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Research publications are themajor repository of scientific knowledge. However,
their unstructured and highly heterogenous format creates a significant obstacle
to large-scale analysis of the information contained within. Recent progress in
natural language processing (NLP) has provided a variety of tools for high-quality
information extraction from unstructured text. These tools are primarily trained
on non-technical text and struggle to produce accurate results when applied to
scientific text, involving specific technical terminology. During the last years, sig-
nificant efforts in information retrieval have been made for biomedical and
biochemical publications. For materials science, text mining (TM) methodology
is still at the dawn of its development. In this review, we survey the recent prog-
ress in creating and applying TM and NLP approaches to materials science field.
This review is directed at the broad class of researchers aiming to learn the fun-
damentals of TM as applied to the materials science publications.

INTRODUCTION AND BACKGROUND

The first example of statistical analysis of publications dates back to 1887 when Thomas C. Mendenhall sug-

gested a quantitative metric to characterize authors’ writing styles (Mendenhall, 1887). At that time, the

analysis of the literature was widely used to resolve authorship disputes, and, of course, was entirely

manual. In the 1940-1960s, the development of computers gave a significant boost to the growth of linguis-

tic analysis. The work of Stephen C. Kleene on regular expressions and finite automata (Kleene, 1956), sub-

sequent formal language theory described by Noam Chomsky (1956), and the important fundamental work

on information theory by Claude Shannon (1951) became the foundation for what is now known as natural

language processing (NLP). The following decades brought diverse research results along different as-

pects of text mining (TM) and NLP: automated generation of article abstracts (Luhn, 1958), regular expres-

sions compilers (Thompson, 1968), automated dialog assistant (Weizenbaum, 1983), the first structured text

collection – the Brown University Standard Corpus of American English (www.korpus.uib.no/icame/

manuals), and many others (Miner et al., 2012).

In the 1990s, technological progress permitted storage and access to large amounts of data. This shifted

NLP and machine learning (ML) from a knowledge-based methodology toward data-driven approaches

(Kurgan and Musilek, 2006). The accelerated development of the Internet and the Web during this decade

facilitated information sharing and exchange. This is also reflected in the rapid growth of scientific publi-

cations (Bornmann and Mutz, 2015) over this period. Our analysis of the papers indexed in the Web of Sci-

ence repository shows that since the beginning of 2000s, the number of publications in different fields of

materials science has increased exponentially (Figure 1).

There are significant opportunities in leveraging data to guide materials research, which is driven by such

aspects as property prediction, the search for novel materials, identifying synthesis routes, or determining

device parameters. Data are central to the materials informatics enterprise as the availability of large quan-

tities of machine-readable data is a prerequisite to leverage statistical approaches to accelerate materials

research (Ramprasad et al., 2017). Not surprisingly, early work on data-driven learning approaches there-

fore focused on the few highly curated datasets in the materials field, such as crystal structure data (Fischer

et al., 2006; Hautier et al., 2011) or on computed property data which can be generated homogeneously

and at high rate (Jain et al., 2013; de Jong et al., 2015; Ricci et al., 2017).

However, knowledge acquisition in materials science must generally be performed across insufficient,

diverse, and heterogeneous data. These data range across disparate materials systems and a multitude
iScience 24, 102155, March 19, 2021 ª 2021 The Author(s).
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Figure 1. Publication trend over the past 14 years

Top panel:Number of publications appearing every year in different fields of materials science. All data were obtained by

manually querying Web of Science publications resource. The analysis includes only research articles, communications,

letters, and conference proceedings. The number of publications is on the order of 103. Bottom panel: Relative

comparison of the fraction of scientific papers available on-line as image PDF or embedded PDF versus articles in HTML/

XML format. The gray arrow marks time intervals for both top and bottom panels.
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of characterization approaches to comprehend thermomechanical, electromagnetic and chemical proper-

ties (Morgan and Jacobs, 2020). Publications are still the primary way to communicate within the scientific

discipline. Therefore, there is substantial potential in capturing unstructured information from the vast and

ever-growing number of scientific literature.

Textual information exists in an unstructured or highly heterogeneous format. Manual data extraction is

expensive, labor-intensive, and error-prone (although some powerful examples exist in the materials com-

munity (Blokhin and Villars, 2020; Gallego et al., 2016b; Gallego et al., 2016a)). As a result, there are tremen-

dous opportunities for large-scale automated data extraction to transform materials science into a more

quantitative and data-rich field.

This review discusses recent advances in automated text processing and information extraction from a

large corpus of chemical, physical and materials science publications. We first discuss the methods and ap-

proaches widely used in TM and NLP (Section 2). Then we survey some prominent case studies that are

focused on data collection and data mining (Section 3). We highlight somemajor challenges and obstacles

in scientific TM (Section 4). Lastly, we discuss potential future research developments for NLP in its appli-

cation to materials science (Section 5).
TEXT MINING OF SCIENTIFIC LITERATURE

Modern computers encode text as a monotonic sequence of bits representing each character but without

reflecting its internal structure or other high-order organization (e.g. words, sentences, paragraphs). Build-

ing algorithms to interpret the sequences of characters and to derive logical information from them is the

primary purpose of TM and NLP. Unlike standard texts on general topics, such as newswire or popular

press, scientific documents are written in specific language requiring sufficient domain knowledge to

follow the ideas. Application of general-purpose TM and NLP approaches to the chemical or materials sci-

ence domain requires adaptation of both methods and models, including development of an adequate

training sets that comply with the goals of the TM project.

Generally, a scientific TM pipeline breaks down into the following steps (Figure 2): (i) retrieval of documents

and conversion from markup languages or PDF into plain text; (ii) text pre-processing, i.e. segmentation

into sentences and tokens, text normalization, andmorphological parsing; (iii) text analysis and information
2 iScience 24, 102155, March 19, 2021



Figure 2. Schematic representation of the standard text mining pipeline for information extraction from the scientific publications
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extraction; (iv) data normalization and database structuring. The resulting collection either serves as a final

product of the TM or provides a source of data for further mining and analysis.

While a comprehensive discussion of the algorithms and methods used to accomplish each task of the

pipeline is beyond the scope of this review, we cover in this Section those methods that are widely applied

in scientific TM. We also revise state-of-the-art NLP parsing tools needed to handle chemical and materials

science texts. We emphasize the challenges arising along the way and discuss possible solutions. For de-

tails and theoretical background on TM and NLP models in general, we refer the reader to the following

books (Miner et al., 2012): and (Jurafsky and Martin, 2009).
Obtaining the text corpus

In computational linguistics, a large organized set of human-created documents is referred to as a text

corpus. Scientific discourse generally occurs across a wide variety of document formats and types: abstracts

in proceedings, research articles, technical reports, and pre-prints, patents, e-encyclopedias, and many

more. There are two primary ways to obtain the text corpus: (i) by using existing indexed repositories

with the available text-mining application programming interfaces (APIs) and search tools; or (ii) by having

access to an individual publisher’s content.

Text databases

A comprehensive overview of scientific text resources can be found in review of Kolá�rik et al. (2008). Table 1

lists some common repositories for scientific texts in the domain of chemistry and material science, their

document types, and access options. The main advantage of using established databases for TM is the uni-

form format of their metadata, a convenient API, and sometimes analysis tools. However, themajority of the

publications in these repositories are heavily biased toward biomedical and biochemical subjects with a

smaller fraction belonging to physics, (in)organic chemistry, and materials science. Moreover, the access

to the content is limited: it either requires having a subscription or provides a search over open-access pub-

lications only.

Individual publisher access

Implementation of a customized scraping routine to screen the publisher’s web-pages and download the

content requires more effort. However, this approach allows for accessing content from those resources

that are not providing an API, for example, e-print repositories. In most cases, downloading and accessing

significant publisher content require text and data mining (TDM) agreements. We note that this TDM

agreement differs from a standard academic subscription granted to the libraries of the institutions

because scraping and downloading large volumes, affect the operation of the publishers’ server.

Web-scraping not only requires a substantial amount of work, but it also has to respond to dynamic web

pages in which content is generated by a client browser. In our recent work, we implemented such a solu-

tion for Elsevier, RSC, ECS, and AIP publishers (Kononova et al., 2019). Similarly, ChemDataExtractor (Swain

and Cole, 2016) provides the web-scrapers for Elsevier, RSC, and Springer. In the research fields where

most of the literature has an open access repository, e.g. physics, mathematics or the rapidly growing liter-

ature collection on COVID-19 (Trewartha et al., 2020), the corpus acquisition step will be considerably

easier.
iScience 24, 102155, March 19, 2021 3



Table 1. List of some common text repositories in chemistry and material science subjects that provide an API for querying

Data repository Documents types Access Reference

CAplus Research articles, patents, reports Subscription www.cas.org/support/documentation/

references

DOAJ Research articles (open-access only) Public doaj.org

PubMed Central Research articles Public www.ncbi.nlm.nih.gov/pmc

Science Direct (Elsevier) Research articles Subscription dev.elsevier.com/api_docs.html

Scopus (Elsevier) Abstracts Public dev.elsevier.com/api_docs.html

Springer Nature Research articles, books chapters Subscription dev.springernature.com/

Note 1: Elsevier provides API for both Science Direct (collection of Elsevier published full-text) and Scopus (collection of abstracts from various publishers).Note

2: Springer Nature provides access only to its own published full texts.
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Conversion into raw text

In general, the retrieved content includes the targeted text and other metadata, such as journal name, title, au-

thors, keywords, and others. Querying text databases, as those in Table 1, provide a structured output with raw

text ready forprocessingandanalysis. In contrast,web-scrapedcontentusually consistsof a completepaperfiles

requiring the additional step to convert it into a raw text. Nowadays, most of the text sources provide as HTML/

XML/JSON documents, whereas older papers are usually available as embedded or image PDFs (Figure 1).

While parsing of HTML/XML markups can be performed with various programming tools, extraction of the

plain text from PDF files is more laborious. Embedded PDFs usually have a block structure with the text

arranged in columns and intermixed with tables, figures, and equations. This affects the accuracy of con-

version and text sequence. Some work has been done attempting to recover a logical text structure

from PDF-formatted scientific articles by utilizing rule-based (Constantin et al., 2013) and ML (Tkaczyk

et al., 2015; Luong et al., 2010) approaches. However, the accuracy of these models measured as F1-score

is still below�80%. The authors’ experience demonstrates that this can dramatically impact the final output

of the extraction pipeline (Figure 2). Hence, the decision on whether to include PDF text strongly depends

on the tasks that are being solved.

A great number of documents, in particular, those published before the 1990s, are only available as an image

PDF (Figure 1). Conversion of these files into a raw text requires advanced optical character recognition (OCR),

and, to the best of our knowledge, the currently available solutions still fail to provide high enough accuracy to

reliably extract chemistry (Mouchère et al., 2016;Mahdavi et al., 2019). Often, interpretation errors in PDFs orig-

inate from subscripts in chemical formulas and equations, and from confusion between symbols and digits.

Creating a rigorous parser for PDF articles, and especially anOCR for scientific text is an area of active research

in the computer science and TM community (Memon et al., 2020; Ramakrishnan et al., 2012).

Text pre-processing, grammatical, and morphological parsing

The raw documents proceed through normalization, segmentation, and grammar parsing. During this step,

the text is split into logical constitutes (e.g. sentences) and tokens (e.g. words and phrases), that are used to

build a grammatical structure of the text. Depending on the final text and data mining goal, the text tokens

may be normalized by stemming or lemmatization and processed through the part of speech tagging (POS

tagging), and dependencies parsing to build the sentences structure. These are explained below.

Paragraph segmentation and sentence tokenization identify, respectively, the boundaries of the senten-

ces and word phrases (tokens) in a text. In general, finding the start/end of a sentence segment requires

recognition of certain symbolic markers, such as period (‘‘.’’), question mark (‘‘?’’), and exclamation mark

(‘‘!’’), which is usually performed with (un)supervised ML models (Read et al., 2012). State-of-the-art imple-

mentations attain �95-98% accuracy (measured as F1-score). However, applying these models to scientific

text requires modification. Commonly used expressions such as ‘‘Fig. X’’, ‘‘et al.’’ and a period in chemical

formulas often result in over-segmentation of a paragraph. Conversely, citation numbers at the end of a

sentence promote the merging of two sentences together. There is no generally accepted solution to

this problem, and it is usually approached by hard-coding a set of rules that capture particular cases (Lea-

man et al., 2015).
4 iScience 24, 102155, March 19, 2021

http://www.cas.org/support/documentation/references
http://www.cas.org/support/documentation/references
http://doaj.org
http://www.ncbi.nlm.nih.gov/pmc
http://dev.elsevier.com/api_docs.html
http://dev.elsevier.com/api_docs.html
http://dev.springernature.com/


Table 2. Examples of how different tokenizers split sentences into tokens

Reagents (NH4)2HPO4 and Sm2 O 3 were mixed

NLTK Reagents | (|NH4 |) | 2HPO4 | and | Sm2O3 | were | mixed

SpaCy Reagents | (| NH4)2HPO4 | and | Sm2O3 | were | mixed

OSCAR4 Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemicalTagger Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemDataExtractor Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

We made Eu2+-doped Ba3Ce(P O 4)3 at 1200�C for 2 h

NLTK We | made | Eu2+-doped | Ba3Ce | (| PO4 |) | 3 | at | 1200 | �C | for | 2 |h

SpaCy We | made | Eu2 | + | -doped | Ba3Ce(PO4)3 | at | 1200 | � |C | for | 2 |h

OSCAR4 We | made | Eu2+ | - | doped | Ba3Ce(PO4)3| at | 1200 | �C | for | 2 |h

ChemicalTagger We | made | Eu2+-doped | Ba3Ce(PO4)3 | at | 1200 | �C | for | 2 |h

ChemDataExtractor We | made | Eu2+ | - | doped | Ba3Ce(PO4)3 | at | 1200 | � |C | for | 2 |h

Lead-free a(Bi0.5NA0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 ceramics were investigated

NLTK Lead-free | a | (| Bi0.5NA0.5 |) | TiO3-bBaTiO3-c | (| Bi0.5K0.5 |) | TiO3 | ceramics | was |

investigated

SpaCy Lead | - | free | a(Bi0.5NA0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ceramics | was | investigated

OSCAR4 Lead | - | free | a(Bi0.5NA0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ceramics | was | investigated

ChemicalTagger Lead-free | a(Bi0.5NA0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ceramics | was | investigated

ChemDataExtractor Lead-free | a(Bi0.5NA0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ceramics | was | investigated

NLTK (Bird et al., 2009) and SpaCy (Honnibal and Johnson, 2015) are general-purpose tokenizing tools, whereas ChemDa-

taExtractor (Swain and Cole, 2016), OSCAR4 (Jessop et al., 2011), ChemicalTagger (Hawizy et al., 2011) are the tools trained

for a scientific corpus. Tokens are bound by ‘‘j’’ symbol.
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Sentence tokenization, i.e. splittinga sentence into logical constituents, is a crucial stepon theway to information

extraction,because theerrorsproduced in this step tend topropagatedownthepipeline (Figure2) andaffect the

accuracy of the final results. Tokenization requires both unambiguous definition of grammatical tokens and

robust algorithms for identification of the token boundaries. For general-purpose text, tokenization has been

the subject of extensive research resulting in thedevelopmentof various advancedmethods and techniques (Ju-

rafsky and Martin, 2009). However, for chemical and materials science text, accurate tokenization still requires

substantialworkaroundsand revisionof the standardapproaches. Table2displays some typical examplesof sen-

tence tokenizationproducedbygeneral-purpose tokenizers suchasNLTK (Birdet al., 2009) andSpaCy (Honnibal

and Johnson, 2015). As in the case of sentence segmentation, themajor source of errors is the arbitrary usage of

punctuation symbols within chemical formulas and other domain-specific terms. The chemical NLP toolkits such

asOSCAR4 (Jessopet al., 2011), ChemicalTagger (Hawizy et al., 2011), andChemDataExtractor (Swain andCole,

2016) implement their own rules- and dictionaries-based approaches to solve the over-tokenization problem.

The advantage of chemical NLP toolkits is that they provide good performance on chemical terms, even if the

rest of the text may have lower tokenization accuracy.

However, another prominent reason for tokenization errors is the lack of generally accepted rules

regarding tokenization of chemical terms consisting of multiple words. For instance, complex terms

such as ‘‘lithium battery’’ or ‘‘yttria-doped zirconium oxide’’ or ‘‘(Na0.5K0.5)NbO3 + x wt% CuF2’’ often

become split into separate tokens ‘‘lithium’’ and ‘‘battery’’, ‘‘yttria-doped’’ and ‘‘zirconium’’ and ‘‘oxide’’,

‘‘(Na0.5K0.5)NbO3’’ and ‘‘+’’ and ‘‘x wt% CuF2’’. This significantly modifies the meaning of the tokens and

usually results in lowered accuracy of the named entity recognition (see below). Currently, this problem

is solved case-by-case by creating task-specific wrappers for existing tokenizers and named entity recog-

nition models (Huang and Ling, 2019; Alperin et al., 2016; He et al., 2020). Building a robust approach for

chemistry-specific sentence tokenization and data extraction requires a thorough development of stan-

dard nomenclature for complex chemical terms and materials names. We discuss this challenge in detail

in Section 4 below.

Text normalization, part-of-speech tagging, and dependency parsing are often used to reduce the overall

document lexicon and to design words’ morphological and grammatical features used as an input for entity
iScience 24, 102155, March 19, 2021 5
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extraction and other TM tasks (Leaman et al., 2015). Text normalization usually consists of lemmatization

and/or its simpler version – stemming. While during the stemming the inflected word is cut to its stem

(e.g. ‘‘changed’’ becomes ‘‘chang’’), lemmatization aims to identify a word’s lemma, i.e. a word’s dictionary

(canonical) form (e.g. ‘‘changed’’ becomes ‘‘change’’) (Jurafsky and Martin, 2009). Stemming and/or lem-

matization help to reduce the variability of the language, but the decision whether to apply it or not, de-

pends on the task and expected outcome. For instance, recognition of chemical terms will benefit less

from stemming or lemmatization (Corbett and Copestake, 2008) as it may truncate a word’s ending result-

ing in a change of meaning (compare ‘‘methylation’’ vs. ‘‘methyl’’). But when a word identifies, for example,

a synthesis action, lemmatization helps to obtain the infinitive form of the verb and avoids redundancy in

the document vocabulary (Kononova et al., 2019).

Part-of-speech (POS) tagging identifies grammatical properties of the words and labels them with the cor-

responding tags, i.e. noun, verb, article, adjective, and others. This procedure does not modify the text

corpus but rather provides linguistic and grammar-based features of the words that are used as input

for ML models. A challenge in identifying the POS tags in scientific text often arises due to the ambiguity

introduced by the word’s context. As an example, compare two phrases: ‘‘the chemical tube is on the

ground’’ and ‘‘the chemical was finely ground’’. In the first case, the general-purpose POS tagger will

work correctly, while in the second example, it will likely misidentify ‘‘chemical’’ and ‘‘ground’’ as adjective

and noun, respectively. Therefore, using a standard POS tagger often requires re-training of the underlying

NLP model, or post-processing and correction of the obtained results.

Dependency parsing creates a mapping of a linear sequence of sentence tokens into a hierarchical struc-

ture by resolving the internal grammatical dependencies between the words. This hierarchy is usually rep-

resented as a dependency tree, starting from the root token and going down to the terminal nodes. Parsing

grammatical dependencies helps to deal with the arbitrary order of the words in the sentence and estab-

lishes semantic relationships between words and parts of the sentence (Jurafsky and Martin, 2009). Gram-

matical dependency parsing is a rapidly developing area of NLP research providing a wealth of algorithms

and models for general-purpose corpus (see www.nlpprogress.com for specific examples and evaluation).

Application of the currently existing dependency parsing models to scientific text comes with some chal-

lenges. First, sentences in science are often depersonalized, with excessive usage of passive and past verbs

tense, and limited usage of pronouns. These features of the sentence are not well captured by general-pur-

posemodels. Secondly, the accuracy of the dependency tree construction is highly sensitive to punctuation

and correct word forms, particularly verb tenses. As the scientific articles do not always exhibit perfect lan-

guage grammar, the standard dependency parsing models can produce highly unpredictable results. To

the best of our knowledge, these specific challenges of dependency parsing for scientific text have not yet

been addressed or explored in detail.
Text representation modeling

The application of ML models requires mapping the document into a linear (vector) space. A common

approach is to represent a text as a collection of multidimensional (and finite) numerical vectors that pre-

serve the text features, e.g. synonymous words and phrases should have a similar vector representation,

and phrases having an opposite meaning should be mapped into dissimilar vectors (Harris, 1954).

Modeling of the vectorized text representation is a broad and rapidly developing area of research (Liu

et al., 2020). In this section, we highlight only some of the approaches applied to scientific TM, whereas

a more detailed discussion of the methods can be found elsewhere (Jurafsky and Martin, 2009).

The bag-of-words model is one of the simplest models of text representation. It maps a document into a

vector by counting how many times every word from a pre-defined vocabulary occurs in that document.

While this model works well for recognizing specific topics defined by keywords, it does not reflect word

context and cannot identify the importance of a particular word in the text. The latter can be solved by

introducing a normalization factor and applying it to every word count. An example of such normalization

is the tf-idf model (term frequency-inverse document frequency) which combines two metrics: the fre-

quency of a word in a document and the fraction of the documents containing the word. The method

can thereby identify the terms specific to a particular document. Bag-of-words and tf-idf are the most

commonly used models to classify scientific documents or to identify parts of text with relevant information

(Court and Cole, 2018; Kim et al., 2017c; Hiszpanski et al., 2020).
6 iScience 24, 102155, March 19, 2021
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While bag-of-words and tf-idf are relatively versatile, they do not identify similarity between words across

documents. This can be done through topic modeling approaches (Blei, 2012). Topic modeling is a statis-

tical model that examines the documents corpus and produces a set of abstract topics – clusters of the key-

words that characterize a particular text. Then, every document is assigned with a probability distribution

over topical clusters. Latent Dirichlet Allocation, a specific topic modeling approach (Blei et al., 2003), has

been applied to analyze the topic distribution over materials science papers on oxide synthesis (Kim et al.,

2017c) and to classify these papers based by synthesis method used in the paper (Huo et al., 2019).

Significant progress in TM and NLP has been achieved with the introduction of word embedding models

which construct a vectorized representation of a single word rather than of the entire document. These ap-

proaches use the distributional hypothesis (Harris, 1954) and are based on neural networks trained to pre-

dict word context in a self-supervised fashion. Multiple variations of word embeddings models include

GloVe (Pennington et al., 2014), ELMo (Peters et al., 2018), word2vec (Mikolov et al., 2013), and FastText

(Bojanowski et al., 2017). Besides being intuitively simple, the main advantage of word embedding models

is their ability to capture similarity and relations between words based on mutual associations. Word em-

beddings are applied ubiquitously in materials science TM and NLP to engineer words features that are

used as an input in various named entity recognition tasks (Kononova et al., 2019; Kim et al., 2020a; Huang

and Ling, 2019; Weston et al., 2019). Moreover, they also seem to be a promising tool to discover properties

of materials through words association (Tshitoyan et al., 2019).

Recently, research on text representation has shifted toward context-aware models. A breakthrough was

achieved with the development of sequence-to-sequence models (Bahdanau et al., 2016) and, later, an

attention mechanism (Vaswani et al., 2017) for the purpose of neural machine translation (NMT). The

most recent models such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin et

al., 2019) and Generative Pre-trained Transformer (GPT) (Radford et al., 2019; Brown et al., 2020) are

multi-layered deep neural networks trained on very large unlabeled text corpora and demonstrate state-

of-the-art NLP performance. These models offer fascinating opportunities for the future NLP development

in domain of materials science (Kuniyoshi et al., 2020; Vaucher et al., 2020). We discuss them in greater de-

tails in the Section 5.
Retrieval of information from the text

Information retrieval (IR) represents a broad spectrum of NLP tasks that extract various types of data from

the pre-processed corpus (Figure 3). The most ubiquitous IR task is named entities recognition (NER) which

classifies text tokens in a specific category. In general-purpose text, these categories are usually names of

locations, persons, etc., but in scientific literature the named entities can include chemical terms as well as

physical parameters and properties. Extraction of action graphs of chemical synthesis and materials fabri-

cation is another class of IR task that is closely related to NER. This task requires identification of action

keywords, linking of them into a graph structure, and, if necessary, augmenting with the corresponding at-

tributes characterizing the action (e.g. the action ‘‘material mixing’’ can be augmented with the attribute

‘‘mixing media’’ or ‘‘mixing time’’). Lastly, data extraction from figures and tables represents another class

of information that can be retrieved from scientific literature. This requires not only TM methods but also

image recognition approaches. In this section we will mainly review the recent progress for chemical and

materials NER and action graphs extraction and will provide a brief survey of the efforts spent on mining of

scientific tables and figures.

Chemical NER is a broadly defined IR task. It usually includes identification of chemical and materials terms

in the text but can also involve extraction of properties, physical characteristics, and synthesis actions. The

early applications of chemical NER were mainly focused on extraction of drugs and biochemical informa-

tion to performmore effective document searches (Corbett and Copestake, 2008; Jessop et al., 2011; Rock-

täschel et al., 2012; Garcıa-Remesal et al., 2013). Recently, chemical NER has shifted toward (in)organic

materials and their characteristics (Swain and Cole, 2016; He et al., 2020; Weston et al., 2019; Shah et al.,

2018), polymers (Tchoua et al., 2019), nanoparticles (Hiszpanski et al., 2020), synthesis actions and condi-

tions (Vaucher et al., 2020; Hawizy et al., 2011; Kim et al., 2017c; Kononova et al., 2019). The methods

used for NER vary from traditional rule-based and dictionary look-up approaches to modern methodology

built around advanced ML and NLP techniques, including conditional random field (CRF) (Lafferty et al.,

2001), long short-term memory (LSTM) neural networks (Hochreiter and Schmidhuber, 1997), and others.
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Figure 3. Schematic representation of various information types that can be extracted from a typical materials science paper
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A detailed survey on the chemical NER and its methods can be found in recent reviews (Krallinger et al.,

2017; Gurulingappa et al., 2013; Olivetti et al., 2020).

Extraction of chemical and materials terms has been a direction of intensive development in the past

decade (Krallinger et al., 2017; Eltyeb and Salim, 2014). The publicly available toolkits use rules- and dictio-

naries-based approaches (e.g LeadMine (Lowe and Sayle, 2015)), statistical models (e.g OSCAR4 (Jessop

et al., 2011)), and, predominantly, the CRF model (e.g. ChemDataExtractor (Swain and Cole, 2016), Chem-

Spot (Rocktäschel et al., 2012), tmChem (Leaman et al., 2015)) to assign labels to chemical terms. Some

recent works implemented advanced ML models such as bidirectional LSTM models (He et al., 2020;

Weston et al., 2019; Kuniyoshi et al., 2020) as well as a combination of deep convolutional and recurrent

neural networks (Korvigo et al., 2018) to identify chemical and material terms in the text and use context

information to assign their roles. Table 3 shows a few examples of the NER output obtained using some

of these tools and compares it to non-scientific NER models implemented in NLTK (Bird et al., 2009) and

SpaCy (Honnibal and Johnson, 2015) libraries.

Often, the objective of scientific NER task is not limited to the identification of chemicals and materials, but

also includes recognition of their associated attributes: structure and properties, amounts, roles, and ac-

tions performed on them. Assigning attributes to the entities is usually accomplished by constructing a

graph-like structure that links together all the entities and build relations between them. A commonly

used graph structure is the grammatical dependency tree for a sentence (see Section 2.3). Traversing

the sentence trees allows for resolving relations between tokens, hence, link the entities with attributes.

ChemicalTagger (Hawizy et al., 2011) is one of the most robust frameworks that extends the OSCAR4 (Jes-

sop et al., 2011) functionality and provides tools for grammatical parsing of chemical text to find the relation

between entities and the corresponding action verbs. Similarly, ChemDataExtractor (Swain and Cole, 2016)

can identify the chemical and physical characteristics (e.g. melting temperature) in the text and assign it to a

material entity. A rules- and dictionaries-based relation-aware chemical NER model has been proposed by

Shah et al. (2018) to build a search engine for publications. Weston et al. (2019) used the random forest de-

cision model to resolve synonyms between chemical entities and materials-related terms. He et al. (2020)
8 iScience 24, 102155, March 19, 2021



Table 3. Examples of chemical NER extraction

An aqueous solution was prepared by dissolving lithium, cobalt, and manganese nitrates in de-ionized water

NLTK –

SpaCy ‘Manganese’ (nationalities or religious or political groups)

OSCAR4 ‘Aqueous’, ‘lithium’, ‘cobalt’, ‘manganese’, ‘nitrates’, ‘water’

tmChem ‘Lithium’, ‘cobalt’, ‘manganese nitrates’

ChemDataExtractor ‘Lithium’, ‘cobalt’, ‘manganese nitrates’

ChemSpot ‘Lithium’, ‘cobalt’, ‘manganese nitrates’, ‘water’

BiLSTM ChNER ‘Lithium, cobalt, and manganese nitrates’, ‘water’

A series of Ce3+-Eu2+ co-doped Ca2Si5N8 phosphors were successfully synthesized

NLTK –

SpaCy –

OSCAR4 ‘Ce3+’, ‘Eu2+’, ‘Ca2Si5N8’

tmChem ‘Ce3+-Eu2+’, ‘Ca2Si5N8’

ChemDataExtractor ‘Ce3+-Eu2+’, ‘Ca2Si5N8’

ChemSpot ‘Ce3+-Eu2’, ‘co’, ‘Ca2Si5N8’

BiLSTM ChNER ‘Ce3+-Eu2+ co-doped Ca2Si5N8’

High-purity Bi(N O 3)3$5H2O, Ni(N O 3)2$6H2O and Cu(CH3COO)2$H2O were used as starting materials for Bi2Cu1-

xNixO4 powders

NLTK ‘NO3’, ‘NO3’, ‘CH3COO’ (organizations); ‘Ni’, ‘Cu’ (countries, cities, states)

SpaCy ‘Bi2Cu1-xNixO4’ (person)

OSCAR4 ‘Bi(NO3)3$5H2O’, ‘Ni(NO3)2$6H2O’, ‘Cu(CH3COO)2$H2O’

tmChem ‘Bi(NO3)3$5H2O’, ‘Ni(NO3)2$6H2O’, ‘Cu(CH3COO)2$H2O’, ‘Bi2Cu1-xNixO4’

ChemDataExtractor ‘Bi(NO3)3$5H2O’, ‘Ni(NO3)2$6H2O’, ‘Cu(CH3COO)2$H2O’, ‘Bi2Cu1-xNixO4’

ChemSpot ‘Bi(NO3)3$5H2O’, ‘Ni(NO3)2$6H2O’, ‘Cu(CH3COO)2$H2O’, ‘Bi2Cu1-xNixO4’

BiLSTM ChNER ‘Bi(NO3)3$5H2O’, ‘Ni(NO3)2$6H2O’, ‘Cu(CH3COO)2$H2O’, ‘Bi2Cu1-xNixO4’

Examples of the chemical named entities extracted by the general-purpose NER tools NLTK (Bird et al., 2009) and SpaCy

(Honnibal and Johnson, 2015), and the tools trained on chemical corpus OSCAR4 (Jessop et al., 2011), tmChem (Leaman

et al., 2015), ChemSpot (Rocktäschel et al., 2012), ChemDataExtractor (Swain and Cole, 2016), BiLSTM chemical NER (He

et al., 2020). For the general-purpose tools, the assigned labels are given in parenthesis. For the chemical NERs, only entities

labeled as chemical compounds are shown.
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applied a two-step LSTMmodel to resolve the role of materials in a synthesis procedure. Onishi et al. (2018)

used convolutional neural network model to build relations betweenmaterials, their mechanical properties

and processing conditions which were extracted from publications by keywords search. Lastly, a combina-

tion of advanced NLP models has been recently used to extract the materials synthesis steps and link them

into an action graph of synthesis procedures for solid-state battery materials (Kuniyoshi et al., 2020) and

inorganic materials in general (Mysore et al., 2017).

Despite significant effort, the accuracy of the NER for chemical names and formulas is still relatively low

compared to the general state-of-the-art NER models (Baevski et al., 2019; Li et al., 2020). Figure 4A dis-

plays the overall precision and recall for different chemical NER models reported in the corresponding

publications. Both, precision and recall of the models vary from 60% to 98% (Figure 4A), whereas for

the general-purpose NER, these values are >91% (see www.nlpprogress.com). There are two major chal-

lenges that obstruct training of high-accuracy chemical NER models: (i) the lack of unambiguous defini-

tions of the chemical tokens and their boundaries, and (ii) the lack of the robust annotation schema as well

as comprehensive labeled training sets for the supervised ML algorithms. Oftentimes, researchers manu-

ally create their own training set for specific tasks but with limited use for more general goals. Therefore,

the success of chemical NER becomes a trade-off between the size of the annotated set and model

complexity: either using simple model with limited capabilities on a small set of labeled data, or investing

effort into annotation of a large dataset and using it with advanced models providing a higher accuracy of

data extraction.
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Figure 4. Accuracy of chemical NER extraction

(A) Precision and recall of the published models for chemical NER manually extracted from the reports

Color denotes the primary algorithm underlying the model.

(B) Accuracy of the data extracted from materials synthesis paragraphs plotted against the complexity of the paragraphs. The accuracy is computed using

chemical NER models developed by our team (Kononova et al., 2019; He et al., 2020) to the manually annotated paragraphs. The text complexity is

calculated as a Flesch-Kincaid grade level (FKGL) score indicating the education level required to understand the paragraph (Kincaid et al., 1975). r is a

Pearson correlation coefficient between the accuracy of NER model and the FKGL score.
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An early attempt in creating a labeled data set for the chemical NER task was done by Kim et al. (2003) and

Krallinger et al., 2015. The GENIA and CHEMDNER sets provide annotation schema and labeled data of

chemicals and drugs extracted from MEDLINE and PubMed abstracts, respectively. However, these

corpora are heavily biased toward biomedicine and biochemical terms with only a small fraction of organic

materials names present. The progress of the past few years brought a variety of annotated corpora to the

materials science domain. Among the publicly available labeled dataset, there is the NaDev corpus con-

sisting of 392 sentences and 2,870 terms on nanocrystal device development (Dieb et al., 2015), the data

set of 622 wet lab protocols of biochemical experiments and solution syntheses (Kulkarni et al., 2018), a

set of 9,499 labeled sentences on solid oxide fuel cells (Friedrich et al., 2020), and an annotated set of

230 materials synthesis procedures (Mysore et al., 2019).

Extraction of information from tables and figures is another branch of scientific IR that has been rapidly

developing in the past few years. The specific format of the figures and tables in scientific papers imposes

substantial challenges for the data retrieval process. First, it is common that images (and sometimes the

tables) are not directly embedded in the HTML/XML text but instead contain a link to an external resource.

Second, connecting tables/images to the specific part of the paper text is an advanced task that does not

have a robust solution to date. Third, both tables and images can be very complex: images can includemul-

tiple panels and inserts that require segmentation, while tables may have combined several rows and

columns imposing additional dependencies on the data. To the best of our knowledge, only a few publi-

cations have attempted to parse tables from the scientific literature using heuristics and machine learning

approaches (Jensen et al., 2019; Milosevic et al., 2019).

Image recognition methods have been broadly used in materials science but have so far been primarily

focused on extracting information about the size, morphology, and the structure of materials from mi-

croscopy images. To date, the existing solutions for interpretation of microscopy images use variations

of convolutional neural networks, and address diverse spectra of materials science problems (Azimi

et al., 2018; Matson et al., 2019; Maksov et al., 2019; Roberts et al., 2019). While these models demon-

strate a remarkable accuracy when applied directly to microscopy output, they are not intended to

separate and process the images embedded in scientific articles. Steps toward parsing of article’s im-

ages were reported recently. Mukaddem et al. (2020) developed the ImageDataExtractor tool that uses

a combination of OCR and CNN to extract the size and shape of the particles from microscopy images.

Kim et al. (2020b) used Google Inception-V3 network (Szegedy et al., 2016) to create the Livermore SEM

Image Tools for electron microscopy images. This tool was later applied by Hiszpanski et al. (2020) to

�35,000 publications to obtain information about the variability of nanoparticles sizes and

morphologies.
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USING TEXT MINING IN MATERIALS SCIENCE: CASE STUDIES

Data-driven materials discovery usually relies either on computational methods to calculate the structure

and properties of materials and collect them in databases (Jain et al., 2013), or on experimental datasets

that have been painstakingly collected and curated. Development of advanced approaches for scientific

TM creates broad opportunities to augment such data with a large amount of reported but uncollected

experimental results. A few large-scale data sets extracted from the scientific publications have become

available over the last few years (Court and Cole, 2018; Huang and Cole, 2020; Kim et al., 2017c; Jensen

et al., 2019; Kononova et al., 2019). In this Section, we survey the publicly available data sets created by

retrieval of information from chemistry, physics, and materials science publications and discuss the most

interesting results obtained from them.
Publicly available collections of text-mined data

While recently several data collections have been obtained by automated TM and NLP-based pipelines,

there are a few large-scale data sets that have been manually extracted from scientific publications and

are worth mentioning here.

The Pauling File Project (Blokhin and Villars, 2020) is one of the biggest manually curated collections of data

for inorganic crystalline substances, covering crystallographic data, physical properties, and phase dia-

grams. The Pauling File Project provides data for the Materials Platform for Data Science (www.mpds.

io), Pearson’s Crystal Data (www.crystalimpact.com), and Springer Materials (www.materials.springer.

com). Together, it contains more than 350,000 crystalline structures, 150,000 physical properties, and

50,000 phase diagrams extracted from the scientific literature in materials science, engineering, physics,

and inorganic chemistry from 1891 to present. The quality and accuracy of the extracted records are

high, and they include expert interpretation and a summary of the original text. Nonetheless, significant

human labor is required to maintain and update this database. Moreover, due to the human interpretation

of the data, the records are highly heterogeneous and may require additional processing and

normalization.

The Dark Reactions Project (www.darkreactions.haverford.edu) is another prominent dataset extracted

manually from laboratory journals containing 3,955 parameters of failed hydrothermal synthesis experi-

ments (Raccuglia et al., 2016). So-called ‘‘negative’’ sampling data are critical for ML applications that

need to predict a ‘‘yes/no’’ answer. Unfortunately, the ‘‘no’’ results, i.e. unsuccessful experimental out-

comes, are rarely published or made available to the broad research community. The Dark Reaction Project

represents the first attempt to demonstrate the importance of sharing negative-result data within the

chemistry and materials science domain.

A substantial effort in the automated extraction of materials properties from scientific publications has

been done by the research group of J. Cole (University of Cambridge, UK). They developed ChemDa-

taExtractor (Swain and Cole, 2016), an NLP toolkit for chemical text and used it to build a large collection

of phase transition temperatures of magnetic materials (Court and Cole, 2018), and a dataset of electro-

chemical properties of battery materials (Huang and Cole, 2020). The first set contains 39,822 records of

Curie and Néel temperatures for various chemical compounds retrieved from 68,078 research articles

(Court and Cole, 2018). These data augment the MAGNDATA database – a collection of �1,000 mag-

netic structures manually extracted from publications by Gallego et al. (Gallego et al., 2016a, 2016b).

The battery data set includes 292,313 records collected from 229,061 papers covering electrochemical

properties of battery materials such as capacity, voltage, conductivity, Coulombic efficiency, and energy

density. It enhances by more than an order of magnitude the manually constructed data set of Ghadbeigi

et al. (2015) containing 16,000 property entries for Li-ion battery materials extracted from 200

publications.

A large-scale text-mined data collection of materials synthesis parameters has been developed by our

team during the past few years. Kim et al. (2017c) generated a data set of synthesis operations and temper-

atures for 30 different oxide systems mined from 640,000 full-text publications. Later on, this set was

extended by 1,214 sol-gel-synthesis conditions for germanium-based zeolites (Jensen et al., 2019).

A collection of 19,488 solid-state ceramics synthesis reactions containing precursors chemicals,

synthesis steps and their attributes was generated from 53,538 materials science papers by Kononova

et al. (2019).
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It is important to highlight that although the TM and NLP methods help to generate large-scale data sets,

the output can suffer from lower accuracy of extraction as compared to any manually curated data set. For

instance, the extraction precision of the Curie andNéel temperatures are�82% (Court and Cole, 2018), and

that of the electrochemical properties – �80% (Huang and Cole, 2020), meaning that up to �20% of the

obtained records have one or more attributes incorrectly extracted. The dataset of oxides synthesis param-

eters shows categorical accuracy (i.e. the fraction of the predicted labels of the text tokens that match the

true labels) for the chemical NER task of �81% (Kim et al., 2017c). For the data set of solid-state synthesis

reactions, precision (i.e. fraction of correctly extracted entities) of extracted synthesis parameters varies

from �62% for fully accurate retrieval of synthesis conditions, to �97–99% for extraction of precursor ma-

terials and final products (Kononova et al., 2019).
Text-mining-driven materials discoveries

Research exploring TM-based data-driven approaches to provide insights on materials emerged well

before any progress in the development of robust NLP tools had been made. Several groups have attemp-

ted manual information extraction from a narrow set of publications with a specific scope.

The group of T. Sparks (University of Utah, US) explored the correlation between materials performance

and the elemental availability for high-temperature thermoelectric materials (Gaultois et al., 2013) and

Li-ion battery materials (Ghadbeigi et al., 2015). In both of these publications, the sets of physical param-

eters for materials classes were manually retrieved from queried materials science literature, and

augmented with data on market concentration and Earth abundance for chemical elements. Based on

this data the importance of considering global market state and geopolitical factors when designing ma-

terials was discussed.

An analysis of cellular toxicity of cadmium-containing semiconductor quantum dots was performed by

applying random forest models to the 1,741 data samples manually collected from 307 relevant publica-

tions (Oh et al., 2016). The authors found that the toxicity induced by quantum dots strongly correlates

with their intrinsic properties, such as diameter, surface ligand, shell, and surface modification.

The data set of failed hydrothermal synthesis reactions collected in the course of the Dark Reactions Project

(see above) was used to explore synthesis routes for organically templated vanadium selenites and molyb-

dates (Raccuglia et al., 2016). In particular, the authors applied support vector machine and decision tree

models to define the upper/lower boundaries of the synthesis parameters that lead to formation of crystals

from solution. The suggested synthesis routes were tested against real experiments and showed 89% suc-

cess rate exceeding human intuition by 11%.

Although the manual approach to abstract a large text corpus is very laborious, it allows for obtaining high-

quality data from the tables and figures as well as from the text, thus justifying the small size of these data

sets. Nonetheless, a growing amount of research uses the automated TM pipelines to obtain a collection

from which to initiate data-driven materials discoveries.

Young et al. (2018) developed a semi-automated TM pipeline to extract and analyze the growth conditions

for four different oxide materials synthesized with pulsed laser deposition technique. They were able to

obtain the range of growth temperatures and pressures and predict the relative values of critical temper-

atures by applying a decision tree classifier.

Cooper et al., 2019 applied a TM pipeline to effectively screen and sort organic dyes for panchromatic solar

cells. Their approach identified 9,431 dye candidates which were then narrowed down to five prospective

molecules for experimental validation. This work is an important step toward a so-called ‘‘design-to-de-

vice’’ approach to fabrication of advanced materials (Cole, 2020). The approach consists of the four steps

of (i) data extraction from literature, (ii) data augmentation with computations, (iii) AI-guided materials

design, and (iv) experimental validation.

In other work, Court and Cole (2020) used the records of Curie and Néel temperatures text-mined from the

scientific literature (Court and Cole, 2018) (see previous section) to reconstruct the phase diagrams of mag-

netic and superconducting materials. They used the materials bulk and structural properties as descriptors

in ML models to predict the critical temperature for a magnetic phase transition. The trained models are
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formulated into a web application that provides multiple options for predicting and exploring magnetic

and superconducting properties of arbitrary materials (www.magneticmaterials.org).

Our team has extensively used TM aiming to uncover insights about materials synthesis from scientific pub-

lications. Kim et al. (2017b) explored the parameters of hydrothermal and calcination reactions for metal

oxides by analyzing the data extracted from 22,065 scientific publications. They found a strong correlation

between the complexity of the target material and the choice of reaction temperature. A decision tree

model applied to predict synthesis routes for titania nanotubes identified the concentration of NaOH

and synthesis temperature as the most important factors that lead to nanotube formation. A similar

approach was used to predict the density of germanium-containing zeolite frameworks and to uncover

their synthesis parameters (Jensen et al., 2019).

In other work, Kim et al. (2017a) applied a variational autoencoder to learn the latent representation of

synthesis parameters and to explore the conditions for the synthesis of TiO2 brookite and for polymorph

selection in the synthesis of MnO2. Their results showed that the use of ethanol as a reaction medium is

a sufficient but not necessary condition to form the brookite phase of TiO2. Their latent representation

of synthesis parameters also captures the requirement of alkalai ions for the generation of certain MnO2

polymorph, consistent with ab initio findings (Kitchaev et al., 2017). A conditional variational autoencoder

was also used to generate a precursors list for some perovskite materials (Kim et al., 2020a).

Building relations between materials, their properties and applications and combining them into a so-

called knowledge graph structure is an emerging area of research in materials science that became

enabled by the development of scientific TM. Onishi et al. (2018) implemented the Computer-Aided Ma-

terial Design (CAMaD) system which is an elegant TM framework that reconstructs and visualizes a knowl-

edge graph in the form of a process-structure-property-performance chart for desired materials. While

the presented performance of the CAMaD system is still limited, it demonstrates the capabilities of

TM to create a comprehensive knowledge-based structure that can be used for optimization of materials

design.

The relation between materials reported in the different application areas of materials science was

explored by Tshitoyan et al. (2019). They applied the word2vec model (Mikolov et al., 2013) to 3 million ab-

stracts to learn a vectorized representation of words andmaterials specifically. Interestingly, the model was

able to not only learn some aspects of the chemistry underlying the relations between materials but also to

draw a similarity between materials for different applications. In particular, it was demonstrated that such a

cross-field correlation between the material properties required in different application could be used to

predict novel thermoelectric materials. This work highlights an important aspect of scientific TM and NLP:

its capability to uncover latent knowledge about a subject by comprehending a large amount of unstruc-

tured data – a task that is not possible for a human.

The question of materials similarity was also studied by He et al. (2020). In their work, a measure of similarity

for synthesis precursors was defined by two parameters: (i) the probability to substitute one precursor with

another in the synthesis reaction for a common target material, and (ii) the area of overlap of synthesis tem-

perature distributions for two precursors. The results demonstrate that some of the empirical rules widely

used by researchers when choosing the precursors for materials synthesis can be learned from text data.

CHALLENGES AND CAVEATS OF THE TEXT-MINING-DRIVEN RESEARCH

While TM and NLP are tremendously promising tools to extract the enormous amount of information

locked up in published research, several challenges for the approach remain. We categorize these below.

Lack of annotated data

The lack of a large dataset corresponding to a ‘‘gold standard’’ of annotated data significantly slows down

the development of robust high-precision methods for chemical NER. The majority of the existing anno-

tated sets have been created to serve a specific purpose or subfield of materials science and their broad

application is not straightforward. Current attempts to create standardization for annotated data in mate-

rials science are limited to chemical named entities with emphasis on organic chemistry (Corbett et al.,

2007; Krallinger et al., 2015; Kim et al., 2003). Building more structured databases of experimental data

that can be related to the papers from which the data are sourced, could potentially help to test the
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performance of NLP methods. One can even conceive creating machine-annotated data based on an ex-

isting relation between data and publications. We are, however, not hopeful that the scientific community

can come together around central data deposition without an incentive structure from publishers or gov-

ernment agencies, which further stresses the important role that TM will have in generating large amounts

of materials data.

Ambiguity and lack of standard nomenclature to describe and categorize complex materials

An engineering material is not merely a compound that requires a chemical description. It can be a doped

system, inhomogeneous, a multi-phase system, or a composite. Each of these complexities comes with its

morphology and length scale. While for common chemical terms, IUPAC provides nomenclature recom-

mendations, writers usually prefer to simplify them or use arbitrary notations for materials names if no stan-

dard terminology is established. For instance, even for a basic concept such as a doped material, various

nomenclatures are used e.g. ‘‘Sc2(MoO4)3:Eu
3+’’, ‘‘Sc2(MoO4)3 + x% Eu3+’’ or ‘‘Eu3+-doped Sc2(MoO4)’’.

Composites and mixtures can be written in various ways (e.g. (1-x)Pb(Zr0.52Ti0.48)O3-xBaTiO3 or

Pb(Zr0.52Ti0.48)O3 + x wt% BaTiO3). The abbreviated names of chemicals and materials (e.g. EDTA, BNT-

BT-KNN, LMO) are also ubiquitous. Even within one journal or publisher no standards are applied. This

complicates comparison and aggregation of extracted data across papers and requires substantial data

post-processing in order to normalize and unify the results. In some cases it creates ambiguity that cannot

be resolved, or whose resolution leads to errors.

Positive bias

Authors often ‘‘cherry-pick’’ data in the main body of a paper, either leaving out less successful data or

moving it to supplementary information (which is often only available as PDF and with too low information

content to do meaningful automated data extraction). This positive bias introduces substantial problems

for ML models trained on these data, and requires caution when choosing the questions which one asks

from ML models. In recent work, Jia et al. (2019) explored the effect of human bias in the choice of starting

materials for the synthesis of metal organic crystals. They found a strong preference in the literature for

selecting some reagents over others which was attributed to historically established rule-of-thumbs. In

their explicit experimental testing they found no value of the implied precursor selection bias, something

that an ML based on the published data would not have been able to resolve without additional data. In

our own work on the prediction of novel compounds (Fischer et al., 2006; Hautier et al., 2011) or their syn-

thesis methods (Kim et al., 2017b), the lack of negative information is severely limiting. For example, the

lack of a known compound at a given composition in a complex phase diagram may mean that no com-

pound exists at that composition, or, that nobody has looked carefully for it. These are very different

pieces of input information for an ML model that tries to predict which compositions are compound form-

ing or not. One can imagine that some researchers may have investigated the specific composition, but

because they did not find anything, the investigation was not reported. In a similar problem, failed

synthesis experiments are rarely reported. This lack of negative data prevents one from capturing the

boundaries on the space of possible ML outcomes. The effect of human bias on the quality of ML model

predictions has not been investigated in detail and remains a challenging aspect of NLP-based data

collections.

Language complexity and error accumulation

The narrative of a research paper is known to have a very specific style and language. It was shown for the

corpus of newspapers of various subjects that the texts covering a scientific topic have the lowest read-

ability score as compared to other topics, such as sports or weather (Flaounas et al., 2013). To explore

the dependence between complexity of a scientific paragraph and the quality of the data extraction, we

computed the categorical accuracy (fraction of predicted values that match with actual values) of data

extraction for �100 manually annotated paragraphs on materials synthesis and their corresponding

Flesch-Kincaid grade level (FKGL) score (Kincaid et al., 1975). Figure 4B shows the extraction accuracy of

synthesis steps and material entities per each paragraph obtained using the NLP models developed by

our team previously (Kononova et al., 2019; He et al., 2020), plotted against the corresponding FKGL score.

Although the data are highly scattered, the negative correlation trend between the extraction accuracy and

the FKGL score can be noticed. The computed Pearson correlation coefficients between the value of the

FKGL score and the extraction accuracy of synthesis steps and materials entities are �0.42 and �0.38,

respectively. It is worth noting that the correlation is stronger when the NLPmodel is applied to extract syn-

thesis steps rather than materials entities. This can be explained with the fact that the context of a sentence
14 iScience 24, 102155, March 19, 2021



ll
OPEN ACCESS

iScience
Review
defining a synthesis action is more ambiguous than that for materials terms (Kim et al., 2019). This

complexity stresses the need to improve the general NLP tools to deal with scientific text. The accuracy

of the text processing along the TM pipeline is crucial as errors usually accumulate from step to step, lead-

ing to a strong reduction in quality and size of the output (Kononova et al., 2019). As was noted before, the

problemwith sentence tokenization significantly affect the outcome of information extraction, in particular,

chemical NER. Overcoming this problem may be possible by developing a hybrid NLP methods that intro-

duces domain knowledge.

The accuracy of scientific NLP imposes constraints on the potential range of questions that the extracted

data can address. Kauwe et al. (2019) have investigated the viability and fidelity of ML modeling based on a

text-mined dataset. They used various ML algorithms and material structure models to predict the

discharge capacity of battery materials after 25 cycles based on a dataset extracted from the literature

and found inconclusive results. While one can speculate on the origin of this outcome, it is clear that the

high level of uncertainty of the predictions can arise from invalid descriptors or models, as well as from

the human bias and imperfectness of the experimental measurements (Kauwe et al., 2019). As the ‘‘no-

free-lunch’’ theorem states, there is no any particular ML model that will work best for a given task. There-

fore, interpretation of results obtained by application of ML algorithms to text mined data should always be

treated with caution and keeping the limitations of the input data in mind. In general, limitations of ML pre-

dictions are much more likely to be caused by limitations of input data than by problem with the ML

method.
FUTURE DIRECTIONS

Data are considered the fourth paradigm of science (Tolle et al., 2011). Access to a large amount of data

allows the quantification and more accurate testing of hypothesis, and even potentially the machine

learning of the relation between composition, structure, processing and properties of materials. The Ma-

terials Genome Initiative (MGI) (Holden, 2011) led to some highly successful data-driven research projects

(e.g. www.mgi.gov, www.nsf.gov/funding/pgm_summ.jsp?pims_id = 505073 and Jain et al., 2013 and Jain

et al. (2016)). But the personal experience of one of the authors in helping launch MGI is that experimental

data is unlikely to be collected one piece at a time, by having scientists enter it in databases, the way it was

envisioned by some when MGI started. While ML is an exciting new direction for materials research, it is

telling that much of published ML work is either on computed data sets (which can be generated with

high-throughput computing) (Jain et al., 2011), or on very small experimental datasets, often containing

no more than 50–100 data items. Because of this failure to collect experimental data in more organized

ways, TM and NLP are likely to play a critical role in enabling more data-driven materials research. The will-

ingness of publishers to share access to their large corpus for TM and several new developments in the NLP

field are likely to lead to increased volume and quality of extracted information from scientific text.

The most notable advance in NLP in recent years has been the advent of transformer models, which have

dramatically improved state-of-the-art performance on almost all benchmark tasks. The transformer uses

an idea of sequence encoding-decoding (Bahdanau et al., 2016) and creates a latent vectorized represen-

tation of a text. The advantage of the model is its attention functionality (Vaswani et al., 2017) that allows for

the model to recognize the key parts of a sequence that are crucial for understanding the meaning of text.

The transformers have ushered in a new paradigm in NLP, whereby very large general-purpose models

(with typically hundreds of millions of parameters) are pre-trained on publicly available corpora with unsu-

pervised objective, before being fine-tuned to individual tasks. This so-called transfer learning approach

allows the transformer to have high performance on supervised-training tasks with only a small number

of training examples, significantly reducing the burden on human annotation.

From a materials science perspective, the transfer learning still meets some difficulties. The publicly avail-

able transformer models are pre-trained on general-purpose corpora, thus performing poorly on tasks

involving scientific language. Moreover, the computational cost to train them ‘‘from scratch’’ is also signif-

icant: training BERTLarge on a corpus of 3.3 billion words with 64 TPU cores took 4 days (Devlin et al., 2019).

There have been a number of recent efforts to pre-train domain-specific transformer models on scientific

text, including SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2019), and MedBERT (Rasmy et al., 2020).

Although the corpus of available materials science publications (Figure 1) is of comparable size to the

corpora used to train the original BERTmodels, nomaterials science-specific pre-trained BERT-style model
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is publicly available to date. Training and release of such a model would be of tremendous impact for the

materials science community.

Prominent progress has been also achieved for Neural Machine Translation (NMT), providing an opportu-

nity to apply TM on scientific literature written in non-English languages. While NMT has reached parity

with human translation in a number of languages (Hassan, 2018), the dominant methodology relies on su-

pervised training on a large bilingual corpus with parallel texts in source and target languages. However,

there are significant difficulties in implementing the parallel-translation approach tailored specifically to

the peculiarities of the scientific text. The domain-specific vocabulary of scientific texts requires a signifi-

cant bilingual corpora for training the parallel-translation model (Tehseen et al., 2018). The latest develop-

ment in unsupervised NMT models (Lample et al., 2017, 2018; Artetxe et al., 2017) utilizes monolingual

corpora, escaping the need for parallel texts. This opens possibilities for domain-specific training of the

NMT and its application to the non-English scientific text.

As mentioned previously, the lack of large-scale annotated datasets often obstructs application of

advanced NLP techniques for scientific TM. Crowd-sourcing for data collection may be a solution to this

problem. Diverse approaches to collaborative data management have been widely used in projects

such as OpenEI (www.openei.org), Folding@home (www.foldingathome.org) and others (Zhai et al.,

2013; Doan et al., 2011), as well as have proven to be highly efficient for gathering a large amount of

data. To date, only a few projects have utilized crowd-sourcing in materials science TM research (Young

et al., 2018; Tchoua et al., 2016). But development of a collaborative data collection platform for application

of NLP in materials science meets several challenges. First, building and maintenance of the software part

requires a substantial labor investment one for which government science agencies do not seem quite

ready for. Second, efficient data collection and annotation requires well established standards for labeling

of scientific texts that can be unambiguously applied to a wide variety of research tasks.

The accelerated development of high-throughput computations and emergence of ‘‘big data’’ in materials

science in the past few years has shifted focus toward data management and curation. This has resulted in

engineering and production of high-quality databases with flexible graphical interfaces and programming

APIs that provide facile and convenient access to the data for their mining and analysis (Alberi et al., 2018).

Rapidly growing sets of the data extracted from scientific publications call for development of a similar

advanced infrastructure for representations, maintenance and distribution of these data.

Prevalent, broad and accurate data are a pillar of science. It inspires, negates, or validates theories. In so-

ciety and business, data has become a highly valued commodity from which to take strategic decision,

construct more effective marketing campaigns, or to improve products. For materials science to fully

benefit from the new data paradigm significantly more effort will need to be directed toward data collec-

tion. TM and NLP are clearly a tool to make the results of hundred years of materials research available to-

ward the realization of this paradigm.
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Rocktäschel, T.,Weidlich, M., and Leser, U. (2012).
Chemspot: a hybrid system for chemical named
entity recognition. Bioinformatics 28, 1633–1640,
https://doi.org/10.1093/bioinformatics/bts183.

Shah, S., Vora, D., Gautham, B.P., and Reddy, S.
(2018). A relation aware search engine for
materials science. Integr. Mater. Manuf. Innov. 7,
1–11, https://doi.org/10.1007/s40192-017-0105-
4.

Shannon, C.E. (1951). Prediction and entropy of
printed English. Bell Syst. Tech. J. 30, 50–64,
https://doi.org/10.1002/j.1538-7305.1951.
tb01366.x.

Swain, M.C., and Cole, J.M. (2016).
ChemDataExtractor: a toolkit for automated
extraction of chemical information from the
scientific literature. J. Chem. Inf. Model. 56, 1894–
1904, https://doi.org/10.1021/acs.jcim.6b00207.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.,
and Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. In 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR) (IEEE Computer Society),
pp. 2818–2826, https://doi.org/10.1109/CVPR.
2016.308.

Tchoua, R.B., Qin, J., Audus, D.J., Chard, K.,
Foster, I.T., and de Pablo, J. (2016). Blending
20 iScience 24, 102155, March 19, 2021
education and polymer science: semiautomated
creation of a thermodynamic property database.
J. Chem. Educ. 93, 1561–1568, https://doi.org/10.
1021/acs.jchemed.5b01032.

Tchoua, R.B., Ajith, A., Hong, Z., Ward, L.T.,
Chard, K., Belikov, A., Audus, D.J., Patel, S., de
Pablo, J.J., and Foster, I.T. (2019). Creating
training data for scientific named entity
recognition with minimal human effort. In LNCS,
Vol. 11536, J.M.F. Rodrigues, P.J.S. Cardoso, J.
Monteiro, R. Lam, V.V. Krzhizhanovskaya, M.H.
Lees, J.J. Dongarra, and P.M.A. Sloot, eds
(Springer International Publishing), pp. 398–411,
https://doi.org/10.1007/978-3-030-22734-0_29.

Tehseen, I., Tahir, G.R., Shakeel, K., and Ali, M.
(2018). Corpus based machine translation for
scientific text. In Artificial Intelligence
Applications and Innovations, L. Iliadis, I.
Maglogiannis, and V. Plagianakos, eds. (Springer
International Publishing), pp. 196–206, https://
doi.org/10.1007/978-3-319-92007-8_17.

Thompson, K. (1968). Programming Techniques:
regular expression search algorithm. Commun.
ACM 11, 419–422, https://doi.org/10.1145/
363347.363387.

Tkaczyk, D., Szostek, P., Fedoryszak, M., Dendek,
P.J., and Bolikowski, Ł. (2015). CERMINE:
automatic extraction of structuredmetadata from
scientific literature. Int. J. Document Anal.
Recognition (Ijdar) 18, 317–335, https://doi.org/
10.1007/s10032-015-0249-8.

Tolle, K.M., Tansley, D.S.W., and Hey, A.J.G.
(2011). The fourth paradigm: data-intensive
scientific discovery [point of view]. In Proceedings
of the IEEE 99, pp. 1334–1337, https://doi.org/10.
1109/JPROC. 2011.2155130.

Trewartha, A., Dagdelen, J., Huo, H., Cruse, K.,
Wang, Z., He, T., Subramanian, A., Fei, Y., Justus,
B., Persson, K., and Ceder, G. (2020).
COVIDScholar: an automated COVID-19
research aggregation and analysis platform.
arXiv2012.03891.
Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A.,
Rong, Z., Kononova, O., A Persson, K., Ceder, G.,
and Jain, A. (2019). Unsupervised word
embeddings capture latent knowledge from
materials science literature. Nature 571, 95–98,
https://doi.org/10.1038/s41586-019-1335-8.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need.
arXiv 1706.03762.

Vaucher, A.C., Zipoli, F., Geluykens, J., Nair, V.H.,
Schwaller, P., and Laino, T. (2020). Automated
extraction of chemical synthesis actions from
experimental procedures. Nat. Commun. 11,
3601, https://doi.org/10.1038/s41467-020-17266-
6.

Weizenbaum, J. (1983). Eliza – a computer
program for the study of natural language
communication between man and machine.
Commun. ACM 26, 23–28, https://doi.org/10.
1145/357980.357991.

Weston, L., Tshitoyan, V., Dagdelen, J.,
Kononova, O., Trewartha, A., Persson, K.A.,
Ceder, G., and Jain, A. (2019). Named entity
recognition and normalization applied to large-
scale information extraction from the materials
science literature. J. Chem. Inf. Model. 59, 3692–
3702, https://doi.org/10.1021/acs. jcim.9b00470.

Young, S.R., Maksov, A., Ziatdinov, M., Cao, Y.,
Burch, M., Balachandran, J., Li, L., Somnath, S.,
Patton, R.M., Kalinin, S.V., et al. (2018). Data
mining for better material synthesis: the case of
pulsed laser deposition of complex oxides.
J. Appl. Phys. 123, 115303, https://doi.org/10.
1063/1.5009942.

Zhai, H., Lingren, T., Deleger, L., Li, Q., Kaiser, M.,
Stoutenborough, L., and Solti, I. (2013). Web 2.0-
based crowdsourcing for high-quality gold
standard development in clinical natural
language processing. J. Med. Internet Res. 15,
e73, https://doi.org/10.2196/jmir.2426.

http://refhub.elsevier.com/S2589-0042(21)00123-1/sref108
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref108
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref108
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref108
https://doi.org/10.1038/sdata.2017.85
https://doi.org/10.1038/sdata.2017.85
https://doi.org/10.1038/s41598-019-49105-0
https://doi.org/10.1038/s41598-019-49105-0
https://doi.org/10.1093/bioinformatics/bts183
https://doi.org/10.1007/s40192-017-0105-4
https://doi.org/10.1007/s40192-017-0105-4
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1021/acs.jchemed.5b01032
https://doi.org/10.1021/acs.jchemed.5b01032
https://doi.org/10.1007/978-3-030-22734-0_29
https://doi.org/10.1007/978-3-319-92007-8_17
https://doi.org/10.1007/978-3-319-92007-8_17
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1007/s10032-015-0249-8
https://doi.org/10.1007/s10032-015-0249-8
https://doi.org/10.1109/JPROC. 2011.2155130
https://doi.org/10.1109/JPROC. 2011.2155130
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref122
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref122
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref122
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref122
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref122
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref122
https://doi.org/10.1038/s41586-019-1335-8
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref124
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref124
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref124
http://refhub.elsevier.com/S2589-0042(21)00123-1/sref124
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.1145/357980.357991
https://doi.org/10.1145/357980.357991
https://doi.org/10.1021/acs. jcim.9b00470
https://doi.org/10.1063/1.5009942
https://doi.org/10.1063/1.5009942
https://doi.org/10.2196/jmir.2426

	Opportunities and challenges of text mining in aterials research
	Introduction and background
	Text mining of scientific literature
	Obtaining the text corpus
	Text databases
	Individual publisher access

	Conversion into raw text
	Text pre-processing, grammatical, and morphological parsing
	Text representation modeling
	Retrieval of information from the text

	Using text mining in materials science: case studies
	Publicly available collections of text-mined data
	Text-mining-driven materials discoveries

	Challenges and Caveats of the Text-Mining-Driven Research
	Lack of annotated data
	Ambiguity and lack of standard nomenclature to describe and categorize complex materials
	Positive bias
	Language complexity and error accumulation

	Future directions
	Acknowledgments
	flink6
	flink7
	flink8
	References




