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This paper develops a new microgrid investment planning model that determines

cost-optimal investment and operation of distributed energy resources (DERs) in a

microgrid. We formulate the problem in a bi-level framework, using particle swarm

optimization to determine investment and DER-CAM to determine operation. The

model further uses sequential Monte Carlo simulation to explicitly simulate power

outages and integrates time-varying customer damage functions to calculate inter-

ruption costs from outages. The model treats non-linearities in reliability evalua-

tion directly, where existing linear models make critical simplifying assumptions. It

combines investment, operating, and interruption costs together in a single objec-

tive function, thereby treating reliability endogenously and finding the cost-optimal

trade-off between cost and reliability—two competing objectives. In benchmarking

against a version of the DER-CAM model that treats reliability through a constraint

on minimum investment, our new model improves estimates of reliability (the loss of

load expectation) by up to 600%, of the total system cost by 6-18%, of the investment

cost by 32-50%, and of the economic benefit of investing of 27-47%. Improvements

stem from large differences in investment of up to 56% for natural gas generators,

solar photovoltaics, and battery energy storage.

a)rehanna@ucsd.edu
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I. INTRODUCTION

Microgrids are widely touted for the benefits they can confer to both public and pri-

vate stakeholders. They can improve reliability and resiliency, lower energy costs, and

reduce the carbon intensity of energy, among others.1–4 Numerous state governments have

enacted microgrid grant programs, targeting reliability and resiliency in particular, e.g. in

Connecticut5, Massachusetts6,7, New Jersey8, California9,10, New York11, and Maryland12.

Other states still, such as Minnesota13 and Rhode Island14, have convened task forces to

explore opportunities for microgrids. Deployment rates are increasing in the private sec-

tor as well15–17, driven by customer concerns about reliability, falling technology costs, and

opportunities to reduce electric utility bills.

Yet microgrids remain costly. Identifying benefits—and concomitant revenue streams—is

therefore critical. To ensure positive return on investment, multiple (potentially all) available

benefits may need to be considered, e.g. by “value stacking”.18,19 Identifying benefits early

in the design process is important because investment and benefits are inextricably linked:

choice of distributed energy resources (DERs) affects the magnitude of benefits that can

be realized, and, likewise, value streams known a priori (and considered) affect the optimal

selection of DERs. One challenge, however, is that certain benefits are hard to quantify—

notably reliability. There is little agreement on how reliability should be valued, and many

are grappling with the conceptual challenge.20–22 Reliability poses modeling challenges as

well due to its non-linear form; as such, models vary widely in their treatment of reliability,

and simplifications are common.

In this paper, we address microgrid “investment planning” models—economic-engineering

optimization models that assess technical and economic feasibility, and whose core function

is to select DERs that optimize an objective(s), such as minimizing total system cost, power

outages, or emissions.23 While these models have the capacity to address the many facets

of reliability24 simultaneously—e.g., bulk grid outages, individual points of hardware fail-

ure, scheduled downtime, reliability costs and constraints, and a customer’s valuation of

reliability—few have been built to do so.

Numerous investment planning models have been developed, including several sponsored

by the U.S. Department of Energy (DOE): HOMER25, DER-CAM26, MDT27, and REopt28.

The four DOE models are functionally similar: they use cost-benefit analysis to assess tech-
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nical and economic performance, determine least-cost investment and operation of DERs,

and estimate energy provision, fuel consumption, emissions, and costs (component costs,

levelized cost of energy, net present cost).29 The models are structurally similar as well.

They are based on optimization and thus consist of three main parts: an objective function

that enumerates system costs or other performance criteria such as emissions or reliability;

decision variables, i.e. decisions for DER investment and operation, that minimize the objec-

tive function; and constraints on decision variables that respect technological and economic

limitations. Though the models differ in small ways in each of these three domains, their

principal difference lies in their formulation of the objective function, and in particular their

treatment of reliability therein.

HOMER lacks a reliability cost, which represents a customer’s economic losses from

power outages, in its objective function. Instead it generates grid outage sequences—i.e.,

down-times when the bulk grid is failed—that force a microgrid to operate autonomously

in islanded mode. Without reliability costs, there is no cost associated with experiencing

outages, nor a benefit (avoided economic losses) from preventing them. Outages thus act

only as a constraint on operation.

DER-CAM, by contrast, includes a reliability cost in its objective function. The reliability

cost is formulated as the product of unserved (or curtailed) load due to grid outages and the

value of lost load (VOLL), a $/kWh measure, where the timing and duration of outages are

prescribed. Given the schedule of outages, the model finds whether it is more economic to

forego DER investment and incur cost due to unserved load or to invest in additional DERs to

mitigate the cost of unserved load during outages. DER-CAM further addresses reliability

via a constraint on investment that requires that aggregate DER capacity, measured in

kilowatts (kW), exceed peak critical load.

MDT also includes a reliability cost in its objective function, combining reliability metrics,

such as outage frequency and unserved load, with other metrics like system cost, fuel use,

and system efficiency using multi-objective optimization. However, MDT lacks an integrated

framework for treating reliability because it couples two disparate models. The first, called

the Microgrid Sizing Capability (MSC) module (which is a tuned version of DER-CAM)

determines optimal DER investment without a reliability objective. The second model, the

Technology Management Optimization (TMO) module, then refines DER-CAM’s result by

including other objectives, such as reliability, efficiency, and grid hardware costs. Because

4



reliability is not included in the initial optimization routine, it is largely exogenous to the

model. A more robust approach would be to include reliability costs in a single objective

function with all other system costs.

REopt includes a reliability cost in the objective function and, in attempting to handle

its non-linearities, uses linear regression to relate DER capacity to reliability, specifically

the probability that a microgrid can maintain power in islanded mode during a prescribed

grid outage. Unmet load due to outages incurs a cost per a prescribed VOLL. At present,

the framework is only fit for use with solar-plus-storage configurations and a single average

outage duration.

The disparate and patchwork treatment of reliability in the DOE models is due, funda-

mentally, to the fact that reliability is highly non-linear, and yet the DOE models are built

on mixed integer linear programming (MILP). The objective of this work is to rectify this

incompatibility using appropriate methods. Our approach is to formulate a new model that

is functionality identical to the DOE models but that is structured, firstly, on best-available

methods for calculating reliability. That is, we set out to use the most accurate reliability

evaluation method available—sequential Monte Carlo simulation (MCS)30—and, only after-

ward, to incorporate existing MILP elements where sensible. That reorientation is simple

conceptually but demands an entirely new model.

We propose a bi-level framework consisting of heuristic optimization, specifically particle

swarm optimization (PSO), in the upper level and DER-CAM in the lower. The PSO sizes

DERs and DER-CAM schedules them. Also in the lower level is the MCS routine31 that

calculates reliability. PSO is highly flexible and can incorporate non-linearities in objective

and constraint functions, thereby overcoming the central modeling challenge of reliability.

MCS, also highly flexible, can incorporate random grid outages, prescribed outages, sched-

uled DER maintenance, random DER failures, and widespread (dependent) outages to the

grid and particular DERs. Our model further makes use of duration- and time-dependent

customer damage functions32 to value reliability, in contrast to existing models that use

VOLL33–38. VOLL is a simplified representation of a customer’s value of reliability, but is

commonly used because it fits with the mathematical framework of MILP.

Our approach is most similar to the MDT model, which also uses heuristic optimization,

namely a genetic algorithm, as well as simulation to calculate reliability. However, our

approach treats reliability and investment decision-making together in a single integrated
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framework, in contrast to MDT’s use of two disparate models. We thus treat reliability

endogenously with all other system costs. To our knowledge, our model is the first that

addresses the investment planning problem using an integrated framework consisting of

optimization and sequential MCS.

As we discuss (Sec. II), investment planning models can (and should) be structured

to explicitly include many real-world phenomena that affect customer reliability and that

therefore drive investment choices—such as bulk grid outages, random DER failures, main-

tenance, and the cost and value of reliability. Our new framework (Sec. III) includes each.

We validate our new model against DER-CAM and, using case studies (Sec. IV), show how

our new model improves estimates of investment, reliability, cost, and benefit compared to

DER-CAM’s use of a reliability constraint. The comparisons illustrate how a cost-based

approach to integrating reliability drives differences in key results compared to a constraint-

based approach. We conclude (Sec. V) by looking forward to logical extensions of the

work.

II. PROBLEM FORMULATION

The central objective of the microgrid investment planning problem is to select, size, and

schedule DERs to minimize the total system cost, which includes the expected cost of invest-

ment, operation, and interruption. (“Interruption” cost and “reliability” cost are used here

interchangeably, though in the field of reliability evaluation the former is preferred, while the

latter is better described as an “unreliability” cost.) An electric utility customer’s operating

cost can be reduced by self-generating less costly energy on-site, while the interruption cost

(i.e., a customer’s economic losses from power outages) can be mitigated by investing in a

reliable DER mix that can island and sustain power independently of the bulk grid. The

solution to the problem is an optimally-sized set of DERs and their operating schedules, an

enumeration of all costs (and subsequent benefit), and an optimal level of reliability. We

refer to this optimal DER mix as the microgrid configuration.
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FIG. 1. (a) The distribution system-microgrid topology, and (b) the modeled microgrid system. In

the modeled system, the distribution system is a single “equivalent” generator. DERs lie behind

the point of common coupling (PCC) and comprise the four categories shown. (Thermal networks

and the natural gas network are not shown.)

A. Microgrid customer topology

We consider the utility customers who may pursue microgrids to be grid-connected at

the distribution level, with all load and DERs located at a single bus on the load side of the

distribution transformer (Fig. 1a). From the modeling standpoint, customers may comprise

one or several buildings; from the regulatory standpoint, they are single utility customers

with a single electric billing meter at the point of common coupling (PCC). Our focus is

single customers because rules governing U.S. electric utilities in most jurisdictions prohibit

microgrids from serving multiple adjacent customers whose properties span public spaces,

such as roads.

Customer load can be supplied by a combination of grid electricity and self-generated

power. Inside the microgrid, sources of energy provision fall broadly into four categories:

1. Natural gas-fired generators : internal combustion engines and microturbines with fixed

capacity that can include heat recovery.

2. Renewables : solar photovoltaics (PV).

3. Electric storage: stationary battery energy storage.

4. Thermal resources : natural gas-fired chillers, absorption chillers that affix generators
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with heat recovery, and thermal energy storage (hot and cold).

Technologies are modeled per their technical specifications (capacity, dispatch, ramping,

and efficiency ratings) as well as those for cost (fixed costs, variable costs, lifetime) and

reliability (failure rate, repair rate). The bulk grid is modeled as a single “equivalent”

generator (Fig. 1b)—appropriate treatment because the microgrid does not impact grid

resource adequacy and because the bulk grid acts as a homogeneous system capable of

supplying peak microgrid load.39 Grid electricity costs are defined in the utility tariff, while

grid failure and repair rates are a function of the utility metrics SAIFI (system average

interruption frequency index), MAIFI (momentary average interruption frequency index),

and SAIDI (system average interruption duration index).

We model the combined system at a single node, thereby focusing on hierarchical level I

reliability evaluation, also referred to as resource adequacy.24,40 Recent modeling (e.g., with

MDT and DER-CAM) has begun to add elements of power system networks, such as power

system equipment, constraints, and power flow equations. Though multi-nodal analysis is

outside the scope of this work because our principal focus is reliability, network capacity

constraints could be modeled, e.g. by including appropriate power flow equations, as well

as bus voltage and ampacity limits for lines and power equipment, as constraints in the

problem, thereby capping power flow from individual DERs or the bulk grid.

B. Investment and operating costs

Investment and operating costs are standard components of investment planning models.

The investment cost is the annualized, amortized capital cost of investing in DERs and the

switching equipment that enables islanding:

cinvestment := cswitch + cgen + cpv + ces + cthermal , (1)

where “switch” denotes switching equipment, “gen” generators, “pv” solar PV, “es” battery

energy storage, and “thermal” thermal resources. cgen is the sum of individual discrete

generator costs; cswitch, cpv, and ces are costs of single systems sized in any continuous

capacity; and cthermal is the sum of costs for gas-fired chillers, absorption chillers, heat

storage, and cold storage:

cswitch :=AsBins

(
Cfcaps + CvcapsPurchCaps

)
(2)
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cgen :=Ai

∑
i∈I

PurchNumiRiCvcapi (3)

cpv :=A‘pv’Bin‘pv’

(
Cfcap‘pv’ + PurchCap‘pv’Cvcap‘pv’

)
(4)

ces :=A‘es’Bin‘es’

(
Cfcap‘es’ + PurchCap‘es’Cvcap‘es’

)
(5)

cthermal :=
∑
k∈K

PurchNumkRkCvcapkAk (6)

+
∑
q∈Q

(
BinqCfcapq + PurchCapqCvcapq

)
Aq ,

where q here indexes absorption chillers “ac”, heat storage “hs”, and cold storage “cs”.

Nomenclature for the investment and operating cost calculations is given in Table I. The

annuity factor for technology v is given by

Av =
IntRate

1− 1
(1+IntRate)Lifetimev

, (7)

and IntRate is the interest rate.

TABLE I: Nomenclature for investment and operating cost

calculations in Eq. 1–12.

Parameter Description

Sets and indices

m Month, M = {1, 2, ..., 12}

t Day-type, T = {week, weekend}

h Hour, H = {1, 2, ..., 24}

p Tariff period P = {on-peak, mid-peak, off-peak}

d Tariff demand type, D = {non-coincident, on-peak, mid-peak, off-peak}

u End-use load, U = {electricity ‘el’, cooling ‘cl’, space heating ‘sh’, water

heating ‘wh’, natural gas ‘ng’}

s Index for switchgear

i Generator, I = {ICE, MT, ICE-HX, MT-HX}i

k Direct-fired chiller, K = {DFChiller-HX}

q Continuous DER, Q = {solar PV ‘pv’, electric storage ‘es’, absorption

chiller ‘ac’, heat storage ‘hs’, cold storage ‘cs’}ii

v All microgrid technologies, V = {I, K, Q, switchgear}

e Source of electricity, E = {I, ‘pv’, ‘es’, distribution system ‘ds’}
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c Source of cooling, C = {K, absorption chiller ‘ac’, electric chiller ‘ec’, cold

storage ‘cs’}

g Source of heat, G = {I, direct fuel ‘di’}

Customer load

Nm,t Number of days of day-type t in month m

Lu,m,t,h Load profile for end-use load u, month m, day-type t and hour h, kW

Tariff parameters

ElecFee Fee for electric service, $/month

V Chgm,p Volumetric charge for month m and tariff period p, $/kWh

DChgm,d Demand charge for month m and demand type d, $/kW

SChg DER standby charge, $/kW/month

NGFee Fee for natural gas service, $/month

NGPricem Natural gas price in month m, $/kWh

DER parameters

Rv Nameplate capacity of technology v, kW

Cfcapv Fixed capital cost of technology v, $

Cvcapv Variable capital cost for technology v, $/kW or $/kWh

Cfomv Fixed O&M cost for technology v, $/kW/yr for I, K and $/kW/month,

or $/kWh/month for Q

Cvomv Variable O&M cost for technology v, $/kWh

Lifetimev Operational lifetime of technology v

CO2 parameters

EF Natural gas CO2 emission factor, tCO2/kWh

CTax Tax on CO2 emissions, $/tCO2

Selection and sizing decision variables

PurchNumi Number of purchased gas generators i

PurchNumk Number of purchased direct-fired chillers k

Binq Binary decision variable to invest in DER q

Bins Binary decision variable to invest in switchgear

PurchCapq Capacity of installed DER q, kW
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PurchCaps Capacity of installed switchgear, kW

Scheduling variablesiii,iv

πe,m,t,h Electricity provision from source e, kW

ξc,m,t,h Cooling provision from source c, kW

γm,t,h Total natural gas purchased, kW

γi,m,t,h Natural gas purchased for gas generator i, kW

γk,m,t,h Natural gas purchased for direct-fired chiller k, kW

iNotation: ICE–internal combustion engine, MT–microturbine, -HX–with heat recovery.

iiThe set Q does not include the electric chiller (which consumes electricity to supply the cooling load)

because it is installed in every model run and hence does not create differences between runs.

iiiSubscript “m, t, h” denotes “in month m, day-type t, and hour h”.

ivNatural gas purchases are secondary variables (i.e., they are a function of scheduling decision variables).

The operating cost comprises costs incurred from system operation—from electricity pur-

chases ctariff, natural gas purchases cfuel, resource maintenance cder, and from emitting carbon

dioxide ccarbon:

coperating := ctariff + cfuel + cder + ccarbon , (8)

where

ctariff :=
∑
m∈M

∑
p∈P

∑
t∈T

∑
h∈H

π‘ds’,m,t,h ·Nm,t · V Chgm,p (9)

+
∑
m∈M

∑
d∈D

DChgm,d · max
t∈T,h∈d

{π‘ds’,m,t,h}+
∑
m∈M

ElecFee

+
∑
m∈M

(∑
i∈I

PurchNumi ·Ri + PurchCap‘pv’

)
SChg

cfuel :=
∑
m∈M

NGFee+
∑
m∈M

∑
t∈T

∑
h∈H

γm,t,h ·Nm,t ·NGPricem (10)

cder :=
∑
i∈I

∑
m∈M

PurchNumi ·Ri ·
Cfomi

12
(11)

+
∑
i∈I

∑
m∈M

∑
t∈T

∑
h∈H

πi,m,t,h ·Nm,t · Cvomi

+
∑
k∈K

∑
m∈M

PurchNumk ·Rk ·
Cfomk

12

+
∑
k∈K

∑
m∈M

∑
t∈T

∑
h∈H

ξk,m,t,h ·Nm,t · Cvomk +
∑
q∈Q

∑
m∈M

PurchCapq · Cfomq

ccarbon :=
∑
m∈M

∑
t∈T

∑
h∈H

(∑
i∈I

γi,m,t,h +
∑
k∈K

γk,m,t,h

)
·Nm,t · EF · CTax . (12)
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C. Interruption cost

The interruption cost is the customer’s total economic loss from outages, in dollars per

year, and is given by

cinterruption := E
[∑

i

lick(di)
]
, (13)

where E[·] denotes expected value, li is the average load during interruption i, ck(di) is the

interruption cost function (i.e., customer damage function) for customer type k, and d is

the interruption duration. An expected value is used because the interruption cost is the

mean of a distribution of interruption costs output by the MCS (as we will explain in Sec.

III B 3).

Microgrids generate value by islanding during outages, thereby avoiding the economic

losses that passive customers otherwise incur. The difference between the pre- and post-

investment interruption cost is the economic value attributable to improved reliability.

III. MODEL IMPLEMENTATION

A. Objectives and constraints

We formulate the two planning tasks—sizing and scheduling—hierarchically in a bi-level

optimization framework. This approach separates the problem into a sizing component and

scheduling component, each with a distinct objective function and set of decision variables.

The upper level is the sizing problem and seeks to minimize the total system cost:

min ctotal := cinvestment + coperating + cinterruption . (14)

Decision variables are sizing decisions for discrete gas generators, solar PV, and battery

energy storage—the DERs that contribute to reliability. Upper-level constraints can include

minimum and maximum bounds on DER capacities, minimum requirements for reliability

and survivability, and caps on investment capital and operating expenditure.

The lower level is the scheduling problem and minimizes the operating cost for the full

configuration:

min coperating , (15)

which, after evaluation, is returned to the upper level in Eq. 14. Decision variables are
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the operational set-points for DERs and for purchases of electricity and natural gas. Lower-

level constraints enforce supply-demand energy balances, as well as other physical constraints

standard in operation, such as DER dispatch and ramping limits, energy conversion, and

energy efficiencies. As we will explain in Sec. III B, we use DER-CAM to calculate the

investment and operating cost, consistent with our previous work41.

B. Bi-level model framework

The bi-level model consists of four modules, as shown in Fig. 2: (1) the PSO sizes the

DERs that generate power and hence contribute to reliability—gas generators, solar PV, and

battery storage; (2) DER-CAM sizes thermal resources and solves the scheduling problem;

(3) the MCS routine simulates system behavior, including outages, to evaluate reliability

for customers within the microgrid; and (4) the Lawrence Berkeley National Laboratory

(LBNL) regression model defines the customer damage functions that monetize, or place a

dollar value on, individual outages. The PSO module serves to integrate the other three in

a single optimization framework. We detail each in the following sub-sections.

The full set of decision variables includes DER sizing and scheduling, purchases of grid

electricity, and purchases of natural gas. Energy demand is defined by distinct load profiles

for electricity, heating, cooling, and natural gas. The model horizon is the first year of

deployment and the model timestep is 1 h. Key outputs include the full set of decision vari-

ables, as well as the optimal level of reliability (both the expected value and full probability

distribution) and hourly totals for costs, energy supply-demand, and emissions.

We have built our MCS routine to transfer data with DER-CAM. The hourly operating

schedules determined by DER-CAM, which include generator operating states, PV power

output, and battery state-of-charge, are passed to the MCS and used in sequential simu-

lations as initial conditions when outages occur. At present, it is not possible to transfer

data in the opposite direction, from the MCS to DER-CAM, so DER-CAM estimates the

operating cost sans outages. Though this produces some error in the reported operating

cost, that error is a small fraction of the total operating cost because typical SAIDI values

(hours of outage per year) for U.S. distribution systems are small (< 10 hours, or 0.1% of

the year). This error could be corrected by combining scheduling and reliability evaluation

in a single sub-model, but we leave that for future work.
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FIG. 2. The bi-level model consists of four modules: a PSO algorithm serves as the upper level,

while DER-CAM, an MCS routine, and a regression model comprise the lower level. Four inter-

module data transfers are notable: (i) first, the PSO is given the model setup, which includes

data for customer load, damage functions, commodity prices, carbon costs, DERs, climate, grid

reliability, and grid emissions; (ii) the PSO passes sizing decisions for gas generators, solar PV,

and energy storage to DER-CAM; (iii) after running, DER-CAM passes the full DER fleet with

operation to the MCS; and lastly, (iv) upon simulating system operation, the MCS communicates

the set of outages in the microgrid with the regression model.

1. Upper level: PSO

PSO, a metaheuristic optimization method, links DER-CAM and MCS in the lower level.

A heuristic approach like PSO is needed to integrate MCS with DER-CAM because of

non-linearities in the formulation of reliability (e.g., the interruption cost is non-linear).

PSO has the flexibility to embed distinct calculations from mathematical programming and

simulation methods because it requires few assumptions about the problem, e.g. about

continuity and differentiability.42 We use PSO, and not other heuristics, because PSO finds
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application primarily among non-linear, continuous-discrete optimization problems, of which

the reliability-based microgrid planning problem is one.43

We follow the conventional PSO formulation that is standard in literature44—and add to

it only diversity-based termination criteria, as we will explain. The remainder of this section

summarizes the PSO’s formulation, parameters, and implementation.

a. Formulation. PSO is population-based, iterative, and stochastic. The population

consists of particles i ∈ {1, ..., nparticles}, defined by a position xid and velocity vid over

ndim dimensions in the solution space, where each dimension d ∈ {1, ..., ndim} defines a

single decision variable. Particles move through the solution space, solve the problem for

a location in the space (a candidate solution), and store and share the solution value, or

“fitness”, f . By interacting, particles exploit areas around better solutions, which are those

that minimize the objective function—here, the total cost defined in Eq. 14.

Dimensionality in the bi-level model includes numbers of discrete generators, solar PV

capacity, and battery storage capacity. Upper and lower bounds for each dimension, xd and

xd, constrain the solution space. The maximum velocity is set to allow particles to traverse

the entire solution space in a single iteration. When velocities carry particles outside the

space, an absorption boundary method returns escaped particles to the position from which

they exited.

The PSO iterates by updating particle velocity vid and position xid on a dimension-by-

dimension basis. Given an initial randomization v
(1)
id and x

(1)
id , for each dimension d,

v
(t+1)
id =wv

(t)
id + c1R1(pid − x(t)

id ) + c2R2(pgd − x(t)
id ) (16)

x
(t+1)
id =x

(t)
id + v

(t+1)
id , (17)

where i, d, and t index particle, dimension, and iteration, respectively, pid is the best position

found by particle i, and pgd is the best position found by the entire population. R1 and R2

are uniformly distributed random numbers in the interval [0, 1]; hence, particle motion is in

part stochastic. The three weighting coefficients w, c1, and c2 define the update process.

The inertia weight w balances local and global search44, where higher values (e.g., 0.9)

maintain particle motion and facilitate global exploration and lower values (e.g., 0.4) cause

exploitation of local optima found so far.45 The terms c1 and c2 act as attraction parameters,

pulling particle trajectories toward local and global best positions, respectively.
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b. Parameterization. We use a global best particle topology, in which all particles com-

municate the global best position pgd, and set the population size to six particles, inertia

w to the standard value 0.7298, and attraction parameters c1 and c2 to the standard value

2.9922. Lastly, we set the initial position for three particles to ensure a diversity of starting

conditions, forcing one to near-zero investment, another to a reliable generator-based con-

figuration, and a final to a reliable solar PV- and battery storage-based configuration. As is

typical with heuristics, our parameterizations are based on our experience with the problem.

c. Implementation. The PSO is implemented in three main steps (Fig. 2). The first

is initialization or, for later iterations, updating. Second, after correcting positions xid

if needed (via boundary absorption), the PSO evaluates particle fitness f
(t)
i . Each particle

maintains a record of its best solution found so far, pbesti, as well as of the global best fitness

gbest, both of which guide particle trajectories. The final step is a check on convergence.

Traditionally, PSO algorithms are set to terminate upon reaching a maximum number of

iterations or when failing to improve gbest for a succession of iterations, both of which are

prescribed. We employ both, setting the maximum number of iterations to 70, which we

find is sufficient for the PSO to reach convergence, and the stall threshold to three. We also

use diversity-based termination criteria for swarm velocity and position.46 The normalized

mean velocity diversity D
(t)
velocity and normalized mean position diversity D

(t)
position at iteration

t are given by

D
(t)
velocity =

1

nparticles

1

ndim

∑
i

∑
d

|v(t)
id |

xd − xd
(18)

D
(t)
position =

1

nparticles

1

ndim

∑
i

∑
d

(x(t)
id − pgd
xd − xd

)2
. (19)

The position diversity is measured relative to the current gbest position pgd. As such, these

measures indicate whether and when the swarm has converged to a common minimum in the

solution space and ceased widespread exploration. Based on experience with the problem,

we further require that D
(t)
velocity < 0.1 and D

(t)
position < 0.05 for three successive iterations

before terminating.

2. Lower level: DER-CAM

DER-CAM is LBNL’s platform for microgrid investment planning modeling. We pro-

vide cost terms that comprise the objective function in Sec. II B. Because the complete
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formulation is large, we direct the reader to Ref.26 for full detail.

We tune DER-CAM to solve two pieces of the investment planning problem. First, given

PSO sizing decisions for gas generators, solar PV, and battery storage, we let DER-CAM

size thermal resources (natural gas chillers, absorption chillers, thermal storage). Second, we

have it solve the scheduling problem, in which it determines optimal operating schedules for

all units and decides if and when to purchase utility electricity and natural gas. Its solution

minimizes the operating cost (Eq. 8, Eq. 15).

DER-CAM calculates investment, operating, and interruption costs, and also treats reli-

ability via a constraint—what we called the “resource adequacy constraint” in our previous

work41—that requires that the sum of generator capacity, average solar PV output, and

capacity of one discharge cycle from electric storage exceed critical load. Because we employ

MCS and LBNL’s customer damage functions, we remove the analogous elements of DER-

CAM (the interruption cost, resource adequacy constraint, and VOLL parameter) and thus

DER-CAM primarily for its scheduling algorithm.

3. Evaluating reliability via sequential MCS

MCS is widely used for reliability evaluation in engineering and power systems. The

sequential MCS routine used in the bi-level model has been developed previously by us31;

we direct the reader there for detail, but here continue with an overview of its functionality.

Broadly, our MCS method tailors general approaches for bulk grid reliability evaluation

to the case of grid-connected microgrids by including microgrid-specific resources and a

flexibility constraint, which is the requirement that aggregate DERs ramp between timesteps

to meet fluctuating load. Resource ramping limits can be critical to the analysis, as we

showed in Ref.31.

a. Functionality. MCS evaluates reliability by simulating random failures in grid and

DER operation. It repeats year-long simulations, each identical except for a distinct set of

random failures and repairs. The goal is to find the timing and duration of outage sequences

within the microgrid—so-called “loss of load” events where load is not met—and three

reliability indices in particular: (i) the loss of load expectation (LOLE), the expected hours

of outage per year, (ii) the loss of load frequency (LOLF), or number of loss of load events per

year, and (iii) the loss of load cost (LOLC)—i.e., the interruption cost (Eq. 13). In the bi-
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level model, the MCS communicates the set of interruptions with the LBNL regression model

to calculate LOLC. Year-long simulations are repeated until reliability indices converge to

expected values, whereupon the MCS returns the expected interruption cost, or average over

all years, for use in Eq. 14.

b. Reliability indices. LOLE and LOLF are the aggregate measures of distinct loss of

load events, and thus serve as appropriate metrics that summarize the level of reliability

provided by a microgrid.39 LOLF is analogous to SAIFI, while the loss of load duration

(LOLD; given by LOLE/LOLF ) is analogous to CAIDI. SAIFI and CAIDI are standard

customer-level reliability indices reported by distribution utilities. The LOLC is the aggre-

gate measure of the economic losses of distinct loss of load events, and thus serves as an

appropriate cost metric for unreliability, against which the benefit of microgrid investment

can be assessed.

4. Valuing reliability via customer damage functions

The LBNL regression model32,47,48 defines the customer damage functions ck(di) used in

Eq. 13. LBNL’s work—the most comprehensive on the topic—standardizes the results of

numerous interruption cost surveys spanning several U.S. utilities and decades. (See, e.g.,

Refs.49–51, which list studies, as well as Ref.52 for detailed discussion on an early survey.)

In these surveys, customers estimate their own economic losses for various outage scenarios.

Though surveys have some downsides, e.g. unknown human elements, survey bias, and

inaccurate predictions, they are widely considered an appropriate approach for estimating

losses.

The customer damage functions ck(di) define economic losses as a function of interruption

type and customer type. Customers are defined by, e.g., class and size, and interruptions

are defined by duration, time of day, and season. Damage functions therefore capture time-

dependent variation in losses that are readily convolved with the MCS’s outage sequences,

and provide more detail about losses and a finer level of granularity than that of the VOLL

point estimates used in analytical reliability methods. It is these damage functions, given

in Ref.32, that we apply in the bi-level model. For generality, in the case studies that follow

(Sec. IV) we apply the more general tabular estimates from the LBNL regression model

(reported in the supplementary material), which average costs across customer classes.
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C. Data

Underlying the model are numerous data sets that define any particular model run—such

as for customer load and damage functions, commodity prices and electric tariff schedules,

the cost of carbon, technology data, climate data, and bulk grid data on marginal emissions

and reliability. These are reported in the supplementary material.

In Sec. IV, we model three building types that vary in size and load shape: a hospi-

tal (large C&I customer with 1,414 kW peak electric load, 9.3 GWh annual consumption),

medium-sized office building (small C&I, 174 kW, 0.6 GWh), and secondary school (medium

C&I, 927 kW, 3.1 GWh). All load is taken to be critical—i.e., it must be supplied during out-

ages. Load data is from the DOE commercial reference building stock and includes electric,

cooling, heating, and natural gas loads.53 We consider deployment in southern California,

using climate data from the Camp Pendleton TMY3 location (site number 722926)54, with

interconnection to the north coast district in the San Diego Gas & Electric service territory,

which has SAIFI of 0.461 occurrences per year (occ/yr), MAIFI of 0.239 occ/yr, and SAIDI

of 50 min/yr (Ref.55).

IV. VALIDATION AND RESULTS

A. Validation without reliability

The goal of the validation is to compare total cost (gbest) values found by the PSO

to those calculated by DER-CAM. Classical validation would require data on real-world

system adoption, with known solution and annual costs. Because we know of no such data

set, we compare solutions to those made by DER-CAM, a reputable investment planning

model. The two models are inherently different in their full form due to their treatment of

reliability, so validation must neglect it. We remove all reliability elements—the resource

adequacy constraint from DER-CAM and the interruption cost, MCS, and regression model

from the bi-level model. What remains are models with identical objective functions but

different engines that provide DER sizing.

We perform validation on the three building types noted in Sec. III C. Each setup with

the bi-level model is repeated 100 times to capture random particle search behavior and

compared to the single DER-CAM solution, for which we assign a very restrictive optimality
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gap of 5× 10−4.

Fig. 3 presents the results of the validation. Total cost values are consistent, with an

average difference between DER-CAM and the PSO of 1.1%, 3.5%, and 2.2% for the hospital,

office building, and school, respectively. On occasion, the PSO returns an outlier solution:

6% of solutions for the office building and 2% for the school have gbest values that are at

least 10% larger than the DER-CAM solution. The worst gbest value for the hospital is 3%

larger. When these few outliers are omitted, the average total cost difference for the office

building drops from 3.5% to 1.0%. As it is, observed PSO performance is sufficient because

we are studying the problem systematically and are interested in “next-best” solutions and

local optima, in particular those solutions with only slightly larger gbest (total cost) but

perhaps radically different pgd (DER selection), as we will show later in Fig. 7.

FIG. 3. Validation of the bi-level model against DER-CAM, with reliability elements removed

from each model to enable like-to-like comparison. Validation compares the total cost found by

the bi-level model (i.e., gbest fitnesses) over 100 repeated runs (box plot in each pair with dots as

outliers) to the total cost calculated by DER-CAM (square mark). Fitnesses match closely. The

PSO identifies the area of the DER-CAM optimal solution in 100%, 94%, and 98% of runs for the

hospital, office building, and school, respectively.

The DER-CAM solution and best PSO solution over the 100 runs match very closely,

with differences of 0.2%, 0.0004%, and 0.005%, respectively, indicating that the PSO is

successful in identifying the “ground truth” DER mix found by DER-CAM, a reputable

MILP model. We therefore claim that this stripped down version of the bi-level model (i.e.,

without reliability) is successful as a sizing engine, and hence provides a proper basis for

adding reliability, to which we now turn.
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B. The effects of adding reliability

We now explore the different effects of integrating reliability as a cost in the objective

function versus as a constraint on investment. For the former, we use the bi-level model with

its interruption cost, sequential MCS algorithm, and customer damage function parameter.

For the latter, we use DER-CAM with its resource adequacy constraint (discussed in Sec.

I and Sec. III B 2). We do not make comparisons to DER-CAM with its interruption

cost, prescribed outages, or VOLL because these model elements were added to DER-CAM

after we had acquired the source code and begun our work. (Discussion and qualitative

comparison to DER-CAM with its full array of reliability elements is given in Sec. IV D.)

To explore the effects of reliability, we ask: how does differing treatment affect cost-

optimal investment and, further, the cost-benefit outlook, which underlies any decision to

invest (or not)? We model the hospital building type to demonstrate. Cost-benefit analy-

sis requires comparing against the baseline of not investing. We therefore model a utility

customer and microgrid customer that represent the pre- and post-investment cases, re-

spectively. The two are identical in all respects except investment in DERs. We define the

economic benefit from investing to be the percent difference in total cost between the two,

and to be positive when the microgrid reduces the utility customer total cost.

Fig. 4 shows costs and investment for six cases that define how reliability is treated. Two

cases with DER-CAM first omit (“No RA”) and then include (“With RA”) the resource

adequacy constraint, while four cases with the bi-level model vary the customer damage

function ck(di) underlying the interruption cost. Given the damage function b · ck(di), we

model the set b = {0, 1, 10, 20}, which represents, e.g., hospitals with null, nominal, inter-

mediate, and high valuations of the need for reliable electric service. While it is not possible

to attribute these cases to any single hospital (because the LBNL regression functions are

segment averages), the range b = {0, 1, 10, 20} reflects the different types of hospital for

which reliability is varyingly critical—e.g., rural hospitals providing only standard services,

hospitals providing specialized services and critical care, and hospitals acting as regional

trauma centers. The range in b is plausible because the LBNL regression functions report

variation in ck(di) of several orders of magnitude. The value b = 0 (no need for reliability)

probably does not map to any hospital, but we include it as a logical extreme for the purpose

of comparing the two models.
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FIG. 4. The (a) costs and (b) configuration for six reliability cases. Two cases modeled in DER-

CAM first omit (“No RA”) then include (“With RA”) DER-CAM’s resource adequacy constraint.

Four cases using the bi-level model vary the customer damage function b · ck(di), setting b =

{0, 1, 10, 20}. The 100 runs from the validation are used for b = 0, while new cases for b = {1, 10, 20}

are run 25 times to capture variation in random PSO search. Thick bars give the median and

uncertainty bars give the 5th and 95th percentiles. “X” marks denote values of zero. A constraint-

based treatment of reliability limits configurations to one of two outcomes: “No RA” or “With

RA”. The bi-level model, by contrast, allows for continuous variation in investment and costs as

driven by the customer’s valuation of reliability inherent in b · ck(di).

For the cases without reliability, the two models match closely, as expected from the

validation. In the “No RA” case, DER-CAM calculates a total microgrid cost of $1.19m

and an economic benefit of 24%, while the bi-level model finds them to be $1.20m and 23%

when b = 0.

Clear differences emerge, however, upon adding reliability. In DER-CAM, the primary

effect of adding the resource adequacy constraint (“With RA” case) is on battery investment,
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which increases from 0 MW to 1.2 MW. Investment in generators and PV is unchanged.

The associated economic impact is material: the additional battery capacity increases the

investment cost 49% (from $0.28m to $0.41m) and decreases the economic benefit 29% (from

$0.38m to $0.27m).

The analogous change in the bi-level model—increasing customer damage costs from zero

to their nominal value of b = 1—has almost no effect on median investment: solar PV

capacity decreases by 11 kW (1.9%), while generator and battery capacity are unchanged.

Changes in cost are also modest: the investment cost increases 2.6%, the total cost increases

2.2%, and the economic benefit decreases 0.1%. These changes are not driven by a prescribed

minimum threshold for DER investment, as with the resource adequacy constraint, but

rather reflect this customer’s particular valuation of reliability defined in b · ck(di). Here,

that valuation is not so large as to drive material increases in investment nor significant

changes to the cost-benefit analysis.

Customer damage functions increased 10-fold (b = 10), by contrast, increase the inter-

ruption cost significantly. In response, the bi-level model selects slightly more generator

and solar PV capacity in the cost-optimal configuration. Note, however, that the additional

capacity does not necessarily drive the interruption cost to zero because the bi-level model

finds a cost-optimal trade-off between the investment cost and interruption cost. The val-

uation b = 20 illustrates a case in which a high valuation of reliability leads to significant

increases in cost-optimal investment—increases that subsequently reduce the interruption

cost to near-zero but at the expense of a much higher investment cost.

Table II summarizes results and compares differences in costs, benefit, and investment

across the two models. Differences are significant. Though b = {1, 20} might represent

two different classes of hospitals with distinct estimates of reliability worth, DER-CAM’s

constraint-based approach can provide at most a single estimate for either—via the “With

RA” case. Yet DER-CAM over-estimates cost-optimal investment by up to 22% relative to

the b = 1 case (in fact by infinity for battery storage) and under-estimates it by up to 56%

relative to the b = 20 case. Consequently, DER-CAM over-estimates the investment cost by

50% when b = 1, and under-estimates it by 32% when b = 20. Ultimately, it under-estimates

the economic benefit by 27% and 47% for the two cases, respectively.

As the six cases demonstrate, the means by which reliability is added—either as a con-

straint or objective—can radically affect investment decision-making and the cost-benefit
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TABLE II. Cost, benefit, and investment for select reliability cases for the hospital building type.

Values reported for bi-level cases are the median of 25 runs. Values in parentheses give the percent

difference between the DER-CAM “With RA” case and the particular bi-level model case.

DER-CAM Bi-level model

With RA b = 1 b = 20

Cost & benefit ($m)

Total cost 1.30 1.23 (6.1) 1.58 (-18)

Investment cost 0.41 0.24 (50) 0.60 (-32)

Economic benefit 0.27 0.37 (-27) 0.50 (-47)

Investment (MW)

Gas generators 0.75 0.71 (5.6) 0.86 (-13)

Solar PV 0.69 0.56 (22) 0.65 (5.8)

Battery storage 1.18 0 (Inf) 2.70 (-56)

outlook. With a constraint-based approach, the option to include reliability is binary: the

resource adequacy constraint is either included or not, with “optimal” configurations there-

fore taking one of the two forms. By its nature, DER-CAM’s resource adequacy constraint

at most increases investment and reduces the economic benefit of investing. This is because

a more reliable microgrid does not reduce any associated cost in the objective function. A

clear advantage of a cost-based approach to reliability is that additional investment can

reduce total system cost by mitigating the interruption cost, and further that such effects

are continuous rather than binary: optimal DER capacities and costs will increase gradually

as the value placed on reliability, i.e. b, increases.

Fig. 5 provides a cost-disaggregated cost-benefit analysis for the hospital building type

for the “With RA” and b = 20 cases. It demonstrates how the cost-benefit analyses are

fundamentally different in the two models, which helps explain why large differences in

investment emerge between the two models. In both models, the utility customer has an

identical operating cost. The key difference between the two is the interruption cost, which

in this case is material (about one-third of the utility customer operating cost). With the

interruption cost, the utility customer total cost in the bi-level model is larger than the

equivalent in DER-CAM, so the starting point for cost-benefit analysis is shifted; that is,
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there is greater imperative in the bi-level model to invest in DERs to reduce utility customer

costs. In this example, the bi-level model returns a cost-optimal microgrid with 47% larger

investment cost, nearly equal operating cost, and 21% larger total cost than the DER-CAM

equivalent. Yet the bi-level model reports an economic benefit of investing that is 87%

greater.

FIG. 5. Cost breakdown and economic benefit for the DER-CAM “With RA” case and bi-level

model b = 20 case. Thick bars denote median costs for the total “tot”, investment “inv”, operating

“ope”, and interruption “int” cost, and uncertainty bars give the 5th and 95th percentiles. Utility

customer costs are shown with squares. Comparing across models shows how the cost-benefit

analysis is fundamentally different in the two models. Because it does not have an interruption

cost (i), DER-CAM reports a lower total cost for both customer types compared to the bi-level

model. By contrast, the bi-level model seeks to reduce an interruption cost (ii) by investing in

greater DER capacity relative to DER-CAM (iii). As a result, the bi-level model reports a 47%

larger total cost, but also an 87% larger economic benefit from investing (iv).

Such differences are potentially profound. Though in this example both models find

investment to be economic, in other cases investment may appear uneconomic unless in-

terruption costs are explicitly considered. Adding the cost and benefit of reliability adds

information to the problem at hand and serves only to strengthen the case for investment

because interruption costs cannot increase upon investing. Models that treat reliability ex-

plicitly as a cost-based objective can therefore demonstrate positive economic benefit where

models limited to reliability constraints may not.
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C. Comparisons of the PSO solution set and the DER-CAM solution

The PSO returns numerous solutions in its search for gbest and pgd, producing as a

result a varying but valuable solution set. Some are poor, but many have only incremental

difference in sizing and similar total cost (e.g., as observed in Fig. 4 for b = {0, 1, 10, 20},

which show wide variation in sizing but small variation in total cost for gbest solutions).

Fig. 6 goes a level deeper, showing an additional set of information: individual costs for

the full solution set (i.e., fi ∀i in addition to gbest) for one run with b = 20 in the previous

analysis of the hospital building type. Sorting the solution set by investment cost shows

how configurations with marginally larger DER capacities can reduce interruption costs.

It also shows how investment can be misdirected, as when it does not reduce interruption

costs (as observed for the two anomalous results—candidate solutions #83 and #100—that

lack battery storage and have high total cost, operating cost, an interruption cost relative

to surrounding solutions). The full solution set helps to explain the variation of solutions

shown next in Fig. 7.

FIG. 6. Individual costs sorted by investment cost for every location x
(t)
id in the solution space

solved during the PSO’s search for optimality. A single case for the hospital building type, with

six particles solved over 23 iterations (138 candidate solutions), is shown. The optimal solution,

pgd, has gbest of $1.57m. On either side are suboptimal regions: on the left, under-investment with

high interruption costs; on the right, over-investment with costly redundant capacity. The solution

set is reminiscent of the classic depiction of power system planning, where outage costs decrease

with additional investment, thereby producing a quadratic total cost curve.
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Perhaps most importantly, the PSO solution set can be used to assess the relative quality

of the optimal solution reported by DER-CAM and the bi-level model. Fig. 7 shows the

solution set for the hospital building for b = 20 as it lies in the reliability-cost space. The

level of reliability is reported as the LOLE metric, the expected number of hours of outage

per year. With its bad and good solutions, the bi-level model traces the start of a “feasibility

region”, i.e. the set of possible outcomes for cost and reliability pairs. It also provides an

“optimality front” of best outcomes, i.e. a set of non-dominated solutions for which an

improvement in reliability incurs the smallest increase in total cost.

FIG. 7. The loss of load expectation (LOLE; the expected hours of outage per year) versus: (a)

investment plus operating costs (i.e., total cost less interruption cost) and (b) total cost. Shown

is the hospital building type with b = 20, with all individual solutions returned by the PSO in its

search for optimality, the gbest solution, the DER-CAM optimal solution, and the utility customer

solution. The non-dominated set is the subset of solutions that provide a best-case combination of

cost and reliability and for which incrementally better reliability incurs the least additional cost.

The PSO—in returning numerous solutions, both good and bad—traces the start of a “feasibility

region” in the reliability-cost space that allows one to compare the relative quality of the DER-

CAM and bi-level model solutions. Because the DER-CAM solution lies off the non-dominated set

in (a), and because it incurs higher total cost and is less reliable as seen in (b), it is inferior to the

optimal solution found by the bi-level model.

Two reliability-cost spaces are shown. The first, in Fig. 7a, shows the cost-reliability

trade-off for total cost less interruption cost, which is the total cost defined by DER-CAM.

We remove the interruption cost from bi-level model solutions to enable like-to-like com-
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parisons. Without an interruption cost, nor knowledge of the value of reliability ck(di),

the non-dominated set acts as a Pareto front, which hosts the subset of solutions that are

optimal in the multi-objective sense; i.e., they give an optimal trade-off between cost and re-

liability, two competing objectives. Without knowledge of ck(di), a system developer would

in theory choose a solution on the non-dominated set with the preferred combination of cost

and reliability. The gbest solution lies on the front, but the DER-CAM solution lies off of it

and is therefore sub-optimal. Other solutions that roughly match the DER-CAM solution

have better reliability at the same cost (graphically, the non-dominated set directly below

the DER-CAM solution), an equivalent level of reliability at lower cost (directly to the left),

or both.

The second space, in Fig. 7b, shows reliability versus total cost as defined in the bi-level

model. The y-axis in this second space is identical to that Fig. 7a, while the x-axis is

translated from Fig. 7a by adding the interruption cost. Because DER-CAM cannot calcu-

late LOLE or an interruption cost, we evaluate them for DER-CAM’s optimal configuration

post-hoc using the MCS and LBNL regression model. The gbest solution, which has a total

cost of $1.57m and LOLE of 0.18 h yr−1, marks the beginning of the non-dominated set.

Above it, configurations are less reliable and costlier. Below it, reliability can be increased

but at increasing cost, though these solutions are known to be sub-optimal given knowledge

of ck(di). The configuration that DER-CAM finds to be optimal is less reliable (LOLE of

1.10 h yr−1; 600% greater) and more expensive ($1.73m; 10% greater) than that returned

by the bi-level model.

That the DER-CAM solution is inferior generally to numerous bi-level model solutions

(even sub-optimal ones) is unsurprising. The bi-level model has been built specifically to

address reliability in the investment planning problem. Relative to DER-CAM’s constraint-

based approach, it has additional information about system costs and optimizes configura-

tions to reduce them. In the worst case, the bi-level model will provide an equally-informed

solution. When interruption costs are material, which is likely given the nature of mi-

crogrids, the bi-level model can return a radically different optimal solution than that in

DER-CAM—one that is better informed and therefore a more accurate estimate of the true

costs and benefits of deployment.
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D. Comparisons against DOE models with a reliability cost

In addition to quantitative comparisons made against DER-CAM’s constraint-based ap-

proach, of interest are comparisons against the DOE models that formulate reliability as

a cost—i.e., DER-CAM, REopt, and MDT. Due to the challenges associated with obtain-

ing source codes, configuring scenarios, and running cases—a task beyond the scope of this

paper, which reports on building a new model—we are unable to offer a quantitative com-

parison here. Though we leave that for future work, here we discuss two areas in investment

planning modeling where model intercomparison would be particularly useful. One is the

estimates that define customer losses from outages—either VOLL or customer damage func-

tions. The second is the set of model parameterizations, such as bulk grid and DER failures,

that comprise the reliability calculation. Differences in these affect the perceived costs of

outages and underlying reliability, respectively.

A standard approach of MILP models—and taken by DER-CAM and REopt—is the

use of a grid outage parameter, in which the modeler prescribes grid outages of desired

timing and duration, in concert with a VOLL parameter, in $/kWh, assigned to load that

goes unserved during grid outages (due to insufficient DER capacity). The objective function

includes an interruption cost that is the product of the VOLL and unserved load, in kWh, and

the model therefore decides whether it is more economic to forego DER investment and incur

interruption costs or to invest and incur investment costs. This approach is useful because it

frames the cost-reliability trade-off endogenously. However, it makes several simplifications

in order to fit with the MILP framework: it uses a VOLL (a scalar value) for its damage cost

instead of the more granular customer damage functions, which report economic losses as a

function of outage timing and duration. In reality, customer damages vary by hour of the

day, day of the week, and season—variation that is captured by damage functions but not

a VOLL. Another simplification concerns outage prescription. REopt treats only a single

outage of average duration, e.g. using CAIDI, but simulates its occurrence at every hour

of the year to calculate the duration that the microgrid can maintain power supply during

the outage—a calculation aligned more with resiliency than reliability. In reality, across

years outages vary considerably in duration and number. DER-CAM can consider multiple

outages, but the task of prescribing them is onerous given the huge number of permutations

in outage frequency and duration. Modelers may need to guess and prescribe worst-case
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scenarios, e.g. outages that occur during times of peak load. The challenge of handing a

large number of permutations is further compounded by the need to consider random DER

failures and scheduled maintenance in concert with grid outages.

The MCS approach used by the bi-level model is a panacea for these concerns. Its

core function is to simulate thousands of permutations of outages, given knowledge of the

failure and repair rates of the bulk grid and DERs. It convolves these point failures with

time-varying customer damage functions and time-varying load until statistical convergence

amongst permutations is reached. While a high degree of user subjectivity is required to

parameterize outages in DER-CAM and REopt, the MCS in the bi-level model requires only

parameterization of underlying failure and repair rates, while also allowing for prescribed

outages and maintenance schedules. We therefore expect the bi-level model, with its use of

MCS, to produce a more statistically robust set of outages (timing and duration), better

estimates of the costs of those outages, and therefore a more representative estimate of the

interruption cost that drives investment decision-making.

The MDT model, like the bi-level model, is a hybrid of MILP, heuristic optimization,

and simulation. It combines two separate models: the first is a tuned version of DER-

CAM (without reliability) and determines a baseline DER mix, while the second integrates

a genetic algorithm and simulation-based reliability evaluation to refine the baseline DER

mix. Refinements include selection of specific manufacturer units, placement of DERs within

a network, and deployment of power system equipment to integrate DERs. With respect

to its calculation of reliability, MDT is functionally similar to the bi-level model because it

simulates random grid and DER outages and calculates LOLF and LOLE. The key difference

lies with where reliability is integrated. In MDT, reliability is considered in the second model

after core DER selections are first made without reliability. As such, reliability is exogenous

to DER selection and therefore drives results for power system network design and DER

placement but not for DER selection. We therefore expect that MDT’s selection of DERs

would closely resemble the DER-CAM solution in Fig. 7. A more robust and accurate

approach, as taken by the bi-level model, would be to integrate the reliability cost with

all other system costs in the objective function of a single optimization framework, thereby

making reliability endogenous to DER selection. If the MDT model were to incorporate the

newer version of DER-CAM that includes a reliability cost, it would resemble DER-CAM

(coupled with a second model for refinement) and be subject to the same challenges we note
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previously.

Whether and to what extent the bi-level model and three DOE models find differences

in investment, reliability, cost, and benefit is, however, unknown. A systematic effort to

explore the implications of differences in the models could shed meaningful light, perhaps

uncovering hidden nuances in how various reliability elements drive model results. To this

end, we produce in the supplementary material the data sets underlying the case studies

presented in this section. Of importance in a model intercomparison study is the exploration

of the sensitivities of reliability parameters, as sensitivities (and risk) are a central issue for

microgrid investment in real world commercial settings.

V. CONCLUSION

This work presented a new microgrid investment planning model, an engineering-

economic model that determines optimal sizing and scheduling for DERs in microgrids.

It is built to use best-available methods and data for evaluating reliability, namely sequen-

tial MCS and customer damage functions. MCS simulates distinct power outage sequences

and a microgrid’s ability to island and power itself autonomously.

Through validation, we show that our new model matches DER-CAM for solution quality

without reliability elements. We then show in case studies that, with reliability elements

added, our model provides a more diverse solution set and a better optimal solution than

models which treat reliability through investment constraints. Specifically, we observe im-

provements in the estimate of reliability by 600%, total cost by 6-18%, investment cost by

32-50%, and the economic benefit of investing by 27-47%. Improvements stem from our

model’s explicit treatment of reliability as a cost-based objective.

For those developing microgrids in the real world, the new model improves our ability to

capture the real costs and benefits of investing because it adds new information about the

known cost of reliability. It therefore offers a more comprehensive analysis with more robust

investment decision-making.

Our new model opens several avenues for future work. One avenue concerns the risk of

grid outages and the ways in which investors and system designers actually build microgrids

to mitigate risk. Presently, the model uses the expected, or average, set of outages and

interruption cost calculated by the MCS. But a systematic study that uses interruption costs
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nearer the distribution tails would help uncover the nature of the reliability premium—i.e.,

the incremental cost that must be paid to withstand even the most severe outages. A second

natural extension is to the catalogue of outages considered in the model. We have robust

data on routine outages that last 0–8 hours—as given by the utility reliability metrics SAIFI,

MAIFI, and SAIDI—but lack enumerated data or probability distributions for more severe

outages that last days, and that perhaps affect the operation of the natural gas network

simultaneously. Including long-term outages could reveal vulnerabilities in otherwise well-

planned microgrids. Such an extension is particularly relevant given the important role

natural gas may play in future microgrid infrastructure.

SUPPLEMENTARY MATERIAL

The supplementary material includes a supplementary result related to validation, in

particular the performance of the PSO in its search for the optimal solution. Also included

are the many data sets that define the model runs in the paper—such as for customer load

and damage functions, commodity prices and electric tariff schedules, the cost of carbon,

technology data, climate data, and bulk grid data on marginal emissions and reliability.
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