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ABSTRACT OF THE DISSERTATION

Information Maximization in Early Sensory Systems

by

Yilun Zhang

Doctor of Philosophy in Physics
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Professor Tatyana Sharpee, Chair
Professor Massimo Vergassola, Co-Chair

Information maximization is a strong candidate for the design principles of early sensory
systems. Yet, previous applications of information maximization are mostly restricted to linear or
small neural systems due to difficulty in computing mutual information. To solve this problem,
we developed a method that could efficiently compute mutual information provided about high
dimensional inputs by responses of a large neural population.

Using our method, we first quantify information transmission by multiple overlapping
retinal ganglion cell mosaics. The results reveal a transition where one high-density mosaic

becomes less informative than two or more overlapping lower-density mosaics. The results
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explain differences in the fractions of multiple cell types and predict the existence of new retinal
ganglion cell subtypes.

We then apply our method to neurons receiving time-varying stimuli and producing spike
trains. Surprisingly, we found that the optimal nonlinearity for neurons receiving temporal corre-
lated signal has finite slope, quantitatively explaining the ubiquitous sigmoid shape nonlinearity
observed in neurons. The optimal nonlinearities we predicted agree well with experimental data
without any parameters in our model.

We further investigate the optimal network connectivity for information transmission.
Using olfactory system as a model, we analytically compute the optimal connectivity rate
that maximize information transmission. The optimal connectivity rate has suprisingly simple
expression and is inverse proportional to the input pattern sparsity. Our model also provides a
feedforward solution to reconstruct odor signal. Our architecture is shown to be efficient, robust,

and account for a number of experimental observations.
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Chapter 1

Introduction

Information maximization (sometimes also known as efficient coding) is a strong candidate
for the design principles of early sensory systems such as retina [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Formulated by the language of information theory [11], the principle states that neural systems
should maximize mutual information between its input stimulus and neural response, subject
to certain biological constraints such as metabolic cost. The intuition behind the principle is
straightforward: without distinguishing useful and unuseful information at sensing stage, the best
that early sensory system can do is to capture as much information as possible, and transit to
downstreaming areas using spike trains.

Information maximization has strong predictive power in sensory systems. For example,
the contrast-response curve of fly large monopolar cell agrees with the prediction of information
maximization principle [4]. Optimal receptive fields in an array of linear neurons predicted by
information maximization have center surround structure [5, 6], consistent with receptive fields of
retinal ganglion cells. Receptive fields predicted by information maximization based independent
component analysis on natural images are Gabor-like edge filters [9], similar to the ones observed
in visual cortex [12]. Information maximization predicts a phase transition from redundant coding

to differential coding in a pair of binary neurons receiving the same input, explaining the existence



of adapting and sensitizing cell types [10].

However, previous applications of information maximization principle are mostly re-
stricted to linear systems with Gaussian noise [6], systems using local Gaussian approximation
[13], or small neural systems consisting of only few neurons [4, 10, 14, 15] for the following two
reasons. First, analytical expression, or even closed-form approximation, of mutual information
is hard to obtain with only few exceptions, such as linear channels with Gaussian input and noise.
Second, time complexity of computing mutual information numerically is generally exponential
in the number of dimensions (neurons), which makes it computationally intractable for (even
slightly) larger system size. Biological neural systems, however, have huge dimensions and strong
nonlinearity. Many of them cannot be reduced to or approximated by small scale systems or
linear networks, preventing us from using information theoretical framework. For instance, there
are multiple types of retina ganglion cell (RGC), different cell types have distinct spatial receptive
field size, forming overlaping neuronal arrays [16, 17]. Such system cannot be reduced to neuron
pairs due to different yet overlapping receptive fields, neither can it be well approximated by
linear networks because of the highly nonlinear firing patterns. As a result, despite previous
results on multiple RGC types using independent channels [18] and neuron pair [10], we still lack
basic understanding of whether such cell type split can be explained and predicted by information
maximization principle.

One approach to overcome the computational difficulty in calculating high dimensional
mutual information is to use Fisher information as a link [19, 20]. However, this approach is only
shown to work for one dimensional stimulus [21], which does not apply to many neural systems
such as retina. Moreover, the bias of such approximation can be arbitrarily large if the effective
noise in the neural representation is very nongaussian [20]. Another type of approach is based
on variational method [22, 23, 24], which provides a lower bound on mutual information and
use it as an approximation. The bias, however, depends on the choice of decoder family, and

will not vanish in general. Thus, a major open problem remains for how to computed mutual



information for large neural populations receiving high dimensional input signal taking into
account the nonlinear aspects of neuronal responses.

We solve the problem by developing a method that could efficiently compute mutual
information provided about high dimensional inputs by responses of a large neural population
(Chapter Compute Mutual Information for Large Neuronal Arrays). The method works for a
correlated Gaussian distribution or any other stimulus distribution that can be factorized, and
for neurons with sigmoid nonlinearity. Applying this approach to multiple overlapping retinal
ganglion cell mosaics we identify a transition that determines when it is optimal for a system to
shift from one high-density mosaic to two or more overlapping lower-density mosaics (Chapter
Optimal Information Transmission by Multiple Mosaics of Retinal Cells). We further predict
how the relative number of low and high threshold neurons should differ depending on the noise
level, which in turn depends on a cell’s preferred temporal frequency. These predictions explain
experimental measurements showing that salamander ganglion cells with different temporal filters
have different fractions of low threshold (sensitizing) and high threshold (adapting) cells.

Our method can be applied to neurons receiving time-varying stimuli and producing
spike trains. Using the method, we found that, suprisingly, the optimal nonlinearity for neurons
receiving temporal correlated signal has finite slope which is inverse proportional to input standard
deviation (Chapter Optimal Nonlinearity for Neurons Receiving Temporal Correlated Signal).
This explains the ubiquitous sigmoid shape nonlinearity observed in neural systems. The optimal
nonlinearities we predicted agree well with experimental data without any parameters in our model.
On the other hand, our results indicate that stochastic resonance in neural system [25, 26, 27, 28]
is much more common than previously thought, where stochastic resonance is only restricted to
limited cases such as neurons receive subthreshold signal [29, 30], multiple neurons have the
same nonlinearity [31] or slope [32], only temporal independent stimuli are considered [10].

In Chapter Optimal Connectivity Rate for Information Transmission in Olfactory System,

we extend our search for neural system optimal for information transmission to optimal network



connectivity. Using olfactory system as a model, we analytically compute the mutual information
between two layers of randomly connected binary neurons and compute the optimal connectivity
rate that maximize information transmission. The optimal connectivity rate has suprisingly
simple expression and is inverse proportional to the input pattern sparsity. Our model provides
a biological plausible and computational efficient feedforward solution to reconstruct signal in
compressive sensing framework. Our architecture is shown to be robust to noise and account for

a number of experimental observations.



Chapter 2

Compute Mutual Information for Large

Neuronal Arrays

For a large group of linear-nonlinear (LN) neurons encoding a high dimensional stimulus §
using population neural response 7, the mutual information between stimulus and neural response
I(5,7) is computationally intractable due to its high dimensionality. We show that the problem
can be converted to a sum of one-dimensional problems provided one can identify a basis where
the input distribution factorizes. Importantly, the neural responses depend simultaneously on
multiple stimulus components, so this problem is more complex than that of independent response
channels encoding independent inputs.

To model neural responses, we assume that their responses can be approximately described
by a saturating logistic nonlinearity as a function of the stimulus component along the neuron’s
receptive field (RF). Specifically, the probability to observe a spike from the ith neuron (in a small
time window) is given by:

p(ri=108) = ——a 2.1)
l4+e Y

where u; = f '. § represents the component of the stimulus § along the ith neuron’s RF f i, The



parameter y; represents the mid-point (threshold) of the spiking nonlinearity where the spiking

probability is 0.5. The parameter Veff

is the inverse slope of the nonlinearity which represents
the cumulative effect of multiple noise sources in the input neural circuitry [10, 33, 34, 35]. The
response across the population is described by a response vector 7 whose components r; take

values 1 or O corresponding to the presence or absence of a spike from the ith neuron. The

probability to observe the response vector 7 across the population is then given by:

1 i~ Mi
P() = 7 [ Texp (r”v—ff“> , 22)

with the normalization factor Z(5) = []; [1 +exp ( i )} We note that although this expression
is obtained assuming the neural responses are conditionally independent given the stimulus, the
final result will also hold in the presence of stimulus-independent noise correlations as long as
the population response function still belongs to an exponential family.

Now if there is a basis within which the input distribution factorizes, P(5) = [T P(s),
then we can use this basis to represent both the stimuli and neural RFs. For concreteness, we
use the Fourier components, because this is the basis within which translation invariant signals

factorize, and this basis would be the most appropriate for analyzing the retinal arrays. Both

stimuli and neural RFs can be described using their Fourier components S; and FEj as:

_ R ik ] j (X%

= L5, fI@) = L E T 2.3)
k k

where X; marks the coordinates of the peak of jth neuron RF and ij is a Fourier component of

the jth neuron RF computed relative to X;. In these expressions, the Fourier components should

satisfy the following constraints S; = S i% and F}? = ”}( that derive from the fact that stimuli and

RFs have to be real-valued functions. The stimulus component along jth neuron RF is given by

RS AT %
—ZkSsz e,



Now, the full response probability from Eq. (2.2) can be re-written as
—| = 1 — —
p(7[5) = 77 P Y ST ()| A7), (2.4)
k

F* =

.. . . . vk kR
where the quantities 7; are obtained as weighted averages of neural responses as T; =} ; r; ve

B

and h(¥) = exp(—Y; rl(,ij). Because of the exponential structure of the full response probability,
these quantities comprise the sufficient statistics [36] of the neural responses [37]. In other words,
the mutual information between stimuli and the set of neural responses 7 is equal to the mutual

information between the stimuli and the set of T; values: I({S;},7) = ({$;},{T;}).

Using the chain rule for mutual information we have

I{S AT} = LS AT HSim1,Si2, -, 81)
2ZI<SI'7TI"Sithi727“'751) (25)

> Y1577,
k

where we assume a large but finite number of neurons, thus 7 is discrete. The first inequality
becomes equal when Ty is the sufficient statistics of S;. Further, the second inequality becomes
equal when ;. is the sufficient statistics of 7;.

One can show that when G; > 6,1, Vi, where Gl-2 is the variance of S;, T is sufficient for
7. This is approximately true for natural stimuli where G,% o< k~2. Thus for natural stimuli we

have the approximation

I(E,?)%ZI(S,‘,T,"SI;I,S,',Q,...,Sl). (26)

1
Note that although the conditionally mutual information above contains high dimensional integral
over S1,5,...,5;_1, it is effectively an one dimensional integral over the effective threshold,

making it computational efficient.



When the signal correlation length and the system size is much larger than the receptive
field size, both S; and T; becomes Gaussian [38], and both inequality in Eq. 2.5 become equal

such that

1(5.7) =~ Y I(S;, T;), 2.7)

-

k
regardless of the neuron model. This is more computational efficient as one only needs to compute
a series of one dimensional mutual information.

This approach makes it possible to convert a multi-dimensional information calculation
into a sum of one dimensional calculation for the mutual information between independent
stimulus components S; and the corresponding sufficient statistics variables T; (7). The variables
T;;(7) are computed as linear combinations of the neural responses across the population. Thus
the approach does take different patterns of population responses into account. It also indicates
which patterns of neural responses carry information about which stimulus components.

Chapter 2, in part, is a preprint of the material as it will appear in 52th Annual Conference
on Information Sciences and Systems (CISS). Zhang, Yilun; Kastner, David; Baccus, Stephen;

Sharpee, Tatyana, 2018. The dissertation author was the primary investigator and author of this

material.



Chapter 3

Optimal Information Transmission by

Multiple Mosaics of Retinal Cells

3.1 Efficient Coding in Retina

The efficient coding hypothesis plays an important role in understanding the design
principles of neural systems, especially sensory systems [1]. However, in practice the application
of efficient coding hypothesis is largely restricted to linear systems with Gaussian noise [6],
systems using local Gaussian approximation [13], or small neural systems consisting of only
few neurons [4, 10, 14, 15]. The reasons are that, on the one hand, mutual information can
be computed analytically for large systems only with strong simplifying assumptions, such as
assuming linear input-output functions for individual neurons. On the other hand, numeric
computation of mutual information is challenging for high dimensional variables, since the
computational complexity is exponential in the number of dimensions. One approach to overcome
this problem is to use Fisher information as a bound [19] or approximation [20] to mutual
information, but this approach does not work with high dimensional stimuli. Another approach

is to use variational approximation with certain decoder [39], but such methods only provide a



bound on mutual information, and the result depends on the choice of a specific decoder. Thus, a
major open problem remains for how to characterize information transmitted by large neuronal
populations taking into account both the nonlinear aspects of neuronal responses and the fact that
these neurons might be sensitive to different components of multi-dimensional input signals.

To test the efficient coding hypothesis in large neural populations, we use the method
we developed that could efficiently compute the mutual information provided about the high
dimensional inputs by the responses of a large neuronal array Compute Mutual Information for
Large Neuronal Arrays. Applying this approach to multiple overlapping retinal ganglion cell
mosaics, consisting of ~ 1000 neurons, we identify a transition that determines when it is optimal
for a system to shift from one high-density mosaic to two or more overlapping lower-density
mosaics. We further show how the relative densities in the two mosaics depend on different types
of input noise and their spatiotemporal filtering properties. The results account for the observed
properties of retinal ganglion cell types in the salamander cells and predict new cell types in the

primate and guinea pig retinas.

3.2 Transitions in the Coordinated Encoding by Retinal Gan-
glion Cell Mosaics

We now use this approach to compute and analyze information transmission in large
arrays of retinal ganglion cells composed of multiple sub-types. The first question that we would
like to address is whether it is better to encode the same type of the visual feature with higher
spatial resolution or to encode different types of visual features each with lower spatial resolution.
“Better” in this context is quantified as conveying greater amounts of mutual information about
the full spatial stimulus pattern. We model each retinal array using a hexagonal grid (Fig. 3.1,

insets). The spatial profile of each neuron is modeled as a difference of Gaussian to capture the

10
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Figure 3.1: (A) Mutual information difference between optimal two-array encoding and one-
array encoding as a function of neuron intrinsic noise level and mean spiking probability. We
map mean spiking probability to mean spiking threshold to better compare with experimental
data. White line show zero mutual information difference marking the transition of optimal
encoding strategy from one array to two arrays. We use photoreceptor noise Gefr = 0.3. (B)
Mutual information difference between optimal two-array encoding and one-array encoding as a
function of photoreceptor noise level. Black dashed line shows the transition from one array
to two arrays. The intrinsic noise level and mean spiking threshold for each line are chosen
to match the data from salamander [17]. Experimentally measured temporal kernels of each
cell type (as shown in Fig. 3.3A) are used to calculate the effective photoreceptor noise. (C)

Transition boundary for different levels of photoreceptor noise.
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center-surround structure [40]

1 G2 W _E-%)?
. 2 _ 2 22
27':02 e 26 27‘[7262 e 16 9 (3 . 1)

where C(o,w,Y) is chosen so that || f||» = [ f(¥)?d¥ = 1, and X, is the receptive field center.

The lattice spacing a, defined as the difference between nearest neighbor RF peaks, relates
to the RF center size 6 as a = 26, in agreement with experimental observations [41, 42, 40, 43, 44].
This relationship also constrains the number of neurons N in a given lattice as Na> = const. Both
configurations — either a single array or two overlapping arrays — are constrained to have the same
total number of neurons and to produce the same number of spiking responses, on average across
the stimulus ensemble.

We find that a transition occurs when noise level v decreases. For a given average
spiking rate across the population, when noise level is high, a single higher density array conveys
more information. When noise level decreases below a certain value, two overlapping mosaics
convey more information than one higher-density mosaic. In Fig. 3.1A we plot results as a
function of noise component v associated with spike generation. Here one observes a transition
boundary (white line) that separates a range of values for the noise level and neural thresholds
where two overlapping mosaics convey more information from those values for which a single
higher density mosaic convey more information.

The transition can also be induced by noise in the afferent circuitry. We model this type of
noise by a Gaussian white noise added to stimulus, so that the input signal u according to which

spikes are produced is described by:

u=f-(3+7), (3.2)

where (n(X)n(x')) = 8(X —x')o2. We will refer to this noise as photoreceptor noise because

studies find it to be the dominant component prior to ganglion cell nonlinearity [33, 34, 35]. The

12



presence of an independent additive noise does not change the form of sufficient statistics, so our
previous information calculation still holds. Yet, because the photoreceptor noise is added before
ganglion cell integrate (spatial-temporal) inputs, the magnitude of this noise can be reduced by
integration summarized by the spatio-temporal filters. In particular, when neurons form multiple
mosaics, they have broader spatial filters compared to the case where there is only one type
of neurons. Thus, forming multiple mosaics provides a powerful way to reduce input noise.
Correspondingly, increasing input noise can by itself force the transition from encoding using

one array to encoding using multiple arrays (Fig. 3.1B).

3.3 Interaction Between Multiple Noise Sources Impacts Op-
timal Coordination Between Retinal Cell Types

In presence of photoreceptor noise defined by Eq. 3.2, the spiking probability given

1

filtered stimulus p(r|u) is a sigmoid function p(r = 1|u) = The spiking probability

R
l4+e V

given stimulus is a convolution of sigmoid and gaussian p(r|s) = [ p(r|u)p(ul|s)du, which is

1
_ M*H b
1+e veff

new slope satisfies (vei)2 = v/2 4 %o2. Thus, given sigmoid spiking probability p(r = 1|u) and

approximately another sigmoid function with different slope p(r = 1|s) = where the

gaussian noise, p(r = 1|s) is a sigmoid function with higher effective v.

veff we note that v/ scales with the standard deviation

To find out the exact expression for
of u such that v/ = 6,v = vo 75\ /14 Ggff, where V is the intrinsic inverse slope in unit of 6, as
we reported in our figures, Gefr is defined in Eq. 3.4, and & 73 is the standard deviation of f s.

Thus we have (vef)? = (1 + Ggff)vzc%g%— %62, and the effective noise in Eq. 2.1 becomes:

2
VT = v 41462+ 22l (3.3)
15 eff 8 V2

Ggff is the effective photoreceptor noise that depends on both the power spectrum of stimuli and

13



neural filters:

2 S, S,
Ot = 5 = 7 20 A2 (3.4)
O T2 [ g(ope o

Here f and g are the spatial and temporal Fourier components of the filter describing neuron’s
spatiotemporal RF. Eq. 3.4 takes into account statistics of natural visual scenes showing 1/ 2
dependence on both spatial and temporal frequencies [45, 46].

Using Eq. 3.3 and 3.4 we can now analyze how the interaction between these noise sources
impacts properties of the optimal mosaics. There are two main effects. The first effect is mainly
quantitative, showing that with increasing photoreceptor noise, the transition boundary between
one-array and two-array encoding shifts towards larger v (Fig. 3.1C).

The second effect induced by photoreceptor noise can lead to large changes in the predicted
fraction of different neuronal types. For example, for low values of the photoreceptor noise, near
the transition from one-array encoding to two-array encoding, when two overlapping mosaics
first start to provide more information than a single dense mosaics, the number of neurons is very
unevenly distributed between the arrays. Most of the neurons form one (denser) array and only a
small fraction of neurons form the other array (Fig. 3.2A, D). Neurons in the lower density array
have higher thresholds and spike less often. In contrast, for high photoreceptor noise, neurons
in the lower density array have lower thresholds and spike more often (Fig. 3.2C, F). These
theoretical observations can help explain the observed differences in the number of adapting
and sensitizing neurons for fast Off, medium Off, and slow Off ganglion cells in salamander
[17]. Because fast Off neurons have faster temporal filters, according to Eq. 3.4, the effective
photoreceptor noise for these neurons will be higher than that for the medium/slow Off neurons
which have comparable temporal kernels. As a result, the expected ratio between adapting and
sensitizing cells for these three classes will be different, with largest differences between fast and
medium/slow subtypes (Fig. 3.3).

The theoretical analyses also predict the existence of new cell types. In Fig. 3.4A we
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Figure 3.2: Optimal threshold and neuron fraction of high threshold cell (red) and low threshold
cell (blue) under low (A, Gegr = 0.3), intermediate (B, Geir = 0.6) and high (C, Ge = 1.0)
photoreceptor noise. Solid/dashed line shows the regime where two/one array is optimal. For
low photoreceptor noise, only the regime where two arrays are optimal is shown, since only the
transition from two arrays to one array take places, and redundant coding (two neuron types
have the same threshold and neuron fraction) is not optimal. For high photoreceptor noise,
two arrays are always preferable than one array, and a transition to redundant coding occurs.
For intermediate photoreceptor noise, both transitions could coexist, with the transition from
two arrays to one array occurs at low intrinsic noise level, while the transition to redundant
coding occurs at high intrinsic noise level. Another noticeable difference between different
photoreceptor noise is the ratio of cells of high and low spiking thresholds. High threshold cells
have few neurons than low threshold cells when photoreceptor noise is low, while the opposite
is true when photoreceptor noise is high. For intermediate photoreceptor noise, both ratio could
be optimal, with a potential transition take places as intrinsic noise changes.
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Figure 3.3: (A) Average temporal receptive fields measured in experiments. Faster temporal
kernel results in higher effective photoreceptor noise, thus have more adapting cells. Similarly,
slower temporal kernel results in more sensitizing cells. (B) (Adapted from [17]) Fractions of
adapting (red) and sensitizing (blue) cells of different cell types measured in Salamander.
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Figure 3.4: Mutual information difference and predicted transition boundary for salamander,
primate, and guinea pig, compared with experimental data. Markers with white/black face
color indicate the data of ON/OFF cells, respectively. (A) Same as Fig. 3.1A but for photore-
ceptor noise Cegf = 0.25, and data points from salamander [17]. Circles represent fast cell, up
triangle represents medium cell, down triangles represent slow cell. (B) Same as (A), but for
photoreceptor noise G = 0.4 and data from primate parvo cells [47]. (C) Same as (A), but for
photoreceptor noise Gegr = 0.5 and data from guinea pig [48]. To compare our predictions with
experiments, we transform the measured values to the intrinsic v and u that are independent from
photoreceptor noise or neuron’s filters. The measured inverse slope Ve, is simply veil in unit of
the standard deviation of f -5 such that Vey, = v¢'' /G 75 S0 we have Vep = (14+065)V? + §0%;.
Similarly we have ,ugxp = (14 06%;)*. Using these relations, we can transform measured values
Vexp and pexp (averaged across all neuron data of the same type) to v and u and compare with
our calculation.
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show data from salamander cell types [17] relative to the transition boundary of the region in the
parameter space where one array encoding provides more information than the two array encoding.
We find that Off neurons are located on one side of the boundary where two arrays provide more
information whereas most On neurons are located on the other side of the boundary. In the
case of the salamander neurons with fast time courses these predictions agree with experimental
measurements because it is known that the fast-Off neurons split into subtypes whereas fast-On
neurons do not. At the same time, theory predicts that slow On neurons should split into subtypes.
This is a new prediction to be tested experimentally.

In Fig. 3.4B and C we compare theoretical predictions for the number of cell types with
vertebrate data from primate [47] and guinea pig [48], respectively. Here the predictions are that
Off neurons from the guinea pig as well as primate parvo cells should split into sub-types whereas
the corresponding On neurons in those species should not. The theoretical predictions are made
for larger photoreceptor noise than in the salamander because photoreceptor noise increases with
temperature. We estimate the photoreceptor noise for guinea pig to be approximately 2 times the
value of salamander using linear interpolation [49]. Meanwhile, primate is shown to have smaller
noise in single photon response than guinea pig [50], thus we use a smaller photoreceptor noise

for primate than for guinea pig.

3.4 Optimal Coordinated Encoding Explains Transient Adap-
tation

Our results predict that, for larger effective photoreceptor noise where the fraction of
adapting cell is larger (Fig. 3.2C), the optimal threshold difference between the adapting and
sensitizing cells increase when the intrinsic noise level v decreases. Such prediction explains
the observation that the threshold difference between adaptive and sensitizing cells increases

transiently after signal variance suddenly drops [17]. Theoretical results for lower effective
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photoreceptor noise, such as for medium and slow Off neurons that have slower temporal filters,
indicate the opposite behavior. For example, in Fig. 3.2A the difference between thresholds of

the two subtypes would decrease following a decrease in intrinsic noise level v.

3.5 Optimal Redundant Coding

2'Spiking Threshold Difference  Neuron Fraction Difference

Redundant

Mean spiking threshold (u)
-
Redundant

8.0 02 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Noise level (v) Noise level (v)

Figure 3.5: Optimal spiking threshold difference (A) and neuron fraction difference (B) of
two neuron sub-types in two arrays. White lines shows the transition boundary from different
threshold (A) and receptive field size (B) to the same threshold/RF size. Redundant coding (two
cell types in two arrays have the same spiking threshold/receptive field size) is optimal on the
right side of the boundary. Photoreceptor noise is Gefr = 1.0.

Finally, it is worth commenting on the possibility that two overlapping arrays can be
formed by neurons with identical response characteristics. We find such possibility, but only for
relative large noise levels associated with both spiking and in photoreceptors (Fig. 3.5). So far,
none of the experimental data we have fell into this region. The observation of optimal redundant
coding creates the prediction that the usual association between mosaics and cell types in the

retina can be violated in the presence of high noise.
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Chapter 3, in full, is a preprint of the material as it will appear in 52th Annual Conference
on Information Sciences and Systems (CISS). Zhang, Yilun; Kastner, David; Baccus, Stephen;
Sharpee, Tatyana, 2018. The dissertation author was the primary investigator and author of this

material.
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Chapter 4

Optimal Nonlinearity for Neurons

Receiving Temporal Correlated Signal

4.1 Introduction

Experimentally measured neuron nonlinearity (also known as tuning curve or activation
function) can usually be well described by sigmoid function. It is commonly believed that the
finite slope of sigmoid nonlinearity is due to noise or biological constraint. Indeed, a sigmoid non-
linearity can be well approximated by an effective Gaussian input noise followed by a threshold
nonlinearity (see Input Noise and Effective Nonlinearity), and it has been shown that informa-
tion transmission rate (mutual information between stimulus and neural response) increases
monotonically as the slope of the sigmoid nonlinearity increases (see Step Function Nonlinearity
Maximizes Mutual Information Without Temporal Correlation). The optimal nonlinearity would
simply be a threshold function, far from the measured sigmoid shape.

Meanwhile, it is known that when multiple binary neurons receive the same scalar
input, the optimal sigmoid nonlinearity has finite slope [31]. Yet, such model cannot explain the

ubiquitous sigmoid nonlinearity since we recently found that when one or multiple neuronal arrays
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are encoding high dimensional inputs (such as retina), the optimal nonlinearity again degenerates
to a threshold function (see Step Function Nonlinearity Maximizes Mutual Information Without
Temporal Correlation), qualitatively different from experimental observation.

Suprisingly, using the method we developed (see Compute Mutual Information for Large
Neuronal Arrays), we found that threshold nonlinearity is optimal only when neuron receive
white noise as input. In real biological system where neuron receive temporal correlated signal,
the optimal sigmoid nonlinearity that transmit most information has finite slope which is inverse
proportional to input standard deviation. More importantly, the optimal nonlinearities we predicted

agree well with experimental data without any parameters in our model.

4.2 Step Function Nonlinearity Maximizes Mutual Informa-

tion Without Temporal Correlation

_ _exp(rs/v)

Consider a binary neuron with sigmoid nonlinearity centered at zero p(r|s) = Trexp(s/V]”

and receiving a symmetric stimulus s without temporal correlation. The mutual information
between stimulus s and neural response r is I(r,s) = H(r) — H(r|s). The derivative of I(r,s) with

respect to v is

ol(r,s)  OH(rls)

ov ov

0
v L pri)togp(rlsds

1+ tog p(ris) 2 s .0

<0,

where we use the fact that H(r) is constant given the symmetry p(s) = p(—s). Therefore, mutual

information is maximized when v = 0, corresponding to step function nonlinearity.
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This conclusion does not change for one or multiple neuronal array receiving high
dimensional signal (like retinal ganglion cell array does) as well as nonzero firing threshold, as

shown in Fig. 4.1.
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Figure 4.1: Mutual information of neuronal array(s) decreases as v increases. Results from
Optimal Information Transmission by Multiple Mosaics of Retinal Cells. Gaussian stimuli with
spatial correlation (but without temporal correlation) are used. Neurons in the same array have
the same but shifted receptive field. All neurons are binary neurons with sigmoid nonlinearity.

4.3 Optimal Nonlinearity for Temporal Correlated Stimuli

4.3.1 Compute mutual information for neurons receiving temporal corre-

lated stimuli

Consider the model where a neuron encodes a time-varying stimulus s(¢) using its spike
train r(¢). A general assumption in information theoretical framework is that neuron is optimized

for capturing information about stimulus s(¢) using its spike train (¢). A quantitative measure of

23



the information captured is the mutual information between stimulus and spike train
I(s,r) =H(s)+H(r)—H(s,r), (4.2)

where H(s) and H(r) are the Shannon entropy of stimulus and spike train, and H (s, r) is the joint
entropy of stimulus and spike train [S51].
We consider a neuron model with finite temporal resolution Ar. We assume At is the
inverse of the maximal firing rate R
1

Given such temporal resolution, spike train r(¢) is represented by binary time series, where r(t;)
is 1 or 0 depending on whether neuron fires in time bin i. Stimulus s(7) is also binned into s(z;)
with same temporal resolution. The probability that neuron fires at #; is determined by the sigmoid

nonlinearity
1

1 _|_exp(_5(ti)—#) ’

\Y

p(r(t) = 1[s(t;)) =

4.4)

where v determines the shape of the sigmoid nonlinearity, u is the firing threshold. Here the
temporal filter of neuron doesn’t appear because s(¢) is the filtered signal. Filtering will not affect
mutual information as long as the filter is reversible.

The optimal nonlinearity in information theoretical framework is the one that maximizes
the mutual information between stimulus and spike train. For simplicity, we model stimulus s(¢)
as temporal correlated Gaussian signal with zero mean, unit variance and random Fourier phase
such that the stimulus statistics is fully characterized by its power spectrum C(®). Thus, the
optimal nonlinearity is fully determined by stimulus power spectrum C(®) and maximal firing
rate R.

Compute mutual information between time-varying stimulus s and spike train r is chal-

langing due to the high dimensionality (number of neurons times number of time bins). To
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overcome this problem, we use our recently developed method (see Compute Mutual Information

for Large Neuronal Arrays). We first decompose stimulus into Fourier components

s(t) = )_(Agcos2mor + By sin 27or). (4.5)

(O]

The spiking probability for neuron i at time #; is determined by sigmoid nonlinearity

ij,ui
erij Vi
p(rij) = ——=> (4.6)

I+e Vi

where r;; is either 1 or O representing neuron spiking or not. The probability to generate full spike

train r is
p(r)=]1p()
ij

— =i TV hl (s)hz(}") (47)
= ezi,j %J Lo(Awcos 2110t +Be sin 2Tm)tj)hl (S)hz(l”)

ri: Fig
AoYi v cos2nwtj+By Y, 'lSiHZTCW)
ez‘”( okijv; itBokij v, " (s)ha(r),

where h;s is some function that does not depend on spike train r, i (r) is some function that does
not depend on stimulus s. Thus, the sufficient statistics for stimulus Fourier components Ag, B

are
i
T(Ap) = Z%COSZE(DIJ',
ij Vi
.
T(By) = Z % sin 2mot ;.
iLj !

(4.8)

The mutual information between high dimensional stimulus and spike train can be computed

using a series of mutual information between two scalars

I(s,r) = Y 1(Ao, T(A)) +1(Bo, T (Bo))- (4.9)
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We compute (A, T (Aw)) and I(Bg, T (By)) numerically using Non-Parametric Entropy Estima-
tion Toolbox (NPEET) [52].

4.3.2 Input Noise and Effective Nonlinearity

We consider the input noise added to the stimuli § = s+ n, where n is a Gaussian white
noise with zero mean and variance 2. The firing probability given a true signal can be written as

a convolution of the sigmoid nonlinearity and a Gaussian

1 1 o 2 /re2
— _(S_S) /2611
/1+e—(§—y)/v /27-[6”6 du (410)
1 , |, mol
S e G VTV TR

In the last line above, we used the relation that the convolution of a sigmoid function with slope
v and a Gaussian with standard deviation ¢ is approximately another sigmoid function with

slope V' = 4/ VvZ+ "TGZ [53]. Thus, adding Gaussian input noise with variance 6 is approximately

n
. . . ) | TG2
equivalent to increasing v to |/ v< + =%,

4.3.3 Optimal nonlinearity of single neuron

To study how the optimal nonlinearity depends on stimulus power spectrum C(®), we
compute the mutual information between stimulus and spike train /(s, r) for three different stimuli:
white noise corresponding to previous study, white noise filtered by temporal filter to model
neuron receiving white noise as input, stimulus with 1/®? power spectrum filtered by temporal
filter to model neuron receiving natural stimulus as input. We use temporal filter and maximal
firing rate R measured in Salamander retinal ganglion cell (fast off adapting cell type) [17].

Natural stimulus is modeled as signal with 1 /®” power spectrum as observed in experiments [46)].
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To find the optimal sigmoid nonlinearity, we plot the mutual information (s, r) as a function of
the sigmoid inverse slope v (Eq. 4.4), as shown in Fig. 4.2. We set u = 0 since it is optimal in the
case of single neuron without any firing rate constraints.

When s(¢) is white noise, it is sufficient to study single spike information because nearby
stimuli in time are independent, so are nearby spikes. In this case, the mutual information is

simply proportional to the mutual information of single spike

I(s,r) =RTI(s(t1),r(t1)), (4.11)

where 17 is the first time bin, T is the total measurement time, and R is the maximal firing rate.
As shown in Fig. 4.2, the mutual information decreases monotonically as v increases from 0, in
agreement with our analytical calculation (see Step Function Nonlinearity Maximizes Mutual
Information Without Temporal Correlation). The optimal nonlinearity in this case is a step
function, corresponding to v = 0.

However, we would like to point out that s(¢) should almost never be white noise in
biological system because of the following reasons: first, stimulus in biological system, either
from environments or from other neurons, should have some (finite) temporal correlation (for
example, stimuli are often continuous in time); second, stimulus will be filtered over time before
passing through nonlinearity to generate spike train, so even white noise input becomes temporal
correlated after filtering. In the case of temporal correlated stimulus s(z), the optimal nonlinearity
is usually not step function, as shown below.

To show the effect of temporal filtering, we use temporal filtered white noise to model the
scenario where a neuron receives white noise as input. We use temporal filter and maximal firing
rate R measured in Salamander (fast off adapting) retinal ganglion cell [17]. As shown in Fig. 4.2,
the information transmission rate no longer decreases as v for v < 0.15 (in unit of stimulus

standard deviation). Compared to unfiltered white noise which is only affected by single spike

27



Power

Power

Power

White Noise White Noise

0.06 ; - 80
Sample Signal )
— Q 70f
e c
0.04¢ i
5 2 60|
£
Time é 501
0.02 =
© 40
=)
25
O'000 20 40 60 80 100 8.0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz) Inverse Slope (v)
0.3 IFlltereq Whltg N0|sel =26 IFlltereld Whltg N0|sel
Sample Signal )
— o
5 =2
0.2} 5 . 5
n ]
©
Time E
O
0.1} i =
©
=)
. 2,
0.0 5020 60 80 100 8001 02z 03 02 05
Frequency (Hz) Inverse Slope (v)
0.8 IFiItereld 1/w? .Signal. =155 . Fast (?ff Adalpting .
Sample Signal )
_ 2 15.0
0.6 © ] e
& 2145
0.4 | g
Time é 14.0
k=
0.2 1 T135
-}
. 2 13
0.0 =020 60 80 100 80 01 02 03 024 05
Frequency (Hz) Inverse Slope (v)

Figure 4.2: Optimal nonlinearity depends on signal temporal power spectrum. Left column
shows signal power spectrum and sample signal (inset), right column plots mutual information
between signal and neuron response as a function of nonlinearity inverse slope v. Top, middle,
bottom row show white noise, filtered white noise, filtered 1/®? signal, respectively. Measured
temporal filter and firing rate of fast off adapting ganglion cell in Salamander retina is used. Red
arrow indicates experimentally measured value.
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information, introducing temporal correlation to stimulus shifts optimal nonlinearity towards
higher v. This effect is more prominent when neuron receives simulated temporal correlated
signal as shown below.

To model more realistic case where neuron receives natural stimulus rather than white
noise, we simulate stimulus in natural scene using correlated Gaussian signal with unit variance
and 1/@? power spectrum [46]. As above, we use the same temporal filter and maximal firing
rate measured in Salamander retina. Suprisingly, the mutual information between stimulus and
spike train (s, r) is maximized when v is around 0.2, far from zero which was previously thought
to be optimal. More importantly, the predicted optimal value agrees well with experimental data
(red arrow) without any parameters in the model, indicating that nonzero v is optimal to capture
information, rather than simply induced by some undesired noise.

Compare white noise input with natural stimulus in Fig. 4.2, we can see a trade-off
between single spike information, which decreases as v increases, and temporal correlation
induced information, which increases as v. When stimulus is continuous in time, spikes in nearby
time bins are more likely to be the same when Vv is small, since neuron’s dynamic range where
stimulus change can be effectively detected is proportional to v. Thus, although single spike
transmit more information when v is small, spike train are more redundant and transmit less

information. We can see the trade-off from the definition of mutual information

I(s,r)=H(r)—H(rls), (4.12)

where H(r) is the Shannon entropy of spike train, and H(r|s) is the conditional entropy. When
we consider single spike or s is white noise, H(r) does not depend on v. The optimal nonlinearity
should minimize H (r|s) which increases monotonically with v. So v = 0 is optimal. However,
when we consider a spike train with temporal correlated stimulus, H(r) also increases with v as

discussed above. Thus there is a trade-off between maximize H(r) and minimize H(r|s). As a
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result, the optimal v depends on stimulus correlation as well as neuron’s maximal firing rate, as
we will discuss later.

In addition to data from fast OFF adapting cells in Salamander retina, we also measured
temporal filter and maximal firing rate of fast OFF sensitizing cells, medium OFF cells, slow OFF
cells and ON cells in Salamander retina (ganglion cells) [17]. We predict the optimal v of each
cell type assuming stimulus has 1/®” power spectrum before filtering, as shown in Fig. 4.3. The

predictions agree well with measured value for different types of OFF cells.

4.3.4 Optimal nonlinearity of ON/OFF neuron pairs

In the previous section, we only consider the model where a stimulus is received by one
neuron. In biological systems, a stimulus is sometimes received by multiple types of neuron to
encode different features. For example, in visual system, ON and OFF retinal ganglion cells
both receive the same visual stimulus, but respond to different contrast; in auditory system,
same sound signal is received by different cochlear hair cells, each encoding different frequency
information. The optimal nonlinearity of each neuron type could be different depending on what
features neuron ensemble is encoding. Using ON/OFF neurons as example, we investigate how
the optimal nonlinearity depends on neuron type as well as energy constraint.

Same as above, we simulate natural stimulus using correlated Gaussian signal with zero
mean, unit variance and 1/@? power spectrum. Stimulus is received by an ON/OFF neuron
pair, which we assume have the same temporal filter and maximal firing rate measured by
experiments. Due to symmetry, the optimal v for ON and OFF neuron should be the same, while
the optimal u should sum to zero. Therefore we only consider the symmetric configuration where
VON = Vorr = V and uoN = —uorr = y. We compute the mutual information between stimulus
and spike train for different v and u using the measured temporal filter and maximal firing rate
of fast OFF adapting cells, fast OFF sensitizing cells, medium OFF cells, slow OFF cells and

ON cells in Salamander retina (ganglion cells) [17], as shown in Fig. 4.4. The measured v and
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Figure 4.3: Optimal nonlinearity of different neuron types compared with experimental data
(red arrows). Measured temporal filters and firing rate are used, as shown in the lower right

subfigure.
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u are mostly in the region where information transmit rate is near optimal, consistent with our
prediction.

The above predictions are purely based on maximizing information transmission without
considering energy consumption. Neuron, in principle, should work in an energy efficient way so
that it captures most information with least amount of energy. Therefore, information transmission
is often maximized subject to energy constraint [54, 10], leading to more sparse firing activity.
Assuming spiking consumes most energy in a neuron, we can characterize the energy consumption

of a neuron by its mean firing rate

F :R/oo p(r="11s)p(s)ds. (4.13)

In our calculation, p(s) is a zero mean unit variance Gaussian distribution, p(r = 1|s) is a sigmoid
function, and the mean firing rate primarily depends on firing threshold u. Keeping mean firing
rate as a constant, the optimal nonlinearity moves towards higher v and u from the optimal
value without firing rate constraint, as shown in Fig. 4.4. The optimal nonlinearity should not
move to the opposite direction because in that way it transmit less information with more energy
consumption, which is a complete loss. Indeed, for all cell types, measured v and u are larger
than or close to the predicted optimal value without energy constraint, consistent with our theory.
Moreover, for OFF cell types, measured v and u are close to predicted optimal value when we

keep mean firing rate at certain level (Fig. 4.4).

4.3.5 Optimal nonlinearity depends on maximum firing rate

As shown above, the optimal nonlinearity depends on stimulus power spectrum C(®).
Larger v is preferable when stimulus power is more concentrated on lower frequencies. On the
other hand, the system is scale invariant in time so that nothing changes if both the stimulus

dynamics and neuron spiking are speeded up or slowed down for a constant factor. Thus, the
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Figure 4.4: Optimal nonlinearity of different neuron types compared with experimental data
(white stars). Colorbar shows mutual information (bits/s) between signal and neuron pair
response. White circle indicates optimal value without any constraints, while white line shows
the trace of optimal values when total firing rate is constrained. Measured temporal filters and
firing rate are used, as shown in the lower right subfigure.
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optimal nonlinearity also depends on the maximal firing rate R through a scaled version of power

spectrum

Cr(®) = C(0R). (4.14)

At the one end, for any stimulus power spectrum C(®) that is continuous in ® and has finite
value, Cg(®) becomes the spectrum of white noise as R — 0 considering the fact that high enough
frequencies will be cut off due to sampling limit. This corresponds to the limit where neuron fires
very slowly so that the interspike interval is much longer than the correlation time scale, so that
nearby spikes are independent. Thus, the response entropy H(r) does not depend on nonlinearity
as long as firing rate is constant. The optimal nonlinearity should minimize conditional entropy
H (r|s), which leads to step function (v = 0).

At the other end, if stimulus has finite variance, [;” C(®)d®, Cgr(®) becomes a delta
function as R — oco. This corresponds to the limit where neuron fires infinite times before the
stimulu changes. The variance of the spike count vanishes compared to its mean, so the neuron is
effectively a deterministic rate neuron with zero noise. Therefore, the optimal nonlinearity should
be the one that maximizes response entropy H (r), which leads to the cumulative distribution of
stimulus, as has been studied [4]. Since the cumulative distribution of unit variance Gaussian can
be well approximated by sigmoid function with v ~ 0.6 [53], neuron with finite firing rate should
not have higher v than 0.6 if no firing rate (energy) constraints are considered. Indeed, none of
the neuron types we measured have v higher than 0.6, consistent with our prediction.

Neurons in biological system fall between these two limits as they have finite maximal
firing rate R. From the analysis above, optimal v depends on Cg(®), but should be smaller than
the high rate limit 0.6. Neuron with higher R has the chance to fire more spikes before stimulus
changes (significantly), and thus will prefer larger v. We confirm this by computing the optimal v
with different maximal firing rate R while keeping stimulus power spectrum C(®), as shown in

Fig. 4.5.
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OFF adapting cells are used to compute optimal nonlinearity.
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4.4 Nonzero V is a choice rather than noise

Nonzero v, as observed in real neurons [17, 48], is sometimes called noise in previous
studies [10] because: first, it was previously thought to reduce information transmission rate; and
second, sigmoid nonlinearity with nonzero v is equivalent to step function nonlinearity (v = 0)
after adding a Gaussian input noise (see Methods). By treating v as noise, we imply that neuron
tries to reduce Vv to zero to increase information transmission rate, but there is an uncontrollable
source adding noise to signal before it goes through nonlinearity so that neuron cannot achieve
zero V. We show that in biological system where neuron receives temporal correlated signal,
optimal v that transmits most information significantly deviates from zero. Neuron should adapt
its nonlinearity to match stimulus statistics. Actually, it has been observed that neuron actively

adapts its v to match stimulus contrast [17], showing that nonzero v is a choice, rather than noise.

4.5 Noise can enhance information transmission

As shown in Methods, adding input noise is approximately equivalent to increasing V.
Thus, when v is smaller than optimal, adding input noise to stimulus before nonlinearity can
actually enhance information transmission rate. Such effect is also called stochastic resonance
[25, 26, 27, 28]. However, unlike previous studies where stochastic resonance is only restricted
to limited cases such as neurons receive subthreshold signal [29, 30], multiple neurons have the
same nonlinearity [31] or slope [32], only temporal independent stimuli are considered [10], we
show that stochastic resonance is much more common. In generally, stochastic resonance is
possible as long as the optimal v is nonzero, which is usually true when neuron receives temporal
correlated stimulus.

Chapter 4, in part, is currently being prepared for submission for publication of the
material. Zhang, Yilun; Sharpee, Tatyana. The dissertation author was the primary investigator

and author of this material.
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Chapter 5

Optimal Connectivity Rate for Information

Transmission in Olfactory System

5.1 Early olfaction as compressive sensing

Although it is still debated how many different odorants humans can perceive, the most
commonly cited number is on the order of 10% [55, 56, 57], much greater than the 500 olfactory
receptor neuron (ORNs) types. Many other species, including both vertebrates and insects, have
the same order of magnitude of ORN types or even fewer (around 1000 in mice, 50 in Drosophila).
The order of magnitude difference between the number of odorants and ORN types implies that
humans as well as other species rely on compressed representations, potentially following the
principles of compressed sensing [58, 59, 60, 61].

In the compressed sensing framework [58], sparse high dimensional signals can be
accurately reconstructed using a small number of measurements provided that the input signals
are sparse. Natural odors are sparse in the sense that they are dominated by a few molecular
compounds [62, 63, 64]. The relevance of compressed sensing algorithms to olfactory coding is

reinforced by the anatomical organization of the olfactory system. High dimensional odor signals
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are compressed into a low-dimensional representation in terms of the activity of a relatively
small number of glomeruli in the olfactory bulb, in the case of vertebrates, or the antennal
lobe in the case of invertebrates. The standard compressed sensing algorithm performs signal
reconstruction as a constrained /1 minimization [58]. Such optimization can be solved through
neural dynamics [60, 59], but the resulting reconstructions were considerably less fault tolerant
than observed experimentally. For example, mice olfactory discrimination remains essentially
intact when half of glomeruli are disabled [65] whereas theoretical reconstructions fail at this level
of signal interference [59]. Furthermore, signal reconstruction based on dynamical optimization
by construction requires more time for signal recognition compared to feedforward reconstruction
schemes. Here we describe a feedforward reconstruction scheme based on compressed sensing
ideas that is both fault tolerant and matches the main features of the organization of the olfactory
system. The results demonstrate that a purely feedforward network is capable of robustly
compressing/decompressing binary signal without dynamical optimization. We analytically
compute the optimal connectivity rate of the network, and showed that it is mathematically

equivalent to the optimal sparsity of a random projection with threshold nonlinearity.

5.2 A compressed sensing model of the olfactory system

We begin by reviewing the main results from compressed sensing literature as they pertain
to olfactory coding. The odor signal s° can be described as a binary vector of length N where each
element is either 1 or O depending upon whether a given molecular compound is present or not in
the odor. We refer to the number K of nonzero components in the odor as the odor sparsity. The
main premise of compressed sensing is that a sparse signal s can be compressed into a vector
x = As® of length M < N and then recovered with high reconstruction quality provided K < N.
The encoding matrix A has dimensions M x N; its matrix elements can be chosen randomly.

With this setup, the original signal s° can be recovered exactly from the convex £; optimization
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problem [58]

§=argmin||s||; subject to x = As". (5.1)

Although the ¢; minimization problem can be solved in polynomial time, it is not straight-
forward to implement such optimization algorithms in a neural circuit. One solution involves a
two-layer neural network that perform similar £; minimization through neural dynamics [60].
However, this imposes certain requirements on the structure of recurrent connections in the second
layer together with a static nonlinear activation function. Another alternative implementation
relies on ¢, minimization instead of /;. In this case, the reconstruction is obtained simply as
§ = (ATA)"'AT x where the ~! represents a pseudo-inverse relation. However, such an approach
does not produce exact signal reconstruction [61] and would predict much larger errors than

observed in olfactory experiments.

5.3 Robust feedforward reconstruction of sparse odors

We now propose a model for the olfactory system, which can compress and robustly
recover sparse binary signal with high probability, without using any dynamical optimization.
The solution is based on a nonlinear binary encoding model instead of the linear encoding model
used in the conventional compressed sensing approach. Specifically, the compressed vector x
has the form of a threshold function x; = # (x! — 8,) where x' = As” and 4 is the Heaviside
step function with #/(0) = 1. We assume that the measurement matrix (affinity matrix) A is a
M x N random binary matrix where each element is chosen independently to be either 1 or 0 with
equal probability p and 1 — p, respectively. It is worth mentioning that while we use a random
connectivity matrix in our model, we do not assume that this matrix differs across individuals.
Rather, the randomness is meant to characterize how well the system works in the absence of

specificity between odorants and glomeruli identity. By extending the definition of # to vectors,
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the measurement vector x can be compactly written as

x=H(As" —8,), (5.2)

where 0, = 1, reflects that all measurements larger than 1 are set to 1 so that x is binary. This
corresponds to a binary model of glomeruli activity described by the binary vector x. The
threshold value of 6. = 1 corresponds to a logical OR operation, so that glomerulus k will be
activated if any of the odor components that are associated with inputs to this glomerulus are
activated.

To reconstruct the original signal, the glomeruli activity x are projected to another layer
of neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body
of insects) which has the same dimension as the original signal s°. The activity of neurons in this
layer is denoted by vector § which has the same dimensionality N as the original signal s°. The

reconstructed signal can be computed as

§=HWT'x—9,), (5.3)

where 0, is the activation threshold for neurons in the reconstruction layer. The reconstruction
matrix W equals the measurement matrix A normalized to 1 by column, i.e. Wy; = Ag;/ Y Agi-
With this normalization, the reconstruction threshold 6, = 1 corresponds to logical AND operation.
That is, odor component i will be detected as present if all glomeruli that feed signals to node i in
the reconstruction layer are activated. Below we will present most of the results for 6, = 1 and
then analyze how the reconstruction quality and recovery robustness depend on this threshold.
We will also determine the optimal connectivity ratio from the compression to the reconstruction

layer that maximizes the fidelity of reconstructions.
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5.4 Maximal information transmission

Our feedforward model can be thought of as an information transmission channel that
compresses, transmits, and decompresses a sparse binary signal. To find the optimal network
configuration, we seek to maximize mutual information between the input and output of the
channel as has been done to characterize performance in the visual and other sensory systems.

The mutual information between s° and § is given by

P(3]s°)
P($)

I(so, §) = ZZP(ﬂSO)P(sO) log,

sO 8

(5.4)

For a given signal sparsity K, the conditional probability P(§|s?) of the reconstructed signal §
given the original signal s” can be computed as:

P(§|SO) = me (1 - pfalse)(N_K_Nerr), (5.5)

false

where prase = P(§i = 1 | s? = 0) is the probability of false detection for an odor component and
Ner = ||$]|o — K is the number of false detection events for the odor s°. We note that for 8, = 1,
the probability to miss an odor component is zero provided the corresponding ORN activates
at least one of the glomeruli. In this regime, the information is fully determined by the false
detection rate ppyse, and as we show below decreases proportionally with pgye.

Assuming a uniform prior over individual odor components P(s) = 1/(}), one can also

compute the probability distribution of reconstructed signals:

(K+N€l‘7‘)

W

Phice (1= prasse) K e (5.6)

P(§) = XO:P(§|SO)P(SO) =
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Putting together Egs. (5.4)-(5.6), the mutual information can be written as

A N N_K N—K e K_|_N
I(SO,S) = 10g2 <K> - Z ( N )pg‘i’é’é(l — pfalse)(N K Nerr) 10g2 < K err) ]
Nerr=0 err

When (N — K) pase < 1, the summation above can be well approximated by its leading nonzero

term VoK
— (N—K Kk K+N,
Y ("5 i = paa)™ K o ()
Ner=0 \ Verr (5.7
~ (N - K)pfalse log, (K + 1)7
so that the expression for the mutual information becomes:
0 N
I(s”,3) ~ log, K — (N = K) praise log, (K + 1). (5.8)

Thus, for given N and K, maximizing I(s”, §) can be approximated by minimizing the probability

of false detection pg,jse.

5.5 Optimal connectivity rate

The false detection rate that appears in Eq. 5.8 can be computed as

1]s)=0)

—
ed
I

Pfalse = P

P(Si=1]|Tillo = k)P(|THlo =k | s} = 0)

I
(NgIS

k=1
y ¢ () ph(1 = pyi—+
:,;1[1—(1—17)1(] k1_<1_p)M (5.9
1 M . .
[1-p(1—p)K]" — (1= p)¥

1—(1-pM ’
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where T; = {x; € x|Ay; = 1}, and p is the average connectivity rate from the compression to
the reconstruction layer. In the last line above we use the binomial expansion. Because we are
interested in the regime where M is large, we have (1 — p)¥ <« [1 —p(1— p)K}M < 1 as long
as p is not too small. Thus, Eq. 5.9 can be approximated with great accuracy by the following
simple equation:

Prase = [1—p(1—p)X]". (5.10)

As shown in the inset of Fig. 5.1B, Eq. 5.10 provides an accurate approximation when the
connectivity p is not too sparse. Since our main interest is near the optimal connectivity rate (see

below) where Eq. 5.10 is very accurate, we will use Eq. 5.10 unless specified.

cogl%ir?gnts M glomeruli N neurons B
[
o
=
wn
=
&0
8
A W' | | |
0 ~ 5 10 15 20
S X S Signal Sparsity (K)

Figure 5.1: (A) Illustration of the model structure. An odor is represented by a sparse binary
vector s’ of its mono-molecular components. This signal is compressed into the activities of
M glomeruli represented by a binary vector x through a binary measurement matrix A. The
signal is then recovered as the activities of N neurons in the mushroom body or olfactory cortex
represented by a binary vector § through another matrix W . (B) The signal-to-noise ratio (SNR)
as a function of signal sparsity K where N = 10000 and M = 500. For a given K, there is a
optimal connectivity rate p = p,, that maximizes SNR. At the same time, even for a system
optimized to a given K, decreasing K still increases SNR. Inset: false detection rate pgye as a
function of average connectivity p; M = 500 and K = 15 are chosen for this illustration. Solid
line is exact formula, while dashed line is the approximation using Eq. 5.10. We can see that
Eq. 5.10 is a very good approximation to the exact formula when p is not too small.
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As expected, the false detection rate pg,se decreases as the number of glomeruli M
increases and as the signal sparseness K decreases. Importantly, for a given M and K, there
is an optimal p, which we refer to as p,,, that minimizes pgyse, as shown in Fig. 5.1B. Taking
OPrfaise/9p = 0 leads to

D = . (5.11)

It is worth noticing that the optimal connectivity p,, is independent of the number of glomeruli
M, and depends only on the signal sparseness K. Thus, optimal connectivity depends exclusively
on the level of sparseness of signals in the environment and can be determined prior to any
measurements on neural circuits.

For an optimal connectivity p = p,,, the probability of fault activation decreases exponen-
tially as M increases and thus can be very small. This indicates that the proposed feedforward
compression-reconstruction scheme from Fig. 5.1A can achieve exact recovery with high proba-
bility.

To test the reconstruction quality, we compute the signal-to-noise-ratio (SNR) of the
recovered signal. Since all nonzero components in the original will be recovered, the only source
of errors in the reconstructed signal are due to false detection rates. Therefore, we can define the

SNR of recovered signal as

[15°[lo _ Kk

SNR = — = ,
< HSHO > _HSOHO (N_K)pfalse

(5.12)

as shown in Fig. 5.2A-C, where < - > denotes the expectation value. We can see from Fig. 5.2B
that the SNR increases exponentially with M. For our case where K < N, we can achieve a
high SNR for a number of glomeruli M much smaller than the number of odor components N or,

equivalently, the number of third-order neurons.
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Figure 5.2: Signal-To-Noise-Ratio (SNR) of the recovered signal in our model. N = 10000 is
used. (A) SNR as a function of K and M. Black is shown for SNR > 10°. The blue line shows
SNR = 1, and the red line shows SNR = K, i.e. one error occurs on average. (B) Optimal SNR
as a function of M. (C) Optimal SNR as a function of K. (D) Number of glomeruli required to
reach threshold SNR when optimal connectivity rate is used.
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5.6 Equivalence to optimal random projection without recon-
struction

Although p,, is defined as the optimal connectivity rate that maximizes the mutual infor-
mation between original signal s and recovered signal §, we now show that p,, also maximizes
the mutual information between signal s” and compressed signal x.

To show this, we consider two different signal s(l) and sg that lead to the same reconstruction
§1 = §» = 5. Due to the symmetry of the connectivity, when signal s° = s, reconstructed signal
is also s. So s produce the same reconstruction as s(]) and sg. Since only false positive occurs
in the model, the nonzero set S of s is a superset of the nonzero set S| of s(l). Consider their
difference DSy = {i|s; = 1,59, =0}, for Vi € DSy, T; C Ujjes, Tj. So Ujjes, Tj = UjesTy, i.e. x1 = x.
Similarly, we have x, = x and x; = xo. Thus, for any two difference signal that lead to the
same reconstructed signal, their compressed signal x are identical. As a result, the map from
compressed signal x to reconstructed signal § is reversible, and the mutual information between
original signal and compressed signal is the same as the mutual information between original
signal and reconstructed signal 1(s°,x) = I(s°, ). Therefore, p,,, which maximizes (s°, §), also
maximizes I(s°, x).

The derivative above generalizes our results from a specific model with certain type of

reconstruction to a general random projection with threshold nonlinearity. Our results show that

in general, the optimal connectivity sparsity is inverse propotional to the input sparsity.

5.7 Compression rate and sparsity

A key characteristic of a compression algorithm is the compression ratio o = M /N. In
previous compressed sensing frameworks, the critical compression ratio o, above which the signal

can be perfectly recovered was shown to only depend on the relative signal sparsity f = K/N. As
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f—0, a.(f) ~—flog f [66]. To compute the critical compression ratio for our reconstruction
algorithm, we note that from Eq. 5.12, log pgase = log f —log(1 — f) —log SNR. In the strong

compression limit where f = K /N is small, this yields
log praise ~ log f —log SNR. (5.13)

On the other hand, for the optimal connectivity rate p,, and large K, 1og pra1se can also be simplified

using Eq. 5.10 as follows:

1 1\ %
l——(14=
K+1< +1<>

e—]) . M OlSNR

log ptaise = M log

(5.14)

T ek ef

1
~ Mlog (1_K—|—

where Ognr 1s defined as the compression rate to achieve a certain SNR. Combining Eq. 5.13 and
Eq. 5.14, in the limit of strong compression where f — 0, the critical compression ratio behaves
as Ognr ~ —f log f. We note that care should be taken when the SNR becomes comparable to or
larger than N because 1/f = N/K < N, so that log SNR cannot be neglected when f — 0.

The obtained critical compression rate can be compared to its theoretical limit. The latter

corresponds to the minimal number of bits required to encode a sparse signal:

Min = [logz (i)—‘ , (5.15)

where [x] is the smallest integer not less than x. When N and K are large but f = K/N is small,

using Stirling’s approximation, we obtain that

M yin X 1og2 ~ NlogN — KlogK — (N — K) log(N — K)
(5.16)
~ KlogN —KlogK+K =K —Klogf,
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This yields that the theoretically possible compression ratio 0,;, in the strong compression limit
of f—0as

Onin — flogre/ f, (5.17)

which also yields o, ~ —flog f as f — O.

Notice that although both agnr and «,,;,, behave as —flog f for f — 0, they have
different proportionality coefficients. To be more specific, osnr ~ eflog1/f while Ouyin ~
(log2)~!flog1/f. As a result, OgNR/Omin — elog2 =~ 1.88 as f — 0. Thus, the number of
glomeruli needed in our model is about twice the theoretical limit but is achieved here with an
extremely simple feedforward encoding model.

As shown in Fig. 5.2-D, the number of required glomeruli increases sub-linearly with
K, and logarithmically with SNR. In practice, with only a few times more glomeruli than the

theoretical limit, a very high SNR can be achieved.

5.8 Robustness and fault tolerance

Advances in experimental techniques provide opportunities to test our theory under the
circumstances of extreme genetic manipulations. For example, following a genetic manipulation
that caused most olfactory receptor neurons to express a single odorant receptor M71, the M71
ligand acetophenone activates half of the glomeruli. Despite this drastic manipulation, mice
can still readily detect other odors in the presence of acetophenone, while their discrimination
performance is only moderately compromised [65]. This result is consistent with our model.
Assume there are M glomeruli in our model and half of them are always turned on (corrupted).
Such a system is equivalent to a model with only M /2 glomeruli, since the anomalously activated
glomeruli will not affect signal recovery. Thus, the odor signal can still be recovered, but the SNR
is decreased, which is in agreement with the experimental result. As a comparison, in previous

compressed sensing framework, one can only allow a small percentage of corrupted glomeruli
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even when M > N [58].

In another set of experimental studies, part of the glomeruli in mice are removed or
disabled [67, 68, 69]. It is shown that the ability to discriminate odors and simple odor mixtures is
not impaired even when most of the glomeruli are removed or disabled. This seemingly surprising
finding is also consistent with our model. From previous results, one can see that decreasing M
will only lead to larger noise in the recovered odor signal but not to a failure of the system if the
activation threshold for neurons in the reconstruction layer can be properly adapted to the new M.
Assume the mice need SNR > v to discriminate odors. When K is small, the minimal M needed

for discrimination is
My, — log 1%
™ log[l1—p(1—p)K]

(5.18)

From experiment data, p ~ 0.05 (although this is a very rough estimation, see [70, 65, 71, 72]).
One can check that the equation above is insensitive to variations in K and NV over a broad range.
If we assume K < 10 (as in the experiments) and NV is within the range of 10* ~ 10°, then M,,,
is roughly between 200 and 300, or around 20% of the glomeruli, which is in good agreement
with the data in those experiments.

On the other hand, our model can tolerate negative gloleruli noise (false negative) by
changing its recovery threshold 6,. Although we use 6, = 1 in our results for analytical solution, it
is very likely that real biological systems would use a lower threshold 6,. With 6, < 1, the SNR is
somewhat lower, as shown in Fig. 5.3, yet the system is more robust to noise in the reconstruction
stage since the activation of a third-order neuron doesn’t require all of its connected gloleruli to
be active and it also leaves room for odor generalization and pattern completion [73]. Indeed,
when the threshold at the reconstruction stage is less than 1, the reconstruction can tolerate some
incompleteness in the glomeruli activation patterns. Real biological systems likely have the
ability to adaptively change the activation threshold in order to balance the needs of high quality
reconstruction and pattern completion.

Our model is shown to be very robust and fault tolerant, and this robustness is achieved
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Figure 5.3: Demonstration of the accuracy-robustness trade-off. N = 10000, K = 15, M = 1000
and the optimal connectivity rate are used. (A) prise and SNR for different activation thresholds
at the reconstruction stage. With lower recovery thresholds, the robustness of the system to
recovery noise increases, while the false detection rate increases, and the SNR of recovered
signal decreases. (B) An example of the recovered signal with different recovery thresholds.
True signal is shown in big colored dots, while the reconstruction error is represented by small
colored dots. As we lower the threshold, the recovered signal becomes noisier.
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with accuracy. As one can see, each glomerulus in the model only contains part of the information
about the original signal. Because the measurement matrix A is random, no single glomerulus or
cluster contains more or unique information, so any subset of the glomeruli could recover the
original signal. The more glomeruli there are, the better recovery quality (SNR) can be achieved.
Thus, removing or disabling part of the glomeruli will not change the system qualitatively, but
will make the recovered signal more noisy, up to a point where noise becomes comparable to the
true signal at which point the reconstruction fails. For a real biological system, it is reasonable to
assume that the recovered signal has very high SNR, which also means high redundancy, as is

observed experimentally.

5.9 Predicted optimal connectivity rate compared with exper-
imental data

From our analysis we observed that for a given level of signal sparseness K, there is an
optimal connectivity rate p,, that maximizes SNR as well as the mutual information. Assuming
that the biological system is adapted to a given value of odor sparseness in its environmental niche,
one can essentially make predictions on the connectivity rate of matrix A. This is followed by
another prediction that the percentage of glomeruli activated by a single odorant should be close
to the percentage of glomeruli that could activate a neuron in olfactory cortex or a Kenyon cell,
and this number should be similar among species which operate in similar olfactory environments.
The latter prediction should be easier to test, since the number of coexisting odorants in the
environment is hard to measure.

Fortunately, previous experiments have gathered sufficient data to test our prediction
indirectly. It has been shown that in Drosophila, 9% of the glomeruli have a strong response to an
odorant [74], while the connectivity rate between glomeruli and Kenyon Cells is 6.5% [75] to

12.5% [76]. (The latter number is obtained based on the average number of claws per Kenyon
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cell measured in [76]) These estimates are consistent with model predictions. Furthermore, in
the locust, a typical projection neuron responds to about half of the odorants [77], while the
connectivity rate between projection neurons and Kenyon Cell is also around 50% [78], which is
also consistent with our prediction.

We can see that the connectivity rate is very different between species. Such differences
can be unified in our model as the adaptation to different environmental niches. The locust has an
anomalously high connectivity rate (50%), which in our model implies that its olfactory system is
adapted to extreme odor sparseness tuned to odors with primarily a single component (p,,, = 0.5
when K = 1). Similarly, Drosophila is adapted to sense odors composed of a mixture of about
10 odor components, while mice are tuned to detect a mixture of about 20 mono-molecular
odors. In general, our model predicts that species with sparse connectivity will behave better in
environments with complex odor mixtures, while species with dense connectivity have better

performance in detecting simple odor mixtures.

5.10 Structural and functional evidence

In addition to the predictions above, further experimental evidence supports the structure
of our model, in particular the approximate logical OR/AND operations associated with the
compression/reconstruction stages, respectively. For example, it has been observed experimentally
that Kenyon Cells in Drosophila receive convergent input from different glomeruli and require
several inputs to be co-active to spike [79]. This is consistent with our threshold activation
function which at the reconstruction stage uses a logical AND operation.

Functionally, experiments have shown that locust Kenyon cells are individually much
better than projection neurons from glomeruli at detecting a single odorant; Kenyon cells that
respond to an odorant also often respond to odor mixtures containing it [80]. This observation

agrees with our assumption that each Kenyon cell only responses to one odorant and it will
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respond when an odor mixture contains that odorant.

5.11 Stereotyped versus non-stereotyped connectivity

Since the affinity matrix A is determined genetically, all the connections in our model
are predetermined before birth. There is some debate about such stereotypy versus random
connectivity, and a compressed sensing model of olfaction based on random connections from
glomeruli to mushroom body has been proposed[81]. Yet, our model supports both stereotyped
and non-stereotyped projection from glomeruli to the mushroom body/olfactory cortex because
the model is invariant under the exchange of neurons within the same layer. In order to verify
such predetermination, one needs to obtain a detailed connectivity map from glomeruli to
the mushroom body/olfactory cortex for different individuals, which is experimentally very
challenging. An indirect approach to verify the predetermined connectivity hypothesis could
be through an examination of innate behaviors that should depend primarily on predetermined
connections. If one could relate innate behaviors to projections between glomeruli and the
mushroom body/olfactory cortex, it would then provide additional supporting evidence for the

genetically predetermined structural connectivity of the feedforward model.

5.12 Effective feedforward model for non-feedforward struc-
ture

The feedforward structure of our model is an effective approximation to the more com-
plicated structure of biological olfactory system where recurrent and feedforward-feedback
connections exist. For example, it has been observed that inhibitory interneurons modulate
neuronal responses in the olfactory bulb[82, 83]. In linear dynamic systems, such feedforward-

feedback structure could be mathematically modeled as a pure feedforward system with different
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effective feedforward connectivity. Suppose that we add a layer of interneurons z in Fig. 5.1
that is connected to the glomeruli layer x by feedforward-feedback connectivity B. Then the
linear dynamics of the system are x = —x+As® — BTz and z = —z + Bx, where we assume B is
feedforward excitatory and feedback inhibitory. The steady state solution is x = (I +B” B)"'As?,
which is the same for a pure feedforward system, except that connectivity A is replaced by
(I4+BTB)~'A. This analysis is not exact if the activation function is nonlinear. In general, the
feedforward-feedback system in steady state with a nonlinear activation function does not have an
equivalent feedforward system, but one can still write the linear perturbation when neurons receive
only weak inputs, which allows a feedforward approximation. Such a feedforward approximation
is supported by experimental observations that the representations of odor mixtures in mouse
glomeruli can be explained well by the summation of the glomeruli responses to their components
[84].

One advantange of the effective feedforward model is that it enables an adaptive affinity
matrix even with pre-determined connectivity. In the feedforward-feedback architecture men-
tioned above, the effective affinity matrix is (I + B B)~'A, where A is the pre-determined affinity
matrix encoded in the genes, while B could be a learned matrix adapted to the environment. From
this perspective, the existence of interneurons in both insects and vertebrates[85, 86], as well as
adult neurogenesis in the olfactory bulb of mammals[87], could play the role of adjusting the

effective affinity matrix for the purpose of adaptation.

5.13 Comparison with /; minimization algorithm

We compare the performance of our feedforward architecture with the often-used LASSO

/1 minimization algorithm[88] provided by the Python scikit-learn library

.1 . .
min |4 —x||3 +BlIs]l1, (5.19)
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Figure 5.4: Comparison of the performance of feedforward architecture with that of LASSO.
For this example, we chose N = 1000 and M = 500. Linear measurement is used for LASSO.

Feedforward architecture performs well when the signal is very sparse, while LASSO has lower
reconstruction error as K increases, at the price of increasingly more iterations. On the other
hand, if we constrain the number of iterations, LASSO still performs better when K is large, but
significantly worse with very sparse signals.
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where N = 1000, M = 500, B = 0.001 are used. Linear measurement x = As? is used for LASSO.
For each K, we conduct 100 experiments with different random measurement matrices and signals,
and compute the average of the reconstruction errors ||§—s°||; as well as the number of iterations
used in LASSO. We also compute the mean reconstruction error when only 5 iterations are used
in LASSO as a comparison. The results are shown in Fig. 5.4. As shown in the figure, the
feedforward architecture has a lower reconstruction error when the signal is very sparse, while
LASSO has a lower reconstruction error than the feedforward architecture when K becomes
larger. However, the number of iterations also increases as the signal becomes denser. If we
restrict the number of iterations to 5 in the LASSO (equivalent to setting a maximum response
time), LASSO performs much worse when the signal is very sparse. But as K increases, it still

has a lower reconstruction error than the feedforward architecture.

5.14 Performance with non-sparse signal

One drawback of this feedforward architecture is that it may not be able to achieve both
compression and high-quality reconstruction simultaneously when the signal is not sparse. Unlike
the /; minimization method where the number of measurements required to reconstruct the signal
will never exceed signal length N (N /2 for binary signal)[89, 90], the feedforward architecture
may need more measurements than the signal length to accurately reconstruct the signal. This
can be seen by restoring the term in Eq. 5.13 that we have previously neglected assuming that f

is small

log praise = log f —log(1 — f) —log SNR. (5.20)

Combining this with Eq. 5.14 that remains the same when f is not small, we obtain:

asng = ef logSNR +eflog(f ! — 1), (5.21)
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which could be larger than 1 when f is not small. Thus, the feedforward computation may
require number of measurements that are larger than the input dimensionality to achieve reliable
reconstruction.

From another perspective, we can compute the upper bound on the reconstruction SNR

that can be achieved for a given compression level. From Eq. 5.21 and ognr < 1 we get
1 ~1
logSNR < o log(f~" —1), (5.22)
e

which only depends on signal sparsity. For example, if f = 0.1, then SNR < 4.4, and the

reconstructed signal will not be accurate.

5.15 Extension to continuous variables and other activation
functions

Although our analysis above is based on a binary signal / measurement matrix / glomeruli
activity and threshold activation function, our results can be extended to positive real-valued
signal / measurement matrix / glomeruli activity and any monotonically increasing activation
function. Consider the case where the signal s” and the element of measurement matrix A; j could
take any positive value rather than just 0 and 1. Denoting x/ = As, and letting the activation
function g be any monotonically increasing function, the output at the glomerulus stage can
be written as x; = g(xf). Now, signal reconstruction can proceed based on the evaluation of a
minimum function (rather than the logical AND function that was used in the case of binary
inputs and binary measurement matrices). Indeed, when the ith component of the reconstructed
signal §; is computed as the smallest value {g~!(x;)/A;} across the set of its inputs (i.e. where
Aj; # 0), then our analysis remains valid. The only modification is that now the distribution of the

signal and the measurement matrix elements are both required to compute the noise magnitude.
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This procedure ensures that the recovered components are still recovered exactly, while corrupted
components are still corrupted. As a practical aside, we note that the minimum function can be
implemented by short-term synaptic plasticity, see Neural Implementation of Minimum Function

Using Short-Term Plasticity.

5.16 Neural Implementation of Minimum Function Using Short-
Term Plasticity

The following simulation shows that the Minimum function (output firing rate equals the
smallest input firing rate) can be implemented in neural circuits with Short-Term Plasticity (STP).

We use conductance-based Leaky-Integrate-and-Fire (LIF) neuron model with exponen-
tially decaying post-synaptic conductance. The dynamics of the system are given by [91]

dv(t)

m = Vrest — V(t) + Gex () [Vrev — v(2)] +1(1)R (5.23)

and
dgex<t>

Tx— - = —8ex (1) +w(t)8peard(t —t5pk), (5.24)
where 75 is the time when the input spike is received. Inhibitory postsynaptic potential is omitted
since we only consider excitatory neurons. When v > vy, the neuron fires a spike and v is reset
tO Vreset- We use the following parameters: Vipres = —50 MV, Viest = Vieget = —65 mV, vy = 0,
T = 15 mS, Tex = 5 mS, gpeax = 0.015, 7 =0.

Synaptic weight w(z) is described by Short-Term Plasticity. The dynamics are given by
[92]

w(t) = r(t)u(t)W, (5.25)

th—1
M(tn+1) = (1 — U)u(tn)exp (n"Cf—nrl) + U, (526)
acl
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and

i) = r(6)[1 — 1) exp (ﬂ) Fl-exp (ﬂ) L e

Trec rec
where 1, is the time of the n-th spike received, U = 0.6, Tfyeii = 5 ms, Trec = 100 ms and W is the
synaptic strength.

In the simulation, a LIF neuron receives 6 input spike trains with 6 STP synapses. Each
spike train is generated with a fixed firing rate. A Gaussian noise with 6 = 1 ms is added to each
spike. The smallest input firing rate fu, 1S chosen uniformly from O to 100 Hz. The other 5 input
firing rates are then chosen uniformly from f,i, to 200 Hz. Initially v = vieg, gex = 0, and for
each synapse u = 0, r = 1. Each simulation runs for 2 s, with 1000 trials for each parameter. The
results are shown in Fig. 5.5 and Fig. 5.6.

As shown in Fig. 5.5, the neuronal output firing rate can be well approximated by its mini-
mal input firing rate when the minimal input firing rate is not high, while the median/mean/max
of its input firing rates fail to do that due to the large variance in y-axis. In Fig. 5.6, we compare
the results for different synaptic strength W. As we can see, such approximation is valid for a
range of W. Larger W leads to better approximation when the minimal firing rate is high.

Chapter 5, in full, is a reprint of the material as it appears in PLoS computational biology.
Zhang, Yilun; Sharpee, Tatyana, 2016. The dissertation author was the primary investigator and

author of this paper.
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Figure 5.5: Comparison between the firing rate of the output neuron and the
min/median/mean/max function applied to the firing rate of its inputs. W = 74 is used. As
shown in the figure, provided the minimal input firing rate is not too large, the output firing rate
can be well approximated by the minimal input firing rate. As a comparison, median/mean/max
functions applied to the input firing rates are not well approximated by short-term plasticity,

because the variance along the y-axis is large.
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