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Fluctuations and correlations of the net-baryon number play an important role in exploring criti-
cal phenomena in phase transitions of strongly interacting matter governed by Quantum chromody-
namics (QCD). In this work, we use the parity doublet model to investigate the fluctuations of the
net-baryon number density in hot and dense hadronic matter. The model accounts for chiral criti-
cality within the mean-field approximation. We focus on the qualitative properties and systematics
of the first- and second-order susceptibility of the net-baryon number density, and their ratios for
nucleons of positive and negative parity, as well as their correlator. We show that the fluctuations of
the positive-parity nucleon do not necessarily reflect the fluctuations of the total net-baryon number
density at the phase boundary of the chiral phase transition. We also investigate the non-trivial
structure of the correlator. Furthermore, we discuss and quantify the differences between the fluctu-
ations of the net-baryon number density in the vicinity of the chiral and liquid-gas phase transition
in nuclear matter. We indicate a possible relevance of our results with the interpretation of the
experimental data on net-proton number fluctuations in heavy-ion collisions.

I. INTRODUCTION

One of the prominent tasks within high-energy physics
is to unveil the phase diagram of Quantum Chromody-
namics (QCD), the theory of strong interactions. Due to
great activity in the field, significant progress has been
made from both the theoretical and experimental sides.
From ab initio lattice QCD (LQCD) calculations, it is
now known that, at vanishing baryon density, strongly
interacting matter undergoes a smooth chiral symmetry
restoration transition from hadronic matter to quark-
gluon plasma (QGP) at Tc ≈ 155 MeV [1–5]. How-
ever, the applicability of the LQCD methods at high
baryon densities ceases, due to a well-known sign prob-
lem. Effective models, such as the linear sigma [6, 7] or
Nambu–Jona-Lasinio (NJL) [8, 9] models predict a first-
order phase transition at low temperature. Its existence
would imply the presence of a putative critical endpoint
(CP) on the QCD phase diagram. Throughout recent
years experimental attempts were made to locate it on
the phase diagram of QCD. Despite enormous experimen-
tal effort within the beam energy scan (BES) programs at
the Relativistic Heavy Ion Collider (RHIC) at BNL [10]
and the Super Proton Synchrotron (SPS) at CERN [11],
this pressing issue remains unresolved (for a recent review
see [12]).

One of the tools used in the experimental searches of
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the critical point are fluctuations and correlations of con-
served charges. They are known to be propitious theoret-
ical observables in search of critical behavior at the QCD
phase boundary [13–16] and chemical freeze-out in the
heavy-ion collisions (HIC) [17–22]. In particular, fluctu-
ations of conserved charges have been proposed to probe
the QCD critical point, as well as the remnants of the
O(4) criticality at vanishing and finite net-baryon densi-
ties [16, 22–25].

Non-monotonic behavior is also expected for various
ratios of the cumulants of the net-baryon number. Re-
cently, results from BES-I, which covered

√
sNN = 7.7 −

200 GeV, have shown indications of a non-monotonic be-
havior of the forth-to-second cumulant ratio of the net-
proton multiplicity distributions in central Au+Au col-
lisions [26]. However, more data and higher statistics at
low collision energies are needed to draw firm conclusions.

One of the consequences of the restoration of chiral
symmetry is the emergence of parity doubling around
the chiral crossover. This has been recently observed in
LQCD calculations in the spectrum of low-lying baryons
around the chiral crossover [27–29]. The masses of the
positive-parity baryonic ground states are found to be
rather weakly temperature-dependent, while the masses
of negative-parity states drop substantially when ap-
proaching the chiral crossover temperature. The parity
doublet states become almost degenerate with a finite
mass in the vicinity of the chiral crossover. Such proper-
ties of the chiral partners can be described in the frame-
work of the parity doublet model [30–32]. The model has
been applied to the vacuum phenomenology of QCD, hot
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and dense hadronic matter, as well as neutron stars [33–
60].

In this paper, we apply the parity doublet model to
calculate the cumulants and susceptibilities of the net-
baryon number distribution. Specifically, we focus on
the fluctuations of individual parity channels and corre-
lations among them. Their qualitative behavior is ex-
amined near the chiral, as well as the nuclear liquid-gas
phase transitions.

The differences in the qualitative critical behavior
of opposite parity states were shown to be non-trivial,
e.g., the difference of the sign of contributing terms to
the overall fluctuations that are linked to the positive-
and negative-parity states [61]. The decomposition per-
formed in this study, however, cannot be interpreted in
terms of cumulants of the baryon number. In this work,
we extend this analysis by explicitly evaluating the fluc-
tuations in the individual parity channels, as well as the
correlation among them.

This work is organized as follows. In Sec. II, we in-
troduce the hadronic parity doublet model. In Sec. III,
we introduce the cumulants and susceptibilities of the
net-baryon number. In Sec. IV, we present our results.
Finally, Sec. VI is devoted to the summary of our find-
ings.

II. PARITY DOUBLET MODEL

The hadronic parity doublet model for the chiral sym-
metry restoration [30–32] is composed of the baryonic
parity doublet and mesons as in the Walecka model [62].
The spontaneous chiral symmetry breaking yields the
mass splitting between the two fermionic parity partners.
In this work, we consider a system with Nf = 2; hence,
relevant for this study are the positive-parity nucleons
and their negative-parity partners. The fermionic de-
grees of freedom are coupled to the chiral fields (σ, π)
and the isosinglet vector field (ωµ).

To investigate the properties of strongly interacting
matter, we adopt a mean-field approximation. Rota-
tional invariance requires that the spatial component of
the ωµ field vanishes, namely, ⟨ω⟩ = 0#1. Parity con-
servation on the other hand dictates ⟨π⟩ = 0. The
mean-field thermodynamic potential of the parity dou-
blet model reads [61]#2

Ω = Ω+ + Ω− + Vσ + Vω, (1)

with

Ω± = γ±

∫
d3p

(2π)3
T
[
ln (1 − f±) + ln

(
1 − f̄±

)]
, (2)

#1 Since ω0 is the only non-zero component in the mean-field ap-
proximation, we simply denote it by ω0 ≡ ω.

#2 Assuming isospin symmetric system.

where γ± = 2 × 2 denotes the spin-isospin degeneracy
factor for both parity partners, and f± (f̄±) is the particle
(antiparticle) Fermi-Dirac distribution function,

f± =
1

1 + e(E±−µN )/T
,

f̄± =
1

1 + e(E±+µN )/T
,

(3)

where T is the temperature, the dispersion relation E± =√
p2 + m2

±, and the effective baryon chemical potential

µN = µB − gωω. The mean-field potentials read

Vσ = −λ2

2
Σ +

λ4

4
Σ2 − λ6

6
Σ3 − ϵσ, (4a)

Vω = −m2
ω

2
ω2. (4b)

where Σ = σ2 + π2, λ2 = λ4f
2
π − λ6f

4
π − m2

π, and
ϵ = m2

πfπ. mπ and mω are the π and ω meson masses,
respectively, and fπ is the pion decay constant.

The masses of the positive- and negative-parity bary-
onic chiral partners, N±, are given by

m± =
1

2

(√
a2σ2 + 4m2

0 ∓ bσ

)
, (5)

where a, b are combinations of Yukawa coupling con-
stants [61], and m0 is the chirally invariant mass pa-
rameter. We note that in the parity doublet model, the
chiral symmetry breaking yields the mass splitting be-
tween the chiral partners. Therefore, the order parameter
for the chiral symmetry breaking is the mass difference,
m− −m+ = bσ.

In-medium profiles of the mean fields are obtained by
extremizing the thermodynamic potential, Eq. (1), lead-
ing to the following gap equations:

0 =
∂Ω

∂σ
=

∂Vσ

∂σ
+ s+

∂m+

∂σ
+ s−

∂m−

∂σ
,

0 =
∂Ω

∂ω
=

∂Vω

∂ω
+ gω (n+ + n−) ,

(6)

where the scalar and vector densities are

s± = γ±

∫
d3p

(2π)
3

m±

E±

(
f± + f̄±

)
(7)

and

n± = γ±

∫
d3p

(2π)
3

(
f± − f̄±

)
, (8)

respectively.
In the grand canonical ensemble, the net-baryon num-

ber density can be calculated as follows:

nB = − dΩ

dµB

∣∣∣∣∣
T

= n+ + n−, (9)
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m0 [GeV] m+ [GeV] m− [GeV] mπ [GeV] fπ [GeV] mω [GeV] λ4 λ6f
2
π gω a b

0.750 0.939 1.500 0.140 0.93 0.783 28.43 11.10 6.45 20.68 6.03

TABLE I. Physical inputs in matter-free space and the model parameters used in this work. See Sec. II for details.

where n± are the vector densities of the baryonic chiral
partners.

The positive-parity state, N+, corresponds to the nu-
cleon N(938). Its negative parity partner, N−, is identi-
fied with N(1535) [63]. Their vacuum masses are shown
in Table I. The value of the parameter m0 has to be
chosen so that a chiral crossover is realized at finite tem-
perature and vanishing chemical potential. The model
predicts the chiral symmetry restoration to be a crossover
for m0 ≳ 700 MeV. Following the previous studies of the
parity-doublet-based models [33–44, 47–59, 61], as well
as recent lattice QCD results [27–29], we choose a rather
large value, m0 = 750 MeV. We note, however, that the
results presented in this work qualitatively do not depend
on the choice of m0, as long as the chiral crossover ap-
pears at µB = 0. The parameters a and b are determined
by the aforementioned vacuum nucleon masses and the
chirally invariant mass m0 via Eq. (5). The remaining
parameters: gω, λ4 and λ6, are fixed by the properties
of the nuclear ground state at zero temperature, i.e., the
saturation density, binding energy, and compressibility
parameter at µB = 923 MeV. The constraints are as fol-
lows:

nB = 0.16 fm−3, (10a)

E/A−m+ = −16 MeV, (10b)

K = 9n2
B

∂2 (E/A)

∂n2
B

= 240 MeV. (10c)

We note that the six-point scalar interaction term in
Eq. (4a) is essential to reproduce the empirical value of
the compressibility in Eq. (10c) [58].

The compilation of the parameters used in this paper
is found in Table I. For this set of parameters, we obtain
the pseudo-critical temperature of the chiral crossover
at vanishing baryon chemical potential, Tc = 209 MeV.
In Fig. 1 we show the temperature dependence of the
masses of the chiral partners. At low temperatures, chi-
ral symmetry is broken and they have different masses.
As chiral symmetry gets restored, their masses converge
towards the chirally invariant mass m0. The mass of the
N− monotonically decreases towards m0. On the other
hand, the mass of N+ develops a shallow minimum close
to the chiral restoration and converges to m0 from be-
low. The derivatives of m± can be readily calculated
from Eq. (5), namely

∂m±

∂σ
=

1

2

(
a2σ√

a2σ2 + 4m2
0

∓ b

)
. (11)

Note that for the positive-parity state, a minimum value

of the mass, mmin
+ , exists at

σmin =
2bm0

a
√
a2 − b2

, (12)

while the mass of the negative-parity state monotonically
decreases with σ as the chiral symmetry gets restored.
We also note that σmin > 0; Thus, the positive-parity
state attains a minimum mass for any choice of m0 >
0 [61].

At low temperatures, the model predicts sequential
first-order nuclear liquid-gas and chiral phase transitions
with critical points located at Tlg = 16 MeV, µB =

909 MeV, (nB = 0.053 fm−3 = 0.33n0) and Tch = 7 MeV,
µB = 1526 MeV (nB = 1.25 fm−3 = 7.82n0), respec-
tively. In Fig. 2, we show the parity doublet model phase
diagram. At low temperature, the nuclear liquid-gas and
chiral phase transitions are sequential. As temperature
increases, they combine and form a single crossover tran-
sition at vanishing baryon chemical potential. We note
that the exact location of the chiral phase transition
at low temperature depends on, e.g., the mass of the
negative-parity state [38]. At zero temperature it is ex-
pected that it occurs roughly at µB ∼ m−.

We note that the minimum of m+ is obtained for
any trajectory from chirally broken to chirally symmetric
phase. Remarkably, σmin is reached at T and µB which
are close to the chiral phase boundary (see Fig. 2). We
emphasize that the properties discussed in this work are
expected to appear independently of the position of the
chiral critical point on the phase diagram. Although the
dependence of m+ on σ is not universal and model depen-
dent, we stress that the calculations with the functional
renormalization group techniques preserve the same in-
medium behavior [64]. At present, only the first-principle
LQCD calculations can provide a reliable answer.

In the next section, we discuss the general structure of
the second-order susceptibilities of the net-baryon num-
ber density for positive- and negative-parity chiral part-
ners to quantify their roles near the second-order phase
transition at finite density.

III. CUMULANTS AND SUSCEPTIBILITIES OF
THE NET-BARYON NUMBER

For a system consisting of NB = N++N− baryons with
N± being the net number of positive/negative-parity
baryons, the mean can be calculated as

⟨NB⟩ ≡ κB
1 = κ+

1 + κ−
1 , (13)
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µB = 0 MeV

M
a
ss

[G
eV

]

T [Tc]

m0

N+

N−

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

FIG. 1. Masses of the baryonic chiral partners at finite tem-
perature and vanishing baryon chemical potential. The tem-
perature is normalized to the chiral crossover temperature,
Tc, at µB = 0. The dotted, blue line shows the chirally in-
variant mass, m0. The vertical line marks the chiral crossover
transition.

and the variance,

⟨δNBδNB⟩ ≡ κB
2 = κ++

2 + κ−−
2 + 2κ+−

2 , (14)

where

κα
1 = ⟨Nα⟩,

καβ
2 = ⟨δNαδNβ⟩.

(15)

Notably κ±
1 , κ++

2 and κ−−
2 are the cumulants of the N+

and N− distributions; κ+−
2 is the correlation between N+

and N−.
In general, the cumulants of the baryon number are

defined as

κB
n ≡ Tn dn logZ

dµn
B

∣∣∣∣∣
T

, (16)

where Z is the partition function. Because the thermody-
namic potential Ω is related to the grand-canonical par-
tition function through Ω = −T logZ/V , one may relate
the cumulants with the susceptibilities of the net-baryon
number in the following way

κB
n = V T 3χB

n , (17)

where V is the volume of the system and

χB
n ≡ −dnΩ̂

dµ̂n
B

∣∣∣∣∣
T

, (18)

with Ω̂ = Ω/T 4 and µ̂B = µB/T . For example, κB
1 =

V χB
1 = V nB = ⟨NB⟩ is the mean of the baryon number.

We note that ⟨NB⟩ = ⟨N+⟩ + ⟨N−⟩ is the sum of the
means of the net number of particles with a given parity;
thus κB

1 = κ+
1 + κ−

1 , where κα
1 = ⟨Nα⟩.

T
[G

eV
]

µB [GeV]

liquid-gas
chiral
σmin

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FIG. 2. Phase diagram obtained in the parity doublet model.
Shown are the liquid-gas (red, solid/dotted line) and chiral
(black, solid/dashed-dotted line) phase transition/crossover
lines. Circles indicate critical points below which the transi-
tions are of the first order. The lines are obtained from the
minima of ∂σ/∂µ± (see text for details). The blue, dashed
line shows the line where the mass of the positive-parity state
has a minimum (see text for details).

To be able to connect the individual cumulants καβ
n to

susceptibilities, we need to rewrite the mean-field ther-
modynamic potential in terms of newly defined chemical
potentials, µ± for positive- and negative-parity states as
follows:

Ω = Ω+ (µ+, T, σ (µ+, µ−) , ω (µ+, µ−))

+ Ω− (µ−, T, σ (µ+, µ−) , ω (µ+, µ−))

+ Vσ(σ (µ+, µ−)) + Vω(ω (µ+, µ−)).

(19)

Such a separation into separate chemical potentials is
possible in the mean field approximation which is a single
particle theory (see detailed discussion in [65]). To be
thermodynamically consistent, one needs to set µ± =
µN = µB − gωω at the end of the calculations and before
numerical evaluation. We note that µ± are independent
variables. The net-baryon density is then given as

nB = n+ + n−, (20)

where n± are the net densities given by

n± = − dΩ

dµ±

∣∣∣∣∣
T,µ±=µN

=

− ∂Ω

∂µ±
− ∂Ω

∂σ

∂σ

∂µ±
− ∂Ω

∂ω

∂ω

∂µ±
= − ∂Ω

∂µ±
,

(21)

The last equality holds due to the stationary conditions.
We stress that the derivative should be taken not only at
constant temperature but also at µ+ = µ− = µN .

Given that µ± are independent, one recognizes that
Eq. (21) agrees with the definition in Eq. (9). Likewise,
the second-order susceptibility can be expressed as fol-
lows

χB
2 = χ++

2 + χ−−
2 + 2χ+−

2 , (22)
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µB = 0 MeV

T [GeV]

χB,HRG
2

χB
2

−χ+−
2

χ−−
2

χ++
2

0

0.05

0.1

0.15

0.2

0.05 0.1 0.15 0.2 0.25 0.3

FIG. 3. Susceptibilities, χαβ
2 , at vanishing baryon chemical

potential. Shown are also the net-baryon number susceptibil-
ity χB

2 and the corresponding result, χB,HRG
2 obtained in the

HRG model. We note that the correlator, χ+−
2 , is shown with

the negative sign. The vertical, dotted line marks the chiral
phase transition.

where χ++ (χ−−) are the susceptibilities of the positive-
(negative-) parity and χ+− gives the correlations between
them, i.e., correlations between vector densities. The in-
dividual terms in the above equation are given as follows

χαβ
2 =

1

V T 3
καβ
2 = − d2Ω̂

dµ̂αdµ̂β

∣∣∣∣∣
T,µα=µβ=µN

, (23)

where µ̂x = µx/T , and x = α, β correspond to the par-
ticle species and µα’s correspond to their effective chem-
ical potentials µ±. We notice that, under the mean-

field approximation, χαβ
2 = χβα

2 , thus χ+−
2 = χ−+

2 .
Furthermore, we assume isospin symmetry, thus χ++

2

is the net-nucleon number susceptibility. Consequently,
the susceptibility of the net-proton number density is
χpp
2 ≈ 1/2χ++

2 . This is a fair assumption since isospin
correlations are expected to be small [66].

Event-by-event cumulants and correlations are exten-
sive quantities. They depend on the volume of the sys-
tem and its fluctuations, which are unknown in heavy-ion
collisions. The volume dependence, however, can be can-
celed out by taking the ratio of cumulants. Therefore, it
is useful to define ratios of the cumulants of the baryon
number, which may also be expressed through suscepti-
bilities,

RB
n,m ≡ κB

n

κB
m

=
χB
n

χB
m

. (24)

In the following, we focus on the ratios of the second
and first-order cumulants of different parity distributions.
Therefore, it is useful to define

Rαβ
2,1 ≡ καβ

2√
κα
1κ

β
1

=
χαβ
2√
χα
1χ

β
1

. (25)

We note that in general the ratios, Rαβ
n,m, are not additive,

e.g., R++
2,1 + R−−

2,1 + R+−
2,1 ̸= RB

2,1.
In the following, we will also compare our results with

the hadron resonance gas (HRG) model formulation of
the thermodynamics of the confined phase of QCD. The
model is widely used for the description of matter un-
der extreme conditions, e.g., in the context of heavy-ion
collision phenomenology [67–72]. Commonly used imple-
mentations of the HRG employ vacuum hadron masses
in the hadronic phase and hence do not include possible
in-medium effects. Several extensions of the HRG model
have been proposed to quantify the LQCD EoS and var-
ious fluctuation observables. They account for consis-
tent implementation of hadronic interactions within the
S-matrix approach [73], a more complete implementa-
tion of a continuously growing exponential mass spec-
trum and/or possible repulsive interactions among con-
stituents [70, 71, 74–78]. Nevertheless, it is challenging
to identify the role of different in-medium effects and
hadronic interactions on the properties of higher-order
fluctuations of conserved charges.

The thermodynamic potential of the HRG model is
given as a sum of uncorrelated ideal-gas particles:

ΩHRG =
∑
x=±

Ωx, (26)

with Ωx given by Eq. (2). The masses of N± are taken to
be the vacuum masses (see Table I) and µN = µB . The
net-baryon density and its susceptibility are obtained
through Eqs. (9) and (18), respectively. Thus, in the
HRG model one has,

χB,HRG
2 = χ++

2 + χ−−
2 . (27)

The susceptibilities introduced in Eq. (23), can be eval-
uated analytically by differentiating Eq. (19). Explicit
calculations yield

χαβ
2 = − ∂σ

∂µ̂β

(
∂2Ω̂

∂σ2

∂σ

∂µ̂α
+

∂2Ω̂

∂σ∂ω

∂ω

∂µ̂α
− ∂n̂α

∂σ

)

− ∂ω

∂µ̂β

(
∂2Ω̂

∂ω2

∂ω

∂µ̂α
+

∂2Ω

∂σ∂ω

∂σ

∂µ̂α
− ∂n̂α

∂ω

)

+
∂σ

∂µ̂α

∂n̂β

∂σ
+

∂ω

∂µ̂α

∂n̂β

∂ω
+

∂n̂α

∂µ̂β
,

(28)

where n̂α/β = nα/β/T
3, and nα/β are the net densi-

ties defined in Eq. (21). We note that the last term,
∂n̂α/∂µ̂β = 0 for α ̸= β.

To evaluate Eq. (28), one needs to extract the deriva-
tives of the mean fields w.r.t chemical potentials µ±.
They can be carried out by differentiating the gap equa-
tions, namely

d

dµ̂α

(
∂Ω̂

∂σ

)∣∣∣∣∣
T,µ̂α=µ̂N

= 0,

d

dµ̂α

(
∂Ω̂

∂ω

)∣∣∣∣∣
T,µ̂α=µ̂N

= 0.

(29)
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µB [GeV]

χ++
2

χ−−
2

−χ+−
2

χB
2

0

50

100

150

200

250

0.6 0.8 1 1.2 1.4 1.6 1.8 2

14.5

15.0

15.5

16.0

16.5

1.3 1.4 1.5 1.6

T = 50 MeV

µB [GeV]

χ++
2

χ−−
2

−χ+−
2

χB
2

0

10

20

30

40

50

0.6 0.8 1 1.2 1.4 1.6 1.8 2

5.00

5.25

5.50

1.1 1.2 1.3 1.4

T = 100 MeV

µB [GeV]

χ++
2

χ−−
2

−χ+−
2

χB
2

0

1

2

3

4

0.4 0.6 0.8 1 1.2

T = 150 MeV

µB [GeV]

χ++
2

χ−−
2

−χ+−
2

χB
2

0

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 4. Susceptibilities, χαβ
2 , at different temperatures. Also shown is the net-baryon number susceptibility, χB

2 . We note that
the correlator, χ+−

2 , is shown with the negative sign. The dashed and dotted vertical lines mark baryon chemical potentials for
the liquid-gas and chiral crossover transitions, respectively. The inset figures in the top panel show χB

2 in the vicinity of the
chiral crossover transition.

Writing them explicitly and isolating ∂σ/µ̂α, ∂ω/∂µ̂α,
yields

∂σ

∂µ̂α
=

(
∂2Ω̂
∂σ∂ω

∂2Ω̂
∂ω2

∂n̂α

∂ω
− ∂n̂α

∂σ

)/∂2Ω̂

∂σ2
−

(
∂2Ω̂
∂σ∂ω

)2
∂2Ω̂
∂ω2

 ,

∂ω

∂µ̂α
= −

(
∂n̂α

∂ω
+

∂2Ω̂

∂σ∂ω

∂σ

∂µ̂α

)/
∂2Ω̂

∂ω2
.

(30)

We note that corresponding derivatives of the mean fields
w.r.t. µ̂β can be found similarly upon replacing α → β.
The above derivatives can be plugged into Eq. (28). Now,
calculating Eq. (28) amounts to providing the values of
the mean fields and evaluating them numerically.

IV. RESULTS

Using Eq. (28), we evaluate the susceptibilities of the
net number densities for the positive- and negative-parity
chiral partners, as well as the correlations among them
within the parity doublet model. The results for vanish-
ing baryon chemical potential are shown in Fig. 3. The
net-baryon susceptibility obtained in the HRG model in-
creases monotonically and does not resemble any critical
behavior. This is expected because the partition function
of the HRG model is just a sum of ideal, uncorrelated
particles [cf. Eq. (26)] with vacuum hadron masses. The
net-baryon susceptibility obtained in the parity doublet
model clearly deviates from the HRG result. The increase
around Tc and saturation above it is a bulk consequence
of the interplay between critical chiral dynamics with in-
medium hadron masses and repulsive interactions [79].
Around Tc, the susceptibilities χ++

2 and χ−−
2 develop a

swift increase due to chiral symmetry restoration, and
therefore the change of their effective masses. They con-
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FIG. 5. Scaled variances, Rαβ
2,1 for different temperatures. Also shown is the ratio RB

2,1, for the net-baryon number susceptibility.

We note that the ratio, R+−
2,1 , is shown with the negative sign. The dashed and dotted vertical lines mark baryon chemical

potentials for the liquid-gas and chiral crossover transitions, respectively. In the top panel, the inset figures show RB
2,1 in the

vicinity of the chiral crossover transition.

tinue to grow at higher temperatures. Up to Tc, the cor-
relation χ+−

2 is almost negligible. The reason is that the
N− resonance is thermally suppressed at low tempera-
tures due to its high mass. The correlation only becomes
relevant in the vicinity of the chiral crossover, where the
negative-parity state becomes swiftly populated. The full
net-baryon number susceptibility saturates and gradually
decreases to zero at high temperatures due to the non-
vanishing correlation between the baryonic chiral part-
ners. We note that χ+−

2 is negative at vanishing µB .

Next, we turn to finite baryon chemical potential. In

Fig. 4, we show the susceptibilities χαβ
2 for different tem-

peratures. At T = 30 MeV, the net-baryon number sus-
ceptibility develops a peak at µB < 1 GeV, which is a
remnant of the liquid-gas phase transition. At higher
chemical potentials, it develops a plateau with a small
peak around µB = 1.4 GeV, which is a remnant of the
chiral phase transition. The net-nucleon susceptibility,
χ++
2 , overlaps with χB

2 at small µB , which is expected

due to thermal suppression of the negative-parity state.
On the other hand both χ++

2 and χ−−
2 develop strong

peaks around µB ∼ 1.4 GeV. Interestingly, the correlator
becomes negative, and χ+−

2 features a minimum, which
is of similar magnitude as the peaks in χ++

2 and χ−−
2 .

Therefore, the negative correlation between the baryonic
chiral partners causes the suppression of the net-baryon
susceptibility around the chiral crossover [cf. Eq. (22)].
The structure is similar at T = 50 MeV.

At low temperature, the liquid-gas and chiral phase
transitions are well separated. Higher temperature gives
rise to a more complicated structure; the two crossover
lines become closer and finally merge (see Fig. 2). This
is seen in the bottom panels of Fig. 4. The χB

2 features a
peak around the chemical potential where the transitions
happen. This is not reflected in the individual parity
fluctuations; χ−−

2 swiftly increase at the chiral crossover,
while the correlator χ+−

2 starts to decrease.

In Fig. (5), we plot the ratios Rαβ
2,1 for different temper-
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FIG. 6. Ratios Rαβ
2,1 along the crossover liquid-gas (left panel) and chiral (right panel) transition lines defined as the minima of

∂σ/∂µ± (see text for details). Note that in the right panel R+−
2,1 is shown with a negative sign.

atures. At low temperatures, the ratio R++
2,1 is sensitive

to both liquid-gas and chiral crossovers, while R−−
2,1 is

sensitive only to the latter transition. Notably, at the
chiral crossover, the peak R−−

2,1 is much stronger than in

R++
2,1 . On the other hand, similarly to χB

2 , the ratio RB
2,1

is sensitive to the liquid-gas phase transition, however, it
becomes suppressed as compared to R++

2,1 and R−−
2,1 , and

the enhancement due to criticality is essentially invisible
at the chiral phase boundary. We note that in the close
vicinity of the chiral critical endpoint, the RB

2,1 ratio in-
deed shows critical behavior. However, this happens at
much lower temperatures. At small µB , the ratio R+−

2,1 is
negligibly close to zero and deviates from it only when the
negative-parity chiral partner becomes populated, i.e.,
R−−

2,1 deviates from unity. Its minimum value is obtained
in the vicinity of the chiral crossover. This signals the
sensitivity of the correlation between the baryonic chiral
partners to the onset of chiral symmetry restoration. In-
terestingly, R−−

2,1 features a well-pronounced peak at high
temperatures in the vicinity of the chiral transition, while
other quantities do not.

To quantify the differences of fluctuations in the vicin-
ity of the liquid-gas and chiral phase transitions, we
calculate the fluctuations as functions of temperature
along the trajectories obtained by tracing the remnants
of these two transitions, i.e., the corresponding minima of
∂σ/∂µ+ and ∂σ/∂µ− (see the phase diagram in Fig. 2).

The temperature dependence of Rαβ
2,1 along the remnant

of the liquid-gas phase transition is shown in the left
panel of Fig. 6. The ratio R++

2,1 increases toward the
critical point of the liquid-gas phase transition, located
at T ≃ 16 MeV. On the other hand, R−−

2,1 stays close to
unity, due to thermal suppression of the negative-parity
nucleon. As a result the R+−

2,1 vanishes. Therefore, as
the critical point of the liquid-gas phase transition is ap-
proached, the system is dominated by the positive-parity
state and the fluctuations are entirely due to its contri-

bution. In the right panel of Fig. 6, we show the same
quantities along the chiral crossover line. All quanti-
ties diverge at the chiral critical point, which is located
at T ≃ 7 MeV. In this case, the contribution from the
negative-parity state is not negligible close to the criti-
cal point. Their appearance increases the strength of the
correlation between the chiral partners, which becomes
large and negatively divergent. In turn, the ratio RB

2,1

decreases and starts diverging only in the close vicinity
of the chiral critical point. Our results indicate that the
net-proton fluctuations do not necessarily reflect the net-
baryon fluctuations at the chiral phase boundary.

As we have observed, the susceptibility of the negative-
parity state becomes dominant in the vicinity of the chi-
ral critical region. This is even more readily seen in
the ratio of the second to first-order susceptibility. Our
finding suggests the fluctuations of the negative-parity
state provide a good signal to identify the chiral criti-
cal point. We remark, however, on the simplified nature
of this model calculations. In the current model, the
negative-parity state, N−(1535), is treated as a stable
particle with no width, which is known to be of the or-
der of Γ ≈ 150 MeV [63]. It would be vital to explore
the finite width, and decay properties, and to understand
their influence on the fluctuation observables.

V. EFFECT OF REPULSION

The repulsive interactions have little to none effect on
the chiral crossover transition at small baryon chemical
potentials. This is expected due to the vanishing of the
ω mean field at µB = 0. In Fig. 7, we show the suscep-
tibilities for different values of the repulsive coupling gω
and other parameters kept fixed at µB = 0. As expected,
for vanishing coupling, fluctuations are the largest, and
the correlator χ+−

2 vanishes. As the value of gω increases,
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FIG. 7. Susceptibilities, χαβ
2 at vanishing baryon chemical

potential for different values of the repulsive coupling gω. The
solid, dashed and dotted lines show χ++

2 , χ−−
2 , and −χ+−

2 ,
respectively.
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FIG. 8. Susceptibility of the net-baryon number density at
µB = 0 as a function of temperature for different values of
the repulsive coupling constant gω.

the fluctuations of the positive- and negative-parity state
become suppressed. At the same time, finite gω implies
finite correlations, which otherwise vanish at µB = 0.
With increasing the coupling, the correlations become
more negative, further suppressing the total net-baryon
number fluctuations. Thus, it is the correlation between
the baryonic chiral partners that non-trivially modifies
the net-baryon number fluctuations.

While in-medium effects due to chiral symmetry
restoration may spoil agreement between the HRG model
and LQCD results on the second-order susceptibilities,
it can be potentially restored by tuning the strength of
repulsive interactions. This can be deduced from Fig. 8,
where we compare susceptibilities of the net-baryon num-
ber density χB

2 for different values of the repulsive cou-
pling constant. For vanishing repulsive coupling, the sus-

T
[M

eV
]

µB [MeV]

2.0gω
1.0gω
0.5gω
0.0gω

0.02

0.06

0.1

0.14

0.18

0.22

0 0.2 0.4 0.6 0.8 1

χ+−
2 > 0

FIG. 9. Normalized phase diagram for different values of re-
pulsive coupling gω. The lines correspond to vanishing corre-
lator χ+−

2 and the areas enclosed by them show regions where
χ+−
2 > 0.

ceptibility swiftly increases and overestimates the HRG
result in the vicinity of the chiral crossover. In general,
as the repulsive coupling increases, the fluctuations tend
to decrease [80]. For twice the value of the original cou-
pling, the susceptibility already underestimates the HRG
result. Therefore, by choosing value somewhere in be-
tween, the in-medium effects would cancel out and the
agreement with HRG fluctuations would be restored.

To see the effect of the repulsion on the phase struc-
ture, in Fig. 9, we plot the phase diagram of the model
in the T − µB plane for different values of the repul-
sive coupling gω. In general, smaller repulsive coupling
yields the region where χ+−

2 > 0 more tilted to the left.
Nevertheless, the qualitative structure remains the same,
regardless of the presence of the repulsive forces. We note
that in Fig. 9, we do not show results for T < 20, where
the liquid-gas and chiral transitions become of first-order
and additional effects, such as non-equilibrium spinodal
decomposition have to be addressed. These interesting
effects have been already explored in the context of the
Nambu–Jona-Lasinio model [81, 82]. This is, however,
beyond the scope of the current work and we plan to
elaborate on this elsewhere.

Now, we focus on the properties of the correlator, in
particular on the change of its sign at finite chemical
potential. Because the qualitative behavior of the corre-
lator does not depend on the repulsive interactions, we
consider gω = 0 and neglect the vector channel. Then,
the correlator in Eq. (23) simplifies to the following

χαβ
2 =

1
∂2Ω̂
∂σ2

∂n̂α

∂σ

∂n̂β

∂σ
=

1
∂2Ω̂
∂σ2

∂n̂α

∂mα

∂n̂β

∂mβ

∂mα

∂σ

∂mβ

∂σ
. (31)

Since the curvature, ∂2Ω̂
∂σ2 > 0 is positive, the sign change

in the correlator at finite baryon chemical potential is
related to the change of the sign of ∂m±/∂σ. From
Eq. (11), one sees that at σmin, the correlator χ+−

2
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changes sign, while χ++
2 and χ−−

2 stay positive. Indeed,
we have confirmed this numerically for vanishing repul-
sive interactions. Nevertheless, in a more realistic sce-
nario with repulsive interactions, they provide additional
sources of negative correlations. This is seen in Fig. 9,
where the vanishing χ+−

2 lines lie at µB < 1 GeV, where
σ > σmin (compare with Fig. 2). Therefore, the overall
behavior of the correlator is given by a non-trivial inter-
play between chiral symmetry restoration and repulsive
interactions.

VI. CONCLUSIONS

We have investigated the net-baryon number density
fluctuations and discussed the qualitative role of chiral
criticality of hadronic matter at finite temperature and
baryon chemical potential. In particular, we have studied
for the first time the susceptibilities of the positive- and
negative-parity chiral partners, as well as their correla-
tions. To this end, we have used the parity doublet model
in the mean-field approximation. We have analyzed the
thermodynamic properties and the susceptibility of the
net-baryon number.

We have confirmed that in the vicinity of the liquid-gas
phase transition, the net baryon number density is dom-
inated by the contribution of the positive-parity state.
In contrast, this does not need to be the case at the
boundary of the chiral crossover. We find that there,
the fluctuations of the net-baryon number density are
suppressed, compared to the positive-parity state fluctu-
ations (i.e. net-nucleon). This qualitative difference is
not only due to the presence of the negative-parity state
but largely due to the non-trivial correlation between the
chiral partners.

The qualitative differences in the net-nucleon and net-
baryon fluctuations can also be useful in searching for
possible critical points in the QCD phase diagram. In
particular, our results bring significant and nontrivial dif-
ferences in the critical behavior of the net-nucleon fluc-
tuations in the vicinity of the liquid-gas and chiral phase
transitions. This strongly suggests that in order to fully
interpret the critical properties of the matter created in
heavy-ion collisions, especially in the forthcoming large-

scale nuclear experiments FAIR at GSI and NICA in
Dubna, it is essential to consistently incorporate and un-
derstand the chiral in-medium effects carried by the bary-
onic parity partners and their correlations.

To reach further theoretical insights and understanding
of the QCD phase diagram, it is important to determine
correlations between baryonic chiral partners of opposite
parity in lattice QCD calculations. Furthermore, to elab-
orate on the relationship between net-nucleon and net-
baryon fluctuations, it is desirable to perform more re-
fined calculations of the higher-order susceptibilities and
their ratios. It is also useful to understand the role of
finite width and decay properties of the negative parity
states on the fluctuation observables. Work in these di-
rections is in progress and will be reported elsewhere.
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hoff, M. K. Köhler, J. Stachel, and M. Winn, Nucl. Phys.
A 1010, 122176 (2021), arXiv:2011.03826 [nucl-th].

[78] V. Vovchenko, M. I. Gorenstein, and H. Stoecker, Phys.
Rev. Lett. 118, 182301 (2017), arXiv:1609.03975 [hep-
ph].

[79] M. Marczenko, K. Redlich, and C. Sasaki, Phys. Rev. D
103, 054035 (2021).

[80] T. Kunihiro, Phys. Lett. B271, 395 (1991).
[81] C. Sasaki, B. Friman, and K. Redlich, Phys. Rev. Lett.

99, 232301 (2007), arXiv:hep-ph/0702254.
[82] C. Sasaki, B. Friman, and K. Redlich, Phys. Rev. D 77,

034024 (2008), arXiv:0712.2761 [hep-ph].

http://dx.doi.org/10.5506/APhysPolBSupp.7.117
http://arxiv.org/abs/1312.7659
http://dx.doi.org/10.1016/j.physletb.2012.10.001
http://arxiv.org/abs/1201.0693
http://arxiv.org/abs/1201.0693
http://dx.doi.org/10.1103/PhysRevC.90.024915
http://dx.doi.org/10.1103/PhysRevC.90.024915
http://arxiv.org/abs/1404.7540
http://dx.doi.org/10.1103/PhysRevC.92.044904
http://dx.doi.org/10.1103/PhysRevC.92.044904
http://arxiv.org/abs/1506.03408
http://dx.doi.org/10.1038/s41586-018-0491-6
http://arxiv.org/abs/1710.09425
http://arxiv.org/abs/1710.09425
http://dx.doi.org/10.1103/PhysRevLett.105.252002
http://dx.doi.org/10.1103/PhysRevLett.105.252002
http://arxiv.org/abs/1008.1747
http://dx.doi.org/10.1103/PhysRevC.92.055206
http://arxiv.org/abs/1507.06398
http://arxiv.org/abs/1507.06398
http://dx.doi.org/10.1140/epja/i2016-16235-6
http://dx.doi.org/10.1016/j.nuclphysa.2021.122176
http://dx.doi.org/10.1016/j.nuclphysa.2021.122176
http://arxiv.org/abs/2011.03826
http://dx.doi.org/10.1103/PhysRevLett.118.182301
http://dx.doi.org/10.1103/PhysRevLett.118.182301
http://arxiv.org/abs/1609.03975
http://arxiv.org/abs/1609.03975
http://dx.doi.org/10.1103/physrevd.103.054035
http://dx.doi.org/10.1103/physrevd.103.054035
http://dx.doi.org/10.1016/0370-2693(91)90107-2
http://dx.doi.org/10.1103/PhysRevLett.99.232301
http://dx.doi.org/10.1103/PhysRevLett.99.232301
http://arxiv.org/abs/hep-ph/0702254
http://dx.doi.org/10.1103/PhysRevD.77.034024
http://dx.doi.org/10.1103/PhysRevD.77.034024
http://arxiv.org/abs/0712.2761

	Fluctuations and correlations of baryonic chiral partners
	Abstract
	Introduction
	Parity doublet model
	Cumulants and susceptibilities of the net-baryon number
	Results
	Effect of repulsion
	Conclusions
	Acknowledgements
	References




