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SUMMARY

Using pre-treatment gene expression, protein/phosphoprotein and clinical data from the I-

SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes 

incorporating tumor biology beyond clinical hormone-receptor (HR) and Human Epidermal 

Growth Factor Receptor-2 (HER2) status to better predict drug responses. We assess predictive 

performance of mechanism-of-action biomarkers from ~990 patients treated with 10 regimens 

targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs 

maximizing pathologic complete response (pCR) rate over the population. The best performing 

schemas incorporate Immune, DNA-repair and HER2/Luminal phenotypes. Subsequent treatment 

allocation increases overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. 

pCR gains from reclassification and improved patient selection are highest in HR+ subsets 

(>15%). As new treatments are introduced, the subtyping schema determines the minimum 

response needed to show efficacy. This data platform provides an unprecedented resource and 

supports the usage of response-based subtypes to guide future treatment prioritization.

Graphical Abstract
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eTOC blurb

Wolf et. al. use gene expression, protein levels and response data from 10 drug-arms of the I-SPY2 

neoadjuvant trial to create new breast cancer subtypes that incorporate tumor biology beyond 

clinical hormone-receptor (HR) and HER2 status. Use of these response predictive subtypes to 

guide treatment prioritization may improve patient outcomes.

Keywords

Breast cancer; clinical trial; multiple arms; platinum; immunotherapy; response prediction; 
subtyping; immune; DNA repair; Luminal

INTRODUCTION

Though breast cancer treatment has improved over the past decades, over 40,000 women 

die annually in the US alone and worldwide, on average one in three patients will 

die of their disease (DeSantis et al., 2015). Patients who achieve pathologic complete 

response (pCR) after neoadjuvant therapy, defined by the absence of invasive disease in 

breast and lymph nodes, have excellent long-term outcomes (Spring et al., 2020; Yee 

et al., 2020). By improving pCR rates in the early disease setting, we can reduce the 

risk of subsequent metastatic disease and death from breast cancer. The I-SPY2 trial 

is an ongoing multicenter, Phase II neoadjuvant platform trial for high-risk, early-stage 

breast cancer designed to rapidly identify new treatments and treatment combinations with 

increased efficacy compared to standard-of-care (sequential weekly paclitaxel followed by 

doxorubicin/cyclophosphamide (T-AC) chemotherapy). In I-SPY2, multiple investigational 

treatment regimens are simultaneously and adaptively randomized against the shared control 

arm (Chien et al., 2019; Nanda et al., 2020; Park et al., 2016; Rugo et al., 2016). The 

primary efficacy endpoint is pCR (Yee et al., 2020).
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The goal of the trial is to assess the activity of novel drugs, typically combined with weekly 

paclitaxel, in a priori defined biomarker subsets based on hormone receptor (HR), Human 

Epidermal Growth Factor Receptor-2 (HER2) expression, and MammaPrint (MP) status. 

Among HR+HER2− patients, only MammaPrint (MP) high cases are eligible for the trial. 

For all patients, tumor biology is further subdivided into high (MP1) or ultra-high (MP2) 

status (Chien et al., 2019; Nanda et al., 2020; Park et al., 2016; Rugo et al., 2016). An 

experimental arm “graduates” when it reaches ≥85% predictive probability of demonstrating 

superiority to control in a future 1:1 randomized 300-patient Phase III neoadjuvant trial in 

the most responsive subset (Chien et al., 2019; Clark et al., 2021; Nanda et al., 2020; Park et 

al., 2016; Rugo et al., 2016).

The value of a tumor subtyping schema is its utility in stratifying patients for efficacious 

treatment. It is well established that HR/HER2 subtyping is well suited for predicting 

response to endocrine and HER2-targeted agents (Waks and Winer, 2019). However, the 

landscape of targeted breast cancer therapeutics is expanding. Breast cancer treatment now 

includes platinum agents, PARP inhibitors, PIK3CA inhibitors, mTOR inhibitors, dual 

HER2-targeting regimens, and immunotherapy for specific HR/HER2-defined subtypes 

(Bergin and Loi, 2019; McAndrew and Finn, 2020; Wuerstlein and Harbeck, 2017). 

The aggregate mechanisms of action of the compendium of currently clinically available 

targeted therapeutics for breast cancer extends well beyond the biology that HR and 

HER2 expression captures. Therefore, we hypothesized that molecular subtyping categories 

incorporating biology beyond HR/HER2 could be created and that these categories will 

better inform novel agent selection for individual patients and maximize efficacy (i.e. pCR 

rate) over the entire treatment population.

The I-SPY2 trial and associated datasets present an opportunity to develop improved 

subtype classifications because of its comprehensive multi-omic molecular characterization 

of all tumors and the diverse array of drugs targeting different molecular pathways. As 

of September 2021, 1979 patients were randomized to I-SPY2, and 20 investigational 

agents were tested in the trial, of which 16 have completed evaluation. Experimental 

treatments include pan-HER2 inhibitors and anti-HER2 agents, PARP inhibitor/DNA 

damaging agent combinations, an AKT inhibitor, immunotherapy, and ANG1/2, IGF1R 

and HSP90 inhibitors added to standard of care chemotherapy. This manuscript includes 

analyses across 10 arms of I-SPY2: the first 9 experimental arms that completed evaluation 

and the control arm.

Within the I-SPY2 biomarker program, there are two primary biomarker platforms assayed 

at the pretreatment time-point – gene expression arrays and reverse phase protein arrays 

(RPPA). In the case of RPPA, upfront enrichment and purification of tumor epithelium, 

stromal, and intra-tumoral immune cell compartments via laser capture microdissection 

(LCM) is performed prior to separately assaying each population. Biomarkers are classified 

as standard, qualifying, or exploratory. Standard biomarkers are routinely used, US Food 

and Drug Administration cleared or approved, or have investigational device exemption 

(IDE) status (i.e. HR, HER2, MammaPrint, MRI functional tumor volume) and employed 

for clinical decision making. Qualifying biomarkers are pre-specified for analysis based 

on existing evidence suggesting a role in treatment response prediction and are tested in 
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a CLIA setting; they may vary from drug to drug and are tested prospectively for their 

specific response-predictive value using a pre-specified statistical framework (Wolf et al., 

2017, 2020a; Wulfkuhle et al., 2018). Exploratory biomarkers are hypothesis-generating and 

include discovery efforts using clinical data to identify predictive biomarkers (Sayaman et 

al., 2020).

In this paper, we summarize and further explore qualifying biomarker results across 10 

arms of I-SPY2, combining information from standard and qualifying biomarkers to create 

biological treatment response-predicting subtypes (RPS) that represent better matches for 

our tested drugs than the standard HR/HER2-based subtypes (i.e., maximize pCR rate for a 

given drug, or class of agent, in a given subtype). We propose a RPS classification schema 

that will be prospectively used in the next phase of the I-SPY platform (I-SPY2.2). This 

manuscript is accompanied by the public release of the ISPY2–990 mRNA/RPPA Data 

Resource that includes gene expression and protein/phosphoprotein data for ~990 breast 

cancer patients, along with clinical annotation including treatment arm and response.

RESULTS

The I-SPY2–990 mRNA/RPPA Data Resource: patients and data

987 patients from 10 arms of I-SPY2 [210 Control (Ctr); 71 veliparib/carboplatin (VC); 

114 neratinib (N); 93 MK2206; 106 ganitumab; 93 ganetespib; 134 trebananib; 52 TDM1/

pertuzumab(P); 44 pertuzumab; 69 pembrolizumab (Pembro)] were included in this analysis 

(Figure 1a and 1b). 38% of tumors were HR+HER2−, 37% HR-HER2− (triple negative: 

TN), and 25% HER2+ (9% HR− and 16% HR+). Overall, 49% were classified MP2 class, 

and 51% MP1 class. 6 of these arms graduated within one or more receptor subtypes (purple 

bars) and 3 reached maximum accrual without graduation.

Estimated pCR rates by HR/HER2 receptor subtype for the 10 arms of the trial considered 

herein were previously reported and are summarized in Figure 1c (Chien et al., 2019; Clark 

et al., 2021; Nanda et al., 2020; Park et al., 2016; Pusztai et al., 2021; Rugo et al., 2016). 

Even in the highest-efficacy treatment arms, 70% of HR+HER2−, 40% of TN, 54% of 

HR+HER2+, and 26% of HR-HER2+ patients did not achieve pCR, further motivating the 

need for better biomarkers and subtyping schemas.

The I-SPY2–990 Data Resource contains gene expression, protein/phosphoprotein and 

clinical data for the patients included in this analysis (Figure 1d). All patients have 

pretreatment full transcriptome expression data on over ~19,000 genes assayed on Agilent 

44K. 736 patients (all arms except ganitumab and ganetespib) have normalized LCM-RPPA 

data for 139 key signaling proteins/phosphoproteins in cancer (See STAR Methods). 

Clinical data includes HR, HER2 and MP status, response (pCR or no pCR), and 

treatment arm. The ISPY2–990 Data Resource is publicly available in NCBI’s Gene 
Expression Omnibus (GEO) (SuperSeries GSE196096, composed of SubSeries GSE194040 

(mRNA) and GSE196093 (RPPA)) and through the I-SPY2 Google Cloud repository (http://

www.ispytrials.org/results/data).
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Predictive I-SPY2 ‘qualifying’ biomarkers across 10 arms of I-SPY2

Twenty-seven mechanism-of-action based gene expression signatures and proteins/

phosphoproteins constituting our successful qualifying biomarkers reflect DNA repair 

deficiency (DRD; n=2), immune activation (n=8), estrogen receptor (ER) signaling (n=2), 

HER2 signaling (n=4), proliferation (n=3), (phospho) activation of AKT and mTOR (n=3), 

and ANG/TIE2 (n=1) pathways, among others (Table S1). Each pre-specified qualifying 

biomarker was originally found to predict response in a specific arm in one or more 

standard receptor subtypes, as previously reported (Lee et al., 2018; Wolf et al., 2018, 

2017, 2020b, 2020a; Wulfkuhle et al., 2018; Yau et al., 2019). Table S1 also describes a 

newly developed VC-response biomarker for the TN subset (VCpred_TN) reflecting both 

DNA repair deficiency and Immune activation that was validated in BrighTNess (Loibl et 

al., 2018) and achieved qualifying status. In this analysis, we assessed whether they also 

predict response to different drugs included in other arms, with the goal of gaining biologic 

insight into which patients responded to what treatment and by what mechanism.

Figure 2 shows the unsupervised clustered heatmap of qualifying biomarker expression 

levels (Table S2). Biomarkers correlate by biologic pathway (Figure 2, side dendrogram). 

Although patient profiles largely cluster by receptor subtype (Figure 2), there is mixing 

between groups, highlighting the fact that for these patients, biological pathways other than 

HR/HER2 signaling are a stronger common denominator. Moreover, HR/HER2 sub-clusters 

appear to be characterized by immune-high (Figure 2; C4, C6, C7, top dendrogram) and 

immune-low (Figure 2; C1–3 and C5) signaling, though immune-high proportions differ 

by subtype (TN: 58%; HER2+: 41%; and HR+HER2−: 19%). Variability in ER/PGR, 

proliferation, and ECM signatures is visible as well.

We used logistic regression to test the association of these 27 biomarkers with pCR in all 10 

arms individually, in the population as a whole (adjusting for HR, HER2 and treatment arm), 

and within receptor subtypes (Figure 3 and Table S3). None of the 27 mechanism-of-action 

based biomarkers were associated with response exclusively in the arm where they were first 

proposed, indicating broader predictive function than anticipated.

The biomarkers with broadest predictive function across drug classes were from immune, 

proliferation and ER/luminal pathways (Figure 3 and Figure S1a). One or more immune 

signatures predicted response in 9 of the 10 arms in the overall population (Figure 3; rows 

1–11, leftmost biomarker group-immune). However, different immune biomarkers were 

most predictive depending on receptor subtype and drug/drug class. For example, in the 

HER2+ subset, the B-cell gene signature predicts response to MK2206, neratinib and control 

chemotherapy, but was less predictive agents in the other arms (Figure 3, rows 30–42; and 

Figure S1b). In the TN subtype, the most predictive immune biomarkers are dendritic cells 

and STAT1_sig/chemokine12 gene signatures for pembrolizumab and the ANG1/2 inhibitor 

trebananib that affects macrophages and angiogenesis (Figure 3; rows 21–29). All immune 

biomarkers were higher in pCR than non-pCR cases. The exception to the rule was the mast 

cell signature, which was higher in cases with residual disease (RD) in the HR+HER2− 

subtype, mainly due to its negative association with pCR in the pembrolizumab arm.
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Proliferation biomarkers (i.e., adjusted MP index and basal index (continuous scores), and 

module11 proliferation score) were also broadly predictive of higher pCR overall (in 7 of 

10 arms; Figure 3 – rows 1–11, second biomarker group from left-proliferation) and also 

in HR+HER2− (5/8 arms) and HR+HER2+ (3/6 arms) subtypes (Figure 3; rows 12–20 and 

30–36), but generally not in TN or HR-HER2+ cancers (Figure 3; rows 21–29 and 37–42).

Luminal/ER biomarkers (i.e. BluePrint_Luminal index, ER signature) predicted resistance 

to multiple therapies in the HR+HER2− subtype (5/8 arms: Pembro, Ctr, N, trebananib, 

and VC; Figure 3, rows 12–20, rightmost biomarker group-’ER/Luminal’). In HR+HER2+ 

and HER2+ subtypes they also associate with non-response in the HER2-only-targeted 

arms (control [trastuzumab+paclitaxel], N, THP and TDM1/P), but not in arms with agents 

that targeted other pathways (MK2206 or trebananib) added to trastuzumab (Figure 3, 

rows 30–36; Figure S1b). We also confirmed that HER2 biomarkers (i.e. HER2-EGFR 

co-activation, HER2index and Mod7_ERBB2 gene signatures) were predictive of pCR in 

multiple HER2-targeted arms (Figure 3, fourth biomarker group from the left-’HER2ness’). 

In the HR-HER2+ subtype, the BP-luminal and Her2ness did not generally predict response, 

other than HER2ness in TDM1/P (Figure 3, rows 37–42).

In different HR/HER2 subsets we also observed that the most specific biomarker (e.g., 

pMTOR for MK2206) may not be the most predictive (e.g. immune signals in the HER2+ 

subset in MK2206), and that phosphoproteins (e.g., pTIE2, pMTOR, pEGFR) may have 

greater predictive specificity than expression-based biomarkers (Figure 3). Moreover, it 

appeared that different biology may predict response to the same drugs in different receptor 

subtypes (e.g., trebananib: immune high in TN vs. pTIE2 in HER2+ (Figure 3 and (Wolf 

et al., 2018)); and MK2206: lower pMTOR in TN vs. higher pMTOR in HER2+ (Figure 

3 and (Wolf et al., 2020a)). The number of significant biomarkers observed also differs by 

arm. Response to VC had the most significantly associated signatures and MK2206 the least 

(43% and 7% of biomarker-subtype pairs, respectively; Figure S1c). To assess whether this 

difference in the number of predictive biomarkers observed between agents is specific to the 

qualifying biomarker set selected, we performed whole-genome (n=19,000+ genes) analysis 

and observed similar results (Figure S1d).

A framework for identifying a response-predictive subtyping schema for prioritizing 
therapies

It is clear from our qualifying biomarker evaluation that within each HR/HER2 subtype, 

there is additional biology that further predicts response to I-SPY2 agents (Figure 3). 

Candidate biological phenotypes that may add value to HR/HER2 include proliferation, 

DRD, immune, luminal, basal, and HER2ness (Figure S2a). Of the 11+ response-predictive 

subtyping schemas that we explored (Figure S2b), our preferred schema incorporates 

biology that discriminates response to the treatments likely to be available in the clinic, such 

as platinum/PARP-inhibition and/or immunotherapy for HER2− patients, and dual-HER2 

inhibition for HER2+ patients.

Our stepwise approach to developing this schema was as follows: since platinum-based 

and immunotherapy – separately and together – are becoming the standard of care for TN 

breast cancer, we first examined the overlap between DRD/platinum-response and immune 
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biomarkers as the putative drug class-specific predictors and calculated response rates to 

VC and Pembro in TN patients positive for one, both, or neither biomarker (Figure 4a–c; 

see STAR Methods for biomarker implementation strategy). In TN, 67% were classified as 

DRD+, and 63% as Immune+ (Figure 4a–b). We note that though most patients classified 

immune-enriched by Brown & Burstein (Burstein et al., 2015) and Lehmann (Chen et 

al., 2012; Lehmann et al., 2011) schemas are also Immune+ in our implementation, many 

patients outside these (small) classes are predicted immune-responsive (Immune+) as well 

(Figure S2c–d). Immune+ TN patients had a high pCR rate to pembrolizumab (89%; Figure 

4a) and the DRD+ TN patients had a high pCR rate to VC (75%; Figure 4b). There was 

considerable overlap between Immune and DRD biomarker status in this subset of patients: 

56% of TN are high for both biomarkers, 7% are Immune+/DRD−, 11% Immune−/DRD+, 

and 26% are Immune−/DRD− (Figure 4c). The Immune+/DRD+ class had a very high 

pCR rate with either VC or pembrolizumab (pCR rates: VC: 74%, Pembro: 92%, control 

chemotherapy: 21%; Figure 4c, bottom right). In contrast, the Immune+/DRD− class, had 

the highest pCR rate to pembrolizumab (Pembro: 80%; Figure 4c, third down- right), 

whereas the Immune−/DRD+ class had the highest pCR to VC (VC: 80%, Pembro: 33%, 

control 38%; Figure 4c, second down-right). For the 26% of Immune−/DRD− TN patients, 

response rates were very low in all arms (<21%; Figure 4c, top right).

Given that Pembro graduated in I-SPY2 for efficacy in HR+HER2− and that a DRD+ 

subset was found responsive to VC (Wolf et al., 2017), we applied the same strategy for 

HR+HER2− cancers as for TN and examined the overlap between DRD and Immune 

status. Nineteen percent of HR+HER2− are positive for both biomarkers, 20% are 

Immune+/DRD−, 10% Immune−/DRD+, and 51% are Immune−/DRD− (Figure 4d). While 

these proportions differ from those observed in TN, the pCR rates pattern is similar 

(Figure S2e–f). We note here that our example implementation of these response-predictive 

phenotypes is subtype specific (e.g. Dendritic-cell and STAT1/chemokine signatures define 

Immune+ in TN whereas B-cell and Mast-cell signatures define Immune+ in HR+HER2−; 

see STAR Methods).

In HER2+ cancers, motivated by the observation that high expression of the BP-Luminal 

index or an ER related gene signature associated with lack of pCR in the HER2-only-

targeted arms (i.e., control [trastuzumab], N, THP and TDM1/P), but not in arms targeting 

an additional pathway (i.e., MK2206 or trebananib) (Figure 3), we defined a HER2+/

Luminal phenotype and used the BluePrint subtypes to reclassify HER2+ patients by 

luminal signaling (Figure 4e). The HR+HER2+, triple positive, patients were assigned 

almost evenly into HER2+/BP-Luminal and HER2+/BP-HER2 or Basal classes, whereas 

nearly all HR-HER2+ cancers were HER2+/BP-HER2 or Basal, and hardly any BP-luminal. 

For HER2+/BP-HER2 or BP-Basal patients, the pCR rate in the pertuzumab arm is 78%, 

versus 48% in the MK2206 arm, and 39% in control. In the HER2+/BP-Luminal class, 

60% of patients achieved pCR in the MK2206 arm versus 8% in the pertuzumab and 

control arms, although very few patients received MK2206 and this finding requires further 

validation.
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Synthesis into a minimal set of response predictive subtypes: the RPS-5

Here, we combined the predictive biology described above to include all patients in one 

classification schema. If we added Immune, DRD, and BP-Luminal/Her2orBasal biomarkers 

to standard TN (Figure 4c), HR+/HER2− (Figure 4d), and HER2+ (Figure 4e) status per 

above, a 10-subtype schema would result. With 10 subtypes, some would include only 

a handful of patients and be difficult to statistically evaluate in a trial setting. Given 

this practical consideration, we combined all Immune+ patients in HR+HER2− and TN 

subsets into a single subtype HER2−/Immune+ (Figure 4f, right-bottom), as both subsets 

share pembrolizumab as the same best (highest pCR) agent (see Figures 4c and S2e–f). 

We also combined TN/Immune−/DRD+ and HR+HER2−/Immune−/DRD+ patients into the 

subtype HER2−/Immune−/DRD+ (Figure 4f, right-middle), as these subsets share VC as the 

highest-pCR arm (see Figures 4c and S2e–f). With this schema, we created the 5 subtypes 

that define the RPS-5 response-predictive subtyping schema (combined Figures 4f and 

4e, respectively): HER2−/Immune−/DRD−, HER2−/Immune−/DRD+, HER2−/Immune+, 

HER2+/BP-HER2orBasal, and HER2+/BP-Luminal.

The Sankey diagram in Figure 5a shows the relationship between standard receptor subtypes 

and the RPS-5 subtyping schema in the I-SPY2 data. Receptor subtypes and their prevalence 

are shown on the left (starting with 38% HR+HER2−, 37% TN, 16% HR+HER2+, and 9% 

HR-HER2+) and the plot illustrates how receptor subtypes ‘flow’ into the RPS-5 subtypes 

on the right (stratifying into 29% HER2−/Immune−/DRD−, 38% HER2−/Immune+, 8% 

HER2−/Immune−/DRD+, 19% HER2+/BP-HER2orBasal, and 6% HER2+/BP-Luminal). 

pCR rates by drug arm within each subtype are shown in the bar plots to the left for the 

standard receptor subtypes and to the right for the RPS-5 subtypes.

Using the standard HR/HER2 receptor subtype to classify patients reveals that arms with 

the highest pCR rates include pembrolizumab for HR+HER2− and TN cancers with 30% 

and 66% pCR rates, respectively; pertuzumab for HR-HER2+ cancers with 80% pCR and 

TDM1/P for the HR+HER2+ subtype with 51% pCR. Using the RPS-5, the best drugs were 

pembrolizumab for HER2−/Immune+ with 79% pCR; VC for the HER2−/Immune-DRD+ 

cancers with 60% pCR; and MK2206 for HER2−/Immune−/DRD− cancers with 20% pCR 

though all arms performed similarly with low pCR in this subtype. In the HER2+ cancers, 

the best drug was pertuzumab for HER2+/BP-HER2orBasal cancers with 78% pCR; and 

MK2206 for HER2+/BP-Luminal cancers with 60% pCR, though numbers are small.

Impact of classification schema on trial population level pCR rates and maximization of 
patient benefit

A major goal of a response-predictive subtype schema is to increase the pCR rate in the 

population and to maximize the probability of pCR for an individual patient. To examine 

the impact of the RPS-5 schema, we performed an in silico experiment to calculate how 

the overall pCR rate would compare if treatments in the multi-arm adaptive randomization 

I-SPY2 trial (Figure 1A) had been assigned according to the RPS-5. The observed overall 

pCR rate in the standard of care control arm of I-SPY2 was 19% (black bar, Figure 5b, 

under “Overall”). In the 9 experimental arms of the trial taken together, the actual observed 

overall pCR rate was 35%, a 16% increase over the control arm (orange bar, Figure 5b). 
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Had patients been assigned to the best experimental treatment arm (that became apparent 

only in hindsight) based on standard receptor subtypes, the estimated overall pCR rate in 

the experimental arms all together would have been 51%, a further 16% increase (red bar, 

Figure 5b). Finally, if we had assigned patients using the RPS-5 to their corresponding 

best treatment, the overall pCR rate in the combined experimental arms would be 58%, 

a further 7% improvement (blue bar, Figure 5b). Achieving a pCR results in excellent 

patient outcomes in all RPS-5 subtypes (Figure S3a). However, similar to differences 

observed among HR/HER2 subtypes (Spring et al., 2020; Yee et al., 2020), the relative 

survival benefit varies from RPS-5 subtype to subtype as well, with the highest hazard ratios 

observed in HER2−/Immune−/DRD+, HER2−/Immune+, and HER2+/BP-HER2_or_Basal 

(Figure 5c, Figure S3b).

The potential gain in pCR rate from RPS-5 reclassification was not evenly distributed across 

HR/HER2 subtypes. As illustrated to the right in Figure 5b, in the HR-HER2+ subtype 

there was no pCR increase by switching to the RPS-5 as they are all within the HER2+/

HER2orBasal subtype, whereas in the HR+HER2+ receptor subtype switching to the RPS-5 

could increase pCR rate by 16% (from 51% to 67%). In addition to boosting response rates 

over the population, a good subtyping schema should also discriminate between responders 

and non-responders over a wide range of treatment classes. We used bias-corrected mutual 

information, which quantifies the amount of uncertainty about pCR probability that is 

reduced by knowing subtype versus not knowing it, to compare the predictive power of 

different subtyping schemas. To visualize the pCR-predictive goodness of the RPS-5 schema 

vs. receptor subtype we plotted association p-value vs. bias-corrected mutual information for 

both classification schemas in each arm of the trial (Figure S3c). For most drug arms (7/10), 

the RPS-5 schema was more predictive of pCR than receptor subtype as can be seen by the 

higher concentration of points in the upper right quadrant with high BCMI and low p-values 

(Figure S3c).

Adapting response-predictive subtyping schemas to a rapidly evolving treatment 
landscape

Adding new drug classes to the trial in the future may call for incorporation of additional 

biomarkers and necessitate revisions to the classification schema. For example, an agent 

targeting HER2-low cancers, defined as HER2 IHC 2+ or 1+ and FISH-negative, is 

currently being evaluated in I-SPY2. If we transform HER2 status from the binary 

HER2+/− classes to 3 levels (HER2=0, HER2low, and HER2+) as shown in the 

Sankey diagram in Figure S4a, and integrate it with Immune, DRD, HR, HER2, and 

BP_Luminal, we arrived at a 7-subtype schema, the RPS-7, with subtypes S1: HER2+/BP-

HER2orBasal, S2: HER2+/BP-Luminal, S3: HER2=0.or.low/Immune+, S4: HR-/HER2low/

Immune−/DRD−, S5: HER2=0.or.low/Immune−/DRD+, S6: HER2=0/Immune−/DRD−, and 

S7: HR+HER2low/Immune-DRD− (Figure S4b). Agents yielding the highest pCR rates are 

THP [78%], MK2206 [60%], Pembro [79%], ganitumab [40%], VC [60%], N or MK2206 

[20%], and MK2206 [20%] for S1–7, respectively. This schema added 11% pCR over 

optimal assignments using receptors only, even without a HER2 low targeted agent (pCR: 

63% vs. 52%, Figure S4c).
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The characteristics and relative pCR rates of RPS-5, RPS-7, and the nine other subtyping 

schemas defined in Figure S2b are summarized in Figure 6a–e. For example, the RPS-5 

(third column from left) creates 5 classes (Figure 6a) defined by HER2, Immune, DRD, 

and Luminal status (Figure 6b), that if used to prioritize treatment arms by class would 

select Pembro, pertuzumab, MK2206, and VC (Figure 6c) and result in a pCR rate of 

58% overall in the I-SPY2 population (Figure 6d), a 7% gain over the maximum possible 

for receptor status (Figure 6e). Similarly, the composition and performance of the RPS-7 

(rightmost column) is summarized per above, including its selection of ganitumab and 

neratinib as the best agent within a subtype. Looking at these schemas together, we observed 

that different schemas select different ‘best’ treatments. Some agents were optimal for at 

least one subtype in nearly all schemas (e.g., Pembro and pertuzumab), while some were 

not selected in any schemas. Some agents are only selected when biological phenotypes 

in addition to HR/HER2 were incorporated (e.g. MK2206). All agents that graduated for 

efficacy appear as optimal in at least one schema, and two – ganetespib and ganitumab – that 

did not graduate for efficacy were selected as optimal in schemas incorporating the classes 

TN/Immune−/Basal or TN/HER2low/Immune−/DRD−, including the RPS-7, an illustration 

that conventional HR/HER2 subtyping may not be able to identify a responding subset. 

Estimated maximum pCR rates differed by subtyping schema as well, ranging from 49% 

to 63%, suggesting a cap of <65% pCR for the 10 treatments included in the ISPY2–990, 

irrespective of biomarker-based treatment assignment schema.

The RPS-7 and other HER2 3-state-containing schemas also illustrated that when 

introducing a new class of agent such as a HER2low inhibitor, the minimum required 

efficacy to improve pCR rates depends strongly on the biomarker-subset in which it is tested. 

For example, in RPS-7 HER2low patients fall into four groups (RPS-7 classes S3-S5 and 

S7), with pCR rates to the most efficacious agent ranging from 20% to 70% with current 

I-SPY2 therapies (Figure S4b). In addition, other relevant HER2low subsets may include 

all HER2low or HR+HER2low, among others (Figure 7a). If tested in the HR+/HER2low/

Immune−/DRD− group, a HER2low agent only has to reach a pCR rate of 20% to exceed 

the maximum response currently attainable from any agent tested so far in the trial (Figure 

7b). This subset constitutes 20% of all HER2−, and 38% of HR+HER2− patients in the 

I-SPY2 trial. In contrast, if the developer were to test the agent in all HER2low patients, 

although the prevalence was higher (~65% of HER2−), the minimum efficacy for adding 

value to the I-SPY2 agent arsenal was considerably higher at 44% pCR (Figure 7b).

DISCUSSION

With this manuscript we make public the ISPY2–990 mRNA/RPPA Data Resource, a 

data compendium containing pre-treatment gene expression data, tumor epithelium specific 

protein/phosphoprotein data and clinical/response information for ~990 breast cancer 

patients from the first 10 completed arms of the I-SPY2 neoadjuvant chemo-/targeted-

therapy platform trial for high-risk, early-stage breast cancer. These high quality molecular 

data from common protocols and a centralized workflow constitute a unique resource 

containing patient-level response data to a wide variety of anti-cancer agents with very 

different mechanisms of action, including DNA damaging agents (platinum, anthracycline), 
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PARP inhibitors, AKT inhibitors, angiogenesis inhibitors (Ang1/2; Tie2), immunotherapy 

(PD1), small molecule pan-HER2 inhibitors, and dual-HER2 targeting therapies.

To date, these data have been used to power our Qualifying (hypothesis testing) and 

Exploratory (discovery/hypothesis generating) Biomarker programs, where we have tested 

previously published mechanism-of-action biomarkers as predictors of response to platinum-

based therapy (Wolf et al., 2017), neratinib (Wulfkuhle et al., 2018), AKT-inhibitor MK2206 

(Wolf et al., 2020a), PD1 inhibitor pembrolizumab (Gonzalez-Ericsson et al., 2021), dual 

anti-HER2 therapies TDM1/P and pertuzumab (Clark et al., 2021; Wolf et al., 2020b) and 

anti-Ang1/2 therapy trebananib (Wolf et al., 2018), among others (Kim et al., 2021). In 

this manuscript, we extended our previous work by assessing the performance of successful 

biomarkers across arms and found that all examined biomarkers associated with response 

in at least one arm other than the one where they were proposed as predictors. Expression 

signatures from immune, proliferation and ER/luminal pathways are predictive of response 

to multiple regimens targeting diverse pathways in multiple subtypes, including HER2-

targeted agents for HER2+ subtypes. In contrast, phosphoproteins from HER2, EGFR, AKT/

mTOR and other pathways appear specific in predicting response to agents targeting related 

mechanisms of action. More generally, we found that the most specific biomarker may not 

be the most predictive, and that different receptor subtypes may have different predictive 

biomarkers to the same agents.

By viewing biomarker results in this larger 10-arm context, we here refine our understanding 

of who responds to which therapy and why. Responders to immunotherapy have high levels 

of immune signatures, but different receptor subtypes seem to have different predictive 

biology: high dendritic, chemokine, and STAT1 cells/signals best predict response for 

TN, whereas high B-cell combined with low mast cell best predict pCR in HR+HER2-. 

An exploratory cross-platform immune expression biomarker analysis further details 

immune subpopulations and their association with response (Yau et al., 2019). RPPA-

based quantitative tumor epithelium MHCII levels and activation (phosphorylation) of 

STAT1 at pre-treatment were recently found to strongly associate with response to both 

pembrolizumab in I-SPY2 (Nanda et al., 2020) and durvalumab in the neo-adjuvant setting 

(NCT02489448)(Gonzalez-Ericsson et al., 2021). Platinum agent plus PARP inhibitor 

veliparib response is predicted by high DRD and STAT1-related immune signaling in TN 

and by both DRD and high proliferation in the HR+HER2− subset. HER2+ dual-HER2 

targeted therapy responders tend to have higher HER2 signaling on expression, protein, 

phosphoprotein levels, with proliferation signals providing potential discrimination of 

response between TDM1/P and THP in the HR+HER2+ subset (Clark et al., 2021).

We then applied these insights and clinical considerations to develop response-predictive 

subtyping schemas that incorporate tumor biology beyond clinical HR/HER2 status that 

may better inform agent selection in a modern treatment landscape. Candidate ‘fit for 

purpose’ biological phenotypes to add to HR/HER2 included proliferation, DRD, Immune, 

luminal, basal, and HER2ness, selected because they predict response to newer agent classes 

likely to be found in the clinic today. However, when so many phenotypes are considered, 

there is a combinatorial explosion in the possible number of marker states, and many 

ways to collapse them into smaller useful response-predictive subtyping schemas. To help 
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sort through the options, we reasoned that an ideal response-predictive subtyping schema 

should: 1) differentiate optimal treatments, meaning that different subtype classes should 

have different ‘best’ treatments yielding the highest pCR probability; 2) result in a higher 

pCR rate in the population if used to optimally assign/prioritize treatments; 3) differentiate 

between responders and non-responders over a wide range of treatments; and 4) be robust 

to platform and applicable across different drugs with the same mechanism of action and 

simple to implement clinically.

Of the 11+ potential mRNA expression-based response-predictive subtyping schemas we 

explored, we selected the treatment Response Predictive Subtype 5 (RPS-5) for prospective 

evaluation in I-SPY2. This schema was motivated by clinical considerations in TN and 

HER2+. Both immunotherapy and platinum-based therapy arms graduated in the TN 

subset in I-SPY2. These results were subsequently validated in the large randomized trials 

BrighTNess (Loibl et al., 2018) and KEYNOTE-522 (Schmid et al., 2020). These drugs are 

now increasingly used in clinical practice individually or together. We classified TN patients 

by Immune and DRD markers to determine whether the same, or different, populations are 

responding to each class of therapy and whether this information could be used to spare 

patients the toxicity of combined platinum-based and immunotherapy if both are not needed 

to achieve pCR. We applied the same stratification to HR+HER2− patients based on the 

efficacy of Pembro, the many immune markers associated with response in that arm and 

other immunotherapy arms in I-SPY2, and previous work showing that responders to VC 

can be identified by DRD biomarkers such as PARPi7 combined with MP2 class (Wolf 

et al., 2017), and also by the BluePrint(BP)-Basal subtype (Krijgsman et al., 2012). We 

used BP-Basal classification as our measure to assess the DRD phenotype in HR+HER2− 

because the assay is performed in a CLIA setting and is ready for clinical implementation 

with a pending IDE application submission to the US FDA, even though the research assay 

based PARPi7-high/MP2 performed somewhat better in this dataset. HER2+ patients were 

re-classified by luminal signaling to better identify subsets likely to respond to dual-anti-

HER2 therapy vs. those that may need a different approach.

The resulting, simplified RPS-5 has five subtypes: HER2−/Immune−/DRD−, HER2−/

Immune+, HER2−/Immune−/DRD+, HER2+/BP-HER2orBasal, and HER2+/BP-Luminal. 

Using this schema to maximize pCR rates, one would prioritize platinum-based therapy for 

HER2−/Immune−/DRD+, checkpoint inhibitor therapy for HER2−/Immune+, and dual-anti-

HER2 therapy for HER2+ that are not luminal. HER2+/Luminal patients have very low 

response rates to dual-anti-HER2 therapy but may respond better to combination therapy 

including an AKT-inhibitor. HR-positivity, though very important in general for determining 

who should receive adjuvant endocrine therapy, is not used in this response-predictive 

schema, as further subdivisions based on HR-status would not impact agent prioritization. In 

our in silico experiment, treatment assignment based on matching HR/HER2 subsets to the 

most effective therapy improves trial level pCR from 19% to 51%; and assignment based on 

RPS-5 added a further 7% improvement to 58% pCR.

More generally, we showed that molecular subtyping categories incorporating biology 

outside HR/HER2 could be created and that these updated categories can better inform 

treatment assignment to new emerging therapies for breast cancer for individual patients 
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and increase efficacy (i.e. pCR rate) over the entire treatment population. However, when 

comparing the relative contributions of improved biomarkers vs improved agents to response 

rate over the entire trial population, we observe that most of the pCR benefit appears to 

derive from the ‘right’ treatments (+30%) and an additional sizable pCR benefit comes 

from improved biomarker schemas (<=10–15%). With current agents, the highest pCR 

rate over the I-SPY2 population appears capped at ~65% in the best performing schemas 

incorporating Immune, Luminal and HER2-3state biomarkers. This limitation likely derives 

from a sizeable patient population with luminal biology who are Immune-negative and 

DRD-negative who did not respond to any of the treatments under study. Many of these 

patients are predicted endocrine responsive and may benefit from neoadjuvant endocrine 

therapy, an approach we are considering testing in the future.

We observe that different schemas have different sets of ‘best’ treatments, with some 

treatments (e.g., Pembro) chosen by all schemas, and others by a subset of schemas or 

not at all, although that is partially a consequence of the biological phenotypes included. 

As new agent classes that may help further improve response rate over the population 

become available, we will need to incorporate additional biological phenotypes into existing 

subtyping schemas that only classify cancers optimally for existing agents. Using HER2low-

targeted agents as an example (an agent in this class is currently in I-SPY2), we developed 

a revised schema incorporating HER2 status as a 3-state variable (HER2-0, HER2-low, 

HER2+), and the resulting treatment Response Predictive Subtype 7 (RPS-7) classification 

further improved pCR rates in the overall population in our in silico experiments. This 

example also illustrates that the minimum efficacy required to demonstrate benefit (over best 

available agent) differs by biomarker subsets.

It is important to note that we make a distinction between predictive biological phenotypes 

like ‘Immune+’ and their implementation. For instance, in our study Immune+ is based 

on a variety of different subtype-specific signatures (e.g. B cell signature in HR+, STAT1/

chemokine signature in TN). We acknowledge that other signatures reflecting similar 

biology may also be used to identify the same biological phenotype and may show similar 

or improved predictive performance, since biomarkers that capture the same biology are 

highly correlated and the underlying biological signals are robust. We acknowledge that 

the implementation we selected in this study would require translation to a straight-forward 

single-sample predictor for implementation in a clinical setting. CLIA compliant, clinically 

actionable versions of some of our selected biomarkers have been developed and an IDE 

submission is underway to enable prospective testing in the next-generation ‘I-SPY2.2’ trial. 

However, the idea is that as improved biomarkers are developed, the best available can be 

‘swapped in’ to implement the phenotype in the clinic.

The ISPY2–990 Data Resource, and our analyses, have limitations. Though the overall 

resource represents an unparalleled cohort of clinically well-annotated neoadjuvant multi-

arm targeted/chemo-therapy molecular data, each arm is relatively small (44–120 patients); 

further dividing these groups by receptor subtype or by one of the response-predictive 

subtyping schemas, the numbers become even smaller, and the cohort sizes are unequal. 

This limits the power of analysis. In addition, I-SPY2 uses adaptive randomization within 

HR/HER2/MP defined subtypes to enable efficient matching of novel regimens with their 
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most responsive traditional clinical subtypes. This may result in the unbalanced prevalence 

of biomarker-positive subsets in experimental and control arms if a biomarker subset is 

correlated with a HR/HER2/MP subset that is preferentially enriched or depleted in an 

experimental arm by the randomization engine. For combination therapies (e.g. VC and 

TDM1/P) it is impossible to tease out relative contributions of each agent to response or 

to assess whether a biomarker is predictive of response to the individual agents within the 

combination. Altogether, these challenges limit our ability to draw definitive conclusions. 

Thus, our statistics are descriptive rather than inferential; and all individual predictors of 

response require further testing to assess their prediction characteristics within different 

treatment settings.

Another limitation to our underlying biomarker data is that while we utilized a multi-omic 

biomarker approach to generate multiplexed RNA-protein-phosphoprotein data as well as 

CLIA-based platforms, the study is limited to having only two biomarker platforms, and by 

the selection of the short list of continuous qualifying biomarkers as our focus. For instance, 

we cannot include some well-studied biomarkers, such as HRD and other DNA ‘scar’ assays 

for DNA repair deficiency, which requires DNA sequencing data, and we do not include 

exploratory whole-transcriptome or whole-RPPA array analyses, which are ongoing.

In conclusion, we expect the ISPY2–990 mRNA/RPPA Data Resource to be highly valuable 

to the breast cancer research and drug development community, and ultimately to patients. 

We found biomarkers predictive of response to a variety of agents with different mechanisms 

of action and proposed a framework for identifying a response-predictive subtyping schema 

for prioritizing therapies. Within this framework, we propose a clinically relevant breast 

cancer classification schema incorporating immune, DRD, and luminal-like biological 

phenotypes with HER2 status that may improve agent prioritization for individual patients 

and increase pCR rates over the population. We plan to prospectively test our response 

predictive subtyping schema in I-SPY2.2, an upcoming version of the I-SPY2 trial that 

incorporates a sequential multiple assignment randomize trial (SMART) scheme and adapts 

treatment within individual patients based on biology and response.

STAR * METHODS

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources or data should be directed to 

and will be fulfilled by Denise Wolf (Denise.Wolf@ucsf.edu)

Materials availability: This study did not generate new unique reagents.

Data and code availability:

• Transcriptomic, protein/phospho-protein and clinical data used in 

this study is available in NCBI’s Gene Expression Omnibus 
(GEO) SuperSeries GSE196096 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE196096) and its two SubSeries GSE194040 (mRNA: https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040) and GSE196093 

(RPPA: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196093), and 
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through the I-SPY2 Google Cloud repository (www.ispytrials.org/results/data). 

Data on GEO represents the data as currently recorded in our database. 

Patient-level scores for the 27 qualifying biomarker scores and response data 

analyzed in this paper, and the RPS-5, RPS-7 and other subtype classifications 

and their constituent biomarkers presented herein are available in Table S2. 

Additional de-identified subject level data may be requested by qualified 

investigators. Details of the trial, data, contact information, proposal forms, 

and review and approval process are available at the following website: https://

www.ispytrials.org/collaborate/proposal-submissions.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

I-SPY2 TRIAL Overview—I-SPY2 is an ongoing, open-label, adaptive, randomized phase 

II, multicenter trial of neoadjuvant therapy for early-stage breast cancer (NCT01042379; 

IND 105139). It is a platform trial evaluating multiple investigational arms in parallel 

against a common standard of care control arm. The primary endpoint is pCR (ypT0/is, 

ypN0), defined as the absence of invasive cancer in the breast and regional nodes at the 

time of surgery. As I-SPY2 is modified intent-to-treat, patients receiving any dose of study 

therapy are considered evaluable; those who switch to non-protocol therapy, progress, forgo 

surgery, or withdraw are deemed ‘non-pCR’. Secondary endpoints include residual cancer 

burden (RCB) and event-free and distant relapse-free survival (EFS and DRFS) (Symmans 

et al., 2007)

Trial Design—Assessments at screening establish eligibility and classify participants 

into subtypes defined by hormone receptor (HR) status, HER2, and 70-gene signature 

(MammaPrint®) status (Cardoso et al., 2016; Piccart et al., 2021). Adaptive randomization 

in I-SPY2 preferentially assigns patients to trial arms according to continuously updated 

Bayesian probabilities of pCR rates within each biomarker signature; 20% of patients are 

randomly assigned to the control arm (Berry, 2011). While accrual is ongoing, a statistical 

engine assesses the accumulating pathologic and MRI responses at weeks 3 and 12 and 

continuously re-estimates the probabilities of an experimental arm being superior to the 

control in each defined biomarker signature. An arm can be dropped for futility if the 

predicted probability of success in a future 300-patient, 1:1 randomized, phase 3 trial 

drops below 10%, or graduate for efficacy if the probability of success reaches 85% or 

greater in any biomarker signature. The clinical control arm for the efficacy analysis uses 

patients randomized throughout the entire trial. Experimental arms have variable sample 

sizes: highly effective therapies graduate with fewer patients in the experimental arm; arms 

that are equal to, or marginally better than, the control arm accrue slower and are stopped 

if they have not graduated, or terminated for lack of efficacy, before reaching a sample size 

of 75. During the design of each new experimental arm the investigators together with the 

pharmaceutical sponsor decide in which of the 10 a priori defined biomarker signatures the 

drug will be tested. Upon entry to the trial, participants are dichotomized into hormone 
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receptor (HR) negative versus positive, HER2 positive versus negative, and MammaPrint 

High1 [MP1] versus High2 [MP2] status. From these 8 biomarker combinations (2×2×2) 

I-SPY has created 10 biomarker signatures that represent the disease subsets of interest (e.g. 

all patients, all HR+, all HER2+, HR+/HER2, etc., for complete list see reference Berry 

2011) in which a drug can be tested for efficacy. Efficacy is monitored in each of these 10 

biomarker signatures separately and an arm could graduate in any or all biomarker signature 

of interest. When graduation occurs, accrual to the arm stops, final efficacy results are 

updated when all pathology results are complete. The final estimated pCR results therefore 

may differ from the predicted pCR rate at the time of graduation. Additional details on the 

study design have been published elsewhere.(Park et al., 2016; Rugo et al., 2016)

Eligibility—Participants eligible for I-SPY2 are women >18 years of age with stage II 

or III breast cancer with a minimum tumor size of >2·5 cm by clinical exam, or >2·0 

cm by imaging, and Eastern Cooperative Oncology Group performance status of 0 or 1 

(Oken et al., 1982). HR-positive/HER2-negative cancers assessed as low risk by the 70-gene 

MammaPrint test are ineligible as they receive little benefit from systemic chemotherapy.

Treatment—This correlative study involved 987 women with high-risk stage II and III 

early breast cancer who were enrolled in 10 arms of I-SPY2: the first 9 experimental 

arms that completed evaluation and the control arm as shown in the schema of Fig 

1A. During this same period (2010–2017), one arm was stopped due to toxicity with 

few patients enrolled and is not included in this evaluation. All patients received at 

least standard chemotherapy (paclitaxel alone followed by doxorubicin/cyclophosphamide 

(T->AC; or with trastuzumab (H) in HER2+, T+H->AC)) or in combination (taxane 

phase) with investigational agents: veliparib/carboplatin (VC; HER2− only: VC -> 

AC); neratinib (N; All patients: T+ N->AC); MK2206 (HER2−: T+MK2206->AC; 

HER2+: T+H+MK2206->AC); ganitumab (HER2− only: T+ganitumab->AC); ganetespib 

(HER2− only: T+ganetespib->AC); trebananib (HER2−: T+trebananib->AC; HER2+: 

T+H+trebananib->AC); TDM1/pertuzumab (P) (HER2+: TDM1/P->AC); pertuzumab 

(HER2+: T+H+pertuzumab->AC); and pembrolizumab (Pembro; HER2−: T+Pembro->AC). 

For HER2+ patients, N was administered instead of H, whereas MK2206 and trebananib 

were administered in addition to H. Dose reductions and toxicity management were 

specified in the protocol. Adverse events were collected according to the NCI Common 

Terminology Criteria for Adverse Events (CTCAE) version 4.0. After completion of AC, 

patients underwent lumpectomy or mastectomy and nodal sampling, with choice of surgery 

at the discretion of the treating surgeon. Detailed descriptions of the design, eligibility, and 

efficacy of these 9 experimental arms of the I-SPY2 trial have been reported previously 

(Chien et al., 2019; Clark et al., 2021; Nanda et al., 2020; Park et al., 2016; Pusztai et al., 

2021; Rugo et al., 2016).

Trial Oversight—I-SPY2 is conducted in accordance with the guidelines for Good Clinical 

Practice and the Declaration of Helsinki, with approval for the study protocol and associated 

amendments obtained from independent ethics committees at each site. Written, informed 

consent was obtained from each participant prior to screening and again prior to treatment. 

The I-SPY2 Data Safety Monitoring Board meets monthly to review patient safety.
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METHOD DETAILS

Pretreatment Biopsy Processing and molecular profiling—Core needle biopsies 

of 16-gauge were taken from the primary breast tumor before treatment. Collected tissue 

samples are immediately frozen in Tissue-Tek® O.C.T.™ embedding media and then stored 

in −80°C until further processing. An 8μM section is stained with hematoxylin and eosin 

(H&E) and pathologic evaluation performed to confirm the tissue contains at least 30% 

tumor. A tissue sample meeting the 30% tumor requirement is further cryosectioned at 

30 μM. Twenty to thirty sections are collected and emulsified in 0.5ml Qiazol solution 

and the tubes are sent on dry ice to Agendia, Inc., for RNA extraction and gene 

expression profiling on Agilent 44K (Agilent_human_DiscoverPrint_15746 with annotation 

GPL30493 (update of GPL16233); n=333) or 32K (Agendia32627_DPv1.14_SCFGplus 

with annotation GPL20078; n=654) expression arrays. For each array, the green channel 

mean signal was log2-tranformed and centered within array to its 75th quantile as per the 

manufacturer’s data processing recommendations. All values indicated for non-conformity 

are NA’d out; and a fixed value of 9.5 was added to avoid negative values. Probeset 

level data per array were mean-collapsed to the gene level, and genes common to the 

two platforms identified. Expression data from the first ~900 I-SPY2 patients distributed 

over the two platforms GPL30493 (n=333) and GPL20078 (n=545) were combined into 

a single gene-level dataset after batch-adjusting using ComBat (Johnson et al., 2007). 

Linear adjustment factors were derived from the larger ComBat operation, per platform, 

which can be used to batch correct raw files. The subsequent ~90 samples, assayed on 

GPL20078, were batch corrected using these factors and added to the original set, yielding 

a normalized expression dataset comprising 987 patients x 19,134 (common) genes. These 

transcriptomic data and the associated batch correction model coefficients are available 

in NCBI’s Gene Expression Omnibus (GEO), SubSeries GSE194040 (mRNA) (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040) and through the I-SPY2 Google 

Cloud repository (www.ispytrials.org/results/data).

In addition, laser capture microdissection (LCM) was performed on pre-treatment biopsy 

specimens to isolate tumor epithelium for signaling protein and phospho-protein profiling 

by reverse phase protein arrays (RPPA) in the Petricoin Lab at George Mason University, as 

previously published (Wulfkuhle et al., 2018). Approximately 10,000 cells are captured per 

sample. RPPA samples were assayed on three arrays, each containing hundreds of samples 

from different arms of the trial quantifying up to 140 protein/phospho-protein endpoints 

(GPL28470). To remove batch effects we standardized each array prior to combining, by 

(1) sampling 5000 times, maintaining a receptor subtype balance equal to that of the first 

~1000 patients (HR+HER2−: 0.384, TN:0.368, HR+HER2+:0.158, HR-HER2+:0.09); (2) 

calculating the mean(mean) and mean(sd) for each RPPA endpoint; (3) z-scoring each 

endpoint using the calculated mean/sd from (2). The consort diagram with the number of 

evaluable patients for each molecular profiling analysis is shown in Figure 1B. Details of 

the RPPA sample preparation and data processing are as previously described (Wulfkuhle 

et al., 2018). These RPPA data for 736 patients (all arms except ganitumab and ganetespib) 

are available in NCBI’s Gene Expression Omnibus (GEO), SubSeries GSE196093 (RPPA) 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196093) and through the I-SPY2 

Google Cloud repository (www.ispytrials.org/results/data).
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Continuous Gene Expression Biomarkers Assessed—Twenty-six prospectively 

defined, mechanism-of-action and pathway-based expression and protein/phospho-protein 

continuous signatures assayed from pre-treatment biopsies were previously found to be 

predictive in a particular agent/arm in pre-specified QBE analysis. We also include an 

exploratory VC-response signature for the TN subset reflecting both DNA repair deficiency 

and Immune expression that validated in BrighTNess and therefore achieved qualifying 

status, for a total of 27 continuous biomarkers considered in our analysis (see Table S1 for 

genes/proteins included per signature and scoring method; and Table S2 for patient-level 

biomarker scores).

VCpred_TN derivation:  VCpred_TN is a continuous gene expression signature that 

associates with response to VC in the TN subset. It differs from the other biomarkers in this 

study in that it was originally developed on I-SPY2 data, rather than previously published 

and in pre-specified analysis validated (qualified) in I-SPY2. We developed this signature in 

2018, when the decision was made to switch I-SPY2 tumor biopsy tissue collection from 

fresh frozen (FF) as assayed for the I-SPY2–990 data compendium, to FFPE, and after 

performing expression studies of 72 matched FF:FFPE pairs from I-SPY2 that suggested 

that the previous DRD biomarker implementation frontrunner, PARPi7, may not translate 

well. In a quest to develop a more robust DRD biomarker that might better translate from 

FF to FFPE and between Agilent 44K platforms (GPL16233 and GPL20078) we developed 

VCpred_TN by: 1) collecting a large set of DNA repair related genes (Knijnenburg et al., 

2018) including those in the PARPi7, and adding to them a subset of immune genes from 

module4 (Wolf et al., 2014) and IR7 (Teschendorff and Caldas, 2008), ESR1, and PGR, for a 

total of 162 genes; 2) filtering those 162 genes for presence on both Agilent 44K array types 

used in this study and for correlation between FF and FFPE samples using our 72-paired 

sample set (pearson correlation > 0.4), which yielded an 84 gene starting set for signature 

development; and 3) assessing association between expression levels of each of the 84 genes 

and pCR in the VC arm, in the TN subset using logistic modeling, after mean-centering the 

expression data. The resulting signature is the sum of -sign(coeff)*log(p) for the top 25 most 

correlated genes in the starting set, where sign(coeff) the sign of association between a gene 

and pCR (positive if higher levels associate with pCR, negative if higher levels associate 

with non-pCR), and p = the likelihood ratio test p–value. As also appears in the above 

Table S1, VCpred_TN = 13.60*CXCL13 −6.48*BRCA1 + 6.41*APEX1 + 5.32*FEN1 + 

4.85*CD8A − 4.84*SEM1 + 4.78*APEX2 − 4.60*RNMT + 4.51*CCR7 + 3.99*H2AFX + 

3.88*POLD3 − 3.49*PRKDC + 3.48*C1QA + 3.33*CLIC5 − 3.24*RAD51 + 3.10 *DDB2 

− 2.83*SPP1 − 2.80 *POLD2 − 2.80*POLB + 2.72*LIG1 −2.67*GTF2H5 – 2.63*PMS2 

+ 2.60*LY9 −2.34*SHPRH + 6.27*ARAF; where the expression data is mean-centered 

by gene over all samples prior to evaluating this weighted sum, and the final signature is 

z-scored to have mean=0 and sd=1.

Biological response-predictive phenotypes: overview and implementation—
Here we introduce the concept of and response-predictive biological phenotype, defined by 

considering promising treatments (e.g. Immunotherapy, dual-HER2, and platinum-based) 

and basic cancer biology (e.g. proliferation). Patients are considered Immune-positive 

(Immune+) if their immune-tumor state is such that they are likely to respond to 
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immunotherapy, and DNA repair deficient/platinum-responsive (DRD+) if response to a 

platinum agent with or without PARP-inhibition is likely. As biomarkers representing the 

same biology are correlated and can be subtype-specific (Figure 2), multiple immune and 

DRD markers can be used to implement these biological phenotypes and perform similarly. 

Moreover, though we need to select example implementations for response predictive 

phenotypes like Immune, HER2ness, Luminal, DRD, and proliferation, we do so with the 

expectation that as improved biomarkers come available, they can be ‘swapped in’.

In general, we prefer to use categorical biomarkers, so as to not have to select thresholds 

using I-SPY2 trial data. Here we use BluePrint subtype (Agendia; BP-Luminal, BP-HER2, 

BP-Basal) to implement HER2ness, Luminal and Basal biological phenotypes, and MP2 

class as a proliferation biomarker based on high levels of correlation to cell cycle/

proliferation signatures. Where necessary, we also dichotomize continuous biomarkers using 

a subtype-specific cross-validation procedure to optimize performance as follows:

Biomarker dichotomization:  To identify optimal (exploratory) dichotomizing thresholds 

for select biomarkers in a particular patient subset, a cross-validation procedure was applied 

to selected endpoints associated with pCR in a selected treatment arm of the trial to identify 

potential cut points for biomarker positivity. Two-fold cross-validation was repeated 1000 

times, with test and training sets balanced over pCR, using logistic models to assess 

association with response. A cutpoint was selected as ‘optimal’ if: (1) it was selected as 

optimal >100 times in the training set; (2) p<E-15 in the test sets (combined using the logit 

method (Dewey, 2018)); and (3) the prevalence is reasonably balanced.

Immune phenotype: example implementation:  Patients are considered Immune-positive 

(Immune+) if their immune-tumor state is such that they are likely to respond to 

immunotherapy. In general, immune signatures are correlated, therefore there are many 

possible implementations that may perform similarly. In this study we use a subtype-specific 

implementation. Based on our qualifying biomarker analysis, for TN patients we used 

the average of the dendritic cell and STAT1 signatures (Danaher et al., 2017; Rody 

et al., 2009; Yau et al., 2019). These biomarkers were the top two most predictive of 

TN response to pembrolizumab in this study (Figure 3) and the STAT1 signature has 

been further validated in the previously published durvalumab/olaparib arm of I-SPY2 

(Pusztai et al., 2021) and in an independent Phase II trial (NCT02489448) (Blenman et 

al., 2020; Foldi et al., 2021; Pusztai et al., 2021). Specifically, we (1) z-scored their 

average ((STAT1_sig+Dendritic_sig)/2, denoted STAT1_Dendritic_ave), and (2) optimally 

dichotomized the averaged signatures per above using pCR data from the Pembro arm, 

yielding a cutpoint of 0 (TN/Immune-high: STAT1_Dendritic_ave>=0; and TN/Immune-

low: STAT1_Dendritic_ave<0).

In the HR+HER2− subset, high B-cell and low mast-cell immune gene signatures were 

strong predictors of pCR to immunotherapy (Figure 3) and we use them in dichotomized 

form as an example implementation for our Immune+ phenotype in this subset. This 

choice was based on the observation that to achieve high predictive accuracy in the 

HR+HER2− subset, it is necessary to combine a ‘sensitivity’ immune biomarker (e.g. 

Bcell) with a second ‘resistance’ biomarker where high levels predict non-pCR (either 
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Mast-cell or ESR1/PGR averaged). Applying the above dichotomization procedure yielded 

cutpoints 0.1495 for Bcell_score and 1.17 for MastCell_score (HR+HER2−/Immune-high: 

(B_cells>=0.1495) AND (Mast_cells<1.17); HR+HER2−/Immune-low: (B_cells<0.1495) 

OR (Mast_cells>=1.17)).

For HER2+ patients, we optimally dichotomized the B_cells signature in the combined 

MK2206, control and neratinib arms where immune signals associate with response, 

yielding a cutpoint of 0.58 (HER2+/Immune-high: B_cells>=0.58; HER2+/Immune-low: 

B_cells<0.58).

DRD phenotype: example implementation:  Our implementation of the DRD response-

predictive phenotype is also subtype-specific. In the TN subset, we had intended to use 

the previously described PARPi7 gene signature (Figure 3; (Daemen et al., 2012; Wolf 

et al., 2017)) as an example implementation, but it did not validate in the BrighTNess 

trial (Filho et al., 2021; Loibl et al., 2018) (p>0.05). Instead we used the VCpred_TN 

signature developed in I-SPY2 (see above and Table S1), which validated in BrighTNess 

(p=5.08E-06) (Figure S5). We dichotomized the VCpred_TN using pCR data from the VC 

arm, using the above-described cross–validation optimization procedure and also taking into 

account our intention of using this biomarker in a multi-agent context with immunotherapy 

and an immune biomarker. Though the optimal cutpoint if only considering performance 

in VC is 0.35, this threshold results in a clinically important subset defined by Immune−/

DRD+ that is too small (4%) to be clinically reasonable. Therefore we chose a ‘next best’ 

cutpoint of −0.31 (TN/DRD+: VCpred_TN>(−0.31); TN/DRD-: VCpred_TN<(−0.31)). 

With this cutpoint, the Immune−/DRD+ subset is a more clinically actionable size at 11%.

We used BP-Basal classification as our measure to assess the DRD phenotype in 

HR+HER2− (HR+HER2−/DRD+: BP_Basal; HR+HER2−/DRD−: BP_Luminal) because 

the assay is performed in a CLIA setting and is ready for clinical implementation with a 

pending IDE application submission to the US FDA, even though the research assay based 

PARPi7-high/MP2 performed somewhat better in this dataset (Daemen et al., 2012; Wolf et 

al., 2017).

Three-state clinical HER2 status: When considering a new HER2low-targeted agent, we 

used HER2 IHC levels (3+, 2+, 1+, 0) and HER2 FISH to define a 3-class clinical HER2 

biomarker HER2-3state (HER2=0: IHC 0 and FISH-; HER2low: IHC 2+/1+ and FISH-; and 

HER2+: IHC 3+ or FISH+ as currently defined in the trial).

Combining response-predictive phenotypes and HR/HER2 status into 
response-predictive subtyping schemas—Once multiple response-predictive 

phenotypes are added to HR and HER2 status, there is a combinatorial explosion in 

the number of possible states, and many ways to collapse them into a practical number 

of subtypes (<8 or 9). To sort through the options, we reasoned that an ideal response-

predictive subtyping schema should: R1) differentiate between treatments, meaning that 

different classes should have different best treatments yielding the highest pCR probability; 

R2) result in a higher pCR rate in the population if used to optimally assign/prioritize 

treatments; R3) differentiate between responders and non-responders over a wide range of 
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treatment classes; and R4) be robust to platform and within-class treatments, simple to 

implement, and FDA approved or performed in a CLIA environment. For (R1) we generalize 

the ‘Carnaugh Map’ method used in circuit design to simplify digital logic (Brown, 1990). 

For example, if HR+HER2−/Immune−/DRD+ and TN/Immune−/DRD+ classes both have 

VC as the treatment yielding the highest pCR rate, we collapse them into a single class 

HER2−/Immune−/DRD+ as seen in Figure 5.

Implementation of previously published PAM50 and TNBC-4class and -7class 
subtyping schemas—In addition to standard clinical variables like HR, HER2, MP, pCR 

and Arm, several biomarker heatmaps (e.g., Figure 2) are annotated for PAM50 and two 

TNBC classification schemas as well, evaluated as previously described. PAM50 intrinsic 

subtyping was performed using Joel Parker’s centroid-based 50-gene classifier program 

(Parker et al., 2009) on a total of 1151 samples including 165 in the I-SPY low-risk registry 

(open to those who screen out of I-SPY2 due to assessment of low molecular risk by the 

70-gene MammaPrint test). We included the low-risk registry patients in the dataset (mostly 

HR+HER2− Luminal A) prior to subtyping because I-SPY2 HR+HER2− patients are all 

MP high risk (mostly Luminal B) and we wanted the population to be more representative 

of the general breast cancer patient population as is required for sensible results. We also 

centered the genes on the mean value of repeated subsampling (500 times) of 1:1 ER+:ER− 

prior to running the code, as previously advised by Katie Hoadley (private communication) 

to obtain classifications most consistent with their original paper. Finally, we set to NA any 

call with a confidence level < 0.08, of which there were 14. TNBCtype classifications (7 

classes: MSL, M, LAR, IM, BL2, BL1) were identified as published (Chen et al., 2012; 

Lehmann et al., 2011) by uploading (non-median centered) expression data from the TN 

subset (n=363) to the online calculator (https://cbc.app.vumc.org/tnbc/). The Burstein/Brown 

TN classifications (LAR, MES, BLIS, BLIA) were identified as published (Burstein et al., 

2015), by: (1) quantile transforming over their predictor genes; (2) calculating Euclidean 

distance to the 4 published centroids; and (3) assigning class based on the closest (minimal 

distance) centroid. PAM50, TNBCtype and TNBC_BB subtype vectors are included in the 

Table S2 containing the biomarkers and response-predictive subtyping schemas explored in 

this manuscript.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis of Continuous Gene Expression Biomarkers—Unsupervised 

clustering was performed using Pearson correlation and complete linkage. We assess 

association between each continuous biomarker and response in the population as a whole 

and within each arm and HR/HER2 subtype using a logistic model. In whole-population 

analyses, models are adjusted for HR, HER2, and treatment arm (pCR~ biomarker + HR + 

HER2 + Tx). Within treatment arms, models are adjusted for HR and HER2 as appropriate. 

Markers are analyzed individually; likelihood ratio (LR) test p-values are descriptive. We 

also performed exploratory whole transcriptome analysis, per above, employing Benjamini-

Hochberg multiple testing correction (Huang et al., 2009), with a significance threshold of 

BH LR p<0.05 (Figure S1). Analyses and visualizations were performed in the computing 

environment R (v.3.6.3) using R Packages ‘stats’ (v.3.6.3) and ‘lmtest’ (v.0.9–37) (Zeileis et 

al., 2002).
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Response-predictive subtyping schema characterization—Sankey plots were 

used to visualize relationships between receptor subtype and alternative response predictive 

subtyping schemas using the R package GoogleVis (v.0.6.4) (Gesmann et al., 2011). For 

each subtype in each schema, we calculated pCR rates in each arm with sufficient patients 

and displayed the results (100*(number of patients with pCR)/total) in bar plots. A major 

goal of a response-predictive schema is to increase the pCR rate in the population and to 

maximize the probability of pCR for an individual patient (R2). To characterize the potential 

impact of the classification, we calculated the overall pCR rate in the I-SPY2 population 

had treatments been optimally assigned according to the response-predictive subtypes using 

the same 10 drugs. To this end, we: (1) calculated the prevalence of each subtype in the 

schema (prev_STi = (number of patients in STi)/(total number of patients), i=1:n, n=number 

of subtypes); (2) collected highest-pCR rates observed in an I-SPY2 arm for each subtype 

(pCR_max_STi); and (3) calculated a simple estimate of the pCR rate over the population as 

the weighted sum pCR_max_total = prev_ST1*pCR_max_ST1+ prev_ST2*pCR_max_ST2 

+…prev_STn*pCR_max_STn. This calculation results in both an estimate of pCR over the 

population using the alternative subtyping schema, and identification of agents/combinations 

maximizing pCR for each subtype.

To characterize the pCR-predictive power of a subtyping schema within an arm (R3), we 

use bias corrected mutual information (BCMI; R package mpmi http://r-forge.r-project.org/

projects/mpmi/) (Pardy et al., 2010), which quantifies the amount of uncertainty reduced 

about pCR by knowing subtype. These values are then visualized across arms in a scatter 

plot with BCMI and pCR-association p-values (LR p) on the axis, for both receptor subtype 

and a response-predictive subtyping schema to visualize differences.

In addition, we used Fisher’s exact test for associations with response, and Cox proportional 

hazards modeling to estimate DRFS hazard ratios for pCR within each RPS-5 subtype. The 

latter were performed using the coxph and Surv functions within the R package survival 

(Therneau et al., 2000).

ADDITIONAL RESOURCES

More information about the I-SPY 2 platform trial (NCT01042379) and associated resources 

can be found at https://clinicaltrials.gov/ct2/show/NCT01042379, https://www.ispytrials.org/

i-spy-platform/i-spy2 and https://ispypatient.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The I-SPY2–990 Data Resource contains mRNA, protein, and response data 

over 10 drugs

• Biomarkers are combined to create breast cancer subtypes to match modern 

treatments

• Best subtyping schemas incorporate immune, DNA repair, Luminal, and 

HER2 phenotypes

• Treatment assignment using these response predictive subtypes may improve 

outcome
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Figure 1. Trial design and data.
a) I-SPY2 trial schematic, b) Timeline of I-SPY2 investigational regimens, c) pCR rate 

across arms by receptor subtype (blue arrows=graduated; grey arrows=graduated in all 

HER2+, d) ISPY2–990 mRNA/RPPA Data Resource consort.
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Figure 2. Clustered heatmap of mechanism-of-action ‘qualifying’ biomarkers across 10 arms.
Unsupervised clustering of mechanism-of-action biomarkers (rows) and 987 patient samples 

(columns), with biomarkers annotated by platform and pathway; and samples annotated 

by HR/HER2, MP1/2 class, response, receptor subtype, PAM50, TN subtypes (7- and 

4-classes), and arm. See also Table S1 and S2.
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Figure 3. pCR association analysis of continuous mechanism-of-action biomarkers across 10 
arms.
Dot-plot showing the level and direction of association between each signature (column) and 

pCR as labeled (rows): All patients (rows 1–11), HR+HER2− (rows 12–20), TN (rows 21–

29), HR+HER2+ (rows 30–36) and HR-HER2+ (rows 37–42). Row labels denote treatment 

arm. Red/blue dot indicates higher/lower levels associate with pCR; darker intensity reflects 

larger effect size; size of dot reflects strength of association (1/p); white background 

indicates LR p<0.05; X denotes missing data. See also Table S3 and Figure S1.
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Figure 4. Clinically motivated response-based biomarker-subsets.
a) Overall prevalence and pCR rates in Pembro by immune subtype in TN. b) Overall 

prevalence and pCR rates in VC by DRD subtype in TN. p-values shown are from Fisher’s 

exact test. c) Sankey plot showing Immune/DRD subsets in TN, with barplots of pCR rates 

in VC, Pembro and control. d) Sankey plot showing Immune/DRD subsets in HR+HER2-. 

e) Sankey plot of HER2+/BP_Luminal and HER2+/BP_Her2_or_Basal in HER2+, with 

barplots of pCR rates in Ctr, TDM1/P and MK2206 arms. f) Sankey plot showing the 

collapse of Immune/DRD subtypes in HER2− from 8 to 3 classes. # denotes patient subset 

too small to be evaluable (<5). See also Figure S2.

Wolf et al. Page 32

Cancer Cell. Author manuscript; available in PMC 2023 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Integrated treatment response-predictive subtyping 5 (RPS-5) schema combining 
Immune, DRD, HER2, and BP_subtype phenotypes.
a) Sankey plot between receptor subtype and RPS-5 subtypes, with pCR rate barplots 

for each subtype (highest pCR rate labeled in blue). These pCR rates may differ from 

the reported estimated pCR in Figure 1c from Bayesian efficacy analyses. b) In silico 
experiment comparing pCR rates in I-SPY2’s control arm (black bar), experimental arms 

(orange bar); and estimated pCR rates if treatments had been ‘optimally’ assigned using 

receptor subtype (red bar;) or RPS-5 subtyping (blue bar). c) Hazard-ratio (HR) for 

Distant Recurrence-Free Survival (DRFS) for pCR versus non-pCR by RPS-5 subtype (box 

size=power; whiskers=95% CI). # denotes subsets with <5 patients, * denotes arm not open 

in subtype. p-values are from Fisher’s exact test. See also Figure S3.
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Figure 6. Response-predictive subtyping schema characteristics diagram for 11+ example 
schemas.
a) Pie charts showing the number (3–8) and prevalence of subtypes in each schema 

(column), b) Grid of constituent biomarkers (purple=present, white=absent), c) treatment 

arms with the highest pCR rate in one or more subtype (turquoise=selected, cream=not 

selected), and d) in silico experiment barplot showing pCR rates achieved in the control 

arm (black), experimental arms (orange); and estimated pCR rates if treatments had been 

optimally assigned using receptor subtype (red) or by the response-predictive schema in the 

column (blue). e) Barplot showing gain in pCR relative to receptor subtype. See also Figure 

S4.
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Figure 7. Impact of subtyping schema on minimum required efficacy of new agent (HER2low 
example).
a) Sankey plot showing a variety of ways to combine HER2low status with HR and Immune/

DRD. b) Scatter plot showing prevalence of HER2low subsets (x-axis) vs. the minimum 

pCR rate required for an anti-HER2low agent to equal that of the I-SPY2 agent with the 

highest response (minimum efficacy; y-axis).
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KEY RESOURCES TABLE

REAGENT or SOURCE IDENTIFIER

Biological samples

Tumor biopsy before treatment I-SPY2 TRIAL https://clinicaltrials.gov/ct2/show/NCT01042379

Critical commercial assays

Custom Agilent 32K expression arrays 
(Agendia32627_DPv1 .14_SCFGplus)

Agendia, Inc https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL20078

Custom Agilent 44K expression arrays 
(Agilent_human_Disc overPrint 15746)

Agendia, Inc https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL30493

MammaPrint Agendia, Inc https://agendia.com/mammaprint/

BluePrint Agendia, Inc https://agendia.com/blueprint/

Reverse phase protein array (RPPA) Petricoin Lab, George 
Mason University

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL28470

Deposited data

Raw and processed transcriptomic data This study Gene Expression Omnibus (GEO) SubSeries GSE194040 (mRNA), 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040, 
as part of the SuperSeries GSE196096 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196096); and in 
the I-SPY2 Google Cloud repository (www.ispytrials.org/results/
data)

Raw and processed RPPA data This study Gene Expression Omnibus (GEO) SubSeries GSE196093 (RPPA) 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196093, 
as part of the SuperSeries GSE196096 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196096); and in 
the I-SPY2 Google Cloud repository (www.ispytrials.org/results/
data)

Patient-level expression signature and 
clinical data

This study Gene Expression Omnibus (GEO) SuperSeries GSE196096 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196096) 
and Table S2 and in the I-SPY2 Google Cloud repository 
(www.ispytrials.org/results/data).

Software and algorithms

stats R package (v.3.6.3) R Core Team (2020) https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-
package.html

lmtest R package (v.0.9–37) (Zeileis et al., 2002) https://CRAN.R-proiect.org/package=lmtest

googleVis R package (v.0.6.4) (Gesmann et al., 2011) https://CRAN.R-proiect.org/package=googleVis

survival R package (v.3.1–12) (Therneau et al., 2000) https://CRAN.R-proiect.org/package=survival

mpmi R package (v.0.43) (Pardy et al., 2010) http://r-forge.r-proiect.org/proiects/mpmi/
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