacted

differently during the day. In this way, the objective function aims to diminish the extreme

fluctuations among all of the nodes during the course of the day.

The effect of the BESS fleet is calculated by taking the ratio of root mean square

differences from Vre f for the pv and pv+es cases. The resulting ratio is subtracted from

unity so as to produce positive values in the case when BESS improves the voltage profile

—i.e. when its operation reduces the voltage fluctuations. The summation of this value

over the scheduling horizon of 1 day gives the total improvement (positive value) or

adverse impact (negative value) of the BESS fleet:

V̄dev,reduction =
T

∑
i=1

( V pv
dev,i

V pv+es
dev,i

−1
)
, (1.3)

where V pv
dev,i =

√
1

ζ−1

ζ

∑
n=1

(V ∗pv
n,i −V ref)2, V pv+es

dev,i =

√
1

ζ−1

ζ

∑
n=1

(V ∗pv+es
n,i −V ref)2 at each

time step i, V ∗pv
n,i and V ∗pv+es

n,i are the ranked node sets for pv and pv+es cases at each time

step i and ζ is the number of critical nodes.

The implementation of Eq. (1.3) is illustrated in Fig. 1.1. In the pv case solar

PV systems generate power according to the solar power profile shown and inject real

power locally. The pv+es case is then calculated according to the given BESS charge

and discharge signal. Finally, the resulting Vdev values of each case are used to compute

V̄dev,reduction given in Eq. (1.3).
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Figure 1.1. Overview of a typical daily simulation. The simulation shown has 50% PV
penetration on a partly cloudy day (February 16th, 2014) (top) Aggregate net demand
(Load minus PV minus BESS) and solar power generation. (middle) Cumulative BESS
state of charge and charging and discharging signals. (bottom) Voltage fluctuation of pv
only and pv+es cases calculated with respect to 1pu.

Assessing the economic performance of the fleet

A qualitative BESS cost model enters the objective function as a multiplier, λcost,

that penalizes larger BESS capacity and more BESS sites. λcost represents capital costs

qualitatively but could be also reconfigured into a monetized cost model that reflects

specific market characteristics. Since dispersed large BESS fleets better mitigate the

local voltage fluctuations than centralized small BESS fleets, λcost introduces a trade-off

between the benefit of voltage fluctuation support and the cost of introducing more and/or

larger BESS into the circuit.

The cost model is expressed as:

λcost(ns,ks) =
( p0

lks

)c1− c1 · p1(lks− p0)− c2 · (lns−1) , (1.4)
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where p0 is the smallest permissible BESS capacity, p1 is a constant scaling and

also unit conversion parameter between kWh to MWh, c1 is the sizing cost parameter, c2

is the siting cost parameter, lks is the total installed BESS capacity in kWh and lns is the

number of BESS installed. The behavior of λcost is illustrated in Fig. 1.2.

The reference point of the cost model case λcost(1, p0) = 1 is a single BESS

installed with the smallest permissible capacity. In relative to this reference point, the

cost model then penalizes the objective function with increasing BESS capacity and

increasing number of BESS installations.

The first two terms in Eq. (1.4) penalizes the objective function for larger

aggregate BESS capacity. As lks increases, λcost decreases, reflecting the increasing

capital cost of installing larger BESS. The first term (black dashed line in Fig. 1.2)

represents an increasing scale of operation in capacity where marginal capital cost is

decreasing when larger BESS is purchased, i.e. decreasing marginal cost of adding.

As lks gets very large, the per unit cost of additional units becomes constant due to a

minimum expenditure required independent of the quantity purchased, i.e. constant

marginal cost of adding.. This behavior is captured by the second term (cyan dashed line

in Fig. 1.2)

The last term in Eq. (1.4) penalizes the objective function for having more BESS

installations in the circuit. Unlike the first and second terms explained above, the siting

penalization is linear assuming land-of-use costs do not increase as some of available

sites are getting occupied and installation costs are constant per each additional BESS

site. The effect of the siting cost parameter is seen in Fig. 1.2 as blue lines extending

linearly below the purple line.
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Figure 1.2. Cost penalty multiplier λcost illustrated with the following parameters:
p0 = 500 kWh, p1 = 10−4,c1 = 0.060,c2 = 0.001. The larger λcost the lower the cost.
Cumulative BESS capacity is varied between 0 MWh and 15 MWh, which is the typical
range for the IEEE8500 case study simulations. The purple line shows the centralized
case with a single BESS location resulting in the lowest cost possible for each BESS
capacity and neighboring parallel blue lines show increased penalty as the number of
BESS installations are increased from 10 to 50 by 10 increments. The black and cyan
lines depict the 1st and 2nd term of Eq. (1.4), respectively.

Constraints

There are two sets of constraints used in this study— one for main level optimiza-

tion and the other for the secondary level optimization. Main level constraints are defined

as: (1) set of nodes in distribution system where it is permissible to install a BESS and

(2) the smallest permissible BESS capacity per node, i.e. the resolution of BESS capacity.

The secondary level constraints consist of the BESS constraints; i.e. capacity, initial state

of charge, state of charge limits, maximum discharge rate and minimum charge rate.
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1.3 Implementation of the allocation problem

1.3.1 Overview of the implementation

The allocation problem is structured as a bi-level optimization (Figure 1.3). The

overview of the model is given in Fig. 1.3. The main level conducts the siting and sizing

optimization of the BESS fleet, while the secondary level conducts the operational opti-

mization of each BESS. A GA is formulated to cope with the combinatorial complexity

of the allocation problem.

Figure 1.3. Bi-level optimization method overview. The main level algorithm optimizes
the allocation of the BESS fleet. At the step where the current population is decoded,
each solution set is sent to the sub-level optimization where BESS dispatch curves are
determined for each BESS available. The power flow analysis is then conducted using
these BESS dispatch curves and the power flow metrics are passed back to the main
level optimizer to evaluate the fitness value of each solution. The main level algorithm is
executed in loops until a termination condition is reached.
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In the secondary level the operating schedule of each BESS is determined by a

linear programming (LP) routine that minimizes the daily non-coincident peak demand

(Hanna et al., 2014). Example dispatch signal for a given demand and solar power

profile is illustrated in Fig. 1.1. Power flow simulations are conducted using OpenDSS

(Electric Power Research Institute, 2008), an open source electric power distribution

system simulator.

1.3.2 Formulation of the Linear Program

The LP routine used in the bi-level optimization method receives solar power and

load forecasts as its inputs and sets a load demand target. The primary goal of the LP is

the daily minimization of peak non-coincident demand.

The load demand target is to minimize demand using solar PV and BESS adjusted

throughout the day in response to forecast error. In this study, solar PV power and load

data are provided to the LP routine as perfect forecasts, and consequently BESS dispatch

is not affected by forecast error. The mathematical formulation of the LP is as originally

presented in Hanna et al. (2014).

1.3.3 Formulation of the Genetic Algorithm

GA is a stochastic and iterative global search method. GAs are well-suited to

solving discontinuous functions, and hence the allocation problem in this work. In the

following sections the details of the GA formulation developed in this work will be given

along with several fundamental GA terminology in order to help readers with limited

familiarity with GA.

The GA routine starts with an initial collection of potential solutions P0 =

{x0
1, . . . ,x

0
n}, i.e. an initial population. This initial population will produce new col-

lections, generations, throughout the optimization procedure with some transition rule
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τ in an iterative manner: P0
τ−→ P1

τ−→ P2
τ−→ . . .. The resulting generations will be rep-

resented as Pt = {xt
1, . . . ,x

t
n} where t is the iteration step. Each solution xt

i is evaluated

with respect to the objective function of the problem. This value, called the fitness value,

is a measure of fitness for each solution. Then, a new collection of solutions, a new

generation, is formed by selecting the fitter solutions, i.e. fitter individuals, by means of

genetic operators –selection, recombination and mutation– until the algorithm converges

to a final solution. The combination of these genetic operations is considered as the

transition rule τ . Since genetic operators are in general nondeterministic, simulations

with identical initial conditions may not result in the same outcome. The GA iterates

until a preset termination condition is reached. The GA formulated in this study consists

of recipes for a classical genetic algorithm. The complete set of recipes are as follows:

method of representation, method of selection, method of recombination, method of

mutation, method of termination. The following section explains each of these in turn.

The notation used in this section is drawn primarily from Back (1996); Vose (1999);

Rothlauf (2006).

Method of Representation

GA works in a genotypic domain to which potential solutions are uniquely mapped

using an encoding alphabet. This encoding alphabet is binary in this study. All genetic

operations are done in this genotypic domain. The solutions are then decoded into the

phenotypic domain to obtain their fitness values. In our study, the phenotype - genotype

mapping transforms BESS energy and power ratings into binary strings. All binary

strings are then aggregated into a single binary string while preserving the network node

location information appropriately.

Mathematically, each integer value of BESS capacity xp ∈{1,2, . . . ,BESSrating,max}

is represented by a binary string xg of length l = log2(BESSrating,max). The genotype -
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phenotype mapping Jg is then defined as

xp = Jg(xg) =
l−1

∑
i=0

2ixg,i, (1.5)

where xg,i denotes the ith bit xg.

The binary representation of integer values limits the GA search to discrete

grid points in the continuous solution space. In our allocation problem, the integer

representation implies that BESS ratings are discretized in 1 kWh/1 kW increments,

which is a sufficiently high resolution for the nature of the problem.

Method of Selection

GA formulations utilize either a proportional or a ranking selection scheme.

Proportional selection scheme mechanisms fail in presence of negative fitness values

and thus require an additional scaling operation before selection. However, this scaling

technique might in return manipulate the selection probabilities of individuals (Vose,

1999). Since the objective function proposed in this study can compute negative fitness

values, a ranking selection scheme is chosen over proportional.

Tournament selection is utilized as it has been proven to work well (Srinivas and

Deb, 1994; Horn et al., 1994). In tournament selection, a tournament between u randomly

chosen different individuals is held and the fittest individual is chosen with a probability

ps. After v tournaments of size u, the mating pool is formed. Here, a tournament selection

with replacement is being used, i.e. all individuals in the population are considered for

every tournament regardless of the fact that they might have been chosen before. After v

tournaments the mating pool is filled with n individuals. The selection in this study is

stochastic, i.e. ps is not equal to 1 and individuals with smaller fitness values can be still

chosen over the others. This ensures that the population is diverse over many generations

and avoids premature convergence to a local solution.
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Method of Recombination

One of the main principles of GA is explained by the Schema Theorem. In

simple terms, the short useful information segments, so called building blocks, of earlier

solutions might lead to longer information segments of high fitness values in later

iterations (Mitchell, 1998). This idea can be easily extended to the allocation problem.

Certain nodes in distribution systems (short useful segments in genotypic representation,

i.e. bit strings) are favorable for BESS over other nodes. The solutions with these nodes

are likely to have a higher fitness value than solutions that lack these nodes. By passing

these favorable nodes to new candidate solutions, an overall good solution is expected to

emerge in later generations.

The recombination ensures this crucial exchange of building blocks between

different individuals. In this study, among two randomly selected solution sets xp1 and

xp2, the uniform crossover operator chooses whether the selected solution sets should

exchange information with a probability pc. An exchange swaps the bit i between both

individuals until each bit i is processed:

xp1 = (x′g,1, . . . ,x
′
g,i, . . . ,x

′
g,l) ,

xp2 = (x′′g,1, . . . ,x
′′
g,i, . . . ,x

′′
g,l) ,

(1.6)

and

xc1,i =


x′g2,i, if χi > pc

x′′g1,i, if χi ≤ pc

,

xc2,i =


x′g1,i, if χi > pc

x′′g2,i, if χi ≤ pc

,

(1.7)
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where ∀i ∈ {1, . . . , l} and χi ∈ [0,1] denotes a uniform random variable generated for

each bit. The result of the recombination is two new child individuals, xc1 and xc2,

created by crossing over two parent individuals, xp1 and xp2, selected at random from the

population.

Method of Mutation

The mutation operator occasionally disturbs the bit structure of randomly selected

individuals. This random process introduces significant changes in a few individuals in

hopes of exploring other yet unknown parts of the search space. If the change improves

the fitness value of the individuals they are likely to be passed to emerging generations.

This operator helps the GA routine to avoid getting stuck at only locally optimal regions

of the solution space.

In this study, the mutation operator goes over each bit of an individual and applies

a bit inversion with a probability pm. Each bit string x′g of the new individual is:

x′g,i =


xg,i, if χi > pm

1− xg,i, if χi ≤ pm

, (1.8)

where ∀i ∈ {1, . . . , l} and χi ∈ [0,1] denotes a uniform random variable generated for

each bit.

Method of Termination

The following termination or convergence criteria are used for the simulations:

• The total number of new populations reaches a preset limit.

• The fitness remains the same for a preset number of generations.
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• The siting decision remains unchanged for the fittest individual for a preset number

of generations.

1.3.4 Parameterization of the GA

GA parameters are determined following common practice in the literature and

later calibrated by numerous tuning simulations tailored for our algorithm. The tuning

simulations are conducted by running simulations with all possible parameter combina-

tions within permissible ranges while observing which combination of parameters results

in the best performance. This section lists all parameters required to reproduce the GA

routine.

The GA routine initializes 120 solution sets, or individuals, by uniformly dis-

tributing the number of BESS (a maximum of 7) and the cumulative BESS capacity

(the initial maximum capacity equals to the total PV system capacity in kVA) in the

fleet. These systems are then sited randomly among permissible nodes. The optimization

routine does not restrict the rating of BESS that might be installed in the circuit. If

favorable, the solution space may expand into larger BESS capacities compared to the

initialization.

At each iteration, or generation, simulations for each individual are done using

the solar irradiance time-series based on the weather condition of the simulation day.

After computing the fitness value of each individual, the whole generation undergoes the

GA operators: selection, crossover and mutation.

This study uses 2% elitism, i.e. in each generation, the fittest 2% of the individuals

are guaranteed to pass to the next generation without being exposed to any of the genetic

operators including mutation. The parameters in the tournament selection are set as the

selection probability ps = 0.80 and the tournament size u = 2.

Parameterized uniform crossover with a swapping probability pc of 0.50 is ap-
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Table 1.1. The results of the sensitivity simulations for varying PV penetration levels
and the sizing and siting cost penalty parameters. The scenario column indicates the
type of sensitivity study and the diamond symbols (♦) indicate the reference simulation
with the default parameters that are kept the same across the 3 scenarios. LALL lists the
aggregated BESS fleet capacity. # indicates the number of BESS installed. For each
simulation type, the mean and standard deviation of BESS capacity in MWh are shown
for each permissible distribution system node Li among 5 representative final result, i.e.
the best solution of 5 representative simulation. L1, L2, L4 and L5 are not shown here as
they were not chosen for BESS procurement during these simulations.

Scenario Variable LALL BESS# L3 L6 L7
PV penetration PVP
Low 10% 5.8 ± 0.0 1 - 5.8 ± 0.0 -
Moderate 25% 10.3 ± 0.1 2 - 5.2 ± 0.3 5.1 ± 0.3
High ♦ 50% 15.0 ± 0.2 2 - 2.5 ± 0.5 12.5 ± 0.7
Cost of Sizing c1
Low 0.040 17.3 ± 0.1 3 1.1 ± 0.1 1.5 ± 0.5 14.8 ± 0.8
Moderate ♦ 0.060 15.0 ± 0.2 2 - 2.5 ± 0.5 12.5 ± 0.7
High 0.140 8.8 ± 0.1 1 or 2 - 1.4 ± 1.3 7.4 ± 1.4
Cost of Siting c2
Low ♦ 0.001 15.0 ± 0.2 2 - 2.5 ± 0.5 12.5 ± 0.7
Moderate 0.025 15.2 ± 0.4 1 or 2 - 1.6 ± 1.4 13.7 ± 1.7
High 0.050 15.4 ± 0.2 1 - - 15.4 ± 0.2

plied for recombination. As first part of the mutation, 10 new randomly generated

individuals are introduced in each generation. Random individuals are created, similar

to the initialization, by uniformly distributing the number of BESS and the cumulative

BESS capacity (maximum capacity equals total PV system capacity in kVA) in the fleet.

After 10 generations, the mutation operation switches to an uniform bit string mutation

with a probability pm of 0.010.

1.3.5 Test circuit and data sources

The IEEE 8500-Node test feeder with balanced 120 V secondary loads on the

service transformers is chosen as the benchmarking circuit. This circuit is a radial

distribution feeder with multiple feeder regulators and capacitors (Arritt and Dugan,
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2010) and is a suitable test feeder to assess the proposed algorithm as it is similar to a

large feeder with many typical elements found in a residential distribution feeder.

The PV generation fleet is assumed to be composed of distributed rooftop systems

located in direct proximity (i.e. secondary side of the service transformer) to respective

load points. For each level of PV penetration, PV systems are sited randomly among the

load points of the circuit until the desired penetration is reached. The initial PV system

allocation is kept fixed for increased levels of PV penetration. Each system is specified

to have a capacity equal to the peak demand of that bus.

Testing and demonstration of the algorithm is carried out using 15 minute resolu-

tion demand and solar generation data. Generic demand profiles for residential buildings

in San Diego are imported from the dataset provided by Open Energy Information (Open

Energy Information, 2014). PV power output data from 2014 are collected from a real

PV systems located at the campus of University of California, San Diego campus. The

PV system tilt angle and azimuth angles are 20◦ and 180◦ (due South), respectively.

1.4 Validation of the implementation

1.4.1 Validation approach

The goal of the validation is to understand the shape of the solution space and

determine whether the GA routine can successfully identify the global peak region within

this solution space. Exhaustive enumeration systematically computes the fitness values

of all possible BESS fleet combinations among all permissible nodes but with a limited

BESS capacity resolution at each permissible node. If this BESS capacity resolution

was set to 1 kWh/1 kW increments at each permissible node, exhaustive enumeration

would include all BESS fleet possibilities among which the GA routine is searching.

However, this search space for exhaustive enumeration is computationally too costly.
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Thus, a coarser BESS capacity resolution at each permissible node is determined so that it

is computationally feasible to run enough exhaustive enumeration to explore the solution

space at meaningful intervals. The resulting exhaustive enumeration approximates the

real solution space with an acceptable degree of uncertainty.

In specific the capacity for each BESS is only allowed to change in large incre-

ments and siting is restricted to 7 nodes. The increments for each case are determined by

dividing the total BESS capacity by the number of permissible nodes. Furthermore, the

GA binary representation is also restricted to approximate similar incremental changes

to that in the exhaustive enumeration. The details of this validation approach are given

below.

The allocation problem in hand is analogous to the act of distributing a certain

amount of balls into boxes. In this case, balls are BESS capacity that is to be allocated

among certain network nodes, i.e. boxes. Then, the numerical burden of this prob-

lem equals to the total number of ways of distributing k balls into n boxes times the

computation time per simulation. The following conditions are defined to complete the

framework:

• Balls are indistinguishable from each other, i.e. they are identical. Similarly,

BESS capacity is distributed among network nodes indiscriminately since BESS

technology does not differ.

• Boxes are distinguishable from each other, i.e. the installation node of each BESS

is important to distinguish in the allocation problem.

• Each box may contain more than a single ball, i.e. certain network nodes might

have higher BESS capacity than the others.

• Some boxes may not receive a ball, i.e. certain network nodes might not be selected

for any BESS installation during optimization.
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Given the conditions above, the total number of permutations for allocation are

C(n,k) =
(n+ k−1)!
(n−1)! · k!

. (1.9)

This relation reveals the numerical complexity of the exhaustive enumeration.

For the validation, the number of network nodes n can be chosen randomly as

long as it is sufficiently numerous to avoid bias towards better performance. Example

giving, limiting the number of available nodes to 2 or 3 locations would statistically

increase the chances that the GA finds the optimal solution. On the other hand, increasing

the number of nodes significantly increases the total required number of simulations.

Considering this numerical trade-off, installations are limited to 7 network nodes in the

benchmark network. The location of these nodes can be randomly picked as long as they

are sufficiently distant from each other. The chosen node locations are shown in Fig. 1.4.

Validation simulations are conducted on the IEEE 8500-Node test feeder. For

each BESS fleet capacity ranging from 5 MWh to 20 MWh the complete set of allocation

possibilities is determined using the relation given in Eq. (1.9). The BESS capacity

resolution is determined for each BESS fleet capacity by dividing the BESS fleet capacity

by the number of permissible (7) nodes. Thus, the resolution for exhaustive simulations

ranges from 714 kWh (in 5 MWh case) to 2857 kWh (in 20 MWh case). In contrast, the

GA simulations have a constant finer BESS capacity resolution of 64 kWh.

1.4.2 Method validation results

The resulting maximum fitness value front of the solution space is shown in

Fig. 1.5. The maximum fitness value front has a global maximum near 15.2 MWh

with a fitness value of 4.40 and a local maximum near 17.5 MWh with a fitness value

of 4.33. The best solutions determined by the 5 example GA simulations are shown
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Figure 1.4. 7 distribution system nodes are chosen in the IEEE 8500-Node test feeder
for validation studies. The node names are as follows; L1: M1009784; L2: M1027011;
L3: M1026709; L4: M1047513; L5: M1069417; L6: E182748; L7: M1089145. The
original IEEE 8500-Node test feeder used for the benchmarking studies for the allocation
optimization method is described in Arritt and Dugan (2010).

in Fig. 1.5 as red crosses. The GA implementation is successful as each simulation

identifies the region with the global maximum fitness (Fig. 1.5). The fitness values found

in the GA simulations are larger than in the exhaustive simulation which is due to the

finer BESS capacity resolution in the GA. The validation shows the success of the GA

routine in arriving at the right sizing decision for the BESS fleet. A decisive conclusion

on the validation also requires proof for consistent siting decisions among all of these

simulation.

Figure 1.6 shows the location of each BESS installation decision made in the

validation simulations. In all simulations the GA routine consistently converges to the

same nodes, namely L6 and L7. The aggregate BESS capacity of each solution are

consistent (see also Table 1) but individual decisions on different nodes differ indicating

that similar cost-benefit relations can be achieved with slightly different combinations.

The box plots of initial BESS capacities for each location demonstrate that results are

insensitive to the initial conditions. For example, for node L7 only two outliers out of a
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Figure 1.5. The maximum fitness values obtained for exhaustive enumeration. The
resolution of the BESS fleet capacity within the gray box is 0.1 MWh, and 0.5 MWh
elsewhere. The exhaustive enumeration peaks at 15.2 MWh with a fitness value of 4.40.
The 5 example GA simulations shown here identified the best solution as 14.91 MWh
with 4.42, 14.98 MWh with 4.43, 15.04 MWh with 4.43, 15.10 MWh with 4.43 and
15.36 MWh with 4.43. The respective siting decisions for these GA simulations are given
in Fig. 1.6.

total of 600 initialized solutions have matching BESS capacities with the final decision.

Moreover none of the initialized solutions have the exact combination of the final decision

set, i.e. BESS installations only at L6 and L7. All of these arguments indicate that the

proposed GA algorithm is able to make consistent siting decisions that also maximize

the fitness value of the given objective function.

1.5 Sensitivity studies

Sensitivity studies are run for varying PV penetration levels as well as sizing and

siting cost penalty parameters. The results of the sensitivity simulations are presented in

Table 1.1. The simulations reached an optimal solution between 13 and 52 iterations. The

mean of number of iterations until termination was 29.5 among all simulations. Figure

1.8 shows the mitigation of voltage fluctuations achieved in each scenario. The decrease
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Figure 1.6. Comparison of method validation simulation initializations and results by
BESS node. Box plots on the left side of each bracket show initialization for BESS
capacities of 5 simulations. Red horizontal bars indicate the medians and red plus signs
mark the outliers. On the right side of each bracket the final GA results are shown.
There are no BESS installed at the nodes #1 through #5 (shown as red cross marks on
the x-axis). Each individual GA simulation result for nodes #6 and #7 is shown with a
different symbol and color.

in voltage fluctuations varies among scenarios considered. However, in all scenarios

adopting BESS in the distribution system has a clear benefit in voltage mitigation.

The goal of these simulations is to understand whether the GA response to

the changes in several key parameters is reasonable and to investigate the importance

of these parameters for applications. Default parameters for the sensitivity study are

given in Section 1.3.4. All simulations use these default parameters with the exception

of the parameter under focus as indicated in the “Variable” column of Table 1.1. A

representative sizing and siting result is shown in Fig. 1.7.

The top section of Table 1.1 shows that as PV penetration increases the aggregated
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Figure 1.7. IEEE8500 test feeder one-line diagram and siting results of a representative
simulation with 50% PV penetration for February 16th, 2014 (a partly cloudy day). The
scenario is ”Low cost of sizing” in Table 1.1 (First row of the middle section). Locations
of proposed BESS units are marked with filled purple circles. Orange dots show loads
with PV and black dots show load points without PV. Each dot is sized with respect to
the capacity of the component.

BESS capacity, LALL, also increases. While the maximum number of nodes at which

BESS can be installed is physically restricted by the permissible node set, the BESS

capacity at each node is unlimited and a function of the cost-benefit relation. The

observed BESS capacity increase is less than linear with increasing PV penetration.

Increasing the sizing cost penalty parameter results in a decrease in the aggregated

BESS capacity, LALL, as expected. We also observe a decrease in the number of BESS

installed in the distribution system. This change in decision is linked to the fact that even

though there are many locations that could benefit from BESS, as the procurement of

BESS becomes expensive, the less critically affected node L3 is no longer supported.

Instead, L6 and L7 are supported as much as possible with the available BESS in hand.

The bottom section of Table 1.1 investigates the effect of the siting cost parameter.

Increasing the siting cost penalty parameter decreases the number of BESS installed
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Figure 1.8. The mitigation of voltage fluctuations in the distribution system through
BESS adoption under different case study scenarios. ∆Vdev is the difference of voltage
fluctuations of pv only and pv+es cases as shown in Figure 1.1. ∆Vdev > 0 indicates
BESS operation increases the voltage fluctuation and ∆Vdev < 0 indicates BESS operation
mitigates the voltage fluctuations in comparison to pv only case. Each box plot is drawn
for data sets covering all 5 final results presented for each case study scenarios in Table
1.1.

in the distribution system. This parameter does not have a significant impact on the

aggregated capacity of the BESS fleet. As siting-related expenses become prohibitive,

only the most affected node(s) receive a BESS. A small increase in the aggregated BESS

capacity is observed as the fleet becomes centralized since the cost reduction obtained

from centralization can be spent in increased BESS capacity.

These three sensitivity studies show that the optimization results qualitatively

follow the design goals of the objective function given in Eq. (1.1).

1.6 Conclusions

This work described a methodology to optimally allocate utility-scale BESS to

support high penetration solar photovoltaic integration in the distribution systems. The

developed model consists of a genetic algorithm based bi-level optimization method that
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dispatches each BESS for peak demand reduction. In practice technical, environmental or

human factors greatly limited the eligible locations for utility-owned or operated BESS.

The optimization algorithm can easily be modified to only accept a subset of the network

for BESS siting and returns the feasible siting options and proper BESS sizing for the

given permissible node set, demand and solar profiles, and the level of PV penetration in

the circuit.

Benchmarking was carried out on the IEEE 8500-Node test feeder. The proposed

method provides consistent solutions that appear to be optimal according to a validation

against exhaustive enumeration of a simplified case. The simulations using a limited set

of permissible system nodes successfully converge to consistent final solutions, both in

sizing and siting.

The text and data in Chapter 1, in full, is a reprint of the material as it appears in

“Siting and sizing of distributed energy storage to mitigate voltage impact by solar PV in

distribution systems”, Babacan, Oytun; Torre, William, Kleissl, Jan, Solar Energy, 146

(2017), 199-208. The dissertation author is the primary investigator and author of this

article.



Chapter 2

Convex Optimization to Schedule Dis-
tributed Energy Storage For Cost Mini-
mization and Ancillary Benefits

2.1 Introduction

Energy storage systems (ESS) are regarded as an enabling element of a future

low-carbon electric grid as they allow higher amounts of renewable energy on the grid

(DiOrio et al., 2015; de Sisternes et al., 2016). This stems, in part, from the operational

flexibility ESS offer grid operators facilitating the integration of intermittent wind and

solar power (Denholm et al., 2010). Increasing penetration of solar PV on the electric

grid requires a new planning paradigm for capacity resources, which have traditionally

been procured to meet system peak load and reserve requirements. Now, additional

capacity is needed to provide flexible generation for integrating variable generation as

well (Cutter et al., 2014). The proliferation of distributed ESS could provide this needed

flexibility for a transforming grid.

With the rapid growth in grid-connected solar PV, electric utilities are facing

stagnant electricity sales, particularly in the residential sector. This reduction in sales

reduces the utility’s ability to recover capital costs, which constitutes the majority of

their expenses (McLaren et al., 2015). At the same time, the PV system owners still rely

31
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on the grid for voltage and frequency control and for their night-time demand. They

also need the grid to receive the economic benefit from exporting excess generation.

However, as solar PV penetration in a distribution system increases, power flow direction

can reverse, potentially causing power quality, protection, and reliability issues due to

local and intermittent electricity generation during daytime (Baran et al., 2012).

Electric utilities might have difficulties addressing these problems without raising

electricity rates. The ESS owners could be incentivized to support the electric grid

through time-of-use tariffs and/or residential demand charges. Through demand charges

the ESS owners have the opportunity to reduce their electricity bills by managing their

demand and they also gain access to reduced electricity retail rates. In theory, demand

charges improve load factor, reducing the need for new infrastructure investment, and

result in an overall reduction in system costs. Residential demand charges are not a new

concept but its application has been rare in residential tariffs so far. (Hledik, 2014).

There is an extensive literature on ESS charge/discharge scheduling for residential

buildings that are coupled with a solar PV system. Several of these, e.g. (Moshövel et al.,

2015; Luthander et al., 2016; Ren et al., 2016a), focus on increasing the consumption of

solar PV generation locally and mitigating the peak power flows from and to the grid.

However, they do not consider a demand charge tariff.

There are also a number of studies that consider a demand charge in their schedul-

ing formulation. Geem and Yoon (2017) propose a population-based heuristic algorithm

that reduces peak net demand of the customer and on-peak electricity purchases. Zheng

et al. (2015) introduce a scheduling algorithm to reduce peak net demand and evalu-

ates the economical feasibility of different energy storage technologies. Gitizadeh and

Fakharzadegan (2014) formulate a Mixed Integer Linear Program (MILP) problem to op-

timize the capacity of ESS for peak net demand reduction and energy shifting. However,

these studies fall short of demonstrating a robust stand-alone scheduling algorithm since



33

Zheng et al. (2015) and Gitizadeh and Fakharzadegan (2014) use a scheduling algorithm

as a representative tool to investigate another research question, and Geem and Yoon

(2017) do not present a comprehensive validation study of the algorithm.

In this work we present a convex optimization (CO)-based scheduling algorithm

for distributed ESSs (Section 2.2) that incorporates both a time-of-use tariff and a demand

charge tariff. The objective of the algorithm is to provide financial benefit to the ESS

owner while inherently (1) reducing the peak net demand of the customer, (2) mitigating

power fluctuations in the customer net demand profile, and (3) increasing local PV

generation consumption for a co-located solar PV system. The ESS specifications, day-

ahead load and solar forecast and the electric tariff are sufficient to deploy the algorithm

on site. By means of a case study we benchmark the ability of the algorithm to minimize

cost, reduce peak net demand, and mitigate net demand fluctuations, and compare it

against two alternate methods proposed in the literature (Section 2.3 - 2.4).

In this work we also introduce a supply charge option in electricity rate offerings.

A supply charge provides an incentive to customers to either self-consume PV generation,

or to curtail their generation output when it exceeds their load requirements, thereby

reducing the reverse power flow in the distribution grid. We discuss its impact on the

grid, on the ESS cycling, and on the customer bill by comparing against a demand charge

only case (Section 2.4). Section 5 concludes the paper.

2.2 Problem Formulation

2.2.1 Notation

Herein IRs denotes s-dimensional vectors of real numbers, where IR1 = IR and

1 ∈ IRs≥0 denotes the all-1 s column vector of length s. s = 24h/∆t is the number of time

steps in a day-long charging schedule, where ∆t is the time-interval between consecutive
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time-steps k in hours. I denotes the identity matrix of size s and T = [ti j] denotes the

s-by-s matrix satisfying ti j = 1 for i≥ j and ti j = 0 elsewhere. We denote vectors in bold

and represent matrices using uppercase bold characters.

2.2.2 Customer System Configurations

We model four system configurations shown in Figure 2.1 for customer-owned,

grid-connected ESS, which might represent, for example, a residential household or a

commercial business. Configurations a and b consist of an ESS and a customer load

without PV. Configuration a prohibits the customer from selling electricity to the grid,

whereas configuration b compensates the customer at the retail rate for delivering energy

to the grid, thus allows energy arbitrage opportunities. Configurations c and d incorporate

a customer-owned, grid-connected solar PV system into the configurations a and b,

respectively. We assume customers with configuration c curtail solar PV generation when

their energy storage is full and the solar PV system generation exceeds load, i.e. when

net demand is negative.

For each system configuration, the power balance equation for the net demand

p(k) is given by

p(k) = l(k)−g(k)+ c(k)−u(k) (2.1)

for all time step indices k ∈ {1, ...,s}. All units are in kW. The average load of the system

over a period ∆t is l(k), the average solar PV generation is g(k), the average curtailed

solar PV generation is c(k), and the average ESS charge/discharge is u(k), where c(k) is

zero for all time steps k ∈ {1, ...,s} in configurations a, b and d, and p(k) is nonnegative

for all time steps k ∈ {1, ...,s} in configurations a and c.

The constraint p(k)≥ 0 depicts the scenario where there is no financial incentive

for energy to be sold to the grid. That is, in such cases curtailed solar generation c(k) is

equivalent to the excess PV generation that would have ordinarily been injected into the
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Figure 2.1. Configurations of the customer system under consideration. The average net
demand over a period ∆t is denoted p(k) with k being the time step index, and is positive
when flowing from the grid to the customer. The average ESS charge/discharge over ∆t
is denoted u(k), and is positive when discharging. The average load of the system over
∆t is l(k). The average generated and curtailed power from the solar PV system over ∆t
is g(k) and c(k), respectively.

grid but this supply would not result in financial compensation to the customer.

2.2.3 Regulation and Accounting

A customer is billed monthly based on kWh electricity consumption via a time-

of-use (TOU) tariff denoted by the length-s vector ΛΛΛe ∈ Rs. In addition, a net-metering

program is considered in configurations b and d, in which a customer receives compensa-

tion for exported electricity at a rate equivalent to the TOU tariff.

We use two additional tariff mechanisms: A demand charge denoted by the scalar
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Λd, and a supply charge denoted by the scalar Λs which is a new concept to regulate

reverse power flows. A demand charge prevents the customers from simply shifting

their on-peak demand to an off-peak period without reducing their peak demand and

encourages the customer to reduce their peak demand regardless of the TOU pricing

period.

A supply charge addresses the problem of excessive electricity sales to the grid

especially during solar peak hours. This rule provides an incentive to the customers to

either self-consume PV generation, or to curtail their generation output when it exceeds

their load requirements. The supply charge is a new concept motivated by PV export

being limited to a fixed fraction of PV capacity in some markets (e.g. Germany), but

provides an economic incentive to reduce exports rather than a strict rule. In what follows

a capacity charge (CC) combines both a demand charge and supply charge.

Without loss of generality, we assume here the supply charge tariff is equal to the

demand charge tariff. Then, the customer monthly peak net demand is subject to the CC

tariff Λ = Λs = Λd. The CC is based on the peak electricity supplied to the customer or

delivered to the grid across a month. That is, the customer’s largest absolute net demand

over each month is multiplied by the CC tariff Λ in the billing process.

2.2.4 Energy Storage System Model

We constrain the ESS charge/discharge uuu by B1 ≤ uuu ≤ B1, where B and B are

the discharge and charge power limit of the ESS, respectively.

The state of charge (SOC) is defined by

χ(k) := χ(0)−
s

∑
k=1

u(k)∆t, (2.2)

where χ(0) denotes the initial state of charge.
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The rated energy capacity of the ESS is represented by C in kWh. We represent

the minimum allowed SOC and the maximum allowed SOC of the ESS in kWh as C and

C, where C := 0 and C :=C. Note that C could be set to a fraction of C for a specific

energy storage technology that would otherwise degrade when fully discharged. It is

assumed here that the efficiency of the ESS is 100% and that degradation is negligible.

We assume each customer has an ESS with an identical storage capacity of 10

kWh and a charging and discharging limit of 5 kW. This is centered within the range

of ESS capacities (2-22kWh) considered in other residential ESS studies (Vieira et al.,

2017; Luthander et al., 2016; Zhang et al., 2016; Ren et al., 2016b,a; Ranaweera and

Midtgård, 2016; Ratnam et al., 2015a). Customer load and PV generation characteristics

are provided in Sectoin 2.3.2.

2.2.5 Scheduling Algorithm

We construct a constrained optimization problem to minimize the monthly elec-

tricity bill of a customer with an ESS. The customer-owned ESS is dispatched daily

solving the following convex optimization problem:sec:CP

min
ppp∈IRs

∆tΛΛΛT
e ppp+Λ[max{||ppp||∞, p∗}− p∗] , (2.3)

such that AAAuuu ≤ bbb, 1T ppp = 0, where AAA ∈ IR4s×s, bbb ∈ IR4s, uuu ∈ IRs, ΛΛΛe ∈ IRs, Λ ∈ IR,

p∗ ∈ IR. The customer net demand ppp is defined by Eq. 2.1, where lll ∈ IRs, ggg ∈ IRs,

ccc ∈ IRs, and k ∈ {1, ...,s}. For configurations a and c, ppp≥ 0. The infinity-norm of ppp is

||ppp||∞ = max
1≤k≤s

|pk|.

We introduce an inequality constraint AAAuuu≤ bbb that represents the ESS charge/discharge

and capacity constraints, where AAA= [ III −III −TTT TTT ]T ∈ IR4s×s and bbb= [B1T B1T C1T C1T ]T ∈

IR4s. Each component in AAA and bbb was introduced in Section 2.2.1 and 2.2.4.

The equality constraint 1T ppp= 0 prevents energy-shifting between days. It ensures
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that χ(s), the final SOC at time s∆t, equals to the initial SOC χ(0) and hence prevents

the ESS from storing extra energy for the following day. Throughout the simulations we

set χ(0) to 50% of the rated energy capacity C, consistent with the approach taken in

Ratnam et al. (2015a).

If ||ppp||∞ ≤ p∗, then the formulation in Eq. 2.3 is equivalent to the minimization of

the linear objective function ∆tΛΛΛT
e ppp with the inequality constraint ||ppp||∞ ≤ p∗. Otherwise

||ppp||∞ replaces the existing p∗ as the new net demand prediction for the days remaining

in the billing period.

Since there is no cost associated with the charge/discharge rate or excessive

cycling of the ESS in the objective function, the CO-based scheduling algorithm might

charge or discharge the ESS within the same TOU pricing period without any financial

benefit to the customer. To eliminate these instances we add a penalty term fpenalty to Eq.

2.3 given by

fpenalty = 10−6||uuu||2 , (2.4)

where ||uuu||2 ∈ IRs is the Euclidean norm of the ESS charge/discharge schedule.

We multiply the Euclidean norm with 10−6$/kW to make it small compared to the rest

of the objective function in Eq. 2.3 and ensure it does not alter the minimum objective

function value achieved.

We solve the CO-based scheduling algorithm using MATLAB (Version 2016b)

with the convex modeling framework CVX (Version 2.1) and the solver Gurobi (Version

7.0.2).

2.2.6 Operational Inputs

At the start of each day, a day-ahead forecast for solar PV generation and a day-

ahead load prediction are required for each customer. Since demand and solar forecast
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techniques are not within the focus of this study, the day-ahead forecasts are taken equal

to the observed data, i.e. perfect information. With this perfect information we model

the upper limit of performance of the CO-based scheduling algorithm as forecast errors

typically result in increased demand charges due to premature battery discharge.

In addition, at the beginning of each month a prediction, p∗, is made for the

month-ahead customer absolute net demand peak to avoid excessive peak reductions

during the first days of the month. The CO-based scheduling algorithm in Eq. 2.3 is used

to find the optimal dispatch solution of the ESS for the month-long (Nday× s) data set

collected during the previous month. The resulting maximum absolute net demand is

used as the prediction, p∗, for the current month.

Net demand prediction is an essential component for economic performance of

the CO-based scheduling algorithm but if a simpler implementation was desired, p∗ could

be set to zero at the beginning of the month.

2.2.7 Customer Billing

The billing period spans a calendar month starting with the first day of each

month of the year. The TOU (volumetric) electricity charges, denoted by (EC), for a

calendar month are defined by

EC :=
Nday

∑
n=1

∆tΛΛΛT
e pppn , (2.5)

where Nday is the number of days in the month and pppn is a vector of size s representing

the daily net demand profile (e.g., the first day of the month ppp1 = {p1,1, ..., p1,s}).

Peak capacity charges, denoted by CC, are also factored into the monthly bill and

are defined by

CC := Λpmax , (2.6)
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where pmax = max(||ppp1||∞, ..., ||pppNday
||∞) is the maximum absolute net demand of the

customer observed in the calendar month.

The total monthly electricity bill (i.e., total charge), denoted by TC, is then

TC := EC+CC . (2.7)

2.3 Performance Metrics, Residential Customer Data,
and Tariff

on-peak

charging excess solar

symmetrical
maxima levels

off-peak shoulder shoulder off-peak

unbounded
solar supply

Time of Day [hh:mm]

Energy prices:

early discharge

Figure 2.2. Scheduling under increasing solar PV penetration for the customer #38
with configuration d (with PV, exports allowed) on October 23, 2011. The customer net
demand (with solar PV, but without ESS) is shown as ND and has a peak of 2.76 kW.
Each case has a 30-minute resolution and 48 data points in total. To avoid cluttering,
the lines are printed with sparser markers that are shown at different points in time. The
original solar PV generation data (1x) has been increased by a factor of 5 (5x) to depict
increasing PV penetration. The scheduling is done by applying only demand charge,
CM∗ (blue lines), and a capacity charge that includes a demand charge and a supply
charge, CM (green lines) as in the rest of the paper.
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Figure 2.3. Comparison of default case CM with the results from reference cases RM, RD
(top) and reference algorithms LP, QP (middle) for the customer #13 with configuration
b (no PV, exports allowed) on May 15, 2012. Customer load has a peak of 3.40 kW and a
minimum of 0.14 kW. Other cases have the following peak and minimum power in kW:
CM: 1.59, -1.37; RM: 1.98, -1.16; RD: 1.09, 1.09; QP: 1.09, 1.09; LP: 3.53, -1.52.

2.3.1 Performance Metrics

In addition to the reductions in the customer electricity bill defined in Section

2.2.7, we define metrics to quantify how the charge/discharge schedules affect peak

demand, PV self-consumption, the net demand profile, and ESS cycling.

Peak Capacity Reduction is the percentage reduction in a customer’s peak capacity

in a billing month achieved relative to the original net demand without ESS. Peak capacity

is defined as the highest 30-minute kW measurement during a billing month.

PV self-consumption is the total amount of solar generation that is consumed

locally during the solar hours normalized by the total amount of solar generation. The

customers without an ESS consume PV generation insofar as it coincides with their
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daytime load. A greater portion of the solar PV generation can be consumed locally by

storing generation via an ESS.

Net Demand Fluctuations (NDF) are the sum of the absolute values of differences

in adjacent elements of ppp, i.e. fluctuations in the customer net demand profile, normalized

by the mean of the absolute net demand, ||ppp||
∞

.

ESS Cycling is defined as the sum of the absolute values of differences in adjacent

elements of uuu, i.e. the number of charge/discharge cycles.

2.3.2 Customer Load and PV Data

We consider publicly available residential PV generation and load data for cus-

tomers located in distribution networks operated by Ausgrid, an electricity utility in

Australia. The data set includes 3 years of separately reported kWh measurements of

load and PV generation, beginning 1 July 2010 with 30-minute averaging intervals.

We use a subset of the originally released data set that contains 54 customers with

the highest quality data per Ratnam et al. (2015b). The customer IDs of this subset are

given in Table 4 of Ratnam et al. (2015b). We further discard Customer 2 as some data

recordings of this customer are missing. The average daily energy consumption among

these 53 customers is 17.4 kWh with a minimum of 7.0 kWh and a maximum of 35.4

kWh. The average PV system size is 2.5 kW with a minimum of 1.1 kW and a maximum

of 10.0 kW. The average daily PV generation is 9.0 kWh with a minimum of 4.2 kWh

and a maximum of 39.3 kWh.

2.3.3 Tariff

We consider the residential TOU tariff EA025 (Ausgrid, 2016) in Table 2.1. The

TOU tariff does not include a demand charge, so we include the demand charge of the

TOU tariff EA302 (Ausgrid, 2016), which is approximately 10.7 AU$/kW-month. Hledik
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Table 2.1. Ausgrid Residential TOU tariff (EA025) network energy prices (Ausgrid,
2016). This tariff is effective from 1 July 2016 to 30 June 2017 including goods and
services tax in Australia. These energy prices are multiplied with a constant of 0.56 to
adjust the original customer electricity bills to the addition of a demand charge to this
volumetric energy charge only TOU tariff.

Energy Prices
Time of Use Designation (AU¢/kWh)
Until 7:00 Off-peak 2.7863

7:00 - 14:00 Shoulder 5.4762
14:00 - 20:00 On-Peak 26.4651
20:00 - 22:00 Shoulder 5.4762

Until Midnight Off-peak 2.7863

(2014) reports that demand charges in the current U.S. tariffs vary between US$1.50/kW-

month and US$18.10/kW-month and the EA302 demand charge tariff roughly lies at the

mean of this range. The supply charge tariff is set equal to this demand charge tariff.

As we add a demand charge, we subsequently reduce volumetric rates. It would

not be realistic to simply add a demand charge to an existing volumetric energy charge

only tariff since tariffs with a demand charge often have lower volumetric charges. To

avoid overestimating the bill savings we scale down the volumetric charges of EA025 by

a constant such that the average customer bill is the same amount as without a demand

charge. By means of iterative computation we determined a constant scale factor of 0.56.

2.4 Case Studies and Results

Here we introduce the case studies that benchmark the performance of the CO-

based scheduling algorithm and examine the effects of introducing a supply charge to the

existing tariff structure. The overview of all case studies is given in Table 2.3.
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2.4.1 Default case: Case Monthly (CM)

We solve the optimization problem described in Eq. 2.3 over all days in a billing

month individually (as opposed to over the whole month at once, consider further RM

below). On the first day of each billing month, a net demand prediction, p∗, for the

current month is made as described in Section 2.2.6. This net demand prediction is

updated when it is exceeded by a daily dispatch solution during that month. We denote

this case as CM (case monthly).

When CM does not include a supply charge, it is denoted as CM∗. For this case

||ppp||∞ in Eq. 2.3 simplifies to ppp and Λ in Eq. 2.3 and in Eq. 2.6 becomes Λd.

2.4.2 Reference Cases

There are two reference cases considered to assess the economic performance

of the CO-based scheduling algorithm namely (1) the customers accurately predict the

month-ahead electricity demand and generation, and (2) the customers schedule their

ESS without estimating their monthly net demand. These reference cases are structured

considering information availability to the customer on historical and future net demand.

RM: Perfect information on monthly net demand

A customer achieves maximum operational savings over a month when TC in

Eq. 2.7 is simultaneously minimized over a set of pppn for all days n ∈ {1, ...,Nday}. In

this reference case we optimize with known customer load and solar PV generation of a

whole month (Nday× s).

While it is not realistic to assume knowledge of monthly customer load and solar

PV generation, the solution to this reference case determines the theoretical upper bound

on TC achievable by the scheduling algorithm. We denote this reference case as RM

(reference monthly).
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Table 2.2. The objective functions of Linear Program (LP) and Quadratic Program (QP)
presented in Ratnam et al. (2015a) along with CO-based scheduling algorithm presented
in this work. All algorithms have the same set of constraints as described in Section 2.2.

CO-based Scheduling Algorithm Linear Program Quadratic Program�

Cost Minimization Cost Minimization Power Minimization
min
ppp∈IRs

∆tΛΛΛT
e ppp+Λ[max{||ppp||∞, p∗}− p∗] min

ppp∈IRs
∆tΛΛΛT

e ppp min
ppp∈IRs

pppT I ppp

�The matrix HHH in QP, originally defined as HHH ∈ IR2s×2s, is simplified here as HHH := I ∈ IRs×s.

RD: Daily Scheduling without p∗

When the daily scheduling solution is determined without a net demand prediction,

i.e. p∗ = 0, the scheduling algorithm overvalues the capacity charge reduction. The

resulting scheduling does not necessarily achieve the best economic operation since the

daily reduction of the capacity charge is unnecessary when the net demand of a day does

not exceed the preexisting maximum net demand.

In this reference case p∗ is set to zero for each day of the month and the results

give the lower theoretical bound on EC achievable by the scheduling algorithm. We

denote this reference case as RD (reference daily).

2.4.3 Reference Algorithms

The CO-based scheduling algorithm is compared against two alternate approaches

to designing day-ahead charge/discharge schedules. Two approaches, namely QP-based

energy shifting and LP-based energy shifting have been presented in Ratnam et al.

(2015a), and will serve as reference cases. The objective functions used in both methods

are given in Table 2.2. The constraints described in Section 2.2 also apply for both

methods.
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LP: Best EC Minimization

The Linear Program maximizes the operational daily EC savings by energy

shifting and/or energy arbitrage. When the customer cannot sell energy back to the grid,

this method minimizes the operational costs by shifting energy use of the customer from

on-peak pricing periods to off-peak pricing periods. When energy arbitrage is allowed,

the net demand profile of the customer becomes irrelevant for ESS scheduling and the

method instead focuses on maximizing the profit from arbitrage.

This method dispatches ESS in the most profitable way possible when the cus-

tomer is not subject to a demand or a supply charge tariff. Thus it determines the upper

performance bound for the EC minimization using ESS. We solve this optimization

problem using MATLAB (Version 2016b) with the convex modeling framework CVX

(Version 2.1) and the solver Gurobi (Version 7.0.2). We denote this reference method as

LP.

QP: Mitigation of Power Fluctuations

The Quadratic Program minimizes the daily fluctuations in the net demand profile

of the customer through energy shifting while also reducing peak net demand. QP ignores

the TOU rate structure. As a consequence, it does not necessarily improve the operational

savings of the customer. This method depicts a grid-friendly ESS operation mode and

represents the performance bound in that context. We solve this optimization problem

using MATLAB’s interior-point-convex quadprog algorithm. We denote this reference

method as QP.

2.4.4 Example CO-based algorithm schedule

An example charge schedule is given in Figure 2.2 for CM (green lines) and CM∗

(blue lines). In this case the customer has a 1.05 kW solar PV system and can send back
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Table 2.3. An overview of the case studies. Plus (+) indicates that monthly net demand
p∗ is predicted for the customer. This prediction is set to 0 for RM and RD. Minus (−)
indicates cases that do not consider demand charges in their formulation and thus do not
require a net demand prediction. The acronyms of the case studies (Section 2.4) stand for
case monthly (CM), modified case monthly (CM∗), reference monthly (RM), reference
daily (RD), linear program (LP), quadratic program (QP).

Case Method p∗ Description
CM CO + Default case.
CM∗ CO + Default case without considering a supply charge.
RM CO + Best theoretical economic performance achievable by CM.†

RD CO 0 Reference case that minimizes daily (rather than monthly)
capacity charge.

LP LP - Best economic performance without a demand or supply
charge tariff.

QP QP - Best mitigation of power fluctuations in a net demand profile.
†We assume knowledge of month-ahead customer data to construct an upper performance bound

for CM.

energy to the grid (configuration d). To demonstrate the characteristic behavior of the

scheduling algorithm under increasing PV penetration, we increase the solar PV system

size of the customer. We designate the customer with the original solar PV generation as

1x (dashed lines) and increase this generation by a factor of 5 (solid lines) denoted as 5x.

In all cases, the scheduling algorithm shifts customer load away from the on-peak

pricing period and charges the ESS during the off-peak pricing periods while capping the

net demand peak. Since CM∗ does not consider a supply charge tariff the solar generation

is simply fed to the grid. The ESS is instead charged during the off-peak pricing period

before 7:00 of the day until it is fully charged and then discharged during the on-peak

pricing period to maximize cost reductions.

CM follows the same scheduling in the 1x case with a single deviation in schedul-

ing at 14:30 of the day when it restricts the maximum supply to the same level of the

maximum demand to avoid an increase in the customer’s peak capacity. We observe a

significant change in scheduling pattern for the 5x case. The ESS is being discharged
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starting at 7:00 of the day in preparation for absorbing excess generation at solar peak

hours and cap the maximum supply to the same level of the maximum demand. Neverthe-

less, the scheduling algorithm is still forced to increase the peak capacity of the customer

by 23% in this case.

Table 2.4. Details of scheduling under increasing solar PV penetration for the customer
#38 on October 23, 2011. Max. Supply is the maximum power that the customer supplies
to the grid. Daily EC shows the daily energy cost of the customer. A negative value
of Daily EC indicates a financial compensation to the customer. The values given in
parentheses show results for the same customer without an ESS.

Demand Max. Max. Daily PV Self-
Charge (CM∗) Demand [kW] Supply [kW] EC [AU$] consumption [%]
PV Penetration

1x 1.81 (2.76) 1.92 (0.63) -1.64 (0.60) 57.8 (49.8)
2x 1.81 (2.76) 2.67 (1.40) -2.54 (0.60) 34.2 (31.1)
5x 1.81 (2.76) 5.01 (3.73) -5.22 (0.60) 15.8 (14.9)

Capacity Max. Max. Daily PV Self-
Charge (CM) Demand [kW] Supply [kW] EC [AU$] consumption [%]

PV Penetration
1x 1.81 (2.76) 1.81 (0.63) -1.64 (0.60) 57.9 (49.8)
2x 1.81 (2.76) 1.81 (1.40) -2.54 (0.60) 34.1 (31.1)
5x 2.23 (2.76) 2.23 (3.73) -4.82 (0.60) 30.0 (14.9)

Table 2.4 shows how the maximum demand, the maximum supply, the energy

cost to the customer and the PV self-consumption change with increased PV penetration

levels. In addition to the cases in Figure 2.2, we also present results for the 2x case where

the solar generation of the customer is increased by a factor of 2. The customer’s energy

cost is not impacted by the introduction of a supply charge in the 2x case and the ESS

cycling does not change. The compensation to the customer is reduced roughly by 8%

in the 5x case but the customer’s maximum energy supply is also significantly reduced

from 3.73 kW to 2.23 kW. The ESS approximately makes one additional cycling for this

case. The PV self-consumption stays similar for the 1x and 2x cases but it is increased

by more than %14 with the introduction of a supply charge.
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2.4.5 Example scheduling for all case studies
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Figure 2.4. Electricity cost breakdown of all scheduling cases for the customer #13 with
configuration b (no PV, exports allowed) covering a 2-year data set. The costs for the
original customer load is shown as L. Scheduling is optimized during each billing month.
The average (of the two) values for each billing month are shown. The annual mean
for each case is shown to the right of each figure. Note that the June is Winter in the
Southern hemisphere.

Here we present representative results for one day. In this case the customer can

send back energy to the grid but does not have a solar PV system (configuration b). The

customer has an average daily load of 12.3 kWh with a minimum of 1.6 kWh and a

maximum of 64.8 kWh. Figure 2.3 shows the net demand profiles and the SOC optimized

under each case study excluding CM∗. All charge schedules start the day with charging

the ESS in the off-peak period. LP purchases and stores off-peak energy until the storage

is full, and discharges at the peak period to maximize operational savings while other

case studies cycle the ESS during the day in order to reduce peak net demand. All cases

charge after 22:00 to fulfill the SOC requirement at the end of the day.

There are three important observations in Figure 2.3: (1) RD results in the same

charge schedule as QP even though QP does not consider a TOU tariff in its formulation.

RD lacks a net demand prediction p∗ and consequently it overvalues the peak reduction

and flattens the net demand profile in the same way as QP. (2) CM reduces peak net

demand more compared to RM for this particular day (see 06:00 - 07:00). However,
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when the billing month is considered this lower level of peak net demand is suboptimal

with respect to the TC to the customer. Since CM does not have the same information

as RM it optimizes the scheduling for this day with a lower bound on peak net demand.

Consequently, CM looses flexibility associated with a higher bound on peak net demand

which results in economically undesirable discharging during the off peak period (06:00

- 07:00). (3) LP practically shifts the original peak net demand to the off-peak period

without any mitigation of the peak net demand. It even causes a slight increase in peak

net demand of the day by 4%.

In Figure 2.4, the electricity cost breakdown for the same case study (customer

#13 and configuration b) is shown for the 2-year data set. LP marks the lowest bound on

EC but RM follows this bound very closely. This indicates that the CO-based scheduling

algorithm results in charge schedules that perform near-optimally in EC reductions.

Furthermore CM yields similar results to RM even without the same informational

leverage that RM has. This indicates that given an accurate daily load and solar forecast,

and peak net demand predictions based on the previous month, the CO-based schedules

can in fact yield near optimal EC reductions for customers in real world ESS operations.

Lastly, capacity charges are minimized by QP and RD, while LP performs worst. For the

total cost RM and CM perform best.

2.4.6 Bulk Simulation Results

Using the Ausgrid data (Section 2.3.2) for each customer we perform the opti-

mization with the case studies CM, RM, RD, QP, and LP for a 2-year period starting in

July 2011. The last month of the first year has to be used for the net demand prediction for

the first month of the second year in CM. Therefore, we do not perform the optimization

for the first year data set.

Figures 2.5 - 2.9 present the performance metric results for the bulk simulations.
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For each customer 24 metrics calculated for 24 billing months are averaged. The

histograms show the distributions of the averaged value for 53 customers.
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Figure 2.5. Electricity cost breakdown of all scheduling cases for 53 residential cus-
tomers over a 2-year data set. The columns represent the different configurations given in
Figure 2.1. The original customer data is labeled as L (load) when a solar PV system does
not exist and labeled as ND (net demand) otherwise. 24 electricity cost values optimized
for 24 billing months are averaged. Then a histogram is drawn for 53 customers. The
variation in box plot thickness represents the distribution of the values. Thicker regions
mean more customers fall in this bracket. A light colored square sign (�) indicates the
median and a dark colored plus sign (+) shows the mean of all customers. A negative
cost indicates compensation to the customer.

Electricity Cost

Figure 2.5 gives the EC, the CC, and the TC for each customer system con-

figuration. Overall the results are consistent with those observed for customer #13 in

Figure 2.4, but they also highlight some differences between the configurations with and

without grid exports. LP yields greater reductions in EC in configurations a and b, where

energy sale back to the grid is not incentivized. RM and CM perform similarly as LP and

perform especially close to LP when energy arbitrage is allowed (configuration b and
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d). Scheduling through QP results in the lowest CC (with RD a close second) since it

focuses on flattening the net demand profile. RM and CM also incur comparably small

CC especially when energy sale back to the grid is not incentivized. These observations

are in agreement with our earlier observations in Section 2.4.5.

Peak Reduction
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Figure 2.6. Monthly Peak Reductions achieved by CM, QP, LP by configuration. Nega-
tive values indicate an increase in peak demand (primarily occuring for LP).

Reducing peak demands generally goes along with reduced grid impacts as the

infrastructure is utilized more evenly. Figure 2.6 shows peak reductions achieved by CM,

QP, and LP. For this figure and the following ones, we only report results for CM, QP,

and LP as RM and RD do not show much difference from CM and QP, respectively.

QP results in the greatest reductions in peak net demand averaging 67 to 69%,

depending on the configuration. CM achieves comparable results in configurations a and

c (61%, 64%, respectively) but in configuration b and d results in lesser peak net demand

reductions (51%, 43%, respectively) in return for profit through energy arbitrage in the
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top row of Figure 2.5. LP is ineffective in peak net demand mitigation and causes an

increase in peak net demand for most customers.

Storage Cycling
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Figure 2.7. Monthly ESS cycling in CM, QP, LP by configuration.

Increased storage cycles go along with a reduction in ESS lifetime. QP is the least

straining on the ESS in terms of storage cycling in all configurations. For configuration

b, CM and LP cause a doubling in cycling due to energy arbitrage. In configuration

b and d with grid exports allowed, LP results in a single storage cycle per day for all

customers and months; in these cases LP profit is maximized by charging to 100%

during the morning off-peak, discharging to 0% on-peak, and charging back up to 50%

during the evening off-peak. Since CM similarly utilizes only about one cycle per day in

configurations b and d indicates that either (i) customer peak demands coincide with the

on-peak period, so a discharging will accomplish both EC and CC objectives or (ii) the

energy required to reduce peak demand is small compared to the battery energy capacity.
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The cycling for CM may increase compared to LP if smaller batteries were considered.

Net Demand Fluctuation
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Figure 2.8. Net Demand Fluctuation for CM, QP, LP by configuration in comparison
with the original customer data (L or ND).

Figure 2.8 shows fluctuations in net demand profiles for each configuration and

without an ESS. QP mostly achieves constant power (flat) customer net demand profiles

and reduces net demand fluctuation dramatically. This indicates that the battery is sized

large in comparison to most customers’ daily load variations. CM results in 25 to 50%

reductions in net demand fluctuations when compared to the original customer data,

while LP increases fluctuations by 13% for configuration c and yields reductions between

25 - 31% for others.

PV Self-Consumption

Figure 2.9 shows PV self-consumption for each configuration and without an

ESS. All cases result in increased PV self-consumption when energy sale back is not
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Figure 2.9. PV self-consumption achieved for CM, QP, LP by configuration given along
with direct PV self-consumption by the customer (ND) without an ESS.

incentivized. QP overall results in the largest mean self-consumption with 89 - 93%.

CM, QP, and LP achieve the same mean self-consumption in configuration c with 93%, a

substantial increase over 54% achieved without an ESS. When energy arbitrage is allowed

CM and LP yield lower self-consumptions but still 20% higher than the self-consumption

without an ESS.

2.4.7 Impact of a Supply Charge on Solar Supply

In this work we introduced a supply charge tariff that incentivizes ESS customers

to store excess solar PV generation that would otherwise result in reverse power flow in

the distribution grid. We compare CM with CM? that does not consider a supply charge

but still considers a demand charge.

In order to compare performance of CM and CM?, similar to the practice in Figure

2.2, we designate the customer with the original solar PV generation as 1x and increase

this generation by a factor of 2. Here we only consider configuration d since configuration

a and c do not have solar PV systems, and the constraint ppp≥ 0 in configuration b avoids

any energy to be supplied back to the grid, thus causes no difference in solar supply with

increased PV penetration.

Figure 2.10 shows PV self-consumption, maximum supply to the grid, storage

cycling and total cost to the customer achieved in CM and CM?. As the customers
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Figure 2.10. PV self-consumption, maximum solar supply to the grid, and total electricity
cost under a capacity charge case (CM) and a demand charge only case (CM?). The
original solar PV generation (1x) has been increased by a factor of 2 (2x) to investigate
sensitivities. Maximum supply is determined by taking the highest amount of supply that
the customer provided over the course of 2 years. A negative cost indicates compensation
to the customer.

have larger solar PV systems the overall PV self-consumption decreases and the overall

maximum supply to the grid increases in both cases. The maximum supply in Figure

2.10 reflects the capacity requirements of the infrastructure that would be required to

support the PV system owners.

CM yields higher PV self-consumption than CM? by 2% and 10% in the 1x case

and the 2x case, respectively. Furthermore, it reduces the maximum reverse power flow to

the grid in the 2x case by 0.60 kW on average from 4.2 kW without an ESS. The 1x case

does not have enough solar PV feed-in (2.0 kW on average) to exceed the peak capacity
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of the customers and the maximum reverse power flow does not get penalized by a supply

charge in most cases. It results in an increased ESS cycling by 3 cycles per month in

the 2x case but causes approximately the same ESS cycling in the 1x case. Moreover,

introduction of a supply charge has negligible impact on the customer TC. However,

there are a few customers – presumably those with large PV systems – that need to cycle

the battery significantly more per month under CM with up to 48 cycles. Presumably

some of the same customers with the largest PV systems see their TC reimbursements

from the utility cut significantly, from up to 140 AU$/month to less than 70 AU$/month.

2.5 Conclusions

We have presented a CO-based charge/discharge scheduling algorithm for dis-

tributed ESSs with co-located solar PV systems. The results of a case study including 53

residential customers located in an Australian distribution network confirmed that the

daily CO-based charge/discharge schedules reduce (1) peak net demand of the customer

(by design), (2) power fluctuations in the net demand profile (ancillary benefit), and (3)

the reliance of the customer on the grid by way of promoting energy self-consumption of

local solar PV generation (also an ancillary benefit).

We benchmark the performance of the CO-based scheduling algorithm with

two alternate methods for behind-the-meter ESS scheduling. Results for 2-years of

customer data show that the CO-based scheduling algorithm provides mean monthly

peak net demand reductions between 46 - 64%, reduces net demand fluctuations by 25 -

49% on average, and increases the mean solar PV self-consumption between 24 - 39%

when compared to the original customer data. Maybe most importantly, the CO-based

schedules yield a nearly optimal energy cost reductions.

Prior to deployment of this scheduling algorithm in real-world applications, fur-

ther work is needed to show susceptibility of the algorithm to load and solar forecast
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accuracy as well as ESS sizing (specifically smaller ESS) and inclusion of ESS degrada-

tion costs. For specific applications the tariffs should obviously be adjusted to the local

conditions.

In this work we have also introduced the concept of having a supply charge

in electricity rates. We demonstrated that introduction of a supply charge does not

financially impact customers with an ESS while it encourages customers to reduce their

peak solar power supply to the grid. This new tariff mechanism reduces the maximum

monthly solar PV power supply to the grid by 19% on average in the data set considered

here.

We envision our assessment would assist policy makers in developing tariff

structures where a penalty or subsidy on restricting solar power supply may encourage

customers to reduce reverse power flow through procurement of ESSs. This, in return,

would help utilities to support more distributed renewable energy generation on their

distribution systems.

The text and data in Chapter 2, in full, is submitted for publication of the material

with the title “Distributed energy storage system scheduling considering tariff structure,

energy arbitrage and solar PV penetration”. Babacan, Oytun; Ratnam, Elizabeth L.;

Disfani, Vahid R.; Kleissl, Jan. The dissertation author is the primary investigator and

author of this article.



Chapter 3

Effects of Residential Electricity Stor-
age on Electric Power Emissions in the
U.S.

3.1 Introduction

Decarbonization of the electric power sector cannot be achieved by reducing

system demand only. Electricity consumed at different times of the day and year has

different underlying resource costs and emissions impact (Jamasb and Pollitt, 2011). In

this regard, energy storage could play an important role in reducing overall operation costs

and emissions by offering operational flexibility in the power system while providing

reserve capacity to markets (de Sisternes et al., 2016). Energy storage is often considered

as an essential component of the future electric grid for widespread use of wind and solar

technologies (de Sisternes et al., 2016; DiOrio et al., 2015).

Energy storage is often assumed to reduce pollutant emissions to the environment

with low or no direction emissions during its operation. However, numerous studies

argue that adding energy storage to the electric power sector is not necessarily a low

pollution solution. Hittinger and Azevedo (2015); Carson and Novan (2013) show that the

operation of energy storage can increase overall emissions when arbitraging wholesale

prices during peak and non-peak hours. During this type of operation, the storage shifts
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electricity consumption across time and place, thereby leveling out the system load. This,

in return, might potentially defer investments in other more expensive generation assets.

However, there is a strong incentive for such large, energy-intensive applications to use

electricity at night rather than during the day when most of the electricity is usually

generated by conventional fossil fueled power plants, often a coal plant (Hittinger and

Azevedo, 2015; Jamasb and Pollitt, 2011). As a result, whether the ongoing deployment

of grid-connected energy storage would be successful in helping reaching future emission

constraints greatly depends on how storage would be operated.

It is not clear yet how customer-owned energy storage systems should be regulated.

Nevertheless there is a growing market for residential energy storage. The deployment

of non-hydro energy storage systems is expected to grow at an unprecedented rate in

the coming decade. IFC (2017) predicts an annual deployment in emerging markets

worldwide (outside Western Europe, U.S., and Japan) of 10 GW by 2021. GTM Research

and ESA (2017) forecast that energy storage deployment in 2021 will exceed 2 GW

annually in the U.S. whereas it was only around 0.2 GW in 2015. Nearly half of these

deployments are predicted to happen in non-utility energy storage systems. BNEF (2017)

expects total behind-the-meter energy storage to rise from around 0.4 GWh today to

nearly 760 GWh in 2040.

It is crucial to understand the potential impact that residential storage will bring

to the system. It would be a fair assumption that residential customers would most likely

operate their storage systems for reducing their electricity costs. Electric utilities usually

offer tariffs that has fixed energy use charges, in part, to protect the end-users from the

price volatility that occurs during peak demand hours. Utilities also offer time of use

pricing that allows voluntary users to respond to the peak demand hours by reducing their

demand and in return provides them reduced energy charges during off-peak hours. Fixed

charge tariff structures are not financially beneficial for storage owners since it does not
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allow arbitraging but they could exploit the time of use pricing in order to reduce their

electricity bills. In this work, we investigate the net emissions resulting from economic

operation of residential energy storage.

3.2 Methods and Data

3.2.1 Customer System Configurations

We consider three types of residential customer: (1) A customer without a solar

PV system or ESS; (2) a customer who owns a behind-the-meter ESS; and (3) a customer

who owns a behind-the-meter ESS co-located with a solar PV system.

The base customer (#1) is assumed to be under a tiered rate plan. This rate

plan has fixed pricing levels, known as “tiers”. The customer has a monthly baseline

allowance where electricity has a relatively low price. Additional prices apply if the

customer exceeds their baseline allowance. This is the benchmark customer.

The customer who owns a behind-the-meter ESS (#2) is assumed to enrolled in a

time-of-use tariff. The peak and off-peak pricing periods of this plan allows this customer

to reduce its monthly electricity bill through energy shifting. We do not consider a net

metering for the customer, thus ESS cannot be discharged for energy sale back to the

grid. This customer configuration is shown as configuration a in Figure 2.1.

The customer who has both a behind-the-meter ESS and a solar PV system (#3)

is similarly enrolled in a time-of-use tariff. For this customer, we investigate two cases:

(1) the customer is not enrolled in a net metering program and has to self-consume

or curtail the solar PV generation, and (2) the customer is enrolled in a net metering

program and compensated at the full retail rate of the electricity. These cases are shown

as configuration d in Figure 2.1, respectively.
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3.2.2 Customer Load and Solar Data

We consider publicly available residential load profiles covering numerous lo-

cations in the U.S. provided by Open Energy Information (Open Energy Information,

2014). These data sets are created using a reference case house model representing

a house built to the 2009 International Energy Conservation Code (IECC), as well as

considering several other standards related to domestic appliances, lighting and miscel-

laneous electric loads (Hendron and Engebrecht, 2010). The representative electrical

load for this benchmark house is reported for the typical meteorological year version

3 (TMY3) station locations using the weather files available for each selected TMY3

stations. TMY3 data sets (National Solar Radiation Data Base, 2015) provides annual

data set that holds hourly meteorological values that typify conditions at a weather station

over 14 - 30 years (Wilcox and Marion, 2008).

The expected power output for each TMY3 site is calculated using the TMY3

data and a PV performance model presented in Jamaly et al. (2013). This model con-

siders irradiation, wind speed and ambient air temperature data and calculates the AC

performance output of a PV system.

3.2.3 Marginal Emissions Factors

The emissions due to electricity generation vary with many factors. The type of

power plants activated to supply the marginal amount of energy needed changes with

location and time. Thus the emissions reduction achieved by a demand-side intervention

in the electricity system is typically assessed by a rate, which measures the emission

intensity of electricity not used as a result of the intervention (Hawkes, 2010). In other

words, this rate is the emissions intensities of the last generator that is needed to meet

demand at a given time. This emissions rate is defined as the marginal emissions factor

(MEF).
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Figure 3.1. Time-of-day trends of MEF estimates by season reported by Siler-Evans
et al. (2012). Summer months are May through August; winter months are December
through February; and remaining intermediate months are March, April, September and
November.

There are a range of methods for estimating MEFs. A merit order based energy

models (e.g. Voorspools and D’haeseleer (2000); Bettle et al. (2006)) simulate unit-

by-unit dispatch and attempt to model the operational decisions made by controllers

and grid operators. Other methods (e.g. Hawkes (2010); Siler-Evans et al. (2012)) rely

on historical operating data and couples historical hourly generation and emissions of

resources to determine hourly marginal rates. The advantage of this approach over a

merit order based model is that MEFs can be systematically calculated over a large

geographic region without a necessity to model detailed transmission, generator, and

reliability constraints.

In this work we utilize MEF reported by Siler-Evans et al. (2012) for each

North America Electric Reliability Corporation (NERC) region. The regional MEFs are

determined using regressions of hourly generation and emissions data from 2006 through

2011. The data set contains seasonal MEF trends by time-of-day for CO2, SO2, and NOx
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emissions as shown in Figure 3.1.

One limitation of these MEF estimates is that they do not account for biomass,

wind, nuclear, hydropower, waste-to-power, geothermal, solar, and small fossil-fueled

generators. Only fossil-fueled generators greater than 25MW is accounted. Thus these

estimates would be only valid if only these large fossil-fueled generators operate as

the marginal generator. This is a reasonable assumption since renewable resources,

hydropower and nuclear usually do not respond to the marginal changes in demand.

Furthermore, Siler-Evans et al. (2012) report the share of small fossil-fueled generators

in each region that is not accounted for. The majority consists of combined heat and

power (CHP) generators that are unlikely to affect the MEF estimates (Marnay et al.,

2002). Finally, non-CHP generators that act as a marginal generator comprise only less

than 3% of the total generation capacity.

3.2.4 Utility Sampling and Tariff

Electricity is supplied to the majority of the consumers in the U.S. by investor-

owned or publicly-owned utilities. Each utility has exclusive franchises to sell electricity

to the retail consumers in their areas at prices approved by state regulatory commissions

(Neeland, 2009). To account for a larger consumer population we consider the biggest

utility by the customer size in each NERC region as reported in U.S. Energy Information

Administration (2016). On exception is in Southwest Power Pool (SPP). Here we choose

the second biggest utility Westar Energy instead of Oklahoma Gas & Electric since it

offers a residential demand charge, which is a rare tariff structure to find in current rate

offerings. In addition to this list we consider two additional utilities: Southern California

Edison and Virginia Electric & Power. Southern California Edison is chosen to compare

two utilities serving in the same state. Virginia Electric & Power is chosen to compare

two utilities serving in the same NERC region that also offers a residential demand
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Table 3.1. The list of utilities under consideration and the number of customers they
serve as reported in (U.S. Energy Information Administration, 2016). NERC Regions
are Florida Reliability Coordinating Council (FRCC), Midwest Reliability Organization
(MRO), Northeast Power Coordinating Council (NPCC), ReliabilityFirst Corporation
(RFC), SERC Reliability Corporation (SERC), Southwest Power Pool, RE (SPP), Texas
Reliability Entity (TRE),Western Electricity Coordinating Council (WECC). The time
of use tariffs (TOU) offered by each utility is also given. A TOU that only includes a
volumetric charge denoted as eTOU (energy TOU). A TOU that consists of a volumetric
charge and a demand charge is denoted as dTOU (demand TOU). The tariff survey is
completed in May 2017 and this list includes tariffs in effect at that time. “-” indicates
unavailability of a tariff structure.

Entity State NERC Customer Size eTOU dTOU
Florida Power & Light FL FRCC 4,708,793 + -
Consumers Energy MI MRO 1,796,196 + -
Consolidated Edison Co-NY NY NPCC 2,545,762 + -
DTE Electric Company MI RFC 2,153,990 + -
Georgia Power Co GA SERC 2,439,237 + +
Virginia Electric & Power VA SERC 2,405,875 + +
Westar Energy KS SPP 375,809 + +
TXU Energy Retail TX TRE 1,667,703 + -
Pacific Gas & Electric CA WECC 5,069,189 + -
Southern California Edison CA WECC 4,990,840 + -

charge. The complete list of the utilities under consideration is given in Table 3.1.

3.2.5 Simulation Setup and ESS Scheduling

For each utility in Table 3.1 we locate TYM3 stations that fall under each utilities

service territory. The California TMY3 station coverage is given in Figure ?? as an

example. We identified varying numbers of TYM3 stations for each utility ranging

from 4 (Consolidated Edison Co-NY) to 31 (Virginia Electric & Power). On average 17

stations all under each utility service territory. Consolidated Edison Co-NY is an outlier

since it only serves New York City and a neighboring county, which is considerably small

territory compared to geographic areas other utilities are serving.

We use the constrained optimization problem presented in Section 2.2.5 to min-
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Figure 3.2. The coverage of TMY3 stations by the service territory of Pacific Gas &
Electric (PG&E) and Southern California Edison (SCE) utilities in California. The
boundaries indicate county lines in California. Some counties have multiple TMY3
stations in their area.

imize the monthly electricity bill of a customer with an ESS. For tariff structures that

only include a volumetric charge, denoted as eTOU, we discard the second term in the

objective function of Eq. 2.3. If the tariff structure includes a demand charge as well, we

use the formulation of Eq. 2.3 as originally presented. We denote this tariff structure as

dTOU.

For each customer system configuration described in Section 3.2.1, we get the

hourly kW demand as reported in (Open Energy Information, 2014) and compute hourly

kW solar generation as described in Section 3.2.2. Throughout our simulations we only

consider the case study RM that is explained in Section 2.4.2. In this case, a customer

achieves maximum operational savings over a month. We assume that the ESS round-trip

efficiency is 100% and there is no degradation.

Once we determine the daily charge and discharge schedules, we calculate the
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electricity bill according to the tariff under consideration. We also determine the emis-

sions by the customer-owned ESS operation through multiplying the resulting net demand

profile with the MEF estimates. We then calculate the cost reductions achieved and the

emissions increase or reduction yielded by the ESS operation by comparing the case

against the base customer (Section 3.2.1) that does not have a solar PV system or ESS.

3.3 Results and Discussions

We simulate ESS charge and discharge schedules for the three customer configu-

rations described in Section 3.2.1 for all TMY3 stations that are covered by the utilities

listed in Table 3.1. In Figure 3.3 we present the results in California for the customer

type #2 with configuration a that adopts ESS and does not enroll in net metering.

[k
g]

[k
g]

[k
g]

[k
g]

[k
g]

[k
g]

Figure 3.3. The average CO2, SO2, NOx emission impact of the ESS schedules through-
out the year categorized by hour of the day (top) and by month of the year (bottom) for
the customer type #2 with configuration a. The shaded band represents the variation
between different customers served by the same utility. The mean of the customers are
given by the thick line within the band.
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Since PG&E and SCE have different time-of-use periods for their customers (2-

8pm and 4-9pm, respectively), the ESS schedules differ considerably. PG&E customers

charge their ESS for a longer time period and at a lower charge rate, while SCE customers

charge at a higher rate in a shorter period. The band is wider for SCE customers since

there is significant difference where the customer are located. Some of the customers are

located in hot-dry climates and they have higher electricity loads in the summer months

for cooling. Others are located at coastal regions of California where they do not require

much air conditioning in their houses.
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Figure 3.4. The change in annual CO2 emission and the annual energy cost reductions
averaged over all customers in each utility service area. (Customer #2, configuration a,
that is, ESS only) Each utility is labeled with the state abbreviations. Multiple TOU tariffs
are considered or the utilities in Texas, New York and California. Therefore, these states
have multiple labels. Michigan consists of both RFC and MRO NERC regions. Multiple
TMY3 customers in utilities except in California line up and cannot be differentiated due
to the scale of the plot.
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An important observation in Figure 3.3 is that PG&E and SCE customers have

significantly different CO2 emissions impacts. SCE customers CO2 increase the emis-

sions in the winter months and reduces CO2 emissions in the summer months. We

observe the opposite effect from PG&E customers. This change in CO2 emissions comes

from the different timing of on-peak and off-peak periods in two utilities. During the

summer period, SCE incentivizes its customers to discharge their ESS much earlier than

PG&E. This two hours, in fact, have power generators at the margin that have high CO2

emissions. On the contrary the generators for the same two hours in the winter period

have lower CO2 emissions than later in the night. Presumably both utility could trigger

CO2 emission reductions if SCE would shift the on-peak period pricing in winter forward

and PG&E would shift the on-peak period pricing in summer backward.
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Figure 3.5. The change in annual CO2 emission and the annual energy cost reductions
averaged over all customers in each utility service area. (Customer #3, configuration d,
that is, ESS + PV with net metering)
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The overall results for the customer type #2 with configuration a are given in

Figure 3.4. We observe that the trend for California where some customers could reduce

emissions through ESS scheduling do not apply for the remainder of the states. The

closest follower of California is Virginia with all customers analyzed cause an increase

in CO2 emissions. We see that some states (e.g. Florida, Georgia and Texas) do very

well in terms of incentivizing the customers to adopt ESS with large annual energy cost

reductions in their electricity bills. Michigan customers that are served within MRO

region cannot reduce their electricity bills as much as customers in other states and have

the highest impact on the CO2 emissions.

The CO2 emission results for the customer type #3 with configuration c are given

in Figure 3.5. This case represents the customer with an ESS and a solar PV system

under a net metering program. We observe that the variation between customers within

the same utility is now disappeared. Since net metering is allowed, each ESS can now

arbitrage between off-peak and on-peak periods and thereby operates independent of the

load and solar profile of the customer. As a result, the resulting ESS schedules become

completely dependent on the utility tariff structure as also observed in Section 2.2. The

final conclusion is that under a net metering program adopting a solar PV system does

not effectively increase the earnings of a customer coming from the ESS itself and does

not alleviate the emissions impact of the ESS that we observed in the ESS only case.

Chapter 3, in part, is currently being prepared for submission for publication of

material. Babacan, Oytun; Hanna, Ryan; Abdulla, Ahmed; Kleissl, Jan; Victor, David.

The dissertation author is the primary investigator and author of this article.



Chapter 4

Concluding Remarks

In this dissertation we investigated how energy storage technologies could help

the ongoing transformation of the electric grid. We described a bi-level optimization

method in Chapter 1 that reduces the voltage fluctuations caused by PV penetration

through deploying ESS in strategic nodes of distribution systems. We developed a

convex optimization based ESS charge/discharge scheduling algorithm in Chapter 2 that

minimizes the monthly electricity expenses of a customer. We also demonstrated that the

novel idea of a “supply charge” tariff could incentivize ESS customers to store excess

solar PV generation that may otherwise result in reverse power flow in the distribution

grid. Finally, in Chapter 3, we explained the economic and emissions effects of residential

energy storage operation for cost minimization service.

We have demonstrated how ESS technologies could provide benefits (1) to the

electric grid through alleviating voltage fluctuations caused by solar PV generation, (2)

to the customers through reducing their electricity bills while also providing ancillary ser-

vices to the electric grid, and (3) to the environment through facilitating self-consumption

of excess solar PV generation and reducing overall emissions of the electric power sector.

It is our hope that the assessments presented in this dissertation would assist regulators

and policy makers in their efforts to decarbonize and modernize the electric grid.
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