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Stochastic Intensity Models of Wrong Way Risk: Wrong Way

CVA Need Not Exceed Independent CVA
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December 5, 2012

Abstract

A financial institution’s counterparty credit exposures may be correlated with the credit
quality of a counterparty; wrong way risk refers to the case where this correlation is negative.
Hull and White [9] are the first to model wrong way risk in Credit Value Adjustment (CVA)
calculations by expressing the counterparty’s default intensity in terms of the financial in-
stitution’s credit exposure to the counterparty. We derive a formula for CVA for a class of
models that includes the formulation of Hull and White [9], and we show that wrong way
risk does not affect the credit quality of the counterparty. We provide numerical examples
based on the Hull and White [9] formulation to estimate CVA for forward contracts and
European options. These examples demonstrate that independent CVA can exceed wrong
way CVA. This is inconsistent with the scalar multiples of independent CVA that have been
adopted by regulators as a proxy for wrong way CVA.

1 Introduction

Consider a portfolio of OTC derivative contracts that a financial institution, such as a a deriva-
tives dealer, holds with a counterparty. The Credit Value Adjustment1 (CVA) is the difference
between the portfolio value before and after adjustment for the risk that the counterparty might
default. In other words, CVA is the market value of counterparty credit risk. Since the 2007
credit crisis, the emphasis on counterparty credit risk by both global and US regulators has
increased dramatically. CVA is one of the most important counterparty credit risk measures;

∗Department of Economics, University of California, Berkeley, CA 94720-3880, USA, email:
samim ghamami@berkeley.edu
†Department of Statistics, University of California, Berkeley, CA 94720-3880, USA, email:

lrg@stat.berkeley.edu.
1Throughout this paper, we consider the unilateral CVA. See Chapter 7 of Gregory [7] for discussions on

Bilateral CVA. In this paper we only consider Unilateral CVA; hereafter, referred to as CVA.
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according to Basel III,2 banks are required to hold regulatory capital based on CVA charges
against each of their counterparties, (see, for instance, [1]).

The Credit Value Adjustment is expressed in terms of the dealer’s counterparty exposure,
V , which is the maximum of zero and the future (collateralized or uncollateralized) value of the
portfolio; counterparty exposure is always non-negative. It also depends on the maturity, T , of
the longest transaction in the portfolio and the default time, τ , of the counterparty. The Credit
Value Adjustment can be expressed as a risk-neutral expected discounted loss:

CVA = E[(1−R)DτVτ1{τ ≤ T}], (1)

where Dt is the stochastic discount factor at time t, 1{·} is an indicator function, and R is
the financial institution’s recovery rate.3 Hereafter we suppress the dependence of the CVA
to the recovery rate, R. A widely adopted assumption is that credit exposure, V , and the
counterparty’s default time, τ , are independent. The leads to independent CVA, denoted CVAI ,
and it is expressed in terms of the density, f , of τ :

CVAI =

∫ T

0
E[DτVτ |τ = t]f(t) dt =

∫ T

0
E[DtVt]f(t) dt, (2)

where the last equality follows from the independence of τ and V . In practice, the counterparty’s
default time distribution is approximated from counterparty credit spreads observed in the
market. Monte Carlo simulation is then used to estimate independent CVA by estimating
E[DtVt] based on a discrete time grid.

The efficacy of independent CVA is limited since there are important practical cases where
credit exposure, V , and the counterparty’s default time, τ , are correlated, (see Chapter 8 of
Gregory [7]).4 When credit exposure is negatively correlated with a counterparty’s credit quality,
the exposure and its associated risk measures are said to be wrong way. Wrong way CVA, denoted
CVAW , refers to CVA in the presence of wrong way risk. When the correlation is positive, the
exposure and its associated risk measures are said to be right way. To simplify the exposition,
we concentrate on wrong way CVA. However, there are analogous results for right way CVA.

In Section 2, we summarize the model developed by Hull and White in [9]. In that model,
the logarithm of the counterparty’s default intensity is an affine function of the dealer’s exposure
to the counterparty. In Section 3, we consider a class of intensity models of CVA that includes
the formulation of Hull and White [9]. We derive a formula for CVA that applies to this
class of stochastic intensity models. We also show that neither wrong way risk nor right way
risk affects the counterparty’s credit quality. In Section 4, we provide numerical examples of
independent and wrong way CVA in the Hull and White model. For simple instruments such as

2Basel III is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk
agreed upon by the members of the Basel Committee on Banking Supervision in 2010-11, and scheduled to be
introduced from 2013 until 2018.

3A derivation of Formula (1) is in Chapter 7 of Gregory [7].
4A basic example of wrong way risk occurs when a counterparty issues a put option on his own company. Or,

more practically, when the derivatives dealer takes a long position in a put option on a stock of a company which
has fortunes that are highly positively correlated to those of the counterparty.
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forwards and European put options,5 we find that the percentage difference between wrong way
and independent CVA can depend materially on maturity, and that wrong way CVA need not
exceed independent CVA. Our findings are inconsistent with the scalar multiples of independent
CVA that have been adopted by regulators as a proxy for wrong way CVA; they provide an
occasion to re-examine the assumptions underlying those proxies.

2 The Hull and White Stochastic Intensity Model of CVA

Hull and White [9] are the first to include wrong way risk in CVA calculations by formulating a
counterparty’s default intensity in terms of a dealer’s credit exposure to a counterparty. They
assume the intensity of counterparty’s default time, τ , denoted by λ, is given by:

λt = ebVt+at (3)

where b is a constant and at is a deterministic function of time. To calibrate the their model,
Hull and White first specify the parameter b using “subjective judgement.”6 Let st denotes
the counterparty’s maturity-t credit spread and let R denotes the recovery rate.7 Given b, the
piecewise constant at are sequentially chosen to satisfy:

e−
tst
1−R = E

[
e−

∫ t
0 λudu

]
, (4)

as closely as possible. Hull and White [9] use the left side of (4) as an approximation of the
counterparty’s probability of survival until time t > 0, i.e., P (τ > t). The Appendix of [9] details
how at is sequentially specified using Formula (4); the expectation on the right side is estimated
by Monte Carlo simulation after time discretization of the integral of the intensity process, λ.

3 Intensity-Based Models of CVA

Inspired by the model in Hull and White [9], we consider similar intensity models of CVA
in which a counterparty’s default intensity, λ, is driven by a single risk factor, V .8 The real-
valued process {Vt}t≥0 is defined on a filtered probability space (Ω,F , {Gt}t≥0, P ) where {Gt}t≥0

denotes the filtration generated by V . To incorporate wrong way risk, the intensity, λ, is defined
as an increasing function of exposure, V . In this setting the default time, τ , admits a stochastic

5In practice dealer portfolios are complex, and there are almost always collateral and netting agreements asso-
ciated with positions. However, in order to effectively communicate our main results, we consider uncollateralized
contract-level exposure in our numerical examples.

6Hull and White [9] discuss, but do not implement, an estimation scheme based on historical observations of
the exposure V and credit spread of the counterparty.

7This is the recovery rate associated with the credit default swap contract “on” the counterparty, and it may
or may not be equal to the recovery rate that appears in the CVA formula. The recovery rate in the CVA formula
refers to the fraction of loss that is recovered by the financial institution (a derivatives dealer) if the counterparty
defaults.

8We address the case where λ depends on additional sources of randomness in a subsequent paper.

3



intensity λ, as shown in the Appendix. A consequence of this is an expression for the survival
probability:

P (τ > t) = E
[
e−

∫ t
0 λu du

]
, (5)

which implies that the density of the default time τ is given by:

fτ (t) = E
[
λte
−

∫ t
0 λu du

]
. (6)

3.1 Calibration

The calibration scheme for the intensity models of CVA that are considered in this paper uses
(5) by assuming that survival probabilities on the left side of (5) are approximated from a
counterparty’s market observable credit default swap spreads or bond spreads.

Many of the credit default swap contract valuation models assume that the default time is the
first event of a non-homogenous Poisson process. Using this assumption, the calibration scheme
(5) can be viewed as follows. Let τ̃ denote the time to the first event of a non-homogenous
Poisson process with deterministic time dependent intensity λ̃. The survival probability by time
t > 0 is given by:9

P (τ̃ > t) = e−
∫ t
0 λ̃u du.

Suppose that a set of maturity-t credit default swap spreads, st, are observed in the market. A
well-known approximation used in the valuation of credit default swaps is as follows:

1

t

∫ t

0
λ̃u du ≈

st
1−R

.

The calibration scheme (5) chooses the parameters of λ such that:

P (τ > t) = P (τ̃ > t) ≈ e−
tst
1−R , (7)

for t ∈ [0, T ]. That is, this calibration strategy implies that the counterparty’s default time, τ ,
with stochastic intensity, λ, is equal in distribution to τ̃ for t ∈ [0, T ]. The distribution of τ̃
for t ∈ [0, T ] is approximated based on market observed credit spreads and independent of the
dealer’s credit exposure.

3.2 Counterparty Survival Probabilities

Wrong way exposures are first defined by Canabarro and Duffie [3] as credit exposures that are
negatively correlated with the credit quality of the counterparty, (see page 123 of [3]). In what
follows, we show that stochastic intensity models of CVA capture this basic definition. However,
we emphasize that wrong way risk does not affect the credit quality of the counterparty. The

9See Chapter 5 of [12].
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counterparty’s survival probabilities P (τ > T ), for T > 0, are considered as the measure of its
credit quality.

The default time, τ , admits a stochastic intensity, λ, which in the presence of wrong way
risk is defined as an increasing function of the exposure V . Then, for a given T > 0, we can
write:

P (τ > T |GT ) = e−
∫ T
0 λu du. (8)

That is, conditional on a given sample path of the exposure process in [0, T ], the counterparty
default time can be viewed as the first event of a non-homogeneous Poisson process with intensity
λt.

Consider two given sample paths of the exposure process, {V k
t ; t ≤ T}, k = 1, 2, for which:∫ T

0
λ(V 1

t )dt <

∫ T

0
λ(V 2

t )dt.

This implies that the counterparty’s credit quality is lower along the second sample path. In
other words, wrong way risk affects a counterparty’s credit quality on a path-wise basis. However,
the calibration strategy that uses (5), or equivalently (7), forces the average of conditional
survival probabilities to be equal to the market observed survival probabilities:

P (τ > T ) = E[P (τ > T |GT )] = P (τ̃ > T ).

An analogous argument shows that the calibration strategy of this class of stochastic intensity
models implies that right way risk does not affect the credit quality of the counterparty.

3.3 Independent and Wrong Way CVA

In an intensity-based CVA model, Formula (6) implies that independent CVA can be written
as:

CVAI =

∫ T

0
E[DtVt]fτ (t) dt =

∫ T

0
E[DtVt]E

[
λte
−

∫ t
0 λu du

]
dt. (9)

In Lemma 1 of the Appendix, we derive the following formula for wrong way intensity-based
CVA, which assumes that the stochastic intensity of counterparty’s default time, τ , is a function
of dealer’s credit exposure, V :

CVAW = E[DτVτ1{τ ≤ T}] =

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt. (10)

A comparison of independent CVA (right hand side of Formula (9)) and wrong way CVA (right
hand side of Formula (10)) suggests that wrong way CVA need not exceed independent CVA.
While a positive correlation between λ and V implies E[DtVtλt] ≥ E[DtVt]E[λt], it has no
consistent implication for the pair of terms:

E[DtVt]E
[
λte
−

∫ t
0 λu du

]
and E

[
DtVtλte

−
∫ t
0 λu du

]
,

or for the time integrals of those terms. In Section 4, we give examples of forward contracts and
put options for which CVAI > CVAW in the model of Hull and White [9].
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4 Numerical Examples

This section is a summary of our numerical examples based on the Hull and White model [9].
They demonstrate that independent CVA can exceed wrong way CVA. There are many practical
instances where Monte Carlo estimates of CVAI and CVAW are close but the former exceeds
the latter. We consider contract level exposures for forward contracts and put options.

In what follows we assume that the risk free rate, r, is constant. That is, the discount factor
is Dt = e−rt and independent and wrong way CVA are:

CVAI =

∫ T

0
DtE[Vt]f(t) dt and CVAW =

∫ T

0
DtE

[
Vtλte

−
∫ t
0 λu du

]
dt,

where Vt denotes the time t ≥ 0 value of the derivative contract and T is the maturity of the
contract. Also, λ is the stochastic intensity proposed by Hull and White, i.e., λt = exp(bVt+at).
Assuming that b is given, the piece-wise constant deterministic function at is approximated
based on counterparty’s t-maturity credit spreads, st, and (4), (see the details in the Appendix
of [9]).

The expected exposures, E[Vt], are with respect to the physical measure in our numerical
examples. There is no consensus in counterparty credit risk around choices of measure for CVA
calculations, (see [8] and Chapters 7 and 9 of [7] for discussions on the use of risk-neutral and
physical measure in CVA calculations). 10

Monte Carlo CVA Estimation Monte Carlo estimators of CVAI and CVAW , denoted θ̂I
and θ̂W , are defined as follows. Consider the time grid, 0 ≡ t0 < t1 < ... < tn ≡ T ,

θ̂I =
n∑
i=1

DiV̄if(ti)∆i, and θ̂W =
n∑
i=1

Diξi∆i,

where ∆i ≡ ti− ti−1, and, V̄i = 1
m

(∑m
j=1 Vij

)
, with Vij being the jth Monte Carlo realization of

Vi ≡ Vti . Similarly, ξi is the m-simulation-run average of Viλie
−

∑i
k=1 λk∆̃k , with ∆̃k = t̃k − t̃k−1

being defined based on a finer time grid, 0 ≡ t̃0 < t̃1 < ... < t̃l ≡ T , l > n.
Let {St}t≥0 denote a geometric Brownian motion, St = S0e

Xt , where {Xt}t≥0 is a Brownian
motion with drift µ and volatility σ. We sample from the risk factor St based on the physical
measure. Then, given the Monte Carlo realization of S, the valuation is based on the risk-neutral
measure.11 This implies Vt = e−r(T−t)E[ST | St] = St for the forward contract. For the put
options, we simply set Vt = e−r(T−t)E[(K − ST )+ | St].

The credit curve is assumed to be flat at s. So, in the independent case, the default time,
τ , is an exponential random variable with mean 1/s. This leads to the following closed form

10Note that in the above setting {DtVt}t≥0 is a martingale under the risk-neutral measure. We have chosen the
physical measure to avoid the trivial case, V0 = E[DtVt] and so CVAI = V0P (τ ≤ T ), resulting from {DtVt}t≥0

being a martingale.
11This is the common and well known practice in risk management: sampling from the risk factors based on

the physical measure and then risk neutral valuation, (see, for instance, Chapter 9 of [6]).
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formula for independent CVA in the forward contract case, CVAI = sS0
α (exp(αT ) − 1) with

α = µ+ σ2

2 − r − s.

Numerical Results CVA estimates in the following numerical examples are based on m = 105

simulation runs.12 We assume a recovery rate of R = 0, a constant risk free rate of r = .01,
and an annualized volatility of 25%. The credit quality of the counterparty is investment grade
with a flat spread curve at 100 basis points. The family of forward contracts presented in Table
1 and the family of in-the-money put options analyzed in Table 2 are both examples where
independent CVA and wrong way CVA are close, but CVAI exceeds CVAW at each maturity.
The coefficient b = .02 in both Tables 1 and 2 indicates a relatively low dependence of stochastic
intensity on exposure. Table 3 presents another 20% in-the-money put option example where
CVAW exceeds CVAI at each maturity; note that the difference is most pronounced for T = 1.
The coefficient b = 1 in Table 3 indicates a relatively higher dependence of intensity on exposure.

T .1 .2 .4 .6 .8 1

CVAI 2 4 8 12 16.1 20.1

θ̂W 1.9 3.7 7.5 10.5 15.5 19.6

Table 1: Forward contract: CVA numbers and estimates are of order 10−3, m = 105, b = .02,
µ = 0, σ = .25, S0 = 2, spread = .01, ∆ = 5∆̃, ∆̃ = .01 for T = 1, .8, .6, .4, and ∆̃ = .001 for
T = .1, .2.

T .1 .2 .4 .6 .8 1

θ̂I 2 4 8.1 11.5 17.1 21.9

θ̂W 1.9 3.7 7.6 11.1 16.7 21.6

Table 2: Put option: CVA estimates are of order 10−3, m = 105, b = .02, µ = 0, σ = .25,
S0 = 10, K = 12, spread = .01, ∆ = 5∆̃, ∆̃ = .01 for T = 1, .8, .6, .4, and ∆̃ = .001 for
T = .1, .2.

We also came across unrealistic cases of put options where CVAI exceeds CVAW in a more
pronounced way. For instance, consider the case where credit spread is flat at 106 basis points,
i.e., s = 100. This gives CVAI = .0169 and CVAW = .0057 for T = 1. That is, independent

12We use MATLAB to produce the results.
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T .1 .2 .4 .6 .8 1

θ̂I 2 4 8.1 11.5 17.1 21.9

θ̂W 2.2 4.8 11.27 17.6 29.4 37.9

Table 3: Put option: CVA estimates are of order 10−3, m = 105, b = 1, µ = 0, σ = .25, S0 = 10,
K = 12, spread = .01, ∆ = 5∆̃, ∆̃ = .01 for T = 1, .8, .6, .4, and ∆̃ = .001 for T = .1, .2.

CVA is roughly 3 times larger than wrong way CVA.13

Note that θ̂I and θ̂W are biased estimators of CVAI and CVAW due to the time-discretization.
Ideally, the mean square error of these estimators should be estimated. This is computationally
extremely expensive in our setting. To get a feel for the statistical efficiency of our estimators, we
note that for the forward contract example presented in Table 1, CVAI is analytically calculated,
and Monte Carlo estimates of CVAI coincide with the exact values. Since Monte Carlo estimation
of CVA is computationally intensive, a valuable line of research is to improve the calibration
strategies of intensity models and to develop efficient Monte Carlo estimators of wrong way
CVA.14

5 Conclusion

A mathematical model is required to compare independent CVA and worng way or right way
(dependent) CVA. In this note, we focus on a class of stochastic intensity CVA models that
includes the formulation of Hull and White [9]. We derive a formula for CVA for models in this
class and show that neither wrong way risk nor right way risk affects a counterparty’s credit
quality. Using the model of Hull and White [9], we generate numerical examples that demon-
strate wrong way CVA need not exceed independent CVA. Analogous arguments and numerical
examples would show that right way CVA could exceed independent CVA. Our findings are
inconsistent with the scalar multiples of independent CVA that have been adopted by Basel II
and III regulators as a proxy for wrong way CVA; they provide an occasion to re-examine the
assumptions underlying those proxies.

13The remaining parameters for this unrealistic example are σ = .3, b = 2, µ = 0, S0 = 1, K = 1.5. Also,
∆̃ = .01 and ∆ = .05

14See [5] for efficient Monte Carlo independent CVA estimation.
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A Default Times with Stochastic Intensity and the Proof of the
Counterparty Risk Pricing Formula

It is well known that a default time, τ , defined on a filtered probability space, (Ω,F , {Ft}t≥0, P ),
admits a stochastic intensity, λ, when the process,

1{τ ≤ t} −
∫ t∧τ

0
λudu,

is a martingale, (where t∧τ ≡ min{t, τ}). To make the martingale property precise the filtration
is to be specified. For the general case see Chapter 2 of [2]. In what follows, we do this for our
setting. A consequence of the existence of an intensity is the identity:

P (τ > t) = E
[
e−

∫ t
0 λu du

]
,

which is used throughout this paper and in the proof Lemma 1.

Doubly Stochastic Random Times Let τ be a default time on a filtered probability space
(Ω,F , {Ft}t≥0, P ). Let {Ht}t≥0 denote the filtration generated by the default indicator process
1{τ ≤ t}. Suppose that the distribution of τ depends on additional information denoted by
{Gt}t≥0. Set Ft ≡ Gt ∨Ht where Ft is the smallest σ-algebra that contains Gt and Ht.

15 The
default time, τ , is called doubly stochastic when for all t > 0,16

P (τ ≤ t |G∞) = P (τ ≤ t |Gt),

and when conditional on Gt,
∫ t

0 λudu is strictly increasing.17

In our setting {Gt}t≥0 is the filtration generated by the exposure process V . The first
condition implies that given the past values, u ≤ t, of V , the future, s > t does not contain any
extra information for predicting the probability that τ occurs before t.18

The credit exposure process, V , could have jumps due to the the expiration of trades before
prior to the maturity of the longest instrument in the portfolio. In this case, where V has points
of discontinuity, τ may not be doubly stochastic. But, it can be shown that τ still admits a
stochastic intensity λ, (see Definition D7 and Theorem D8 of [2]).

Lemma 1. Consider a real-valued process V defined on the probability space (Ω,F , P ). Let
{Gt}t≥0, denote the filtration generated by V , i.e., Gt = σ{Vs; 0 ≤ s ≤ t}, the smallest σ-field
with respect to which Vs is measurable for every s ∈ [0, t], and let G ≡ G∞ ⊂ F . Let D denote a
real-valued process that is adapted to {Gt}t≥0. Let τ denote a counterparty’s default time, which
admits the stochastic intensity λ that is adapted to {Gt}t≥0. For t ≥ 0,

15By definition, τ is an Ht-stopping time. Note that τ is also a Ft ≡ Gt ∨Ht-stopping time for any {Gt}t≥0.
16it represents the first event time of a conditional or doubly stochastic Poisson process.
17see, for instance, Chapter 9 of [10].
18Many of the stochastic intensity models in the credit literature work under this doubly stochastic framework,

(see, for instance, [4]).
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P (τ > t |G) = e−
∫ t
0 λu du and P (τ > t) = E

[
e−

∫ t
0 λu du

]
. (11)

Then, the following holds for any given T ≥ 0:

E[DτVτ1{τ ≤ T}] =

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt.

Proof. Conditional on G we can write,

E[DτVτ1{τ ≤ T} |G] =

∫ T

0
E[DτVτ |G, τ = t]fτ |G(t) dt

=

∫ T

0
DtVtfτ |G(t) dt =

∫ T

0
DtVtλte

−
∫ t
0 λu du dt,

where fτ |G is the conditional density of τ and is derived based on the left side of (11). Then,
the Lemma follows by noting that:

E [DτVτ1{τ ≤ T}] = E [E[DτVτ1{τ ≤ T}|G]] ,

and

E

[∫ T

0
DtVtλte

−
∫ t
0 λu du dt

]
=

∫ T

0
E
[
DtVtλte

−
∫ t
0 λu du

]
dt.
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