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HapCUT2: robust and accurate haplotype assembly
for diverse sequencing technologies

Peter Edge,1 Vineet Bafna,1 and Vikas Bansal2
1Department of Computer Science & Engineering, University of California, San Diego, La Jolla, California 92053, USA; 2Department
of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92053, USA

Many tools have been developed for haplotype assembly—the reconstruction of individual haplotypes using reads mapped

to a reference genome sequence. Due to increasing interest in obtaining haplotype-resolved human genomes, a range of new

sequencing protocols and technologies have been developed to enable the reconstruction of whole-genome haplotypes.

However, existing computational methods designed to handle specific technologies do not scale well on data from different

protocols. We describe a new algorithm, HapCUT2, that extends our previous method (HapCUT) to handle multiple se-

quencing technologies. Using simulations and whole-genome sequencing (WGS) data from multiple different data types

—dilution pool sequencing, linked-read sequencing, single molecule real-time (SMRT) sequencing, and proximity ligation

(Hi-C) sequencing—we show that HapCUT2 rapidly assembles haplotypes with best-in-class accuracy for all data types. In

particular, HapCUT2 scales well for high sequencing coverage and rapidly assembled haplotypes for two long-read WGS

data sets on which other methods struggled. Further, HapCUT2 directly models Hi-C specific error modalities, resulting

in significant improvements in error rates compared to HapCUT, the only other method that could assemble haplotypes

from Hi-C data. Using HapCUT2, haplotype assembly from a 90× coverage whole-genome Hi-C data set yielded high-res-

olution haplotypes (78.6% of variants phased in a single block) with high pairwise phasing accuracy (∼98% across chromo-

somes). Our results demonstrate that HapCUT2 is a robust tool for haplotype assembly applicable to data from diverse

sequencing technologies.

[Supplemental material is available for this article.]

Humans are diploid organisms with two copies of each chromo-
some (except the sex chromosomes). The two haplotypes (described
by the combination of alleles at variant sites on a single chromo-
some) represent the complete information on DNA variation in
an individual. Reconstructing individual haplotypes has impor-
tant implications for understanding human genetic variation, in-
terpretation of variants in disease, and reconstructing human
population history (Tewhey et al. 2011; Glusman et al. 2014;
Schiffels and Durbin 2014; Snyder et al. 2015). A number of meth-
ods, computational and experimental, have been developed for
haplotyping human genomes. Statistical methods for haplotype
phasing using population genotype data have proven successful
for phasing common variants and for genotype imputation but
are limited in their ability to phase rare variants and phase long
stretches of the genome that cross recombination hot-spots
(Browning and Browning 2011; Tewhey et al. 2011).

Haplotypes for an individual genome at known heterozygous
variants can be directly reconstructed from reference-aligned se-
quence reads derived from whole-genome sequencing (WGS).
Sequence reads that are long enough to cover multiple heterozy-
gous variants provide partial haplotype information. Using over-
laps between such haplotype-informative reads, long haplotypes
can be assembled. This haplotype assembly approach does not rely
on information from other individuals (such as parents) and can
phase even individual-specific variants. Levy et al. (2007) demon-
strated the feasibility of this approach using sequence data derived
frompaired Sanger sequencing of long insert DNA fragment librar-

ies to computationally assemble long haplotype blocks (N50 of
350 kb) for the first individual human genome.

Since then, advancements in massively parallel sequencing
technologies have reduced the cost of human WGS drastically,
leading to the sequencing of thousands of human genomes.
However, the short read lengths generated by technologies such
as Illumina (100–250 bases) and the use of short fragment lengths
in WGS protocols makes it infeasible to link distant variants into
haplotypes. To overcome this limitation, a number of innovative
methods that attempt to preserve haplotype information from
long DNA fragments (tens to hundreds of kilobases) in short se-
quence reads have been developed.

The underlying principle for thesemethods involves generat-
ing multiple pools of high-molecular-weight DNA fragments such
that each pool contains only a small fraction of the DNA from a
single genome. As a result, there are very few overlapping DNA
fragments in each pool, and high-throughput sequencing of the
DNA in each pool can be used to reconstruct the fragments by
alignment to a reference genome (Kitzman et al. 2011; Suk et al.
2011). Therefore, each pool provides haplotype information
from long DNA fragments, and long haplotypes can be assembled
using information from a sufficiently large number of indepen-
dent pools (Snyder et al. 2015). A number of methods based on
this approach have been developed to phase human genomes
(Kitzman et al. 2011; Suk et al. 2011; Peters et al. 2012; Kaper
et al. 2013; Amini et al. 2014). Recently, 10X Genomics described
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a novel microfluidics-based library preparation approach that
generates long linked reads that can be assembled into long haplo-
types (Zheng et al. 2016). Third-generation sequencing technolo-
gies such as Pacific Biosciences (PacBio) generate long sequence
reads (2–20 kb in length) that can directly enable genome-wide
haplotyping. Pendleton and colleagues demonstrated the feasibil-
ity of assembling haplotypes from SMRT reads using variants iden-
tified from short read Illumina sequencing (Pendleton et al. 2015).

Haplotype assembly is also feasible with paired-end sequenc-
ing, i.e., pairs of short reads derived from the ends of long DNA
fragments, but requires long and variable insert lengths to assem-
ble long haplotypes (Tewhey et al. 2011). Selvaraj et al. (2013) used
sequence data from a proximity ligation method (Hi-C) to assem-
ble accurate haplotypes for mouse and human genomes. Using
mouse data, they demonstrated that the vastmajority of intrachro-
mosomal Hi-C read pairs correspond to ‘cis’ interactions (between
fragments on the same chromosome) and therefore contain haplo-
type information equivalent to paired-end reads with long and
variable insert lengths. Subsequently, 17× whole-genome Hi-C
data was used to assemble chromosome-spanning haplotypes for
a human genome, albeit with low resolution (<22% of variants
phased).

In summary, multiple different sequencing technologies and
protocols have the capability to generate sequence reads with hap-
lotype information but require computational tools to assemble
the reads into long haplotypes. A number of combinatorial algo-
rithms have been developed for haplotype assembly (Bansal and
Bafna 2008; Duitama et al. 2010; He et al. 2010; Aguiar and
Istrail 2012). Among these, HapCUT (Bansal and Bafna 2008)
was developed for phasing SangerWGS data for the first individual
genome (Levy et al. 2007). HapCUT utilizes max-cuts in read-hap-
lotype graphs, an approach that is equally adept at handling data
with local haplotype information and data with long-range haplo-
type information such as that from long insert paired-end reads. As
a result, it has been successfully utilized to assemble haplotypes
from different types of high-throughput sequence data sets, in-
cluding fosmid pool sequencing (Kitzman et al. 2011), Hi-C data
(Selvaraj et al. 2013), and single molecule long reads (Pendleton
et al. 2015) with appropriate modifications. However, HapCUT
only models simple sequencing errors and does not scale well for
long read data. More recently, several algorithms have been de-
signed specifically to enable accurate haplotype assembly from
long reads (Duitama et al. 2010; Kuleshov 2014).

The diverse characteristics and specific error modalities of
data generated by different haplotype-enabling protocols and
technologies continue to pose challenges for haplotype assembly
algorithms. Some protocols, such as clone-based sequencing, can
generate very long fragments (BAC clones of length 140 kb have
been used to assemble haplotypes [Lo et al. 2013]) but may have
low fragment coverage. Other protocols, such as PacBio SMRT,
generate fragments with shorter mean lengths than clone-based
approaches but can be scaled to higher read coverage more easily.
10X Genomics linked reads are long (longest molecules > 100 kb)
but have gaps resulting in high clone coverage for each variant.
Proximity ligation approaches, such as Hi-C, generate paired-end
read data with very short read lengths but with a larger genomic
span. Hi-C reads can span from a few kilobases to tens of mega-
bases in physical distance.While an algorithm that leverages char-
acteristics of a specific type of data is likely to performwell on that
particular type of data, it may not perform well or not work at all
on other types of data. For example, dynamic programming algo-
rithms such as ProbHap (Kuleshov 2014) that were developed for

low-depth long read sequence data are unlikely to scale well for
data sets with high sequence coverage or for other types of data
such as Hi-C. Even if a haplotype assembly algorithm has broad
support for data qualities, there remains the challenge that differ-
ent sequencing protocols each have systematic error modalities.
For instance, fragment data from the sequencing of multiple hap-
loid subsets of a human genome (Kitzman et al. 2011; Suk et al.
2011) generate long haplotype fragments, but some of these frag-
ments are chimeric due to overlapping DNA molecules that origi-
nate from different chromosomes. Similarly, noise in Hi-C data
due to ligated fragments fromopposite homologous chromosomes
increases with increasing distance between the variants. The accu-
racy of haplotypes assembled from each sequencing protocol de-
pends on both the haplotype assembly algorithm’s ability to
effectively utilize the sequence data and its ability to model proto-
col-specific errors.

Results

To address the challenge of haplotype assembly for diverse types of
sequence data sets, we developed HapCUT2, an algorithm that
generalizes the HapCUT approach in several ways. Compared to
a discrete score optimized by HapCUT, HapCUT2 uses a likeli-
hood-basedmodel, which allows for the modeling and estimation
of technology-specific errors such as ‘h-trans errors’ in Hi-C data.
To improve memory performance for long read data, HapCUT2
does not explicitly construct the complete read-haplotype graph.
Further, it implements a number of optimizations to enable fast
runtimes on diverse types of sequence data sets. To demonstrate
the accuracy and robustness of HapCUT2, we compared its perfor-
mance with existing methods for haplotype assembly using simu-
lated and real WGS data sets. Previous publications (Duitama et al.
2012; Kuleshov 2014) have compared differentmethods for haplo-
type assembly and concluded that RefHap (Duitama et al. 2010),
ProbHap (Kuleshov 2014), FastHare (Panconesi and Sozio 2004),
andHapCUT (Bansal and Bafna 2008) are among the best perform-
ing methods. Other methods such as DGS (Levy et al. 2007),
MixSIH (Matsumoto and Kiryu 2013), and HapTree (Berger et al.
2014) did not perform as well on the data sets evaluated in this
study. Therefore, we compared the performance of HapCUT2
with four other methods: RefHap, ProbHap, FastHare, and
HapCUT (Table 1).

Overview of HapCUT2 algorithm

The input to HapCUT2 consists of haplotype fragments (sequence
of alleles at heterozygous variant sites identified from aligned se-
quence reads) and a list of heterozygous variants (identified from
WGS data). HapCUT2 aims to assemble a pair of haplotypes that
are maximally consistent with the input set of haplotype frag-
ments. This consistency is measured using a likelihood function
that captures sequencing errors and technology-specific errors
such as h-trans errors in proximity ligation data. HapCUT2 is an it-
erative procedure that starts with a candidate haplotype pair.
Given the current pair of haplotypes, HapCUT2 searches for a sub-
set of variants (usingmax-cut computations in the read-haplotype
graph) such that changing the phase of these variants relative to
the remaining set of variants results in a new pair of haplotypes
with greater likelihood. This procedure is repeated iteratively until
no further improvements can be made to the likelihood (see
Methods for details).
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Comparison of runtimes on simulated data

Weused simulations to compare the runtime ofHapCUT2with ex-
isting methods for haplotype assembly across different types of se-
quence data sets. A fair comparison of the performance of different
methods is not completely straightforward. Different methods
chose to optimize different technology parameters and highlight-
ed performance using those parameters.We considered the follow-
ing parameters: number of variants per read (V ), coverage per
variant (d), and the number of paired-end reads spanning a variant
(d′). The parameterV is a natural outcome of read length; for exam-
ple, PacBio provides higher values of V compared to Illumina se-
quencing. The parameter d is similar to read coverage but only
considers haplotype informative reads—higher values result in
better accuracy but also increased running time. Finally, many se-
quencing technologies (such as Hi-C) generate paired-end se-
quencing with long inserts and d′ can potentially be much
greater than d. Some haplotype assembly methods implicitly ana-
lyze all paired-end reads spanning a specific position, and their
runtime depends upon d′ rather than d.

In order to make a fair comparison of runtimes and allow us-
ers to determine themost efficient method for any technology, we
summarized the computational complexity of each method as a
function of these parameters (Table 1) and used simulations to
verify the dependence of runtime and accuracy on each parameter
(Fig. 1). We simulated reads using a single chromosome of
length ∼250 Mb (approximately equal to the length of human
Chromosome 1) with a heterozygous variant density of 0.08%
and a uniform rate of sequencing errors (2%), performing 10 repli-
cates for each simulation. Standard deviations of runtimes and er-
ror rates between replicates were small (Supplemental Fig. S1). A
method was cut off if it exceeded 10 CPU-h of runtime or 8 GB
of memory on a single CPU, since most methods required signifi-
cantly less resources than these limits. We note that the runtimes
in Table 1 refer to complexity as implemented, with parameters re-
ferring to maximum values (e.g., maximum coverage per variant),
while in simulations, the parameters refer to mean values (e.g.,
mean coverage per variant).

To assess the dependence of runtime on d, we generated reads
with amean of four variants per read (V) and varied themean read

Table 1. Comparison of the approach, time complexity, and applicability of five algorithms for haplotype assembly: HapCUT2, HapCUT, RefHap,
ProbHap, and FastHare

Method Approach Complexity Long reads
Hi-C

support Variant pruning

HapCUT2 Likelihood optimization using graph-cuts O(c1c2(Nlog (N) +NdV2)) Scalable Yes Likelihood
HapCUT MEC optimization using graph-cuts O(c1c2(Nlog (N) +NdV2)) High memory requirement Yes No
RefHap Max-cut on read graph O(c3(R

2Vd′ + RV2d′2)) Low-to-medium coverage No Discrete
ProbHap Exact likelihood using dynamic prog. +merging

heuristic
O(Nd′2d

′
) Low-coverage No Confidence scores

FastHare Read partitioning optimization O(RVd′) Yes No Discrete

(R) Number of reads (all algorithms process reads for each haplotype block separately); (N) total number of variants; (V) maximum number of variants
in a read; (d) maximum read depth per site; (d′) maximum number of reads crossing a site (equivalent to d except with paired-end inserts being includ-
ed as part of the read); (c1) (c2) (c3) method-specific variables that are either fixed in advance or selected by the user. Reads are assumed to be sorted
by starting position.

Figure 1. Comparison of runtime (top panel) and switch +mismatch error rate (bottom panel) for HapCUT2 with four methods for haplotype assembly
(HapCUT, RefHap, ProbHap, and FastHare) on simulated read data as a function of (A) mean coverage per variant (variants per read fixed at four); (B) mean
variants per read (mean coverage per variant fixed at five); and (C) mean number of paired-end reads crossing a variant (mean coverage per variant fixed at
five, read length 150 bp, random insert size up to a variablemaximum value). Lines represent themean of 10 replicate simulations. FastHare is not visible on
C (bottom) due to significantly higher error rates.

HapCUT2: robust and accurate haplotype assembly
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coverage per variant (d) from five to 100. The error rates of
HapCUT2, HapCUT, ProbHap, and RefHap were similar and de-
creased with increasing coverage before reaching saturation.
FastHare was significantly faster than other methods but had error
rates that were several times greater. As predicted by the computa-
tional complexity of the different methods (Table 1), HapCUT2 is
significantly faster than HapCUT, RefHap, and ProbHap, once the
coverage exceeds 10× (Fig. 1A). For example, RefHap required 10
CPU-h to phase reads at a coverage of 38×, while HapCUT2 took
only 34 CPU-min to phase reads with 100× coverage per variant.
ProbHap reached the 10-CPU-h limit at a coverage of only 8×.
HapCUT shows a similar trend to HapCUT2 but is significantly
slower and requires more than 8 GB of memory at coverages of
40× or greater. RefHap constructs a graph with the sequence reads
as nodes and performs amax-cut operation that scales quadratical-
ly with number of reads. Therefore, its runtime is expected to in-
crease as the square of read-coverage. ProbHap’s runtime is
exponential in the maximum read-depth (Kuleshov 2014) and ex-
ceeds the maximum allotted time for modest values of d. FastHare
greedily builds amaximally consistent haplotype from left to right
in a single pass, resulting in a low runtime but also lower accuracy.
While HapCUT2 has the same asymptotic behavior as HapCUT, it
improves upon the memory usage and runtime significantly in
practice. It does this by only adding edges that link adjacent vari-
ants on each read to the read-haplotype graph, aswell as using con-
vergence heuristics that reduce the number of iterations performed
(see Methods for details).

Next, we varied the number of variants per read (V) and kept
the coverage per variant (d) fixed at 5×. The error rates for each
method decrease monotonically (Fig. 1B). HapCUT2, RefHap,
and ProbHap have similarly low error rates, while FastHare and
HapCUT have error rates higher than the other methods. The run-
times of RefHap and FastHare are consistently very low, although
the runtime of RefHap peaks very slightly around V = 15. The run-
time of ProbHap decreases monotonically as V increases. This is
consistent with the fact that the runtime of these methods has a
linear dependence on the read length because for a fixed sequence
coverage, the number of reads decreases as the read length increas-
es. In comparison, HapCUT2’s runtime is observed to increase lin-
early with V. This is consistent with the complexity of HapCUT2
being proportional to the square of the number of variants per
read (see Table 1). Although HapCUT2’s runtime increases, it re-
mains practical across all tested values and is <50 CPU-min for
mean read lengths consistent with very long sequences (160 vari-
ants per read or 200 kb). The space requirements for HapCUT have
a quadratic dependence on the number of variants per read, and
therefore, exceeded the memory limit after only eight variants
per read.

Finally, we compared runtimes as a function of the average
number of paired-end reads crossing a variant (d′). For single-end
reads, this parameter is identical to d. Proximity ligation data, on
the other hand, consists of pairs of short reads each with a single
large gap (insert) between them. The large and highly variable in-
sert sizes result in a large number of reads crossing each variant po-
sition. This property is important for linking distant variants,
because the extremely long insert size spans of proximity ligation
methods are capable of spanning long variant-free regions. For this
reason, we simulated paired-end short read data with random in-
sert sizes up to a parametrizedmaximum value, to represent a gen-
eralized proximity ligation experiment. We varied d′ by increasing
the maximum insert size value from 6.25 kb (∼5 single-nucleotide
variants [SNVs]) to 125 kb (∼100 SNVs) while keeping d and V

constant at 5× and 150 base pairs (bp) (0.1195 SNVs), respectively.
ProbHap and RefHap exceeded the time limit at d′ = 10 and d′ = 17,
respectively. FastHare exceeded the time limit at d′ = 36 but had ex-
tremely high error rates (10×–18× higher than HapCUT2).
ProbHap’s dynamic programming algorithm needs to consider
the haplotype of origin for each read crossing a variant; therefore,
the complexity scales exponentially in d′. In the case of RefHap
and FastHare, the failure to scale with increasing d′ appears to be
a result of representing fragments as continuous arrays with length
equal to the number of variants spanned by each read. Thus, as im-
plemented, the runtimes for RefHap and FastHare scale with d′

rather than d. In contrast, both HapCUT and HapCUT2 were
able to phase data with arbitrarily long insert lengths, reaching
d′ = 100 (Fig. 1C). The runtime of HapCUT2 was independent of
d′ and 8×–10× faster than that for HapCUT.

Overall, the results on simulated data demonstrate that the
complexity of HapCUT2 is linear in the number of reads and qua-
dratic in the number of variants per read. HapCUT2 is fast in prac-
tice and effective for both long reads and paired-end reads with
long insert lengths, with scalability unmatched by the four other
tools we evaluated. Additionally, HapCUT2 and HapCUT were
the only tools tested that can reasonably phase paired-end data
with long insert lengths that result from proximity ligation
(Hi-C) sequencing.

Comparison of methods on diverse WGS data sets

for a single individual

Wenextassessed theaccuracyofHapCUT2usingdata fromfourdif-
ferent sequencing data types for a single individual (NA12878): fos-
mid-based dilution pool sequencing, 10X Genomics linked-read
sequencing, single molecule real-time (SMRT) sequencing, and
proximity ligation sequencing. Haplotype assembly methods re-
quire a set of heterozygous variants as input. Therefore, a set of het-
erozygousvariants forNA12878 identified fromWGSIlluminadata
were used as input to assemble haplotypes for each data type (see
Methods for description). The accuracy of the haplotypes was as-
sessed by comparing the assembled haplotypes to gold-standard
trio-phased haplotypes and using the switch error rate and mis-
match error rate metrics (see Methods).

Fosmid-based dilution pool data

To assess HapCUT2 on long read sequencing data, we used whole-
genome fosmid-based dilution pool sequence data for a human in-
dividual, NA12878 (Duitama et al. 2012). This data was generated
from 1.44 million fosmids (33–38 kb and 38–45 kb in length)
that were partitioned into 32 pools such that each pool contains
DNA from a small fraction of the genome (∼5%). Subsequently,
each pool was sequenced using the ABI SOLiD sequencer and hap-
lotype fragments were identified using read depth analysis
(Duitama et al. 2012). Although this data set has low sequence cov-
erage (d≈ 3×), the processed fragment data (needed as input for
haplotype assembly) is publicly available and has been used to
assess the performance of haplotype assembly methods in several
papers (Duitama et al. 2012; Kuleshov 2014). On this data, the
switch error and the mismatch error rates for HapCUT2 were
virtually identical or slightly better than ProbHap, the second
best performing method, across all chromosomes (Supplemental
Fig. S2). However, ProbHap pruned ∼1.2% of the variants from
the assembled haplotypes, in comparison to HapCUT2, which
only pruned 0.6% of the variants. The switch error rates for
RefHap and FastHare were also similar to HapCUT2 and ProbHap
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(Supplemental Fig. S2). To enable a head-to-head comparison of
the switch error rate across different methods, we also calculated
the switch and mismatch error rates on a subset of variants that
were phased by all tools (not pruned). On this subset of variants,
the switch and mismatch error rates for HapCUT2 were similar to
but slightly lower than ProbHap (Fig. 2A). In terms of running
time, RefHap and FastHare were the fastest methods on this data
set,whileHapCUT2 took a total of 1:09CPU-h tophase all chromo-
somes (Table 2). In summary, HapCUT2 had similar (but slightly
better) accuracy to ProbHap, RefHap, and FastHare on this data
set and was more accurate than HapCUT.

10X Genomics linked-read data

We also used HapCUT2 to assemble haplotypes from 10X
Genomics linked-read data (Zheng et al. 2016), which is based
on a similar idea as the fosmid-based dilution pool approach.
10XGenomics technology labels short DNA fragments originating
froma single longDNA fragmentwith barcodes inside hundreds of
thousands of separate nano-scale droplets (Zheng et al. 2016). The
linked reads produced can be extremely long (>100 kb). This data
set has a short read coverage of 34×,with a linked-read coverage per
variant of 12× (Zook et al. 2016). For haplotype assembly, we used
the same set of variant calls as for the fosmid data set and extracted
haplotype fragments from the 10X aligned reads (see Methods,
“Long read data sets”). On this data set, neither RefHap nor
ProbHap finished haplotype assembly within the time limit.
HapCUT2 was the fastest method and analyzed all chromosomes
in 1:55 CPU-h (Table 2).When compared on the subset of variants
that were phased by all tools, HapCUT2 had an accuracy slightly
better than the next best approach (HapCUT), which took 16:50
CPU-h (Fig. 2C).

PacBio SMRT data

SMRT sequencing on the Pacific Biosciences platform generates
long (2–20 kb) but error-prone (>10% indel error rate) reads. We
used HapCUT2 to assemble haplotypes from 44× coverage
PacBio reads (Pendleton et al. 2015). We extracted haplotype frag-
ments from the PacBio reads that were aligned to the human refer-
ence genome (hg19), using the same set of variant calls as for the
previous two data sets. On the full data set, HapCUT2 was not
only the most accurate but was also significantly faster than
RefHap and HapCUT (see Supplemental Fig. S3 for detailed com-
parisons of error rates and runtimes). We calculated the switch er-
ror and mismatch error rates on the subset of variants that were
phased by all methods. HapCUT2 had a 12.4% lower switch error
and a 2% lower mismatch rate than RefHap. RefHap took 215:53
CPU-h to phase the data set. By comparison, HapCUT2 took
only 4:05CPU-h in total. Because ProbHapwas unable to complete
within the time limit on the full data set, we also compared the per-
formance of the haplotype assembly tools on a lower, 11× coverage
subsample of this data set. On the subsample, HapCUT2 had the
lowest switch error and mismatch error rates of the five methods
(Fig. 2B). FastHare was the fastest method on this data set and
ProbHap was the slowest method, taking 52:32 CPU-h (Table 2).

HapCUT2 implements likelihood-based strategies for prun-
ing low-confidence variants to reduce mismatch errors and split-
ting blocks at poor linkages to reduce switch errors (see
Methods). These post-processing steps allow a user to improve ac-
curacy of the haplotypes at the cost of reducing completeness and
contiguity. ProbHap’s “transition, posterior, and emission” confi-
dence scores are designed for the same purpose (Kuleshov 2014).
Post-processing strategies are of particular interest for haplotype
assembly with PacBio SMRT reads because the individual reads

Figure 2. Accuracy of HapCUT2 compared to four othermethods for haplotype assembly on diversewhole-genome sequence data sets for NA12878. (A)
Fosmid dilution pool data (Duitama et al. 2012). (B) PacBio SMRT data (11× and 44× coverage). (C ) 10X Genomics linked reads. (D) Whole-genome Hi-C
data (40× and 90× coverage, created with MboI enzyme). Switch and mismatch error rates were calculated across all chromosomes using the subset of
variants that were phased by all methods. For each data set, only methods that produced results within 20 CPU-h per chromosome are shown.
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have a high error rate. Therefore, we compared HapCUT2’s prun-
ing strategies to ProbHap’s confidence scores on Chromosome 1
of the 11× coverage PacBio data. For single variant pruning, we
found that HapCUT2’s confidence scores provided a better trade-
off between reducing themismatch error rate and pruning variants
compared to ProbHap’s emission scores (Supplemental Fig. S4A).
By pruning 3.1% of covered variants, HapCUT2 achieved a
55.1% reduction in mismatch error rate. In comparison,
ProbHap mismatch error rate was reduced by <15% when 3.1%
of variants were pruned. Similarly, HapCUT2’s block splitting
strategy resulted in a lower switch error rate compared to
ProbHap at a fixed value of the AN50 for the haplotype assembly
except at very small AN50’s (Supplemental Fig. S4B).

Hi-C data

The Hi-C method was developed to comprehensively detect chro-
matin interactions in the cell nucleus using proximity ligation and
shotgun sequencing of the ligation products (Belton et al. 2012).
Selvaraj et al. (2013) demonstrated that the long-range informa-
tion contained in Hi-C reads can be used to determine the phase
between distant variants and assemble chromosome-spanning
haplotypes from ∼17× coverage. They collaborated with some of
the authors of the current study in customizing HapCUT to assem-
ble haplotypes from Hi-C data. Hi-C reads suffer from a source of
error that was referred to as “h-trans interactions.”Anh-trans inter-
action (or h-trans error) occurs when a piece of DNA interacts with
a DNA fragment from the homologous chromosome rather than
the same chromosome (a “cis” interaction). The probability of h-
trans error depends on the insert size and can be estimated if the
true haplotypes are known. We use the function τ(I ) to refer to
the probability of an h-trans error for a read with insert size
I. Selvaraj et al. (2013) estimated τ using Hi-C data from a mouse
genome and used these estimates to lower the base quality values
of reads before running HapCUT. In developing HapCUT2, we
weremotivated in part by the need to develop amethod that could
estimate τ directly from the data and use these estimates to im-
prove the accuracy of the haplotypes.

To assess different haplotype assembly tools, we used a high
coverage Hi-C data set with ∼395× coverage on NA12878 generat-
ed using the MboI enzyme (Rao et al. 2014) and subsampled reads
from this data set to generate 40× and 90× coverage. As expected
from the simulations using paired-end reads with variable span,
only HapCUT and HapCUT2 were able to generate haplotypes
from Hi-C data within the 20 CPU-h per chromosome time limit.
The error rates were significantly lower for the 90× sample, and
HapCUT2 had lower error rates compared to HapCUT at both cov-
erage levels (Fig. 2D). In terms of runtime, HapCUT2 was 4×–5×

slower than HapCUT on Hi-C data since it performs the haplotype
assembly procedure multiple times in order to estimate τ. We note
that if HapCUT2 does account for h-trans errors, it is several times
faster than HapCUT (Supplemental Table S1).

At 40× coverage, HapCUT2 achieved a 16.3% lower switch
error rate and 13.2% lower mismatch rate compared to
HapCUT on variants phased by both methods. Similarly, at 90×
coverage, HapCUT2 achieved a 16.4% lower switch error rate
and 7.2% lower mismatch rate compared to HapCUT. The lower
error rates for HapCUT2 are primarily due to the modeling and
estimation of h-trans errors in Hi-C data. HapCUT2 directly mod-
els h-trans errors as probabilities in the likelihood formulation
and estimates τ directly from the data using an iterative approach
(see Methods, “Estimation of h-trans error probabilities in Hi-C
data”), eliminating the need for a model data set with known
haplotypes. The h-trans function was estimated separately for
each chromosome since we observed significant variation in
the h-trans error rates across chromosomes (estimated using
known haplotypes for NA12878). The per-chromosome h-trans
error rates estimated by HapCUT2 were very similar to those ob-
tained using known trio-phased haplotypes for NA12878 (see
Supplemental Fig. S5), demonstrating the accuracy of the estima-
tion procedure.

Overall, results on a variety of sequence data sets reaffirm
what we observed on simulated reads, i.e., HapCUT2 is the only
tool that works across all sequencing paradigms. In particular, hap-
lotype assembly tools that were developed to phase low-coverage
long read data, such as ProbHap and RefHap, do not work on Hi-
C data. Even on long read data (PacBio SMRT sequencing and
10X Genomics linked reads), HapCUT2 scales better in running
time with increasing coverage (Table 2). Moreover, it assembles
haplotypes that are more accurate than all other methods that
we evaluated in this paper. This was somewhat surprising because
ProbHap implements an exact likelihood optimization approach.
However, to reduce runtime, ProbHap also uses an initial heuristic
to merge reads that convey similar information, and this could re-
duce the accuracy.

Comparison of haplotypes assembled using Hi-C and SMRT

sequencing

Sequencing technologies such as SMRT generate long reads that
containmultiple variants per read. Althoughmost of the reads con-
tain haplotype information, the read length limits the ability to
phase heterozygous variants that are separated by long runs of ho-
mozygosity. In contrast, paired-end reads derived from Hi-C con-
tain very few variants per read pair (most read pairs do not cover
any variant or cover only a single variant). However, read pairs
that cover a variant at each end have the potential to link distant
variants because the insert size of Hi-C reads varies froma fewhun-
dred bases to tens of millions of bases. Therefore, haplotypes as-
sembled using these two approaches differ significantly in both
contiguity and accuracy. We utilized the PacBio SMRT sequencing
andMboI enzymeHi-C data sets to compare the haplotypes assem-
bled using HapCUT2 for these two technologies.

The haplotypes assembled from the 44× coverage SMRT se-
quence data had an AN50 length of 218 kb, with the largest block
being 1.66 Mb in length. Also, 99% of the heterozygous variants
could be phased as part of some block. In contrast, the haplotypes
assembled from the 90× coverage Hi-C data (for each autosomal
chromosome) comprised a large chromosome-spanning block
that contains 72%–87% of the variants in addition to numerous

Table 2. Comparison of total runtime (h:min, summed across all
chromosomes) for different haplotype assembly methods on various
sequence data sets for NA12878

HapCUT2 HapCUT RefHap ProbHap FastHare

Fosmid 1:09 1:49 0:01 0:31 0:01
PacBio (11×) 0:52 1:45 0:25 52:32 0:02
PacBio (44×) 4:05 6:56 215:53 – 0:20
10X Genomics 1:55 16:50 – – 12:07
Hi-C (40×) 4:38 0:46 – – –

Hi-C (90×) 9:11 1:49 – – –

For each data set, only methods that produced results within 20 CPU-h
per chromosome are shown.
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small blocks with a median block size of two variants. This effect
can be observed in Figure 3A, which shows the cumulative number
of variants covered by the haplotype blocks (sorted in descending
order) for Chromosome 1. One limitation of Hi-C data is that some
of the variants that are far away from restriction enzyme cut-sites
cannot be phased due to a lack of reads covering such variants.
Chromosome X, which has a lower variant density than auto-
somes, was more difficult to phase than autosomal chromosomes,
with only 55% of SNVs in the largest block and 32% of variants
unphased (Supplemental Fig. S6).

In terms of accuracy measured using switch error rates, both
technologies achieve comparable error rates (0.002–0.003) at suffi-
ciently high coverage (Fig. 2). Further, the switch error rates for
haplotypes assembled using these two technologies decrease rap-
idly as coverage is increased initially and saturate quickly after
that (Supplemental Fig. S7). Although the switch andmismatch er-
ror rates are similar between high-coverage Hi-C data and high-
coverage PacBio data, we found that these statistics do not ade-
quately distinguish between short stretches of erroneous phased
variants (masquerading as two switch errors) and “point” switches
that effectively divide the resulting haplotype into two pieces.
Long read data, because of its linear structure, has a tendency for
this type of error. In comparison, Hi-C data is more web-like in
structure and therefore has essentially no incidence of point
switches once there is sufficient coverage. To observe the effect
of point switches on accuracy for long reads compared to Hi-C,
we plotted the fraction of correctly phased variant pairs separated
by a given genomic distance (Fig. 3B). Point switch errors accumu-
late linearly to diminish the probability of correct phasing with
distance for PacBio, but not for Hi-C. For example, two variants
separated by 200 kb and phased with the 11× PacBio data have a
62% chance of being phased correctly. On the other hand, MboI
Hi-C data maintains a high and constant rate of pairwise phasing
accuracy across the entire chromosome: ∼0.96 at 40× and ∼0.98 at
90×. This implies that, not only doHi-C haplotypes span the entire
chromosome, but the overall haplotype structure is also highly
accurate.

Considerations when haplotyping with Hi-C

For Hi-C-based haplotyping, the choice of restriction enzyme (RE)
and depth of sequence coverage can impact the completeness and
accuracy of the haplotypes. Selvaraj et al. (2013) were able to as-

semble chromosome-spanning haplotypes for NA12878 using
Hi-C data generated using the HindIII RE. Despite assembling
blocks that spanned the genomic distance of each chromosome,
the “resolution” of the largest block was rather low (only 18%–

22% of the variants on each chromosome could be linked into
haplotypes). The low resolution could potentially be due to the
modest sequence depth (∼17×). However, we observe that even
at 200× coverage, Hi-C data obtained using the HindIII RE from
the Rao et al. (2014) study has <40% of variants phased in the larg-
est block, with 71% of variants phased in total. In contrast, 80% of
the heterozygous variants on Chromosome 1 can be successfully
phased in a single block using only 90× Hi-C data obtained using
the MboI RE. The trend is similar across autosomal chromosomes,
with the largest block of each chromosome containing 72%–87%
of the heterozygous variants (Supplemental Fig. S6). This indicates
that the choice of RE has an important effect on the number of var-
iants that can be phased.

A key step in the Hi-C protocol is the digestion of cross-linked
DNA by an RE that cleaves DNA at specific recognition sites. In
comparison to the HindIII RE, which recognizes a 6-bp DNA se-
quence (A^AGCTT), the MboI RE has a 4-bp recognition site that
occurs with much greater frequency in the genome (^GATC).
The significantly greater completeness of the haplotypes assem-
bled using Hi-C data generated using the MboI RE is primarily
due to this reason. Even with an RE with a 4-bp recognition se-
quence, some fraction of variants are expected to be far away
from a cut-site and therefore cannot be captured in Hi-C ligated
fragments. Indeed, the fraction of SNVs phased using the MboI
Hi-C data saturates with increasing coverage, and 7.3% of SNVs
on Chromosome 1 cannot be phased into the largest block even
at 395× coverage. The fraction of variants phased can potentially
be increased by integrating Hi-C data from different REs or by us-
ing imputation-based approaches.

At low sequence coverage (<25×), the largest haplotype block
assembled usingMboI-derivedHi-C data contains <40%of the var-
iants (Fig. 4A) and has a high error rate (Fig. 4B). With increasing
sequence coverage, the fraction of the variants in the largest com-
ponent increases rapidly and the error rate of the largest haplotype
block (measured as the sumof the switch andmismatch error rates)
decreases rapidly. The improvements in both these aspects ofHi-C-
based haplotype assembly saturate around 80–100× coverage.
These results demonstrate that highly accurate, high-resolution,
chromosome-spanning haplotypes can be assembled from 80–

100× whole-genome Hi-C data for a hu-
man genome generated using a single re-
striction enzyme with a 4-bp recognition
sequence.

Some applications of haplotyping
may benefit from combining sequence
data derived from different library prepa-
rationmethods. Fortunately, HapCUT2’s
flexibility enables haplotype assembly
using different sources of data. To dem-
onstrate this, we combined 40× coverage
Hi-C data with 10X Genomics linked-
read data (34× short read coverage) to as-
semble haplotypes with 98.9% of vari-
ants contained in the largest block for
each chromosome (Supplemental Fig.
S8). The haplotypes were highly accu-
rate, with a switch error rate of 0.0008
and a mismatch rate of 0.003.

Figure 3. Haplotype completeness and accuracy compared between Hi-C (MboI enzyme, 90× and
40× coverage) and PacBio SMRT (44× and 11× coverage). (A) Cumulative measure of the fraction of var-
iants phased within a given number of the largest haplotype blocks. (B) Fraction of correctly phased var-
iant pairs as a function of distance.
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Discussion

We introducedHapCUT2, amaximum likelihood-based algorithm
for the haplotype assembly problem that extends the original
HapCUTmethod tomodel technology-specific errors and canhan-
dle sequence data fromdiverse technologies efficiently. Using sim-
ulated and real WGS data, we demonstrated that HapCUT2 can
assemble haplotypes for a diverse array of data modalities while
other tools are specialized for certain subsets of data modalities.
One of the new features of HapCUT2 is its support for long reads
such as those generated by dilution-pool sequencing-based meth-
ods and long read sequencing technologies such as Pacific
Biosciences. Using multiple long read WGS data sets, we demon-
strate that HapCUT2 obtains higher accuracy than all leading
methods, while offering significantly higher speed and scalability.
Apart fromPacBio,OxfordNanopore sequencers are also capable of
producing long reads, albeitwith lower throughput than PacBio se-
quencers (Goodwin et al. 2015). As current technologies improve
and new long read data types continue to emerge, having a fast
and flexible tool like HapCUT2 that can efficiently and accurately
assemble haplotypes from any type of data is important.

Using simulated data as well as whole-genome Hi-C data, we
observed that HapCUT2 andHapCUTwere the only computation-
al methods for haplotype assembly that are reasonably capable of
phasing paired-end reads with large insert sizes. We demonstrated
that high coverage Hi-C data (e.g., ∼80–100× with a four-cutter re-
striction enzyme) can be used to phase >75%–80% of the variants
per chromosome with high accuracy. While it was known that Hi-
C can be used to link distant variants, our results demonstrate that
high-resolution whole-chromosome haplotypes can be assembled
directly from the sequence reads. In addition, the low rate of pair-
wise variant error at long genomic distances is a unique feature of
the assembled haplotypes and could be useful for applications that
require accurate long-range phasing. Although generating Hi-C
data requires intact cells, Putnam et al. (2016) recently described
a proximity ligation method using in vitro reconstituted chroma-
tin from high-molecular-weight DNA.

HapCUT2 implements an iterative approach for modeling
and estimating h-trans error probabilities de novo that reduces er-
rors in assembled Hi-C haplotypes compared to HapCUT. We ex-
pect that a similar approach could be utilized to improve the
accuracy of haplotypes assembled using data from other technolo-
gies that exhibit systemic patterns of error, e.g., chimeric frag-

ments present in dilution pool
sequencing and reference allele bias in
PacBio reads due to alignment ambigui-
ty. In general, the flexibility of the
HapCUT2 likelihood model lends itself
well to modeling sources of error that re-
sult from experimental protocol and de-
sign but are not adequately represented
by read quality scores. Another advan-
tage of the HapCUT2 likelihood model
and its implementation is the ability to
integrate sequence data from diverse
methods to generate highly accurate
and comprehensive haplotypes for refer-
ence human genomes, e.g., NA12878
and other genomes that have been se-
quenced by the GIAB consortium (Zook
et al. 2016). We demonstrated this by as-
sembling accurate and complete chro-

mosome-spanning haplotypes for NA12878 by combining Hi-C
data with linked-read data.

Similar to the original HapCUT method, HapCUT2 is a heu-
ristic algorithm that iteratively searches for better haplotypes
with increasing likelihood using graph-cuts in a greedy manner.
Although it provides no performance guarantees on the optimality
of the final haplotype assembly, its performance on multiple se-
quence data sets demonstrates its high accuracy and suggests
that it is able to find haplotypes that are close to the optimum.
Further, previous work on exact algorithms for haplotype assem-
bly (He et al. 2010) has shown that the haplotypes assembledusing
HapCUT are very close to the optimal solution.

Even at high sequencing depth, not all variants on a chromo-
some can be assembled into a single haplotype block. Using Hi-C
data,∼20%of the variants that are at a large distance from cut-sites
for a 4-bp restriction enzyme remain unphased. In comparison,
long read technologies can phase the vast majority (>95%) of var-
iants into multiple haplotype blocks for each chromosome (N50
lengths ranging from few hundred kilobases to severalmegabases).
In the absence of additional sequence data, information from pop-
ulation haplotype data can be used to link unphased variants to
the chromosome spanning haplotype block in the case of Hi-C
(Selvaraj et al. 2013) and to determine the phase between disjoint
haplotype blocks assembled from long read data sets (Kuleshov
et al. 2014). Recently, a population phasing method, SHAPEIT2,
has been extended to incorporate information from haplotype-in-
formative sequence reads in the statistical model for phasing using
population haplotypes (Delaneau et al. 2013). Analogous to this, it
should be feasible to incorporate information from population
haplotypes while assembling haplotypes from sequence reads for
an individual in the likelihood-based framework of HapCUT2.

Another important consideration for sequencing-based hap-
lotype assembly is the source of the variant calls. Most haplotype
assembly methods, including HapCUT2, require a set of reliably
called variants as input. Illumina short read sequencing at ∼30–
40× is considered the de facto standard approach to obtain reliable
heterozygous calls (Sims et al. 2014). Therefore, the simplest ap-
proach would be to perform short read WGS in addition to the se-
quencing protocol for phasing variants. However, in some cases
(e.g., 10X Genomics linked-read data) (Zheng et al. 2016), variants
can be called directly from the sequence data used for haplotyping,
eliminating the need to generate additional sequence data. In prin-
ciple, it should also be possible to call variants directly from high-

Figure 4. Improvements in the (A) completeness and (B) accuracy (switch +mismatch error rates) of
the largest haplotype block with increasing Hi-C sequencing coverage for two different restriction en-
zymes: MboI and HindIII. Results are presented using data for Chromosome 1 with coverage ranging
from 18× to 200×.
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coverage Hi-C data before haplotyping. For PacBio sequence data,
variant calling is more challenging due to high error rates, but an
integrated variant calling and haplotyping approach could poten-
tially work because haplotype information can be used to distin-
guish true heterozygous variants from errors.

Finally, all analysis and comparisons of different methods in
this paper were performed using SNVs only. Short insertions and
deletions (indels) represent the second most frequent form of var-
iation in the human genome and are frequently associated with
diseases. Therefore, reconstructing haplotypes that include not
only SNVs but also small and large indels is important for obtain-
ing a complete picture of genetic variation in an individual ge-
nome. However, the detection and analysis of indels is more
challenging compared to SNVs. In principle, HapCUT2 can phase
indels along with SNVs. However, it may not be feasible to phase
short indels using PacBio reads that have a high rate of indel errors.
Recently, Patel et al. (2016) developed a machine learningmethod
to phase large deletions usingHi-C data. Assessing the capability of
different sequencing technologies and protocols for haplotyping
all forms of genetic variation is an important topic of future work.

Methods

The input to the haplotype assembly problem consists of frag-
ments or “reads” from an individual genome that have been
aligned to a reference genome with information about alleles (en-
coded as 0 and 1 for bi-allelic variants) at each heterozygous vari-
ant. The heterozygous variants are assumed to have been
identified separately from WGS data for the same individual.
Haplotype assembly algorithms for diploid genomes aim to either
(1) partition the fragments into two disjoint sets such that frag-
ments in each set originate from the same homologous chromo-
some, or (2) reconstruct a pair of haplotypes such that the
fragments are maximally consistent with the assembled haplo-
types. HapCUT belongs to the second type and aims to optimize
theminimumerror correction (MEC) objective function: the num-
ber of allele calls in the fragment matrix that need to be changed
for each fragment to be perfectly consistent with one of the two
haplotypes (Lippert et al. 2002).

Several algorithms use a probabilistic model for haplotype as-
sembly and attempt tomaximize a likelihood function that relates
the observed reads to potential haplotypes (Li et al. 2004; Bansal
et al. 2008). ProbHap (Kuleshov 2014) aims to optimize a likeli-
hood function that generalizes the MEC criteria. Rather than the
MEC criterion, HapCUT2 uses a haplotype likelihoodmodel for se-
quence reads (Bansal et al. 2008).

Haplotype likelihood for sequence reads

Let H = (H1,H2) represent the unordered pair of haplotypes where
H1 is a binary string of length n. H2 is also a binary string of length
n. H2 is the bitwise complement of H1 if all sites are heterozygous.
Consider a collection of reads R, where each read (fragment) Ri is
denoted by a string of length n over the alphabet {0,1,-} where - cor-
responds to heterozygous loci not covered by the read. Given a
haplotype h and a fragment Ri, define the delta function δ(Ri[ j],h
[ j]) = 1 if Ri[ j] = h[ j] and 0 otherwise. Given qi[ j], the probability
that the allele call at variant j in read Ri is incorrect, the likelihood
of observing read Ri is

p(Ri|q,h) =
∏

j,Ri[ j]=−
d(Ri[ j],h[ j])(1− qi[ j]) + (1

− d(Ri[ j],h[ j]))qi[ j]. (1)

Extending this to a haplotype pair H = (H1,H2), we can define

p(Ri|q,H) = p(Ri|q,H1) + p(Ri|q,H2)
2

, (2)

assuming equal probability of sampling the read from either hap-
lotype. Then, P(R|q,H), the data likelihood given a pair of haplo-
types H, can be computed as a product over fragments (assuming
independence of fragments) as

p(R|q,H) =
∏

i

p(Ri|q,H).

The read likelihood function assumes a simple copying model
where the read Ri is copied from either H1 or H2 with zero or
more sequencing errors. It can bemodified to account for addition-
al types of errors in reads. For example, Hi-C reads can be ‘cis’ or
‘trans’ (switch error) and the probability of a read being trans de-
pends on the distance between the two interacting loci captured
in a Hi-C fragment. Given a set S of variants, H(S) is defined as
the haplotype pair formed by flipping the alleles between the hap-
lotype pair at the variants in the set S. If τ(I) is the probability that a
read is trans, the likelihood of a Hi-C fragment with insert length I
is the sum of two terms:

p(Ri|q,H,t(I)) = (1− t(I))p(Ri|q,H) + (t(I))p(Ri|q,H(S)) (3)

where S is the set of variants covered by one end of the Hi-C
fragment.

Likelihood-based HapCUT2 algorithm

The original HapCUT algorithm is an iterative method that at-
tempts to find better haplotypes using amax-cut heuristic that op-
erates on the read-haplotype graph. This graph is constructed
using the fragments and the current haplotype. The nodes of
this graph correspond to variants and edges correspond to pairs
of variants that are connected by a fragment. Similar to HapCUT,
HapCUT2 also uses a greedy method to find a max-cut in the
read-haplotype graph such that the variants on one side of the
cut can be flipped to improve the current haplotype. However, it
utilizes the likelihood function instead of theMEC score, allowing
it to account for read quality scores as well as model technology-
specific errors such as trans errors in Hi-C data.

To describe the new likelihood-basedmax-cut procedure used
in HapCUT2, we define a partial likelihood function that repre-
sents the likelihood of the fragments restricted to a subset of vari-
ants S as follows:

pS(R|q,H) =
∏

i

pS(Ri|q,H) (4)

where

pS(Ri|q,h) =
∏

j[S

d(Ri[ j],h[ j])(1− qi[ j]) + (1− d(Ri[ j],h[ j]))qi[ j] (5)

The objective of the greedy algorithm for finding the maximum
likelihood cut is to find a subset of variants or vertices S such
that the haplotypeH(S) has better likelihood than the current hap-
lotype H. It starts by initializing the two shores (S1 and S2) of the
cut using a pair of vertices in the graph and at each step adds a ver-
tex or node to one of the two shores of the cut. Adding a vertex v to
S1 results in a new haplotype H(S1 < v) while adding the vertex to
S2 does not change the current haplotype H(S1). This vertex v is
chosen such that it maximizes the absolute difference between
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two log likelihoods:

L(v) = log[ pS(R|q,H(S1 < {v}))] − log[ pS(R|q,H(S1))] (6)
where S = {S1 < S2 < v}.

In other words, we select the vertex v for which adding it to
one side of the cut is significantly better than adding it to the other
side of the cut. This process is repeated until all variants have been
added to one side of the cut. The Maximum-Likelihood-Cut rou-
tine (full description available in Supplemental Methods) consid-
ers many possible cuts by initializing each cut using a different
edge in the graph and selects the cut that gives the maximum im-
provement in the likelihood of the haplotypes defined by the cut.
This maximum-likelihood-cut heuristic is the core of the
HapCUT2-Assemble algorithm outlined below:

Initialization: H =H0

Iteration: until p(R|q,H) stops changing:
1. S∗ =Maximum-Likelihood-Cut (H,R)
2. if p(R|q, H(S∗)) > p(R|q, H): H =H(S∗)
Return: H

Complexity of HapCUT2

TheHapCUT2-Assemble routine is run for T iterations (default val-
ue = 10,000) on each connected component of the read-haplotype
graph. To speed up the convergence, we utilize a convergence cri-
terion wherein components for which there has been no improve-
ment in the likelihood for C iterations (default value = 5) are not
analyzed further. A similar convergence criterion is also used for
the maximum-likelihood-cut heuristic. In practice, this simple
convergence criterion results in considerable improvement in run-
ning time compared to HapCUT.

HapCUT2 does not store an edge for each pair of nodes cov-
ered by a read because this leads to prohibitive storage require-
ments for long reads (proportional to V2 where V is the
maximum number of variants per read). Instead, it only stores
an edge for adjacent vertices covered by each read. However, it still
has to consider all pairs of edges per fragment in order to calculate
and update the partial likelihoods. Therefore, the computational
complexity of HapCUT2 scales as V2. The runtime of one iteration
of themaximum-likelihood-cut routine isO(N log (N) +N · d ·V2) ,
whereN is the number of variants, d is the average coverage per var-
iant, and V is the maximum number of variants per read.
Therefore, the overall runtime of HapCUT2 is O(T ·M · (N log N +
N · d ·V2)) , where T andM are the maximum number of iterations
for the HapCUT2-Assemble and maximum-likelihood-cut rou-
tines, respectively.

Estimation of h-trans error probabilities in Hi-C data

In order to properly model h-trans error, we must know the prob-
ability that a read pair with insert size I is h-trans, i.e., the two
ends of the paired-end read originate from different homologous
chromosomes.We assume that the h-trans error probability, repre-
sented as τ(I), is the same for all reads with the same insert length I.
If the true haplotypes are known, τ(I) can be estimated by compar-
ison of all reads with insert length I to the haplotypes and calculat-
ing the fraction of reads that are inconsistent with the haplotypes.
Because the true haplotypes are unknown, we use an iterative ex-
pectation-maximization-like approach to directly estimate τ from
the data. Initially, the HapCUT2-Assemble routine is used to phase
all reads with τ(I ) = 0 for all I. The assembled haplotypesH are used
to calculate a maximum-likelihood estimate of τ(I) for each insert
size I. Subsequently, the HapCUT2 routine is used to assemble a
new set of haplotypes using τ and the Hi-C version of the read like-
lihood function. This is repeated until the likelihood of the haplo-

types does not improve (see Supplemental Methods for more
details).

Post-processing of haplotypes

HapCUT2 assumes that the heterozygous sites are known in ad-
vance. However, some of the heterozygous sites in the input
mayactually be homozygous, e.g., due to errors during variant call-
ing or read alignment. In addition, some variants cannot be
phased reliably due to low read coverage or errors. Therefore, the
accuracy of the final assembled haplotypes can be improved by re-
moving variants with low confidence phasing. HapCUT2 imple-
ments a likelihood-based pruning scheme that considers the
possible phasings for each variant individually and calculates a
Bayesian posterior probability for each of the four possible config-
urations (00,11,10,01). If the maximum posterior probability is
less than a user-defined threshold (0.8 by default), then the variant
is pruned from the output haplotypes (see Supplemental Methods
for details). For long read data sets, we also consider the possibility
of a switch error between each pair of adjacent variants in a haplo-
type block, and if the posterior probability of the final haplotype
configuration is less than a threshold, the block is split at that po-
sition. This can reduce switch errors at the cost of reducing the
length of haplotype blocks.

Accuracy and completeness of haplotype assemblies

The AN50 metric summarizes the contiguity of assembled haplo-
types (Lo et al. 2011). It represents the span (in base pairs) of a block
such that half of all phased variants are in a block of that span or
larger. To adjust for unphased variants, the base-pair span of a block
is multiplied by the fraction of variants spanned by the block that
are phased. For Hi-C data, we assessed the completeness of the hap-
lotypes on a chromosome-wide scale by using the fraction of vari-
ants in the largest (also called most-variants-phased or MVP)
block (Selvaraj et al. 2013). The accuracy of a haplotype assembly
is typically assessed by comparing the assembled haplotypes to
‘truth’ haplotypes and calculating the switch error rate (Duitama
et al. 2010; Kuleshov 2014). A “switch error” (also known as long
switch) occurs when the phase between two adjacent variants in
the assembled haplotypes is discordant relative to the truth haplo-
types. Two consecutive switch errors correspond to the flipping of
the phase of a single variant and were counted as “mismatch” (also
known as short switch) errors instead of two switch errors.

For many applications of haplotyping, the ability to deter-
mine the phase between a pair of heterozygous variants is impor-
tant. To assess the pairwise accuracy of the haplotypes, we utilized
a pairwise phasing accuracy metric where all pairs of phased vari-
ants in a block were classified as concordant (1) or discordant (0)
(by comparison to the gold-standard haplotypes), and the accura-
cy was defined as the fraction of discordant pairs among all pairs
with the same genomic distance (Snyder et al. 2015).

Long read data sets and haplotype assembly tools

Haplotype fragment files corresponding to the whole-genome fos-
mid sequence data (32 pools) for NA12878 (Duitama et al. 2012)
were downloaded from http://owww.molgen.mpg.de/~genetic-
variation/SIH/data/. Aligned PacBio SMRT whole-genome read
data for NA12878 (Zook et al. 2016) was obtained from the GIAB
ftp site: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
NA12878_PacBio_MtSinai. Haplotype fragments for phasing
were extracted from the sorted BAM files using the extractHAIRS
tool (see Supplemental Methods). Aligned 10X Genomics data
for NA12878 (Zook et al. 2016) was also obtained from the GIAB
ftp site: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
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10XGenomics. Molecule boundaries were called when the dis-
tance between two consecutive reads with the same barcode
exceeded 20 kb, and haplotype fragments were generated for
each molecule using the extractHAIRS tool (see Supplemental
Methods). The software tools RefHap and ProbHap were down-
loaded from the authors’websites. For FastHare, we used the imple-
mentation of Duitama et al. (2012). Default parameters were used
for each tool except for HapCUT, which was run with memory re-
duction heuristics to enable it to generate results for comparison.

Variant calls and haplotypes for NA12878

The NA12878 trio haplotypes from the 1000 Genomes Project
(Duitama et al. 2012) were used as truth haplotypes for assessing
the accuracy of all haplotype assemblies. Only single nucleotide
variants (SNVs) were considered for phasing. The variants from
this data set (aligned to hg18) were used for phasing the fosmid
data set. For usage with the PacBio, 10X Genomics, and Rao Hi-C
data, the hg18 NA12878 VCF file was carried over to hg19 with
CrossMap (Zhao et al. 2014).

Alignment and processing of Hi-C data

Two sets of Hi-C read data sets for NA12878 from Rao et al. (2014)
were used: one containing all primary and replicate experiments
using the restriction enzyme MboI (total of ∼395× coverage) and
another containing all experiments performed with the restriction
enzyme HindIII (total of ∼366× coverage). The paired-end reads
were mapped as single reads to the reference human genome
(hg19) using BWA-MEM (Li 2013). To handle reads that contain
the ligation junction for the Hi-C fragments, we developed a
post-processing pipeline (see Supplemental Methods) to generate
sorted BAM files that were used for haplotyping. Read pair infor-
mation from intrachromosomal read pairs with an insert size
>40 Mb was not used to avoid linkages with excessively high h-
trans error rates. To subsample data sets to lower coverage, frag-
ments were randomly sampled from the aggregate data set with
the appropriate frequency.

Read simulations

Haplotypes were simulated by randomly introducing heterozy-
gous SNVs at a uniform rate of 0.0008 in a genome of length 250
megabases. Each heterozygous SNV is assigned a random allele
∈{0,1} for haplotype H1, with H2 assigned to the complement.
Reads of a given length were generated by selecting the start posi-
tion randomly, and the corresponding haplotype fragment was
obtained by appending all overlapping alleles from one of the
two haplotypes. Base miscalls were introduced in the reads with
probability 0.02, resulting in an allele flip with probability 1/3 or
an uncalled SNV otherwise (to represent miscalls to nonreference,
nonalternate calls). Hi-C-like reads of length 150 bp were simulat-
ed in pairs. The insert length of each read pair was sampled from
the uniform distribution (minimum value of zero and maximum
value equal to the maximum insert length).

Software availability

HapCUT2 source code can be found in the Supplemental Material
and it is also available for download at https://github.com/
vibansal/HapCUT2.
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