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Nonlinear flows in nearly incompressible hydrodynamic fluids

S. Dastgeér and G. P. Zank
Institute of Geophysics and Planetary Physics (IGPP), University of California, Riverside, California 92521, USA
(Received 26 June 2003; revised manuscript received 18 February 2004; published 16 June 2004

Nearly incompressible viscous hydrodynamic fluids are investigated using nonlinear fluid simulations.
Nearly incompressible fluids possess acoustic modes through high frequency fluctuations associated with the
subsonic fluid Mach number. These modes, in combination with the fluid modes, drive linearly unstable modes
and nonlinearly excite flows. The nonlinear flows damp the long wavelengths in our simulations, and are
dissipated resonantly when certain nonlinear conditions are satisfied. In agreement with our analytic analysis,
the nonlinearly saturated flows in nearly incompressible fluids are generated through the action of the Reynolds
stress forces.
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I. INTRODUCTION tions show that such interactions lead to nonlinearly gener-
) . ated flows through the action of the Reynolds stresses on the

~ One of the most remarkable of astrophysical observationgy,iq. This discovery is supported by our analytical studies of
is the Kolmogorov-like interstellatelectron density spec-  the zero-frequency component of the nonlinearly saturated
trum [1], extending over decades and decades in wave NUNows.
ber space. Remgrkably, similar density spectra are observed The rest of the paper is organized as follows. The basic
in the solar wind [2] as well. The ubiquity of the equations of the NI model are described in Sec. Il. The linear
Kolmogorov-like density spectrum led Montgomeey al.  odes giving rise to acoustic waves in the low Mach number
[3] to suggest an explanation based on coupling incompresgy,iq and the instability excited nonlinearly by thg =0
ible MHD fluctuations to density fluctuations through a moge are described in Sec. lil. Section IV deals with nonlin-
pseudosound” relatiof4]. The precise nature of the rela- ey fluid simulations that demonstrate the excitation of non-
tionship between an incompressible fluid description anqinearly saturated flowk,=0 modg instability. A theoretical
compressible fluctuations was elucidated with the developpasis for understanding the nonlinear flow mode in our non-
ment of “nearly incompressible{NI) hydrodynamics and |inear fluid simulations is also discussed. The mode coupling
MHD [2,5-10. Through the development of a careful expan-ca|cylation explains qualitatively the interaction between

sion technique, the lowturbuleny Mach number fluid equa- onjinear flow mode and the underlying turbulence. Conclu-
tions can be expanded to include the effects of acoustic flucsiony are discussed in Sec. V.

tuations as leading-order corrections to the incompressible

fluid model. The resulting equatiori8] comprise the famil-

iar incompressible hydrodynamical and MHD equations at Il. MODEL EQUATIONS
leading order, together with a modified set of compressible
hydrodynamical equations in which sources due to back—Z
ground incompressible fluid modes drive linearly unstabl
modes. Thus, the NI fluid equations retain compressibility t
first order, producingmagnetgacoustic modes as well as
convective modes. NI hydro and MHD have been surpris
ingly successful in the solar wind where predicted correla
tion are seen frequentlyp,8] and predicted anisotropies are
observed11]. However, the basic nonlinear developmentof ¢ . . - .

NI hydro and MHD remain completely unexplored and this EU +U”- VU =-Vp +uVU", V. .U"=0.
report presents the first fully self-consistent investigation of

NI hydrodynamics. We find that NI hydrodynamics admits (1)

remarkably rich and complex phenomena. . Here, the superscript indicates that the velocity” and the
In this paper we explore the nearly incompressible hydro'pressurep” variables satisfy the incompressible fluid equa-

dynamic equations using nonlinear fluid simulations. We fo+jons Eq.(1). The incompressible pressure satisfie&™=

cus primarily on wave-wave interactions between nearly in—y .(y=. vU=). The weakly perturbed compressive fluctua-

compressible fluctuations driven by background viscousions about the incompressible modetenoted by super-

incompressible fluctuations. The NI fluid models incorporat—scriptoo) for velocity, pressure, and density variables are rep-

ing thermal transport are considered elsewhere. Our simulggsented byU=U~+eU,,p=1+eXp*+p’), and p=1+€%py,
respectively. The nonlinear fluid equations describing the dy-
namical evolution of the compressible fluctuations in the NI

*Electronic address: dastgeer@ucr.edu hydrodynamical descriptiofi6,9] contain the compressible

The set of NI hydrodynamics fluid equations derived by
ank et al. [9] couple convective fluid motion with high

requency acoustic fluctuations describing appropriately the
0high B (where B is the ratio of plasma and magnetic field
pressureginterstellar plasmas. The background incompress-
ible fluid can be described by the usual equations of incom-
‘pressible hydrodynamics,
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30r fluctuations(shown by the dashed-dotted, and long-dashed
I A lines in Fig. ) unlike the purely incompressible linear fre-
20} I A P quency modéthe solid line in the Fig. )1 The linear growth

rate (curves with squares and triangles in Fig.iddicates

that no linear instability can occur for tte=0 mode(essen-

tially the nonlinear flow modg although such a mode could
possibly be generated via inverse cascading processes that
are inherently governed by the nonlinear interactions. On the
other hand, finit&k, modes can give rise to linear instabilities

in the form of streamerlike structures. The linear growth rate
for high k-modes is stabilized by viscous effects. The nearly
incompressible equations are therefore a modified Eulerian
system, which contains acousticlike waves, and linearly un-

- stable modes, unlike the Euler fluid equations, Hg. The

4 6 8 10 dominant nonlinear interactions are due to convective non-

FIG. 1. Linear frequency spectrum describing normal and unJinear effects, Reynolds forces, such@s-vU,,U,-VU*,
stable modes of NI hydrodynamics. Acoustic modes in the NI fluidsetC., all associated with the incompressible background fluid.
are represented by dashed-dotted, and long-dashed curves and tHee nonlinear interactions evidently couple the incompress-
linear frequency of the incompressible fluid modsslid line). The  ible fluid modes with the acoustic component in a complex
linear growth rate of NI modes are represented by hollow squareg1anner which is best revealed through nonlinear fluid simu-
and filled trianglegon the righty-axis between +1 to -1 lations.

fluid velocity U, the compressible pressupé and the den- IV. NONLINEAR ELOWS
sity p;, which satisfy
We have developed a nonlinear codélH) to solve the
iU1+U°°- VU, +U;- VU =- Vp +V2U”, (2) nonIinea}rIy coupleq set of NI_ and IN equatio[iae_., Egs.
at (1)<4)] in two spatial dimension§l2]. The code is based
upon a Fourier harmonic expansion of the evolution vari-
ap' . X ap° . ables, using a 2/3 dealiased pseudospectral method in space.
I‘*U -Vp+V 'Ulz_E_U -Vp*, (3 The time integration used a Runge-Kutta fourth order
method, with 6< 1071 accuracy in the time step. Periodic
boundary conditions are imposed along thand they di-
Ipy +U”. Vp,+V -U;=0. (4) rect?ons._The initial states of both_ fluids, i.e., IN and NI, are
at set identically to coherent wavéBig. 2(a)].

The above equations are normalized, and correspond to their As the NI fluid is driven by IN-fluid modes, the NI-fluid
; q ; . ' P vortices are, first, subject to the linear instability and begin to
respective unnormalized variables as follows},/ Mg

= i . _ _ ) form streamerlike structuregadially extendey for which
=Uy, v"%p" 1 po=P , ¥*%p1/ po=p1, v/ Y'°Mi=v. The time the k, modes are finite. Hence the vortices appear to be
and space coordinates are normalized by characteristic timg,rynk in they direction, and are elongated in tkelirection.
and length scales, respectivelyV =V ,ugt/L=t. Note that With the saturation of the linear instabilities, nonlinear
the bars have been removed from all the normalized variinteractions begin to dominate the dynamics. Under the in-
ables for the sake of convenience. Héflg=u,/C, and € fluence of nonlinear instabilities, the streamerlike vortices
:7|v|§, whereMg is the fluid Mach numbery is the ratio of become unstable to nonlinear perturbations and further
the specific heats, an@ is the acoustic speed associatedevolve through coalescence and merging processes to form

with the sound waves:§:yp0/p0. nearlyy-independenti.e., k,~ 0) flows that vary along the
direction (k, # 0) [see Fig. 2c)]. Such flows are commonly
Il LINEAR INSTABILITY known as nonlinear flowgradially localized, poloidally

elongated, i.e.k,~0 modeg in the literature, and have at-

A linearized dispersion relation, about constant speedracted a great deal of attention in magnetically confined fu-
along they direction, obtained from the system of Egs. sion plasma$13]. The fluid density fluctuations propagate as
(1)<(4) clearly indicates the presence of the high frequencycompressional waves along tliedirection through alternate
component of the acoustic modes in the nearly incompressompression and rarefaction procesgex shown herg The
ible hydrodynamic fluid. These modes appear in the subsonipropagation of these waves in a preferential direcfio,
hydrodynamic fluid through a first order expansion of thealong they direction is due to the nonlinearly generated
fluid variables and represent compressible effects to the lowflows which convect the density fluctuations parallel to them
est order[9]. The dispersion relatioril2], in general, is [see Eq(4)]. The energy associated with the entire evolution
rather complex, and is shown in Fig. 1 for the simple casas depicted in Fig. 3, where the normalized kinetic energies
whenk,=0. The real frequency varies quadratically with  (KE) of the two fluids are equal a=0. For very small but
because of the coupling between incompressible and acousfioite viscositiequ & v), the KE associated with the IN fluid
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(a) (b) (c)

-5 0 5 -5

-5 0
X X

0 5
X
FIG. 2. (Color) Evolution of waves in NI fluid. Shown here are the constant contours of fluid velfiity(a) Initial states for both IN

and NI fluid modes consist of large scale coherent wa@®sEnd of linear phase shows formation of streamer-like vortices, which further
merge with each other due to nonlinear interactions, and form nonlinear flows modécas in

remains almost constant, while it grows linearly for the NI sider the nonlinear flow modes of zero frequency &yw0.
fluids due to unstable modes. It is observed in our simulatior-or this purpose, we first take the curl of E¢E) and(2) to
that the energy associated with the nonlinearly generatedliminate the pressurgs andp’, and obtain the incompress-
flow mode provides the dominant contribution to the KE ofible and nearly incompressible vorticity equations by ex-
the NI fluid. The total KE of the NI fluid evolves through pressing the respective velocity fields in terms of scalar func-
three different stages, which repeat themselves periodicallyions. The incompressible and nearly incompressible
These correspond to nonlinear growth, saturation, and dissielocities are therefore representeds=2x V ¢ and U,
pation stages. During these stages the modes, driven by lim=zX V ¢+ V. This allows us to retain the effect of com-
ear instabilities, acquire nonlinear amplitudes and eventuallpressibility in the nearly incompressible hydrodynamic fluid.
excite nonlinear flows. The flows thereafter quench the turA reductive perturbation method4] is then applied to the
bulence in the saturation stage, and consequently the energgt of nonlinearly coupled NI and IN fluid vorticity equa-
associated with the turbulence falls off. The nonlinear flowstions. The underlying method involves expansion of the de-
are destabilized further by the nonlinear instability mechapendent variables in orders efand equating terms of equal
nism and are dissipated. At the same time, the turbulencerder. The higher order terms in the expansion then yield the
grows and the entire dynamics repeats itself as describexkro frequency componeriie., I=0 mode, which essen-
above. Thus the turbulence and the flows regulate each othgally corresponds to the nonlinearly saturated amplitude of
quite systematically and their interplay is shown in the Fig.the nonlinear flows. Using this method, we calculate the
4. We further find that this phenomena is generic to a collecsaturated potential of zero frequency, i.e., the flow. The vari-
tion of large number of interacting waves. ables are expanded in spherical harmonics usifg

To understand the mechanism leading to the generation &fy, @@, with 0@W=3, @E,")(x,g, nexdit(ky-wt)],
nonlinearly excited flows observed in our simulations, con-where ® Corresponds to the incompressible and the nearly

incompressible velocity potentials and i variables,e is a

10° 3
i K.E of NI fluid
°>5 |
510°F Q
o= i =
(SR | ‘3
]
3 10° =
5 £
= <
> 10°
F T T 7T T T 7T TREof INfluid
20 20 60 80
time
FIG. 3. The kinetic energy associated with the (dashed-ling FIG. 4. The nonlinear flow modeésolid curvg and turbulence
and NI (solid line) fluids. (dashed curveare shown in an arbitrary units.
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smallness parameter for the amplitude of the variabjes,
=¢e(y—ut), and 7=¢t. The two fluid viscositiesw and v are
ordered as~(é?). Tr]e amplitudes are subject to the reality
condition,®”=0'? and®"=0 for ¢=+1. The first order
¢! equation then readily yield® ((w,k)¢," =0 which is the
dispersion relation fof =1, i.e.,D;(k,w)=w-kyw. Here we
have assumed a sinusoidal dependence for the perturbed
variables, ¢\ = (&, Isin kyx, and ¢ =y (£, Dsin kyx,
wherek,,=m(27/L)(m=1,2,..) andL is the length of the
system. To second order, the vorticity equations introduce
terms of the typeJ”- VU, which survive only for complex
w. These are transport fluxes. In our treatment, we have re- S T S —"
tained the sources te? and higher orders. The transport ZOtime 40
fluxes due to nonlinear terms arise only at #eand higher
orders. We, however, omit these terms since they are bal- FIG.5. Spectrally averaged nonlinear interaction texj, (in
anced by sources in the steady state. The following equatio@bitrary units.
is then obtainediD,(w, k) y? + D,/ dk,d 4" 3£=0.

At the third order, we obtain the zero-frequency compo-rather stringent condition on the nonlinear flows dynamics,
nent of the nearly incompressible fluid, i.e., the nonlinearand is given asAkl’kZ:kg?q'bkl;]/kz—kﬁkzrjxkl. The nonlinear

Nonlinear interactions

flow mode(I=0 modg as flow mode will therefore grow when the spectrally averaged
Eiv Ik o 1 2 Akl'kz is finite, and this is shown in Fig 5. For longer wave-
u?=2 _<_u + —)— V)2, 5 lengths, the nonlinear interaction paramédte becomes
b =92 u\ w2+ 2 u- 07X2|¢1 | (5 g p &R, i)

negligibly small and results in a weakening of the nonlinear
whereu is the group velocity of the fluid. Here, and y are, interactions, which then leads to nonlinear damping of the
respectively, the real frequency and the growth rate of thdlows [Figs 4 and %

nearly incompressible fluctuations. In arriving at [€s), we

make use of thep” component from the incompressible V. CONCLUSION

fluid vorticity equation to evaluate the nonlinear terms of the 4,y generation in an Eulerian fluid has been reported

nearly incompressible fluid vorticity, which primarily_results [15] in a system with no unstable modes, resulting instead
from the Reynolds stress forces in the fluid equations. Werom infinitesimally small sheared-flow perturbations which
therefore see, analytically, that the generation of flow in OUlaphance the Reynolds stresses. By contrast, we find the re-
fluid simulations is a consequence of the Reynolds stressega kaple result that the response and interaction of acoustic
that are proportional to~|4."[?, and that the flows vary modes in a fluid to and with incompressible turbulence leads
along thex direction. As observed in our simulation the non- to the generation of periodic nonlinear flows, driven by ef-
linear flow mode, in the saturated state, is destabilized. Tgective Reynolds stresses. By virtue of their structure, the NI
understand what damps the flow mode, we derive the norhydro equations are ideally suited to the investigation of
linear mode coupling equations for the flow from the IN andwave phenomena in a fully turbulent medium and our simu-

NI fluid vorticity equations, lations here reveal the rich nonlinear complexity of this prob-
W B K L Ie_m. The aniso?ropic ]‘Iow generated due_ to nonlinear insta-
Tk _ Vk§¢k(t) = > _Zz{kgxqgkl(t)wkz(t) bility in our 5|mullat|on con_vects passwely' the weaKIy

Jt k=k+k, Ky compressive density fluctuations and may hint that aniso-
o~ L~ >~ o~ tropic density fluctuations observed in the solar wid] in
_k1x¢k2(t)‘/’k1(t)+kly[d’kl(t)‘/’kz(t) the high plasma regime (8=1) could possibly be ex-

plained on the basis of nearly incompressible thgargj.

- i (O (O]}, (8)

wherellfk:Tp(kx,ky:O). The small scale viscous effects here

cannot dissipate the long wavelength flows. Hence the only S. D. and G.P.Z. was supported in part by a NASA Grant
mechanism responsible for dampigand growth of flows is ~ Nos. NAG5-11621 and NAG5-10932 and an NSF Grant No.
the nonlinear interaction term in E@6) which imposes a ATM0296113.
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