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ARTICLE

Functional annotations of three domestic animal
genomes provide vital resources for comparative
and agricultural research
Colin Kern1, Ying Wang1, Xiaoqin Xu 1, Zhangyuan Pan1, Michelle Halstead 1, Ganrea Chanthavixay1,

Perot Saelao 1, Susan Waters1, Ruidong Xiang2,3, Amanda Chamberlain 3, Ian Korf4, Mary E. Delany 1,

Hans H. Cheng5, Juan F. Medrano 1, Alison L. Van Eenennaam 1, Chris K. Tuggle 6, Catherine Ernst 7,

Paul Flicek 8, Gerald Quon 9, Pablo Ross 1✉ & Huaijun Zhou 1✉

Gene regulatory elements are central drivers of phenotypic variation and thus of critical

importance towards understanding the genetics of complex traits. The Functional Annotation

of Animal Genomes consortium was formed to collaboratively annotate the functional ele-

ments in animal genomes, starting with domesticated animals. Here we present an expansive

collection of datasets from eight diverse tissues in three important agricultural species:

chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of

these datasets and those from the human and mouse Encyclopedia of DNA Elements

projects reveal that a core set of regulatory elements are functionally conserved independent

of divergence between species, and that tissue-specific transcription factor occupancy

at regulatory elements and their predicted target genes are also conserved. These

datasets represent a unique opportunity for the emerging field of comparative epigenomics,

as well as the agricultural research community, including species that are globally important

food resources.
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Genetic improvement of domestic animal species has been a
key driver of reducing the environmental footprint of
animal source foods, which are of critical nutritional

importance in developing countries1. Climate change and recur-
ring and novel pandemics, such as the current COVID-19 crisis,
have unprecedented impacts on food security which, along with
the ever-growing human population and increasing demand for
food, mean that improvements in food production and sustain-
ability are of critical importance. Chicken, cattle, and pig are three
of the most important domestic animal species that contribute
economical and nutritionally valuable protein to global food
production1. Understanding the genetic basis of economically
important complex traits in domestic animals is a primary focus
of animal agriculture, as such knowledge provides the essential
basis for the continued genetic improvement necessary to meet
the projected increased demand using fewer animals. Further-
more, these species are important for their contributions to our
understanding of evolutionary biology, human developmental
biology, disease, and clinically relevant medicine2. It is widely
accepted that most of the causative genetic variants associated
with complex traits are located in non-coding genic and inter-
genic regions that regulate gene expression3. Human and mouse
catalogs of regulatory elements (REs)4–7 have been critical for
identifying genetic variants associated with health and disease8,
and the recent completion of ENCODE phase 3 has further
highlighted the importance of functional elements on evolu-
tionary biology, human medicine, and genotype-to-phenotype
prediction9,10. While some studies have investigated the evolution
of regulatory sequences in non-model and non-mammalian
species11–17, broad questions still remain as to what extent the
epigenomic and regulatory logic is conserved, especially at large
evolutionary distances.

Here we present an eight-tissue functional annotation of
the chicken, pig, and cattle genomes as one of the pilot projects of
the Functional Annotation of Animal Genomes (FAANG)
consortium16,18–24. Comparative analysis of these datasets, along
with complementary datasets from the human and mouse
ENCODE projects25,26, find low levels of conservation in the
sequence and position of REs, especially enhancers. On the other
hand, tissue-specific patterns of transcription factor motif
enrichment are highly conserved. The functional epigenetic
landscape of some REs are found to be conserved across all five
species, including chicken, and are associated with genes involved
in basic metabolic processes. Prediction of enhancer target genes
further reveal that chickens possess a reduced set of enhancers
relative to mammals that collectively regulate a similar number of
genes, resulting in each chicken enhancer being more multi-
functional. These analyses are, to our knowledge, the largest
reported genome-wide comparison of REs across birds and
mammals in terms of the set of tissues and assays used, and
provide a vital data resource for the agricultural research
community.

Results
Data overview. We performed genome-wide functional annota-
tion using the experimental design shown in Fig. 1a. Briefly, six
epigenetic data types were profiled in eight tissues (liver,
lung, spleen, skeletal muscle, subcutaneous adipose, cerebellum,
brain cortex, and hypothalamus) collected from sexually mature
male chickens, pigs, and cattle. The epigenetic data generated
included four histone modifications (H3K4me3, H3K27ac,
H3K4me1, H3K27me3) and one DNA-binding protein (CTCF)
using chromatin immunoprecipitation followed by sequencing
(ChIP-seq)27,28, and chromatin accessibility using DNase I
hypersensitive sites sequencing (DNase-seq)29 in chickens and

Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq)30 in cattle and pigs. Transcriptome sequencing was
also performed to correlate gene expression with regulatory
region activity.

A total of 240 ChIP-seq libraries were generated and
sequenced to produce 5,021,232,911 reads from chicken samples,
4,281,659,559 from pig samples, and 6,813,035,002 from
cattle samples. Additionally, 15 DNase-seq libraries totaling
805,274,643 reads were produced as well as 1,038,779,370 ATAC-
seq reads from 16 pig samples and 1,190,252,653 ATAC-seq
reads from 15 cattle samples. The data has been deposited in
public repositories (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE158430) and a UCSC track hub is available to view
the chromatin state prediction, predicted enhancer–gene
pairs, and assay read depth (http://farm.cse.ucdavis.edu/~ckern/
FAANG/).

All data generated were held to stringent data quality
standards that closely mirrored the ENCODE consortium’s
criteria31 (Supplementary Table 1, Supplementary Data 1 and 2).
Hierarchical clustering based on the Pearson correlation of read
depth in bins across the genome for the five ChIP-seq marks and
the chromatin accessibility assays demonstrated data reproduci-
bility between two biological replicates and specificity across
tissues (Supplementary Figs. 2–4). The reproducibility of the
RNA-seq data was similarly verified by principal component
analysis (PCA) of gene expression values both within each
species (Supplementary Fig. 5a) and across all three species
(Supplementary Fig. 5b).

Identification and annotation of REs. The data generated
allowed the discovery of co-occurring histone modifications,
CTCF binding, chromatin accessibility, and gene expression,
which was used to identify regions with regulatory function and
to link them with candidate target genes. We therefore first
predicted genome-wide chromatin states in each tissue within
each species using ChromHMM32 to categorize genomic regions
into 14 distinct chromatin states defined by their combination of
ChIP-seq marks (Fig. 1b). Labels assigned to each state were
determined based on previously characterized chromatin states33

and include active promoter and transcription start site (TSS)
states, primarily defined by the presence of H3K4me3, active
enhancer states with H3K27ac and H3K4me1, polycomb
repressed elements marked by H3K27me3, and insulators
bound by CTCF. 53%, 40%, and 31% of the chicken, pig, and
cattle genomes, respectively, was annotated with a ChromHMM
state corresponding to any epigenetic signal in at least one
tissue, i.e., any ChromHMM state except for “Low Signal” which
indicated an absence of any of the five ChIP-seq marks profiled.
The percentage of the genome annotated with some regulatory
function varied from tissue to tissue (Fig. 1c), reflecting the dif-
ferent regulatory programs responsible for tissue-specific phe-
notypes, as exemplified by the tissue-specific activity of the
albumin (ALB) gene, which is highly expressed in the liver
(Supplementary Fig. 1b).

These predicted chromatin states were then used to identify
REs in each of the domestic animal genomes and annotate them
with the tissues in which they were active. Next, these REs were
classified as TSS proximal, genic, or intergenic based on their
genomic location relative to annotated coding genes. Enrichment
for each of the histone modifications assayed indicated that TSS
proximal REs are characterized primarily by a strong H3K4me3
enrichment, consistent with promoter activity34–36. A bimodal
pattern of H3K4me1 enrichment in TSS proximal REs was
present, with stronger enrichment flanking the central point
where the peaks of H3K4me3, H3K27ac, and chromatin
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accessibility enrichment lie. This profile matches the enrichment
of ChromHMM states around annotated TSSs, primarily with the
“Active Promoter” and “Flanking TSS” states (Supplementary
Fig. 1a). Genic and intergenic REs had similar profiles, with
H3K27ac and H3K4me1 being the most enriched (Supplementary
Fig. 1c), as is common for enhancer regions36–38.

The number of REs identified in chickens was approximately
half that found for pigs and cattle (Fig. 1d). The difference
between chicken and mammals was mostly due to a lower
number of genic and intergenic REs, while the number of TSS
proximal REs was similar. This coincides with chickens having a
similar number of genes despite the average length of gene bodies
and the total size of the genome being smaller relative to
mammals39 (Chicken: 1 GB, Pig: 2.5 GB, Cattle: 2.7 GB). The
majority of active REs (75±12% in chickens, 75 ± 12% in pigs, and
69±15% in cattle) were in chromatin accessible regions as
determined by DNase-seq or ATAC-seq data (Fig. 1e), supporting
their active function. We also observed that genic and intergenic
REs had more tissue-specific activity as opposed to TSS proximal

REs (Supplementary Fig. 1d). Furthermore, of the 11,476, 12,203,
and 13,074 genes expressed in chickens, pigs, and cattle,
respectively (defined as TMM-normalized counts per million of
at least 1), 70%, 79%, and 78% contained annotated active TSS
proximal REs.

These results, taken together, revealed patterns of tissue-
specificity and enrichment of histone modifications following
known characteristics of promoters and enhancers. TSS proximal
REs were promoter-like, as expected, while genic and intergenic
REs exhibited characteristics of enhancers, with no discernible
difference between the two genomic locations. Therefore, these
REs are referred to as promoters, genic enhancers, and intergenic
enhancers, respectively, in the following text. We then conducted
comparative epigenomic analyses to explore the evolutionary
conservation of REs across five species including human
and mouse.

A core set of REs is conserved across divergent amniotes.
Previous comparative studies from ENCODE and modENCODE

Fig. 1 ChromHMM integrates ChIP-seq data to predict chromatin states. a Experimental design schematic for the study. b Emission probabilities of the
14-state ChromHMM model. c Percent of the genome annotated with any functional state (any state except “Low Signal”). d The number of regulatory
elements identified in each species, separated by TSS proximal (within 2 kb of annotated TSS), genic (overlapping annotated gene body), and intergenic.
e Percentage of regulatory elements that co-occurred with open chromatin in the tissues in which they were active.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22100-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1821 | https://doi.org/10.1038/s41467-021-22100-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


have shown that while some properties of gene regulation are
highly conserved, the specific sequence and genomic position of
functional REs are not40,41. To investigate this further with a
broader selection of species, we included human and mouse along
with our three domestic animal species. The coordinates of each
regulatory element from each of the five species were mapped to
the genomes of the other species using the Ensembl v99 align-
ments of amniota vertebrates. As expected, the greater the evo-
lutionary distance between species, the lower percentage of REs
mapped (Fig. 2a, b). Of particular note, intergenic enhancers had
a lower mapping rate compared to promoters and genic enhan-
cers at all evolutionary distances (Student’s t-test, p-value < 0.05),
while the mapping rates between promoters and genic enhancers
were not significantly different at any evolutionary distance. We
then checked if the mapped regulatory element from one species
shared regulatory activity in the other species, indicating func-
tional conservation of the genomic location across species. Our
analysis revealed that the epigenomic landscape of mapped

promoters was conserved at an average rate of 77 ± 8% between
pairs of species, while the epigenomic landscape of enhancers,
including genic and intergenic, was only conserved at an average
rate of 33 ± 8.1%, even though a similar proportion of promoters
and genic enhancers was mapped at each inter-species compar-
ison (Fig. 2b, c). Interestingly, the rate of epigenomic conserva-
tion for both promoters and enhancers declined at a minimal
degree as evolutionary distance increased, with only one statisti-
cally significant difference in genic enhancers, between group A
(conserved in pig and cattle, 45%) and C (conserved in all
mammals, 38%); and two in intergenic enhancers, between group
C (32%) and D (conserved in mammals and chicken, 25%) and
groups A (38%) and D (25%). No significant differences were
observed between groups in promoters. Taken together, our
results suggested that epigenomic conservation among these
five species is independent of evolutionary distance and is not
always correlated with positional conservation among vertebrates
including an avian species.

Fig. 2 Distal regulatory elements are not positionally conserved. a Phylogenetic tree showing the evolutionary distance between species. Most recent
common ancestors (MRCA) are labeled and referenced in Fig. 3b and c. b Percentage of regulatory elements whose genomic coordinates could be mapped
to other species, grouped by evolutionary distance. Each pair of species produces two data points, e.g. Cattle REs mapped to pig and pig REs mapped to
cattle. c Percentage of mapped regulatory elements that were conserved, i.e. overlapped with a regulatory element identified in the target species.
Asterisks indicate p-values <0.05 of a one-tailed Student’s t-test (genic A–C p-value= 0.03304, intergenic A–D p-value= 0.01402, intergenic C and D
p-value= 0.01238). No p-values were <0.01. d KEGG pathways enriched in genes with promoters conserved across all species. Benjamini–Hochberg
adjusted p-values were obtained using DAVID (n= 3380 genes).
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By examining epigenomic conservation within lineages, rather
than just pairwise between species (Supplementary Fig. 6), we
found a set of 9458 REs conserved across the mammals included
in this study, representing similar number of promoters and
enhancers. Including chicken, 3153 promoters and 1452 enhan-
cers were conserved across all five species. This result revealed a
considerable regulatory conservation across over 300 million
years of evolution. For enhancers conserved across all five species,
a very small number were tissue-specific, despite most enhancers
being tissue-specific, suggesting these conserved enhancers are
involved in basic cellular functions universal to all cell types.
Further KEGG42 pathway enrichment of genes with conserved
promoters supports this notion, with the most enriched pathways
related to core metabolic processes (Fig. 2d). While the sequence
and position of enhancers showed low conservation, we next
explored whether higher conservation exists with other features of
REs such as transcription factor binding and the targeted genes
they regulate.

Tissue-specific transcription factor enrichment in active REs is
highly conserved across vertebrates. Transcription factors that
bind to accessible chromatin within REs have been shown to have
distinct tissue-specific activity that is conserved between mouse
and human25. Using the chromatin accessibility data generated in
this study, we performed transcription factor footprinting43 to
identify potential transcription factor (TF) binding events within
characterized REs. Using these footprints, we identified 26 tran-
scription factor motifs from the HOMER44 vertebrate transcrip-
tion factor database that were enriched in tissue-specific TF
footprints in at least one tissue in each domestic animal species
(Fig. 3), with the three brain tissues combined for this analysis.
These transcription factor motifs showed similar patterns of
enrichment across species, including human and mouse, implying
a tissue-specific conserved regulatory function. FOXA2 and
HNF1B, for example, were enriched and highly expressed in liver

in all three domestic animal species as well as mouse, and
are known to be important for liver development45. The SIX1
transcription factor plays a role in adult skeletal muscle
development46 and was expressed in muscle in all three domestic
animal species with motif enrichment in muscle-specific TF
footprints.

Target gene prediction of enhancers identified potential reg-
ulators conserved across species. To predict RE target genes, we
correlated gene expression across samples with the level of
enrichment of histone modifications or open chromatin at
enhancers. The analysis was performed on all three RE groups, as
some promoters have been found to interact with other pro-
moters in an enhancer-like manner47. Because this method relies
on Spearman rank correlation between values across tissues,
genes with small variances in expression (variance <6 CPM) were
excluded from the analysis to limit false positive associations
due to random chance. Similarly, REs with small variances in the
enrichment of histone modifications or open chromatin were also
removed as potential regulators. As it is widely recognized that
enhancer–promoter interactions occur most predominantly
within TADs48, but not necessarily with the RE nearest to the
gene49–51, we predicted TADs for chickens, pigs, and cattle using
CTCF-binding sites, given that Hi-C data is not available for the
samples under study. Predicted TADs covered 82%, 91%, and
92% of the genomes of chicken, pig, and cattle, respectively,
which is in the range of previous Hi-C data generated from
mouse cell lines which identified 2200 TADs that covered 91% of
the genome47.

As a preliminary step, we measured the Spearman correlation
of gene expression and ChIP-seq or chromatin accessibility signal
within enhancers that overlapped or were nearest to the gene. As
previously stated, REs do not always regulate their nearest gene;
however, the situation is frequent enough to provide a proof-of-
concept for the central assumption of our target gene prediction

Fig. 3 Transcription factor motifs enriched in tissue-specific footprints show similar patterns across species. Transcription factor motifs enriched in at
least one tissue in all three domestic animal species. The size of the circle indicates the statistical significance of motif enrichment (Benjamini–Hochberg
adjusted p-values using HOMER), while the color indicates the expression of the corresponding transcription factor gene, normalized to the maximum
expression across tissues within each species.
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method—that gene expression and epigenetic signals are
correlated—and to establish a baseline correlation level of these
“naïve” enhancer–gene pairs. Results of this analysis indicated
that H3K27ac was the most consistently correlated with gene
expression at both genic and intergenic enhancers across all three
species (Fig. 4c, d). Additionally, H3K27ac has been previously
shown to be predictive of gene expression52,53. Therefore, we used
H3K27ac as the signal of regulatory element activity for target
gene prediction.

We predicted 29,526 RE-gene interactions in chickens (invol-
ving 10,937 REs and 5519 genes), 58,523 in pigs (31,735 REs and
8233 genes), and 28,849 in cattle (16,348 REs and 7113 genes,
Fig. 4b). Most genic REs were not predicted to target the gene they
overlap, with 22.1% in chickens, 35.2% in pig, and 40.4% in cattle
predicted to target their overlapping gene. Because REs may
have multiple predicted target genes, some genic REs that were
predicted to target the gene they overlap were also predicted to
target other genes, which would have not been captured with the
naïve approach. In total, 92.6% of genic REs in chickens, 82.3% in
pigs, and 74.6% in cattle were predicted to target a gene they do
not overlap. Similarly with intergenic REs, only 14.9% in chickens,
20.7% in pigs, and 22.6% in cattle were predicted to target their
nearest gene and 95.7% in chickens, 89.9% in pigs, and 87.1% in
cattle were predicted to target a gene that it was not nearest to. REs
in chickens were predicted to interact with more genes per RE on
average compared to pigs and cattle. We verified that this was not
caused by a small number of outliers with high numbers of target
genes by re-calculating the average using only REs with 10 or
fewer target genes. These new averages were 2.5 in chickens, 1.8 in
pigs, and 1.7 in cattle. In fact, the RE with the highest number of

predicted target genes was a pig RE with 33 predicted targets,
while the maximum in chickens and cattle is 23 and 22,
respectively.This result suggests that chicken REs are more
versatile than those of mammals. In fact, the number of RE–gene
interactions predicted in chickens and cattle were very similar,
despite chickens having about half the total number of REs.
Compared to the previous correlations based on the nearest or
overlapping gene, the Spearman correlation of gene expression
with epigenetic signals of the predicted RE–gene pairs became
more positively correlated with all marks, except for the repressive
H3K27me3 mark, which became more negatively correlated,
despite only H3K27ac being used in the prediction (Fig. 4d). This
indicates that our predictions are more accurate than the naïve
method of assigning enhancers to their closest gene.

To gain insight into the regulatory pathways predicted by these
correlative analyses above, we first clustered REs based on their
H3K27ac signal across tissues, which resulted in tissue-specific RE
clusters. Next, we performed gene ontology analysis of the genes
targeted by the REs in each group. These analyses revealed that
REs with tissue-specific activity targeted genes with tissue-specific
functions (Supplementary Fig. 7). For most clusters, the enriched
GO terms show tissue-specific biological processes matching the
tissues with the highest H3K27ac signal in the REs belonging to
the cluster. TF motifs enriched in REs that were predicted to
target genes with tissue-specific expression found numerous TFs
in common across the three domestic animal species (Supple-
mentary Fig. 8). ETS1 and FLI1, for example, were both expressed
in spleen and their binding motifs enriched in REs predicted to
target spleen-specific genes, suggesting a conserved tissue-specific
role for these TFs.

Fig. 4 Target gene prediction of regulatory elements. a Topologically associated domains (TADs) predicted by CTCF ChIP-seq data. b The number of
predicted RE–gene pairs, the total number of REs and genes in at least one pair, and the mean and median number of predicted genes per RE and REs per
gene. c Spearman rank correlation of normalized read depth in each genic RE with the expression of the gene it overlaps (blue bars) and the expression of
the genes predicted as targets (orange bars). d Spearman rank correlation of normalized read depth in each intergenic RE with the expression of the
nearest gene (blue bars) and the expression of the genes predicted as targets (orange bars). e Principal component plot of the normalized read depth of
H3K27ac of intergenic REs predicted to target genes with one-to-one orthologs across all three species.
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To more directly measure the similarity of gene regulation
across species, PCA on the H3K27ac enrichment values at REs
predicted to target orthologous genes in each domestic animal
species resulted in stronger clustering by tissue than by species in
all three RE groups (Fig. 4e; Supplementary Fig. 9a, b). Taken
together, these results show that while REs are not highly
conserved in their genomic positions, there is tissue-specific
conservation of regulatory features across species.

An annotated data resource for comparative and complex trait
analysis. The data generated in this study represents an impor-
tant resource for comparative analysis as it provides a set of
epigenomic assays from the same tissues at the same develop-
mental stage across three species with consistency in the protocols
used for sample collection and data generation. As we have
shown, these data show high concordance with previously
reported data from the human and mouse ENCODE projects,
correlate well with gene expression and chromatin accessibility,
and show distinct tissue-specific patterns that relate to biologi-
cally relevant functions. Therefore, this data can be regarded as a
reliable epigenetic resource for these species. This dataset will
facilitate further comparative epigenomic analyses, which was
previously limited due to sparse epigenomic data available from
species other than model organisms, as more epigenomic data is
generated by the FAANG Consortium and for species outside the
scope of FAANG. For researchers interested in one of the agri-
cultural species represented by these data, the provided resources
can be utilized to refine potential causative variants identified
from genome-wide association studies (GWAS) for further
functional validation.

As an example, 17,201,383 sequence variants associated with
various complex traits in dairy cattle via expression QTL scan54,
variant function prediction55, and GWAS were overlapped with
the cattle REs identified in this study. The distribution of p-values
showed a clear skew towards SNPs inside REs having a higher
density at lower p-values while SNPs outside REs had higher
density at higher p-values in traits such as milk protein content,
milk fat content, and total milk volume (Fig. 5a–c). Categorizing
sequence variants by types such as gene expression QTL (geQTL)
or metabolite QTL (mQTL) showed that a higher percentage of
these SNPs were found in REs compared to variants not in these
categories (Fig. 5d). The category with the highest percentage in
REs, geQTLs, appeared about 2.5 times more frequently (Fisher
exact p-value < 0.00001) in REs compared to uncategorized SNPs,
supporting the role these REs play in gene regulation. In
summary, this analysis further illustrated that REs annotated in
the current study can significantly narrow down the search for
causative variants responsible for complex traits and fill an
important gap in biology by predicting phenotype by genotype.

Discussion
We report a large-scale analysis comparing the epigenomes,
genomes, and transcriptomes of biologically diverse tissues in
multiple vertebrates, including birds, and provide a comparative
view of the evolutionary properties of the avian and mammalian
epigenome. In general, intergenic enhancers had low genomic
positional conservation compared to promoters and genic
enhancers. Moreover, RE conservation across mammals and birds
was independent of evolutionary distance, suggesting a core set of
evolutionarily stable REs among vertebrates. Further analysis
demonstrated that REs (enhancers and promoters) conserved
between mammalian and avian species play essential roles in
modulating genes and signaling pathways related to basic meta-
bolic functions.

Furthermore, tissue-specific conservation of TF enrichment
and target genes of RE across the vertebrate species (despite the
generally low genomic level of conservation) highlight an
importantfunctional role of REs in modulating biological pro-
cesses. Of particular note, the number of genes regulated by each
enhancer in the chicken genome were much greater than in the
cattle and pig genomes. We speculate that enhancers in chickens
are more multi-functional compared to their mammalian
counterparts.

Finally, we demonstrated how this data can be utilized to
inform studies seeking to link phenotype to genotype, such as by
reducing the number of SNPs identified from a GWAS to those
more likely to be causative variants. The epigenetic data and
functional annotation of REs generated provide a resource for
future research in animal agriculture and comparative epige-
nomic research. As ongoing and future FAANG projects con-
tinue, expanding the datasets to more tissues and developmental
stages, as well as generating data from female individuals and
exploring newer technologies such as single-cell-sequencing
assays, the resource presented in this manuscript will be an
important baseline upon which to compare these new datasets.

Methods
Genetic resources. Animals were euthanized and tissue samples were collected
with all necessary permissions granted, following Protocol for Animal Care and
Use #18464, approved by the Institutional Animal Care and Use Committee
(IACUC), University of California (UC), Davis. The chickens used in this study
were male F1 crosses of the highly inbred Line 6 and Line 7 from the USDA, ARS,
Avian Disease and Oncology Laboratory (ADOL) and were euthanized with CO2

under USDA inspection at 20 weeks old. Two castrated male Yorkshire littermate
pigs were humanely slaughtered using electrocution in accordance with common
practices in slaughterhouses at 6 months old under USDA inspection at Michigan
State University. Cattle were slaughtered at UC, Davis using captive bolt under
USDA inspection at 14 months old, and were intact male Line 1 Herefords that had
the same sire, provided by Fort Keogh Livestock and Range Research Lab56. All
animals were in a sexually mature adult stage when euthanized. Tissue samples
were flash frozen in liquid nitrogen then stored at –80 °C until further assay
processing. The tissues analyzed were chosen based on their relevance to important
complex traits as well as to represent a wide range of biological functions. Two
biological replicates were used per species, for a total of 16 tissue samples per
species.

Library preparation and sequencing. The RNA-seq datasets used in this manu-
script has been previously published56. The ATAC-seq datasets were generated
using a previously published protocol57, and is described below.

For isolation and cryopreservation of nuclei, used for DNase-seq and ATAC-
seq assays, fresh tissue was minced with razor blade and transferred to gentleMACs
C tube containing 10 ml of sucrose buffer, then homogenized using the
gentleMACS Dissociator. Homogenate was filtered through a 100 μM Steriflip
vacuum filter and DMSO added to a final 10% concentration, then pipette mixed
several times and aliquoted into 2 ml cryovials. Samples were stored overnight in
−80 °C in freezing container with isopropanol and then moved into storage boxes
for long-term storage.

ChIP-seq experiments were performed on frozen tissue using the iDeal ChIP-
seq kit for Histones (Diagenode Cat.#C01010059, Denville, NJ) according to the
manufacturer’s protocol except for the following changes. 20–30 mg of frozen
tissue was powdered using liquid nitrogen in pre-chilled mortar. Cross-linking was
performed with 1% formaldehyde which was diluted from 16% methanol-free
formaldehyde (Thermo Scientific, Cat.#28906, Waltham, MA) for 8 min and
quenched with glycine for 10 min. Nuclei were harvested by centrifugation at
2000×g for 5 min and resuspended in iS1 buffer for incubation on ice for 30 min.
Chromatin was sheared using the Covaris E220 between 6 and 12 min depending
on the tissue. For immunoprecipitation experiments, about 1000 ng of sheared
chromatin (estimated from DNA extraction) was used as input after which the kit
protocol was followed with 1 μg (histone modifications) or 1.5 μg (CTCF) of
antibody. The following antibodies used were from Diagenode: H3K4me3 (in kit),
H3K27me3 (#C15410069), H3K27ac (#C15410174), H3K4me1 (#C15410037), and
CTCF (#15410210). An input (no antibody) was performed for each sample.
NEBNext Ultra DNA library prep kit for Illumina libraries (New England Biolabs
#E7645L, Ipswich, MA) was used for library construction, selecting for 150–200 bp
(H3K4me3, H3K27ac, CTCF) or 200–400 bp (H3K27me3, H3K4me1) insert
fragment sizes using Ampure beads (Beckman Coulter #A63881). Libraries were
sequenced on Illumina’s HiSeq 4000 with single-end 50 bp reads. A detailed
protocol used to prepare the ChIP-seq libraries can be found at ftp://ftp.faang.ebi.
ac.uk/ftp/protocols/assays/UCD_SOP_ChIP-Seq_Animal_tissue_20161101.pdf.
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DNase-seq datasets were generated by the Stamatoyannopoulos’ Lab at University
of Washington using a previously published protocol58. Briefly, cryopreserved nuclei
were slowly defrosted on ice, pelleted at 500 × g, and resuspended in 37 °C DNase I
digestion buffer (13.5 mM Tris–HCl pH 8.0, 87 mM NaCl, 54 mM KCl, 6 mM CaCl2,
0.9mM EDTA, 0.45 mM EGTA, 0.45 mM spermidine). After a 3 min incubation, the
reaction was stopped with 2× stop buffer (50mM Tris–HCl pH 8.0, 100mM NaCl,
0.1% SDS, 100mM EDTA pH 8.0, 1 mM spermidine, 0.3 mM spermine). Samples
were treated with RNase for 1 h at 37 °C, then an additional hour at 55 °C with
proteinase K. DNA fragments were isolated, libraries prepared, and sequenced on
Illumina’s Hiseq 2500 with 50 bp paired-end sequencing.

For ATAC-seq, cryopreserved nuclei prepared from fresh tissue (as described
above) were slowly thawed on ice, centrifuged for 5 min at 500 rcf, and resuspended
in cold PBS. Nuclei were then washed once with cold ATAC-seq cell lysis buffer and
resuspended with cold PBS for counting on a hemocytometer. Approximately 200K
cryopreserved nuclei were centrifuged, supernatant aspirated, then treated with 50 μl
transposition mix (25 μl TD buffer, 2.5 μl TDE1, 22.5 μl ddH2O) for 1 h at 37 °C and
500 rcf. DNA was purified using the MinElute PCR purification kit (Qiagen, #28004,
Germantown, MD) and diluted with 10 μl EB buffer. DNA was amplified with
primers whose detailed descriptions are found in Buenrostro et al. (2013)30.
Libraries were purified using the MinElute PCR purification kit and run on Agilent
Bioanalyzer (Agilent, Santa Clara, CA) for quality traces. Size-selection on libraries
for 150–250 bp fragments was performed on PippinHT system (Sage Science,
Beverly, MA). Libraries were sequenced on Illumina’s NextSeq with PE 40bp reads.

Genomes and annotations. Across all analyses, the GalGal6 genome and Ensembl
version 99 annotation was used for chickens, the Sscrofa11.1 genome and Ensembl
version 99 annotation for pigs, and ARS-UCD1.2 genome and Ensembl version 99
annotation used for cattle.

Processing of high-throughput sequencing data. RNA-seq reads were trimmed
with Trim Galore! 0.4.5 (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) using default parameters, then aligned with STAR59 2.5.4a (--out-
FilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin
1 --outFilterMismatchNmax 999 --alignIntronMin 20) to the respective genome.

Alignments with an alignment MAPQ score <30 were filtered using SAMtools60

1.10. Gene counts were determined using htseq-count61 0.11.1, and then TMM
normalization was performed with EdgeR62. Genes with a TMM-normalized
counts per million (CPM) equal to or above 1 were considered expressed. Genes
were considered to have tissue-specific expression if they were expressed at least
4-fold higher than all other tissues.

For broad marks (DNase-seq, ATAC-seq, and H3K27me3), a depth of 40
million aligned and filtered reads was targeted, while for the narrow marks, the
target was 20 million. ChIP-seq reads were trimmed with Trim Galore! 0.4.5
using default parameters, then aligned using BWA63 0.7.17 with the “mem”
alignment mode and default parameters. Alignments with a MAPQ score <30 were
filtered using SAMtools 1.10, and then duplicates were marked and removed
using the Picard toolkit64 2.18.17. Various quality metrics were calculated and are
summarized in Supplementary Table 1, with detailed per-library statistics in
Supplementary Files 1 and 2. The non-redundant fraction (NRF) is the ratio of
reads after de-duplication to reads before. PCR bottleneck coefficient 1 (PBC1) is
the ratio of genomic locations with exactly 1 mapped read to the total number of
genomic locations with mapped reads. PBC2 is similar to PBC1, however, the
denominator of the ratio is the number of genomic locations with 2 mapped reads.
By ENCODE standards, an NRF in the range of 0.5–0.8 is “acceptable”, a PBC1 in
the same range indicates “moderate bottlenecking”, and a PBC2 between 3 and
10 is labeled “mild bottlenecking”. The normalized strand coefficient (NSC)
and relative strand coefficient (RSC) were calculated using SPP65 to estimate
enrichment of the ChIP signal, where an NSC >1.1 and an RSC >1 indicate
acceptable enrichment. The Jensen–Shannon distance (JSD) was calculated
between the ChIP and input libraries using DeepTools66 3.3.0, providing a measure
of enrichment that includes the input data, which NSC and RSC do not. The
inclusion of the input read alignments in the JSD metric made it a more robust
metric in discerning good data from bad by showing greater correlation with the
number of peaks called and the fraction of reads in peaks (FRiP), as well as visual
inspection of the data on a genome browser. FRiP measures the percentage of reads
aligned to peak regions called by MACS267 2.1.1 and was determined using
DeepTools 3.3.0. Peaks were called with a q-value cutoff of 0.01 for H3K4me3,
H3K27ac, H3K4me1, and CTCF. H3K27me3, ATAC-seq, and DNase-seq peaks
were called in broad mark mode with a q-value cutoff of 0.05. To determine regions

Fig. 5 Overlap with dairy cattle GWAS SNPs. a–c The distribution of p-values from GWAS for milk protein content (a), milk fat content (b), and milk
volume (c), for SNPs inside and outside of characterized REs in cattle. The p-values were calculated by previous studies from which the SNPs were obtained
(citations in text). d The percentage of SNPs in REs categorized as geQTL (gene expression QTL), ChIPSeq (SNPs in ChIP-seq peaks from previously
generated H3K4me3 and H3K27ac data from liver, muscle, and mammary gland), aseQTL (allele-specific expression QTL), mQTL (metabolites QTL), sQTL
(splicing QTL), eeQTL (exon expression QTL), selection.sig (selection signature between dairy and beef cattle), cons100way (variants under genomic sites
conserved across 100 vertebrate species), young (variants that are recently selected), and other SNPs not placed in any of the previous categories. SNPs
may belong to multiple categories.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22100-8

8 NATURE COMMUNICATIONS |         (2021) 12:1821 | https://doi.org/10.1038/s41467-021-22100-8 | www.nature.com/naturecommunications

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
www.nature.com/naturecommunications


of chromatin accessibility, peaks were called with the same parameters used to
determine FRiP, but with DNase-seq and ATAC-seq using the combined
alignments from both replicates.

The clustering of ChIP-seq and chromatin accessibility data was done using
DeepTools 3.3.0 to get a normalized read count in 1000 bp bins across the genome,
then doing hierarchical clustering with Pearson correlation as the distance metric.
ChIP-seq reads were not normalized by the input reads for this clustering, and reads
were extended to 200 bp. The reproducibility of the RNA-seq data was similarly
verified by PCA of gene expression values within each species (Supplementary
Fig. 5a) and of the expression values of 11,317 one-to-one orthologs across all three
species (Supplementary Fig. 5b). Principal component (PC) 1 separated chicken
from the cattle and pig, with cattle and pig samples clustering more closely by tissue
than by species. A plot of PC2 and PC3 showed clustering by tissue across all species
(Supplementary Fig. 5b).

Annotation of active regulatory regions. ChromHMM32 1.19 was used to train a
chromatin state prediction model incorporating all ChIP-seq data from all marks,
tissues, and species. Because DNase-seq data was generated for chickens while
ATAC-seq data was generated for cattle and pigs, these data sets were not used in
the chromatin state model. Multiple models were trained with varying numbers of
states and the final 14-state model was selected to have the maximum number of
states with distinct ChIP-seq mark combinations. No other parameters were
changed from their defaults. We used chromatin state labels that resembled those
used for the chromatin state models created by the ENCODE projects4,5 and
assigned them to states based on their combination of histone modifications and
enrichment around the TSS (Fig. 1a), as well as their enrichment at various
genomic elements, conserved elements, and open chromatin regions (Fig. 1b).

To consolidate and annotate the REs in each of the domestic animal genomes,
we first identified all active regions for each tissue by merging consecutive regions
predicted as chromatin states associated with activity (states 1–6, 8, 9, and 11) and
then combined them across tissues using BEDTools68 2.27.1. This step helped to
avoid technical issues when comparing chromatin states across tissues, such as a
broader H3K27ac peak than H3K4me3 at a TSS resulting in small regions of
enhancer-associated states within promoters. The REs from individual tissues that
were merged to form each combined RE were used to determine its tissue activity.
REs active in only a single tissue were considered tissue-specific. The active REs
were then classified into groups based on their genomic location relative to
annotated coding genes in the genome. Regions within 2 kb of the TSS of an
annotated protein-coding transcript were classified as “TSS Proximal REs”. Regions
overlapping a gene body, but not within 2 kb of a TSS, were classified as “genic
REs,” and the remaining regions were classified as “intergenic REs”. Regions that
were within 2 kb of a non-coding transcript TSS or an unannotated TSS detected
from RNA-seq data (from a previous analysis of the data56) were excluded from
these groups.

The enrichment of the four histone modifications and chromatin accessibility
within each RE group was done with DeepTools 3.3.0 computeMatrix with
parameters “reference-point –referencePoint center -a 3000 -b 3000”.

Conservation of REs. Human and mouse ENCODE data for the same tissues and
developmental stages were downloaded from the ENCODE Consortium and were
used to perform chromatin state annotation and identify REs using the same
pipeline used to process the chicken, cattle, and pig data. The GRCh38 and
GRCm38 genome assemblies were used with Ensembl Annotation version 99 for
both. Coordinates were mapped between genomes using Ensembl Compara’s
amniota vertebrate multiple sequence alignment. The evolutionary distances shown
in Fig. 2a were obtained from TimeTree69. A regulatory element was considered
conserved if its mapped coordinates overlapped with a regulatory element in
another species by at least 1 bp. DAVID70 6.8 was used to determine enriched
KEGG42 pathways.

Transcription factor footprinting. To identify transcription factor footprints, the
HINT tool from the Regulatory Genomics Toolbox 0.12.3 was used with –atac-seq
for ATAC-seq data and –dnase-seq –bias-correction for DNase-seq data, which can
identify footprints from both DNase-seq71 and ATAC-seq72 data. DNase-seq data
in chickens generated 338,547 distinct footprints across all tissues, including 32,929
containing the CTCF-binding motif. Furthermore, ChIP-seq for CTCF validated
93% of these footprints. On the other hand, ATAC-seq data in pigs and cattle
generated 4,976,047 and 4,345,973 in pigs and cattle, respectively, with 45% of
89,245 CTCF footprints in pigs and 43% of 70,171 CTCF footprints in cattle
validated by CTCF ChIP-seq. The difference in the number of footprints identified
in mammals compared to chickens, as well as the difference in the agreement of
CTCF occupied footprints with ChIP-seq, was due to a disparity in the two open
chromatin assays used, rather than a biological difference between mammals and
avian, as confirmed by ATAC-seq performed on the same chicken lung tissue that
was used to generate the DNase-seq data for chicken lung57 (94,376 DNase-seq
footprints, 92% of 5888 CTCF footprints validated by a CTCF ChIP-seq peak;
797,042 ATAC-seq footprints, 52% of 5307 CTCF footprints with a ChIP-
seq peak).

Enrichment of transcription factor motifs in footprints was done by adding a
10 bp flanking region on each side of the footprint and then using HOMER44 4.10
with default arguments with the exception that the given region sizes were used
(default is to use 200 bp windows centered on the middle each region) and the
known vertebrate motif database provided with the HOMER software was used in
place of the default motif database.

Prediction of target genes. To remove genes with low variance in expression, the
ratio of the maximum expression across samples to the minimum expression was
compared to a cut-off threshold. A threshold of 6 was chosen because it removed
~3800 genes from the analysis, which is the number of housekeeping genes
identified in humans by a previous study73. The same threshold was used to
remove distal REs with low variance in their level of enrichment from the analysis.

TADs in each species were predicted using pooled CTCF ChIP-seq data from all
tissues, as previous studies have suggested that while chromatin interactions within
TADs may differ across cell types, the TAD boundaries themselves are stable across
tissues74 and even species75,76. TADs were predicted from CTCF ChIP-seq peaks
using the method in Oti et al. 77. Briefly, the CTCF peaks from all tissues were
merged, then FIMO78 was used to identify peaks containing the CTCF-binding
motif. The directionality of the motif within peaks was used to match
corresponding boundaries of DNA loops. Nested and overlapping loops were then
merged to form the predicted TADs.

To predict RE–gene pairs, the Spearman rank correlation of every possible
combination of regulatory element H3K27ac signal and gene expression value
within each TAD was calculated. The gene expression value used was the TMM-
normalized CPM described previously, and the H3K27ac signal was calculated by
TMM-normalizing the number of H3K27ac reads aligning to each RE using the
same method to normalize gene expression values. Benjamini–Hochberg
adjustment was used to adjust the p-values for multiple testing, and adjusted
p-values < 0.05 were considered indicative of putative interacting pairs.

Overlap analysis of REs with SNPs from dairy cattle GWAS study. Imputed
sequence variants obtained from GWAS on dairy cattle traits from a previous study
were mapped from the UMD-3.1 version of the cattle genome to the UCD-ARS1.2
version used in this paper using the UCSC liftOver tool79 with default parameters.
SNPs were then checked for their presence within REs using BEDTools68.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing data and processed data has been deposited in the Gene Expression
Omnibus (GEO) and is available under accession GSE158430. Accession numbers for
ENCODE and Roadmap datasets used are given as Supplementary Data 3. Aligned and
filtered reads, peak calls, chromatin state predictions, and identified regulatory elements
are available at http://farm.cse.ucdavis.edu/~ckern/Nature_Communications_2020/.
Source data are provided with this paper. Source data are provided with this paper.

Code availability
The computational pipeline used for the analyses in this manuscript is available in
GitHub80 (https://github.com/kernco/functional-annotation).
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