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ABSTRACT OF THE DISSERTATION

Numerical methods for nonequilbrium impurity models

by

Feng Chen

Doctor of Philosophy in Physics

University of California San Diego, 2020

Professor Michael Galperin, Chair
Professor Massimiliano Di Ventra, Co-Chair

Theoretical studies of electron and energy transport in nanostructures usually involve

nonequilibrium quantum impurity models, which feature a locally interacting quantum system

(impurity) coupled to noninteracting bosonic and/or electronic baths each at its own equilibrium.

In these models, the interplay of strong correlation, nonequilibrium effects and dissipation

leads to rich and complex phenomena. As a nonequilibrium strongly correlated many-body

problem, these models, except at some rare cases, have no exact analytical solution, and hence

their treatment heavily relies upon numerical techniques. The goal of this thesis is to develop

numerically accurate and relatively low-cost techniques for treatment of strongly correlated open

xi



nonequilibirum quantum systems. Such impurity solvers are in high demand both as standalone

methods for simulation of response in nanoscale junctions and as part of divide-and-conquer

schemes such as dynamical mean field theory (DMFT).

For nonequilibirum open quantum systems, two characteristic energy scales governing the

physics are intra-system interactions and strength of the system-baths couplings. Thus, systems

strongly coupled to their baths with weak intra-system interactions or weakly coupled systems

with strong local interactions can be treated within developed perturbation theory approaches.

My research focuses on development of nonequilibirum dual techniques, which are capable to

accurately treat situations where perturbative techniques are inapplicable due to absence of a

small parameter in the system and which reduce to standard perturbative expansions in the limits

of weak coupling or weak intra-system interaction.

Dual techniques rely on ability to solve exactly a simplified reference system. The

latter includes exactly all intra-system interactions and accounts approximately for system-bath

couplings. Dual techniques (described below) allow to account for deviation from the correct

hybridization function in a organized and controlled manner of superperturbative expansion. Here,

I use Markovian Lindbald quantum master equation (QME) as a solver for the reference system.

In the thesis I discuss possibility of mapping between true non-Markov dynamics and simpler

Markov Lindblad QME (mapping between physical and reference systems), numerical methods

for the mapping and for solution of the resulting Lindblad QME, and application of the mapping

in novel dual formulations: auxiliary-QME dual fermion and dual boson approaches.

First I analytically prove that the continuous fermionic baths that the impurity is coupled

to can be mapped onto a set of dissipative auxiliary modes under Lindblad QME. Based on this

mapping, complicated non-Markovian dynamics of the open fermionic system can be treated

by a much simpler Markovian Lindblad QME. However, nice mapping generally requires many

auxiliary modes, and numerically only a small number of modes can be exactly diagonalized due

to exponential increase of the Hilbert space. To perturbatively treat the difference between the true

xii



bath and the small-size auxiliary one, we introduce dual-fermion method. It can directly target

the steady state and avoid long-time propagation. Besides current-voltage relation, it can also

provide spectral functions, indicating itself as a potential impurity solver for DMFT. Furthermore,

we generalize dual-fermion method to consider additionally the effects of bosonic environment;

hence it is called dual-boson method. It can be used for studying electron-phonon interaction and

light-matter interaction in nanojunctions. By comparing with numerically exact results we argue

that both methods are very accurate and relatively cheap.

Finally, matrix product state representation of the Lindblad QME enables us to treat a

large number of auxiliary modes, which provide an exponentially improved mapping. Adding

counting field to the auxiliary QME, we can compute the generating function of time-dependent

full-counting statistics of electron transport, which yields not only electronic current but also

higher-order cumulants (e.g., zero-frequency noise).
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Chapter 1

Nonequilibrium Impurity Models

1.1 Background

Open nonequilibirum systems are at the forefront of experimental and theoretical research

due to the rich and complex physics they provide access to as well as their applicational prospects

of building nanoscale devices for quantum based technologies and computations [1–3]. Theo-

retical investigation of these systems often starts from nonequilibrium impurity models, which

feature an interacting few-body system coupled to noninteracting bosonic and/or electronic baths.

These models show intriguing physics due to the interplay of strong correlation, dissipation and

nonequilibrium effects. Despite their benevolent looking, these models, except in some rare cases,

generally don’t have exact analytic solutions, and hence one has to resort to numerical methods to

understand the accompanying exotic phenomena.
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1.2 Models

1.2.1 Anderson Impurity Model

For purely fermionic system, the paradigmatic example is Anderson impurity model(AIM).

AIM characterizes a local spinful level (impurity) coupled to electronic leads. The leads are

composed of free electrons but there is Coulomb repulsion U between electrons with different

spins on the impurity. The Hamiltonian is

Ĥ = ∑
σ∈{↑,↓}

ε0d̂†
σd̂σ +Un̂↑n̂↓+ ∑

k∈L,R
∑

σ∈{↑,↓}

(
εkĉ†

kσ
ĉkσ +Vkd̂†

σĉkσ +V ∗k ĉ†
kσ

d̂σ

)
(1.1)

This model was originally proposed to study magnetic impurities in metal host [4], and

harbors a many-body phenomena—Kondo effect [5]. In recent years, it has gained renewed

interests due to the experimental advances in characterization of open nanoscale quantum systems

such as quantum dots (QDs) and molecular junctions. Besides, AIM and its multi-orbital

generalization are also the backbone of all calculations within DMFT [6, 7].

Figure 1.1: Kondo effect in quantum dots (a) two examples of the spin-flip conduction process
via intermediate virtual states (b) Kondo resonance at Fermi energy

Kondo Effect in Quantum Dots: Kondo effect in electronic transport experiment through

QDs happens when the QDs have net magnetic moments. In AIM, this is the case when the

2



impurity has one unpaired electron. Adding the second electron requires additional energy ε0+U ;

hence when the Fermi levels lie between ε0 and ε0 +U , the first-order tunneling process is

prohibited. However, the electron conduction can be realized through spin-flip processes via

virtual state such as illustrated in Figure 1.1(a). Many such spin-flip events together coherently

give rise to a peak fixed at the Fermi level in the density of states (DOS) of the impurity

(Figure 1.1(b)). The appearance of this peak can be most easily understood by the so-called

Friedel sum rule [5], which is a consequence of the Fermi liquid properties of AIM. This peak,

called Kondo resonance, gives rise to enhanced conductance because it provides a resonant

channel for otherwises Couloumb blockade regime.

It is interesting to note that at finite source-drain voltage, there is no single chemical

potential, and as a result, Kondo resonance splits into two peaks, which are roughly located at the

chemical potential of source and drain respectively [31].

1.2.2 Single-level Holstein Model

Figure 1.2: Inelastic electron tunneling accompanied by phonon emission.

Another well-know impurity model is single-level Holstein model, which consists of one

spinless level coupled to free electron reservoirs and a localized phonon mode. Its Hamiltonian is

3



Ĥ = ε0d̂†d̂ +ω0â†â+λ(â† + â)d̂†d̂ + ∑
k∈L,R

(
εkĉ†

k ĉk +Vkd̂†ĉk +V ∗k ĉ†
k d̂
)

(1.2)

where ω0 is the frequency of the phonon mode and λ is the electron-phonon coupling strength.

This model is used for studying inelastic transport due to the emission/absorption of phonon.

Fixing the chemical potential of drain lead µd , when the chemical potential of source lead µs

reaches thresholds µs− ε̃0 = n~ω0, electrons from the source lead have enough energy to excite

n phonons and become resonant with the impurity level. This gives rise to steps in the current-

voltage relation [9]. Here ε̃0 = ε0−λ2/ω0 represents the renormalization of the energy level due

to its coupling with the local phonon.

1.3 Nonequilibrium Green’s Function

The theoretical tool used in this thesis for studying nonequilibrium impurity problems is

nonequilibrium Green’s function (NEGF). It has the advantage of calculating local observables

such as occupation, density of states and current without diagonalizing the whole infinite system.

Here we brief introduce this technique for fermions and readers can refer to [39, 99] for more

details.

The difference between NEGF and equilibrium Green’s function is that the adiabatic

theorem doesn’t hold when the system is driven out of equilibrium. As a result, the state at

t =+∞ is no longer the same as the state at t =−∞ (up to a phase factor). A way to deal with

this difficulty is to work on the Keldysh contour with both forward and backward propagation

so that all quantities are evaluated with respect to the state at the infinite past, which is known.

Particularly, in this thesis, the leads and impurity are initially decoupled and each is assumed to

be in its own thermal equilibrium. At t =−∞ the couplings are turned on, and the whole system

evolves eventually to its steady state.

NEGF is defined as the correlator of two operators on the Keldysh contour, G(τ,τ′) ≡

4



- (forward branch)

+ (backward branch)

Figure 1.3: The Keldysh contour.

−i〈Tcψ̂(τ)ψ̂†(τ′)〉 = −iTr
(
Tcψ̂(τ)ψ̂†(τ′)ρ̂(−∞)

)
, where ρ̂(−∞) is the initial state, τ and τ′ are

time variables on the contour, and Tc is the contour order operator which moves the operator later

on the contour to the left. After projection of τ and τ′ onto real time t and t ′ of particular branchs,

one ends up with a 2×2 matrix structure for NEGF

G =

G−− G−+

G+− G++

≡
GT G<

G> GT̃

 (1.3)

where GT ≡−i〈T ψ̂(t)ψ̂†(t ′)〉 is the time-ordered Green’s function; G< ≡ i〈ψ̂†(t ′)ψ̂(t)〉 the lesser

Green’s function; G> ≡−i〈ψ̂(t)ψ̂†(t ′)〉 the greater Green’s function; and GT̃ ≡−i〈T̃ ψ̂(t)ψ̂†(t ′)〉

the anti-time-ordered Green’s function. These four are not independent, and we can choose lesser

and greater components as the independent functions. Another common choice is the retarded

and Keldysh components, which are defined as:

GR(t, t ′) =−iθ(t− t ′)〈{ψ̂(t), ψ̂†(t ′)}〉

GK(t, t ′) =−i〈[ψ̂(t), ψ̂†(t ′)]〉
(1.4)

where {,} and [, ] are anticommutator and commutator respectively. These satisfy

(GR)† = GA

GR−GA = G>−G<

GK = G>+G<

(1.5)

5



where GA = iθ(t ′− t)〈{ψ̂(t), ψ̂†(t ′)}〉 is the advanced Green’s function.

1.4 Hybridization Function

As far as the impurity is concered, the effects of baths can be fully characterized by the

so-called ”hybridization function” (here we’ll focus on electronic bath, but bosonic bath will be

similar):

∆(τ,τ′) = ∑
α

∆α(τ,τ
′) = ∑

α

∑
k
|Vαk|2gαk(τ,τ

′) (1.6)

Here gαk(τ,τ
′) =−i〈ĉαk(t)ĉ

†
αk(τ

′)〉 is the bare Green’s function of the free electron at state k of

bath α at equilibrium with density matrix ρ̂α = e−β(Ĥα−µαN̂α)

Tre−β(Ĥα−µαN̂α)
. Since each bath is at equilibrium,

hybridization function only depends on the time difference t− t ′, and it’s convenient to transform

it into frequency domain. Explicitly, retarded component is

∆
R
α(ω) = ∑

k

|Vαk|2

ω− εαk + iη
(1.7)

its imaginary part−Im∆R
α(ω) = π∑

k
|Vαk|2δ(ω−εαk) is usually denoted as Γα(ω), and its real part

can be deduced from the imaginary part by the Kramers-Kronig relation. For each bath, different

components of the hybridization function are connected by fluctuation-dissipation theorem

∆
K
α(ω) =−2i[1−2 f (ω,µα,Tα)]Γ(ω)

∆
>
α (ω) =−2i[1− f (ω,µα,Tα)]Γ(ω)

∆
<
α (ω) = 2i f (ω,µα,Tα)Γ(ω)

(1.8)

where f (ω,µ,T ) is the Fermi distribution function.
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Chapter 2

Markovian Mapping for Fermionic Baths

2.1 Motivation

In DMFT, a many-body lattice problem is self-consistently mapped into an impurity

model, which can be solved by a variety of impurity solvers. Among these impurity solvers are

numerical renormalization group in the basis of scattering states [10, 11], flow equations [12, 13],

time-dependent density matrix renormalization group [14,15], multilayer multiconfiguration time-

dependent Hartree (ML-MCTDH) [16, 17], and continuous time quantum Monte Carlo [18–20]

approaches. These numerically exact techniques are very demanding and so far are mostly

applicable to simple models only. At the same time, accurate numerically inexpensive impurity

solvers are in great demand both as standalone techniques to be applied in simulation of, e.g.,

nanoscale junctions and as a part of DMFT calculations.

In this respect ability to map complicated non-Markovian dynamics of a system onto much

simpler Markov consideration is an important step towards creating new computational techniques

applicable in realistic simulations. In particular, such mapping was used in auxiliary master

equation approach (AMEA) [8,21] introducing numerically inexpensive and pretty accurate solver

for the nonequilibrium DMFT. Within AMEA the original unitary evolution is substituted with a

7



Lindblad-type quantum master equation consideration of an expanded system (system plus a set of

auxiliary modes).We note that similar mapping ideas are employed also in the reaction coordinate

formalism [23–25]. While the mappings appear to be very useful and accurate, in most cases

only semi-quantitative arguments to justify the mapping were presented with main supporting

evidence being benchmarking vs. numerically exact computational techniques. In particular, a

justification for the mapping was put forward in Refs. [26–28] based upon the singular coupling

derivation of the Lindblad equation.

Recently, a rigorous proof of non-Markov to Markov mapping for open Bose quantum

systems was presented in the literature [29]. It was shown that the evolution of reduced density

matrix in non-Markov system with unitary system-environment evolution can be equivalently

obtained by a Markov evolution of an extended system (system plus modes of environment) under

Lindblad-type evolution. In the following, we extend the consideration of Ref. [29] to fermionic

open quantum systems and to multi-time correlation functions.

S1

T1

2

T2

3

T3

N

TN

SL R

(a) (b)

Figure 2.1: Sketch of an open fermionic system S. Shown are (a) physical system coupled to N
baths and (b) illustration for an auxiliary system with coupling to full (left) and empty (right)
baths.
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2.2 Models

We consider an open fermionic system S coupled to an arbitrary number N of exter-

nal baths, initially each at its own thermodynamic equilibrium, i.e. characterized by its own

electrochemical potential and temperature (see Figure 2.1a). The Hamiltonian of the model is

Ĥ phys(t) = ĤS(t)+
N

∑
B=1

(
ĤB +V̂SB

)
(2.1)

Here ĤS(t) and ĤB (B ∈ {1, . . . ,N}) are Hamiltonians of the system and baths. V̂SB introduces

coupling of the system to bath B. While the Hamiltonian of the system is general and may be

time-dependent, we follow the usual paradigm by assuming bi-linear coupling in constructing

fermionic junction models.

ĤB = ∑
k∈B

εBkĉ†
BkĉBk (2.2)

V̂SB = ∑
k∈B

∑
i∈S

(
Vi,Bkd̂†

i ĉBk +H.c.
)

(2.3)

where d̂†
i (d̂i) and ĉ†

Bk (ĉBk) create (annihilate) electron in level i of the system S and level k of

bath B. In the model, dynamics of the system-plus-baths evolution is unitary. Below we call this

model phys (physical). We note in passing that extension of the consideration to other types of

system-baths couplings is straightforward, as long as baths are quadratic in the Fermi operators.

The other configuration we’ll consider is a model we shall call aux (auxiliary; see Fig-

ure 2.1b). Here, the same system S is coupled to a number of auxiliary modes A, which in

their turn are coupled to two baths. There are two Fermi baths in the configuration: one (L) is

completely full (µL→+∞), the other (R) is completely empty (µR→−∞). The Hamiltonian of

the total system is

Ĥaux(t) = ĤS(t)+V̂SA + ĤA + ∑
C=L,R

(
ĤC +V̂AC

)
(2.4)

9



where ĤS is the same as in (2.1), ĤA represents set of modes

ĤA = ∑
m1,m2∈A

HA
m1m2

â†
m1

âm2 (2.5)

and V̂SA their interaction with the system

V̂SA = ∑
i∈S

∑
m∈A

(
V SA

im d̂†
i âm +H.c.

)
(2.6)

Here â†
m (âm) creates (annihilates) electron in the auxiliary mode m in A.

ĤC represents continuum of states in contact C

ĤC = ∑
k∈C

εCkĉ†
CkĉCk (2.7)

with constant density of states

NC(E)≡ ∑
k∈C

δ(E− εCk) = const (2.8)

and V̂AC couples auxiliary modes A to bath C (L or R)

V̂AC = ∑
k∈C

∑
m∈A

(
tC
mâ†

mĉCk +H.c.
)

(2.9)

Dynamics of the whole configuration is unitary.

In the next section we show that the reduced time evolution of S in models phys and aux

is the same (subject to certain conditions) and that the reduced dynamics of S+A in model aux

satisfies an appropriate Lindblad Markov evolution. This establishes procedure for Markovian

Lindblad-type treatment of S+A in aux exactly representing overall (i.e. system plus baths)

unitary non-Markov dynamics of S in phys by tracing out A degrees of freedom.

10



2.3 Non-Markovian to Markovian Mapping

Consideration of the mapping consists of three levels of description: 1. overall (S plus

baths) unitary dynamics of the physical system (phys); 2. overall (S+A plus baths) unitary

dynamics of the auxiliary system (aux); 3. Markovian Lindblad-type dynamics of S+A in the

auxiliary system (aux). Below we first discuss equivalence of the unitary dynamics of S in phys

and aux systems, then we prove equivalence of unitary and Lindblad-type evolutions in the aux

system.

First, we are going to prove that with an appropriate choice of parameters of aux the

dynamics of S can be equivalently represented in the original model phys and auxiliary model

aux. Because non-interacting baths are fully characterized by their two-time correlation functions,

equivalence of system-bath(s) hybridizations (i.e. correlation functions of the bath(s) dressed

with system-bath(s) interactions) for the two models indicates equivalence of the reduced system

dynamics in the two cases. For example, hybridization function is the only information about

baths in numerically exact simulations of strongly correlated systems [19]. Nonequilibrium

character of the system requires fitting two projections of the hybridization function (also called

self-energy in the literature). In particular, these may be retarded and Keldysh projections. Let

∆r
B(E) and ∆K

B (E) be matrices introducing the corresponding hybridization functions for bath B

of the physical problem (Figure 2.1a). Retarded projection carries information on bath’s spectral

function and strength of system-bath coupling yielding dissipation rates for the system due to

coupling to the bath. Keldysh projection yields information on bath’s population which by Pauli

principle defines possibility of electron exchange between system and bath.

(
∆

r
B(E)

)
i j = ∑

k∈B
Vi,Bk gr

Bk(E)VBk, j (2.10)(
∆

K
B (E)

)
i j = ∑

k∈B
Vi,Bk gK

Bk(E)VBk, j (2.11)
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where gr (K)
Bk (E) are the Fourier transforms of retarded (Keldysh) projections of the decoupled

(V̂SB = 0) electron Green’s function gBk(τ,τ
′) =−i〈Tc ĉBk(τ) ĉ†

Bk(τ
′)〉 in contact B. The parameters

of the auxiliary model should then be chosen such that the total hybridization functions for the

system

∆
r(E) =

N

∑
B=1

∆
r
B(E)

∆
K(E) =2 i

N

∑
B=1

(
1−2 fB(E)

)
Im∆

r
B(E)

(2.12)

are as close as possible to the corresponding hybridization functions, ∆̃r(E) and ∆̃K(E), of S in

the auxiliary model (Figure 2.1b) [8, 21, 27]. The latter have contribution from full (L) and empty

(R) baths, and from auxiliary modes (A)

∆̃
r(E) =∆̃

r
L(E)+ ∆̃

r
R(E)

∆̃
K(E) =2 i Im

(
∆̃

r
R(E)− ∆̃

r
L(E)

) (2.13)

where we assume modes A initially in equilibrium with its contact (full or empty). In both

Eq.(2.12) and Eq.(2.13), we used fluctuation-dissipation theorem for each equilibrium bath.

Requirement of equivalence can be expressed as

Im ∆̃
r
L(E) =

2 i Im∆r(E)+∆K(E)
4 i

Im ∆̃
r
R(E) =

2 i Im∆r(E)−∆K(E)
4 i

(2.14)

where we used Kramers-Kronig relation. Thus, the problem reduces to fitting known functions

on the right side of the expression with multiple contributions from auxiliary modes to the hy-

bridization functions on the left side. We note that the knowledge of total (sum of contributions

from all baths) hybridization function (retarded and Keldysh components) allows to fully de-

termine interacting correlation functions in the S subspace of phys. That is, no information on

12



contribution from each separate bath is required. Thus, any number of baths B in physical system

can be represented by only two baths (one full and one empty) in the auxiliary system. The

exact mapping we prove below allows to evaluate correlation functions (and in particular, single

particle Green’s functions) in the S subspace of the physical system by considering Lindblad-type

evolution in the aux system. After the correlation functions has been evaluated fluxes between

the system S and baths B can be evaluated utilizing the well-known exact Jauho-Meir-Wingreen

and similar expressions.

In principle fitting (2.14) can be done in many different ways [27]. For example, possibility

of exact fitting of an arbitrary function with set of Lorentzians was discussed in Ref. [30]. In

auxiliary systems such fitting corresponds to a construction where each auxiliary mode is coupled

to its own bath. Note that in practical simulations accuracy of the results can be improved by

increasing number of auxiliary modes or by considering more general (nondiagonal) level-bath

geometries in the auxiliary system, as is implemented in, e.g, AMEA [31].

Having established the equivalence of reduced system (S) dynamics in phys and aux,

we now turn to consideration of evolution of the aux model. We will show that reduced S+A

dynamics derived from unitary evolution of the aux model can be exactly represented by a suitable

Markovian Lindblad-type evolution. Following Ref. [29] we consider the reduced density operator

of S+A in aux, ρ̂SA, which is defined by integrating out the baths degrees of freedom from the

total density operator ρ̂aux(t)

ρ̂SA(t)≡ TrLR

[
ρ̂

aux(t)
]

(2.15)

ρ̂aux follows an unitary evolution with initial condition given by S+A decoupled from the baths

ρ̂
aux(0) = ρ̂L⊗ ρ̂SA(0)⊗ ρ̂R (2.16)

where ρ̂L = | f ull〉〈 f ull|, ρ̂R = |empty〉〈empty|, and ρ̂SA(0) can be arbitrary.

In Appendix A we prove that ρ̂SA(t) satisfies the following Markov Lindblad-type equation

13



of motion

d
dt

ρ̂SA(t) =−i
[

ĤSA(t), ρ̂SA(t)
]

+ ∑
m1,m2∈A

[
Γ

R
m1m2

(
2âm2 ρ̂SA(t)â†

m1
−
{

ρ̂SA(t), â†
m1

âm2

})
(2.17)

+Γ
L
m1m2

(
2â†

m1
ρ̂SA(t)âm2−

{
ρ̂SA(t), âm2 â†

m1

})]
≡ LSA(t)|ρSA(t)〉〉

where

ĤSA(t)≡ ĤS(t)+V̂SA + ĤA, (2.18)

LSA is the Liouvillian superoperator defined on the S+A subspace of the aux model and

Γ
C
m1m2

≡ πtC
m1
(tC

m2
)∗NC (C = L,R) (2.19)

is the dissipation matrix due to the coupling to contact C.

Next we turn to multi-time correlation functions of operators in the S+A subspace of the

aux model. Following Ref. [29] we start consideration from two-time correlation function on real

time axis. For arbitrary operators Ô1 and Ô2 in S+A we define two-time (t1 ≥ t2 ≥ 0) correlation

function as

〈Ô1(t1)Ô2(t2)〉 ≡ Tr
[

Ô1Ûaux(t1, t2) Ô2Ûaux(t2,0) ρ̂
aux(0)Ûaux†(t1,0)

]
(2.20)

Here Ûaux is the evolution operator in the aux system

Ûaux(t, t ′)≡ T exp
[
− i

∫ t

t ′
dsĤaux(s)

]
(2.21)

and T is the time-ordering operator. In Appendix B.1 we show that (2.20) can be equivalently
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obtained from reduced Linblad-type evolution in the S+A subspace

〈Ô1(t1)Ô2(t2)〉= 〈〈I|O−1 USA(t1, t2)O−2 USA(t2,0) |ρSA(0)〉〉 (2.22)

Here 〈〈I| is Liouville space bra representation of the Hilbert space identity operator, |ρSA(0)〉〉 is

Liouville space ket representation of the Hilbert space operator ρ̂SA(0), Oi is the Liouville space

superoperator corresponding to the Hilbert space operator Ôi (see Figure 1.3)

Oi|ρ〉〉=

 O−i |ρ〉〉 ≡ Ôi ρ̂ forward branch

O+
i |ρ〉〉 ≡ ρ̂ Ôi backward branch

(2.23)

and USA is the Liouville space evolution superoperator

USA(t, t ′)≡ T exp
[∫ t

t ′
dsLSA(s)

]
(2.24)

Finally, we extend consideration to multi-time correlation functions of arbitrary operators

Ôi (i ∈ {1, . . . ,N}) defined on the Keldysh contour (see Figure 1.3) as

〈Tc Ô1(τ1) Ô2(τ2) . . . ÔN(τN)〉 ≡ Tr
[

Tc Ô1 Ô2 . . . ÔN Ûc ρ̂
aux(0)

]
(2.25)

where τi are the contour variables, Tc is the contour ordering operator, and

Ûc = Tc exp
[
− i

∫
c
dτ Ĥaux(τ)

]
(2.26)

is the contour evolution operator. Note subscripts of operators Oi in the right side of (2.25)

indicate operators on either side of the contour. In Appendix B.2 we prove that multi-time

correlation functions (2.25) can be evaluated solely from Markov Lindblad-type evolution in
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S+A subspace of the aux model

〈Tc Ô1(τ1) Ô2(τ2) . . . ÔN(τN)〉= (2.27)

(−1)P〈〈I|Oθ1 USA(tθ1, tθ2)Oθ2 USA(tθ2, tθ3) . . .OθN USA(tθN ,0)|ρSA(0)〉〉

Here P is number of Fermi interchanges in the permutation of operators Ôi by Tc, θi are indices

of operators Ôi rearranged is such a way that tθ1 > tθ2 > .. . > tθN (tθi is real time corresponding

to contour variable τθi), Oθi are the superoperators defined in (2.23), and USA is the Liouville

space evolution superoperator defined in (2.24).

Equivalence of S dynamics derived from unitary evolution of models phys and aux

together with (2.17) and (2.27) completes the proof of the possibility of Markov treatment for

non-Markovian dynamics in open quantum Fermi systems.

2.4 Numerical Illustration

Application of the mapping in realistic simulations relies on ability to fit hybridization

function of the phys system with a set of auxiliary modes in the aux system. In general, to fit

arbitrary function one needs infinite number of auxiliary modes, while in realistic calculations one

can account for only finite number of modes. Thus, when applying the mapping one is looking

for a trade-off between accuracy and efficiency: the more auxiliary modes are considered the

better is the fit and the more involved is procedure to solve the auxiliary QME. For example, in

Ref. [31] high accuracy of fitting with 16 auxiliary modes was demonstrated for the Anderson

impurity model. However, for aux system of this size application of the matrix product states

(MPS) was necessary to solve the QME.

Here we present a numerical simulation illustrating the equivalence of original unitary and

Lindblad-type Markov treatment for the open quantum Fermi system. We note that the example
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Figure 2.2: Original Anderson impurity (a) and corresponding auxiliary (b) models.

is a simple illustration only and that realistic simulations will require more than two auxiliary

modes.

We consider the Anderson impurity model (Figure 2.2a)

Ĥ = ∑
σ∈{↑,↓}

ε0d̂†
σd̂σ +Un̂↑n̂↓+ ∑

k∈L,R
∑

σ∈{↑,↓}

(
εkĉ†

kσ
ĉkσ +Vkd̂†

σĉkσ +V ∗k ĉ†
kσ

d̂σ

)
(2.28)

where n̂σ = d̂†
σd̂σ. We calculate the system evolution after connecting initially empty site to baths

at time t = 0. Parameters of the simulations are (numbers are in arbitrary units of energy E0):

ε0 = 0 and U = 1. We assume

ΓK(E) = γK
t2
K

(E− εK)2 +(γK/2)2 (2.29)

where ΓK(E) ≡ π∑k∈K |Vk|2δ(E − εk) is the electron escape rate into contact K (K = L,R),

εL = εR = 0, γL = γR = 0.1, and tL = tR = 1.

For simplicity, we consider infinite bias, so that auxiliary model with only two sites

(Figure 2.2b) is sufficient to reproduce dynamics in the physical system. After mapping, εL and

εR become on-site energies of the auxiliary sites and γL and γR are taken as dissipation rates

due to coupling to the L and R baths, respectively. In the auxiliary model we compare unitary

evolution calculated within numerically exact td-DMRG [14, 15, 33, 34] with Lindblad QME

results. Time is shown in units of t0 = ~/E0, currents in units of I0 = E0/~, and ~ is assumed to
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Figure 2.3: Unitary (filled circles, red) and Lindblad-type (solid line, blue) evolution in
auxiliary model of Figure 2.2b after connecting initially empty central site to filled L and empty
R baths. Shown are population of the level (a) and left (b) and right (c) currents. See text for
parameters.
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be 1. Figure 2.3 shows level population, n0 = 〈n̂σ〉, as well as left, IL, and right, IR, currents in the

system after quench. Close correspondence between the two numerical results is an illustration

for exact analytical derivations presented in Section 2.3.

2.5 Conclusions

We consider an open quantum Fermi system S coupled to a number of external Fermi baths

each at its own equilibrium (each bath has its own electrochemical potential µi and temperature

Ti). The evolution of the model (system plus baths) is unitary. We show that reduced dynamics of

the system S in the original unitary non-Markov model can be exactly reproduced by Markov

Lindblad-type evolution of an auxiliary system, which consists of the system S coupled to a

number of auxiliary modes A which in turn are coupled to two Fermi baths L and R: one full

(µL→+∞) and one empty (µR→−∞). The proof is performed in two steps: first we show that

reduced S dynamics in the physical model is equivalent to reduced dynamics of S in the auxiliary

model, when A degrees of freedom and the two baths are traced out; second, we show that reduced

dynamics of S+A in the auxiliary model with unitary evolution of the model can be exactly

reproduced by the Lindblad-type Markov evolution of S+A. The correspondence is shown to hold

for reduced density matrix and for multi-time correlation functions defined on the Keldysh contour.

Our study extends a recent work about Bose systems [29] to open Fermi systems and beyond only

reduced density matrix consideration. Establishing the possibility of exact mapping of reduced

unitary non-Markov dynamics to much simpler non-unitary Markov Lindbald-type treatment sets

firm basis for auxiliary quantum master equations (QME) methods employed in AMEA [21].

We note that in practical implementations improving the quality of mapping can be based on

increasing number of A modes, as is done in advanced AMEA implementations [31]. Another

way is to consider perturbatively the discrepancy between physical and auxiliary hybridization

functions, as is done in the dual fermion formulation [32], and this will be the topic of next
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chapter.

This chapter, in part, is a reprint of the material as it appears in ’F. Chen, E. Arrigoni, M.

Galperin, New Journal of Physics 21, 123035 (2019)’. The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

Nonequilibrium dual-fermion approach

3.1 Introduction

Since its theoretical conception [36] and the first experimental evidence of measurements

on single-molecule junctions [37], molecular electronics has challenged theory for a proper

description of response in open molecular systems far form equilibrium. Theoretical treatments

are often based on a perturbative expansion in a small parameter, such as the strength of intra-

molecular interactions or molecule-contact couplings. The former can be conveniently treated

within the standard nonequilibrium Green function (NEGF) technique [38, 39], while the latter

are handled at the nonequilibrium molecular limit [40] by many-body flavors of Green function

(GF) methodology including pseudo-particles (PP) [6, 41] or Hubbard NEGF [42, 43] techniques.

These two limits account for the majority of experimental measurements. For example, inelastic

electron tunneling spectroscopy [44] is usually treated within NEGF [45, 46], while Coulomb

blockade [47], single molecule strong coupling in plasmonic nanocavities [48] and coherent

electron-nuclear dynamics [49] require many-body local analysis [50, 51]. In the absence of a

small parameter, theoretical treatment is more involved. For example, this is the situation one

encounters in describing Kondo physics in molecular junctions [52–58].
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Dual-fermion (DF) approach [59] was originally proposed to account for non-local

correlation beyond DMFT and was formulated for equilibrium systems [61,62]. A nonequilibrium

version of the method (DF-inspired superperturbation theory) was later proposed in Ref. [32]

as a way to solve impurity/transport problems. An attractive feature of the latter formulation is

its applicability in the absence of a small parameter. At the heart of the approach is a reference

system, which includes the molecule and a finite number of states representing leads. Such finite

problem can be solved exactly, though the leads represented by a few states are a very rough

approximation of the original ones. DF introduces an auxiliary zero order Hamiltonian around

which standard diagrammatics can be formulated. The resulting expansion accounts for the

difference between the true system-lead hybridization and its approximation within the reference

system (see Ref. [32]).

When the steady-state is of interest, the nonequilibrium DF approach of Ref. [32] requires

significant numerical effort. Because only a few sites represent infinite baths in the reference

system, the hybridization function differs significantly from the true one. Furthermore, the finite

reference system necessarily yields periodic solution and hence doesn’t has steady state solution.

Based on the Markovian bath mapping developed in the previous chapter, we propose

to approximate the true bath by a few dissipative auxiliary modes, and utilize the solution of

corresponding auxiliary Lindblad QME for the DF approach in steady-state (compare Figs. 3.1b

and c). These auxiliary dissipative modes effectively represent infite bath and hence yield a

description of the bath which is much closer to the true one than any finite reference system.

Furthermore, time propagation is completely avoided.

3.2 Nonequilibrium DF

In the nonequilibrium DF approach (for details see Ref. [32] and Appendix C), one

considers reduced dynamics of an open system with interactions confined to the molecular
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Figure 3.1: Nonequilibrium junction model. Shown are (a) Anderson impurity model; (b)
Reference system within original DF approach [32]; and (c) Reference system within auxiliary
QME-DF approach.

subspace and the effect of the leads entering via corresponding hybridization functions. The

effective action on the Keldysh contour is [99]

S[d∗,d] = ∑
1,2

d∗1
[
G−1

0 −∆
B]

12 d2 +Sint [d∗,d], (3.1)

where i = (mi,τi) (i = 1,2) is the index incorporating molecular orbital mi and Keldysh contour

variable τi, and the summation indicates sum over molecular orbitals and integral over the

contour variables. d∗i = d∗mi
(τi) (di = dmi(τi)) is the Grassmann variable corresponding to creation

(annihilation) operator d̂†
mi
(τi) (d̂mi(τi)) of an electron in orbital mi in the Heisenberg picture [63].

G−1
0 is the inverse free GF [64]

[
G−1

0
]

12 ≡ δ(τ1,τ2)
[
i
→
∂ τ1δm1,m2−H0

m1m2
(τ1)

]
(3.2)

=
[
− i
←
∂ τ2δm1,m2−H0

m1m2
(τ2)

]
δ(τ1,τ2)
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and ∆B(τ1,τ2) is the self-energy due to coupling to contacts

∆
B
m1m2

(τ1,τ2) = ∑
k∈B

Vm1kgk(τ1,τ2)Vkm2. (3.3)

In Eqs. (3.2) and (3.3), H0
m1m2

(τ) is the non-interacting part of the molecular Hamiltonian, Vmk

is the matrix element for electron transfer between molecular orbital m and contact state k,

and gk(τ1,τ2) ≡ −i〈Tc ĉk(τ1) ĉ†
k(τ2)〉 is the GF of free electron in state k of the contacts. All

intra-molecular interactions are within the (unspecified) contribution to the action, Sint [d∗,d].

The DF approach is based on two important steps. First, one introduces an exactly solvable

reference system with baths represented by a finite number of states. Its known action S̃[d∗,d] has

the same general form (4.1) with true self-energy ∆B substituted by its approximate representation

∆̃B. The desired action S can then be written as

S[d∗,d] = S̃[d∗,d]+∑
1,2

d∗1
[
∆̃

B−∆
B]

12 d2. (3.4)

Second, direct application of standard diagrammatic expansion around the interacting reference

system is not possible, because the Wick’s theorem does not apply [65]. To resolve this, an

artificial particle (dual fermion) is introduced which is used to unravel the term via the Hubbard-

Stratonovich transformation [66]. Integrating out molecular fermions (d and d∗) and comparing

the second order cumulant expansion of the resulting expression with the general form of action

for dual fermions, SDF [ f ∗, f ] = ∑1,2 f ∗1
[(

GDF
0 )−1−ΣDF]

12 f2, one gets

(
GDF

0
)−1

12 =−g−1
12 −∑

3,4
g−1

13
[
∆̃

B−∆
B]−1

34 g−1
42 , (3.5)

Σ
DF
12 =−∑

3,4
Γ13;24

[
GDF

0
]

43. (3.6)

Here g12 and Γ13;24 are the single-particle GF and the two-particle vertex of the reference system,

24



respectively [39].

With
(
GDF) = [(GDF

0
)−1−ΣDF]−1 known, the single-particle GF of the molecule is

obtained from the exact relation:

G =
(
δ∆

B)−1
+
[
gδ∆

B]−1 GDF[
δ∆

B g
]−1

, (3.7)

where δ∆B ≡ ∆̃B−∆B.

3.3 Auxiliary QME

The closer the reference system is to the real system, the higher accuracy of the associated

DF approach. In this sense a finite reference system (see Fig. 3.1b) may not be optimal: its

inability to represent dissipation and inevitably periodic solution makes reaching the steady-state

difficult. We propose a reference system in which the physical leads are replaced by a set of

auxiliary dissipative modes (A) under Lindblad QME. This reference system relies on Lindblad

QME,
dρSA(t)

dt
=−iLρ

SA(t), (3.8)

to simulate the extended system (S+A). Here, ρSA(t) is the extended system density operator

whose partial trace yields the reduced density matrix for the system S, and L is the Liouvillian.

Our approach maintains all the advantages of Ref. [32] adding infinite baths, which results in a

substantially more accurate and less numerically expensive computational scheme. Below, we

focus on steady-state, where correlation functions depend on time differences, and work in the

energy representation.

The nonequilibrium DF approach, Eqs. (3.5)-(3.6), requires single- and two-particle Green

functions of the reference system as an input. To provide these we utilize the quantum regression
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relation [35], as proved in Chapter 2:

〈
Tc Â(τ1) B̂(τ2) . . . Ẑ(τn)

〉
= Tr

[
On U(tn, tn−1) . . .O2 U(t2, t1)O1 U(t1,0)ρ

SA(0)
]

(3.9)

Here ρSA(0) is the steady-state density matrix of the extended system, U(ti, ti−1) is the Liouville

space evolution operator and times ti are ordered so that tn > tn−1 > .. . > t2 > t1 > 0. Oi is the

Liouville space super-operator corresponding to one of operators Â . . . Ẑ whose time is i-th in the

ordering. It acts from the left (right) for the operator on the forward (backward) branch of the

contour. The steady-state density matrix is found as a right eigenvector |R0� corresponding to

the Liouvillian eigenvalue λ0 = 0. Using spectral decomposition of the Liouvillian, the evolution

operator can be presented in its eigenbasis as

U(ti, ti−1) = ∑
γ

|Rγ� e−iλγ(ti−ti−1) � Lγ|. (3.10)

For evaluation of single- and two-particle GFs, besides the L of Eq. (3.8) we will also need

Liouvillians L(±1) and L(±2). These are evolution operator generators for Liouville space vectors

|S1S2� with different number NS of electrons in states |S1〉 and |S2〉. For example, for L(+1),

NS1 = NS2 +1 1.

Using (3.10) in (3.9) yields expressions for the GFs of the reference system (see [?] for

details). Once single- and two-particle GFs of the reference system are known, the vertex required

in (3.6) is given by

Γ13;24 = ∑
1′,2′
3′,4′

g−1
11′ g

−1
33′
[
g(2)1′3′;2′4′−g1′2′ g3′4′+g1′4′ g3′2′

]
g−1

2′2 g−1
4′4.

Below we consider extended systems of size small enough that exact diagonalization can be

1Note, constructing the Liouvillians is helped by conservation of NS1 −NS2 during evolution. Other symmetries
(charge, spin) may help in understanding block structure within the Liouvillians [73].
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employed. For larger systems more advanced methods (e.g. matrix product states [31]) may be

used.

3.4 Model

We apply the QME-DF method to the Anderson impurity model: junction is constructed

from quantum dot coupled to two paramagnetic leads each at its own equilibrium (see Fig. 3.1a).

The Hamiltonian is

Ĥ = ĤM + ∑
K=L,R

(
ĤK +V̂MK

)
, (3.11)

where ĤM = ∑σ=↑,↓ ε0 d̂†
σd̂σ +Un̂↑n̂↓ and ĤK = ∑k∈K ∑σ=↑,↓ εk ĉ†

kσ
ĉkσ are Hamiltonians of the

quantum dot and contact K and V̂MK = ∑k∈K ∑σ=↑,↓
(
Vkd̂†

σĉkσ +H.c.
)

describes electron transfer

between the dot and contact. The d̂†
σ (d̂σ) and ĉ†

kσ
(ĉkσ) creates (annihilates) electron of spin σ on

the dot and in state k of the contacts, respectively. U is the Coulomb repulsion and n̂σ = d̂†
σd̂σ.

Using Eq. (3.7) we calculate the GF

Gσ(τ1,τ2) =−i〈Tc d̂σ(τ1) d̂†
σ(τ2)〉, (3.12)

and use it to evaluate the level population nσ, spectral function Aσ(E), and current IL =−IR [67]

in steady-state

nσ =−i
∫ dE

2π
G<

σ (E); Aσ(E) =−
1
π

ImGr
σ(E),

IK = ∑
σ

∫ dE
2π

(
∆
<
K (E)G>

σ (E)−∆
>
K (E)G<

σ (E)
)
.

(3.13)

Here <, > and r are respectively lesser, greater and retarded projections of the GF. ∆
≷
K (E) is the

greater/lesser projection of the self-energy due to lead K ∈ {L,R}. Following Ref. [68], we model

the leads as semi-infinite tight-binding chains with on-site energies εK and hopping parameter tK

27



(K = L,R); the electron hopping between the quantum dot and chain is tMK .
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Figure 3.2: Steady-state transport characteristics vs. gate voltage at fixed bias. Shown are (a)
population and (b) current vs. level position, as calculated from auxiliary QME (dotted line);
and zero (dashed line) and first (solid line) order QME-DF approaches. Circles (red) represent
results of numerically exact tdDMRG simulations. The inset in panel (a) shows the results of the
original nonequilibrium DF simulation, where at t = 0 coupling between system and contacts is
switched on for several level positions.

3.5 Numerical results.

We compare the QME-DF approach to the Anderson impurity model with the original

nonequilibrium DF scheme and with numerically exact tdDMRG and CT-QMC calculations.
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The former were performed using ALPS-MPS [33, 34], while the latter utilize the Inchworm

algorithm introduced in Ref. [18]. The units are set by the maximum total escape rate, Γ0 =

2 t2
ML/tL +2 t2

MR/tR: in particular, we employ units of energy, E0 = Γ0, time t0 = ~/E0, voltage

V0 = E0/|e| and current I0 = |e|E0/~. We show two flavors of the QME-DF results: zero order,

where one neglects self-energy ΣDF , and first order, where the self-energy is evaluated using

Eq. (3.6).

Unless stated otherwise, the parameters are as follows: U = 5E0, ε0 = −U/2, tML =

tMR = 0.79E0 and tL = tR = 2.5E0. The positions of the on-site energies in the leads, εK , are given

by the corresponding chemical potentials µK . The Fermi energy EF = 0 is taken as the origin, and

bias is assume dot be applied symmetrically such that µL/R = EF ±|e|Vsd/2. The temperature is

zero. The QME-DF simulations are performed on energy grid spanning range from −12.5E0 to

12.5E0 with step 0.0125E0.
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Figure 3.3: Current voltage characteristics. We show the auxiliary QME (dotted line), zero
(dashed line) and first (solid line) order QME-DF approaches. For comparison, circles and
squares represent respectively tdDMRG and CT-QMC results.

Figure 3.2a shows QME-DF level populations n↑ = n↓ ≡ n0 under a bias Vsd = 2.5V0, at

several level positions ε0, evaluated directly in steady-state. In contrast, the inset of Fig. 3.2a

displays the corresponding time propagation of the population following a molecule-lead coupling
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quench simulation of Ref. [32], illustrating the difficulty of reaching steady-state within the

orginial nonequilibirum DF approach. Figure 3.2b shows the current at identical parameters. In

both panels of Figure 3.2, we compare the zero (DF0, dashed line) with the first (DF, solid line)

order QME-DF approach, the auxiliary QME (QME, dotted line) and numerically exact tdDMRG

results at t = 8t0. The first order QME-DF approach is quite accurate in predicting both level

populations and currents, while being substantially less expensive numerically than the original

DF formulation and having the added advantage of direct access to steady-state.

In Figure 3.3, we consider current-voltage characteristics in the particle-hole symmetric

case, within the auxiliary QME (dotted line), the zero (dashed line) and first (solid line) order

QME-DF. The latter is quite close to numerically exact tdDMRG (circles) and CT-QMC calcu-

lations (squares). Interestingly, the first order QME-DF calculation with three auxiliary sites

yields result similar to a much more expensive six-site QME simulation (compare with Fig. 3 of

Ref. [8]).

Finally, we consider spectral function: Fig. 3.4a shows results of equilibrium (Vsd =

0, solid line) and nonequilibrium (Vsd = 2.5V0, dtted line) simulations; Fig. 3.4b shows the

spectral function varying with bias. At low biases equilibrium Kondo peak splits and follows

corresponding chemical potentials, while higher biases destroy the correlation. Similar results

were obtained in Refs. [10,69–72]. Note that results in Fig. 3.4 are only qualitative representation

of true Kondo physics, but equilibrium DF studies, e.g., Ref. [61], have shown that accurate results

in the correlated regime can be obtained efficiently by accounting for higher order diagrams.

3.6 Conclusion.

The nonequilibirum dual fermion approach introduced originally in Ref. [32] is a promis-

ing method for simulating strongly correlated open systems. Contrary to usual diagrammatic

expansions in small interaction (e.g., intra-system interaction in NEGF or system-bath couplings
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Figure 3.4: Spectral function of Anderson impurity model. Shown are results of QME-DF
simulations for (a) The spectral function of the unbiased (Vsd = 0, solid line) and biased junction
(Vd/V0 = 2.5, dotted line); and (b) The spectral function vs. energy and applied bias.
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in PP- or Hubbard NEGF), the method can treat systems with no small parameter by expanding

around an exactly solvable reference system. The choice of a finite reference system in the

original DF formulation cannot properly describe bath induced dissipation and results in peri-

odic dynamics, which, together with the necessity to consider time propagation starting from a

decoupled initial state, complicates reaching steady-state.

We proposed complementing finite reference system with infinite Markovian baths and use

auxiliary quantum master equation to solve the reference problem. We argued that the approach

is advantageous in treating the steady-states because it yields reference system which is much

closer to the true nonequilibirum state than that in the original formulation. Also, infinite size of

the modified reference system results in more accurate description of bath induced dissipation.

Finally, the approach allows to avoid long time propagations necessary to reach steady-state

solution in the original formulation.

For the Anderson impurity model, we tested our approach by comparing QME-DF

simulations with numerically exact tdDMRG and CT-QMC results. This showed that the new

scheme is both accurate and inexpensive. Further development of the method and its application

to realistic systems is a goal for future research.

This chapter, in part, is a reprint of the material as it appears in ’Feng Chen, Guy Cohen,

Michael Galperin. Phys. Rev. Lett. 122, 186803 (2019)’. The dissertation author was the primary

investigator and author of this paper.
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Chapter 4

Nonequilibrium Dual-boson Approach

4.1 Introduction

Fast development of nano-fabrication techniques combined with advances in laser tech-

nology lead to tremendous progress in optical studies of nanoscale systems. Optical spectroscopy

of single molecules in current carrying junctions became reality. Surface [74–76] and tip [77–79]

enhanced Raman spectroscopies (SERS and TERS) as well as bias-induced electrolumines-

cence [80–86] measurements yield information on extent of heating of vibrational and electronic

degrees of freedom in biased junctions, electron transport noise characteristics, molecular struc-

ture, dynamics and chemistry. Combination of molecular electronics with optical spectroscopy

resulted in emergence of a new field of research coined optoelectronics [87, 88].

Optical response of single-molecule junctions is only possible due to strong enhancement

of the signal by surface plasmons [89]. Large fields and confinement result in strong interaction

between molecular and plasmonic excitations. Note also recent experiments on ultra-strong

light-matter interaction in single-molecule nano-cavities (at the moment, in the absence of

electron current) [48,90]. At nanoscale classical electrodynamics becomes inadequate as it cannot

describe quantum coherence and mixing between plasmon and molecular exciton, while strong
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interactions require to go beyond perturbation theory. Note that focus of dual-fermion approach

(DF) introduced in last chapter is electron transport. Whereas simulations of optoelectronic

devices require accounting also for energy transfer.

In this chapter, we generalize dual-fermion method to take into account also the bosonic

environment that the impurity is coupled to. And we call this generalization auxiliary quantum

master equation (QME) - nonequilibrium dual boson (aux-DB) method - a universal nonequilib-

rium impurity solver which accounts for both charge and energy transport in strongly correlated

open systems. Similar to DF of Ref. [32] being nonequilibrium version of the equilibrium DF

method [59–62] (DF inspired superperturbation theory), aux-DB has its origin in equilibrium DB

approach [91–98]. Below, after introducing nonequilibrium DB we present auxiliary quantum

master equation (QME) treatment within the method. Theoretical considerations are followed by

illustrative numerical simulations within generic junction models.

4.2 Formalism

Here we present a short description of the aux-DB method. Detailed derivations are

given in the Appendix D. Similar to the DF method, in the nonequilibrium DB approach

one considers reduced dynamics of an open quantum system with interactions confined to the

L

TL

R

TR

S S

(a) (b)

Figure 4.1: Nonequilibrium junction model. Shown are (a) Physical model and (b) Reference
system within aux-DB approach.
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molecular subspace. Contrary to the DF method, in addition to contacts (Fermi baths) the system

is coupled also to Bose bath(s). Effect of the baths enters the effective action defined on the

Keldysh contour [99] via corresponding self-energies ∆ (for Fermi baths) and Π (for Bose baths)

S[d̄,d] = d̄1
[
G−1

0 −∆
B]

12 d2− b̄1 Π
B
1,2 b2 +Sint [d̄,d] (4.1)

Here and below summation of repeating indices is assumed. In (4.1) d̄i ≡ dmi(τi) (di ≡ dmi(τi))

is the Grassmann variable corresponding to creation (annihilation) operator d̂†
mi
(τi) (d̂mi(τi))

represents both molecular (spin-)orbital mi and contour variable τi, of an electron in orbital

mi in the Heisenberg picture [63]. bi = bmi
1mi

2
(τi)≡ d̄mi

1
(τi)dmi

2
(τi) represents optical transition

within the molecule from orbital mi
2 to orbital mi

1 at contour variable τi. Sum over indices

includes summation over molecular orbitals (optical transitions) and contour integration: ∑i . . .≡

∑mi

∫
c dτi . . . (∑mi

1,m
i
2

∫
c dτi . . .). G−1

0 is the inverse free Green’s function (GF) [64]

[
G−1

0
]

12 ≡ δ(τ1,τ2)
[
i∂τ1δm1,m2−H0

m1m2
(τ1)

]
(4.2)

∆B and ΠB are respectively self-energies due to coupling to Fermi (contacts) and Bose (plasmon)

baths,

∆
B
m1m2

(τ1,τ2) =Vm1kgk(τ1,τ2)Vkm2

Π
B
m1m2,m3m4

(τ1,τ2) =Vm1m2,αdα(τ1,τ2)Vα,m3m4.

(4.3)

In Eqs. (4.2)-(4.3), H0
m1m2

(τ) is the non-interacting part of the molecular Hamiltonian, Vmk and

Vm1m2,α are matrix elements for electron transfer from contact state k to molecular orbital m

and for optical electron transfer from orbital m1 to m2 with absorption of phonon in mode α,

respectively. gk(τ1,τ2)≡−i〈Tc ĉk(τ1) ĉ†
k(τ2)〉 and dα(τ1,τ2)≡−i〈Tc âα(τ1) â†

α(τ2)〉 are GFs of

free electron in state k of the contacts and free phonon in mode α. All intra-molecular interactions
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are within the (unspecified) contribution to the action Sint [d̄,d].

As in equilibrium DB [92], one introduces an exactly solvable reference system (see

below). Similarly to aux-DF [22], the true baths are approximated by a finite number of auxiliary

discrete modes subject to Lindbladian evolution (see Fig. 4.1b). Thus, action of the reference

system S̃[d̄,d] is known and has the same general form (4.1) with true self-energies ∆B and ΠB

substituted by their approximate representations ∆̃B and Π̃B. The desired action S can then be

written as

S[d̄,d] = S̃[d̄,d]+ d̄1 δ∆
B
12 d2 + b̄1 δΠ

B
12 b2. (4.4)

where δ∆B ≡ ∆̃B−∆B and δΠB ≡ Π̃B−ΠB.

Because direct application of standard diagrammatic expansion around the interacting

reference system is not possible (the Wick’s theorem does not apply [65]), two artificial particles,

dual fermion ( f ) and dual boson (η), are introduced which is used to unravel last two terms in

(4.4) via the Hubbard-Stratonovich transformation [66]. Integrating out molecular fermions (d

and d̄) and comparing the fourth order cumulant expansion of the resulting expression with the

general form of action for dual particles,

SD[ f ∗, f ] = f̄1
[(

GDF
0 )−1−Σ

DF]
12 f2

+ η̄1
[(

DDB
0 )−1−Π

DB]
12 η2,

(4.5)
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one gets

(
GDF

0
)−1

12 =−g−1
12 −g−1

13
[
δ∆

B]−1
34 g−1

42 ,(
DDB

0
)−1

12 =−χ
−1
12 −χ

−1
13
[
δΠ

B]−1
34 χ

−1
42 ,

Σ
DF
12 =

(
Γ13;42 + i

(
γ514 δ326− γ512 δ346

+ γ532 δ146− γ534 δ126
)[

DDB
0
]

65

)[
GDF

0
]

43

−
(
〈b̂†

5〉χ
−1
54 γ312 +χ

−1
35 〈b̂5〉δ124

)[
DDB

0
]

43

Π
DB
12 =−iγ145 δ632

[
GDF

0
]

34

[
GDF

0
]

56

(4.6)

Here g12 and χ12 are single particle GFs of fermion and molecular excitation of the reference

system, γ123, δ123 and Γ13;24 are vertices [39] (see Eq. S12 and Fig. S1 in the SM [?]).

With dual particles GFs,

(
GDF)= [(GDF

0
)−1−Σ

DF]−1

(
DDB)= [(DDB

0
)−1−Π

DB]−1
,

(4.7)

known, the single-particle (G) and two-particle (D) GFs of the molecule are obtained from

G =
(
δ∆

B)−1
+
[
gδ∆

B]−1 GDF[
δ∆

B g
]−1

D =
(
δΠ

B)−1
+
[
χδΠ

B]−1 DDF[
δΠ

B
χ
]−1

(4.8)

Note, here the two-particle GF is correlation function of molecular optical transition operators. G

yields information on orbital populations, spectral functions and electron current in the junction,

while D is used in calculation of boson (phonon) flux.

Reference system. Construction of a reference system to a large extent relies on accurate

reproduction of the physical system’s hybridization functions ∆B and ΠB. Accurate choice of

the reference system parameters was recently discussed in Refs. [29, 100] for Bose baths and in
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Refs. [21,27,31,101] for Fermi baths. Here we combine both considerations by introducing as the

reference system physical system complemented with a finite number of auxiliary unitary modes

(A) subject to Lindbladian evolution. This includes finite number of sites representing Fermi

baths and modes representing Bose bath (see Fig. 4.1b and SM [?]). Dynamics of the extended

SA system (molecule plus finite number of sites and modes) is driven by Markov Lindblad-type

evolution
dρSA(t)

dt
=−iLρ

SA(t). (4.9)

Here, ρSA(t) is the extended system density operator and L is the Liouvillian. Note that Refs. [29]

and [101] prove that, in principle, Markov dynamics of the extended system can exactly reproduce

non-Markov unitary dynamics of the physical system S as long as free correlation function of the

auxiliary modes accurately reproduces the correlation function of the full baths. However, in real-

istic calculations this representation is approximate due to restriction on number of auxiliary sites

and modes which can be taken in consideration computationally. Thus, the aux-DB accounting

for the difference between true and reference system hybridization functions, Eq. (4.6), is very

useful in correcting the approximate mapping.

The aux-DB approach, Eqs. (4.5)-(4.8), requires single- and two-particle GFs g and χ

and vertices Γ, γ and δ of the reference system as an input. Those are obtained by solving the

QME (4.9) and employing the quantum regression relation (see Appendix C for details).

4.3 Model

We apply the aux-DB method to generic junction models constructed from a system

S coupled to two Fermi (L and R) and one Boson bath (P) (see Fig. 4.1a). The Hamiltonian

is Ĥ = ĤS +∑B=L,R,P
(
ĤB + V̂SB

)
, where ĤL(R) = ∑k∈L(R) εk ĉ†

k ĉk and ĤP = ∑α∈P ωαâ†
αâα are

Hamiltonians of the contact L (R) and phonon bath P. V̂SL(R) = ∑m ∑k∈L(R)
(
Vmkd̂†

mĉk +H.c.
)

de-

scribes electron transfer between the system and contact L (R). V̂SP = ∑m1,m2 ∑α∈PV α
m1m2

(b̂m1m2 +
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b̂†
m1m2

)(âα + â†
α) describes coupling to phonon α in the thermal bath P (b̂m1m2 = d̂†

m1
d̂m2). The

d̂†
m (d̂m) and ĉ†

k (ĉk) creates (annihilates) electron in orbital m on the system and in state k of the

contacts, respectively. â†
α (âα) creates annihilates phonon in mode α.

For the system Hamiltonian we consider resonant level (RLM), ĤS = ε0 n̂, and Anderson

impurity (AIM), ĤS = ∑m=1,2 ε0 n̂m +Un̂1n̂2, models. Here n̂m = d̂†
md̂m and U is the Coulomb

repulsion. In the AIM two types of coupling to the thermal bath are considered: symmetric,

V α
m1m2

= δm1,m2V
α
m1

, and anti-symmetric, V α
m1m2

= δm1,m2(−1)m1V α
m1

.

Using Eq. (4.8) we calculate single- and two-particle GFs and employ them to evaluate

the spectral functions, Am(E) =− 1
π

ImGr
mm(E), electron current [67],

IL =−IR =
∫ dE

2π
Tr
[
Σ
<
L (E)G>(E)−Σ

B>
L (E)G<(E)

]
(4.10)

and phonon energy flux [88]

JP =
∫ dE

2π
E Tr

[
Π

<
P (E)D>(E)−Π

>
P (E)D<(E)

]
(4.11)

at steady-state. Here <, > and r are respectively lesser, greater and retarded projections of

the GFs, self-energies Σ and Π are defined in Eq.(4.3), and trace is over molecular orbitals in

expression for IL(R) and over intra-molecular transitions in expression for JP.

4.4 Numerical Results

We start from consideration of one spinless level coupled to both electron baths and

boson bath as studied within numerically exact QMC approach in Ref. [102]. Parameters (in

arbitrary energy units E0) are kBT = 0.2 and ε0 = 3.2. Following Ref. [102] Fermi baths are

treated within the wide-band approximation (WBA) with a smooth cut-off: ΓL/R(E) = ΓL/R/[1+

eν(E−EC)][1+ e−ν(E−EC)] with ν = 5, EC = 20 and ΓL = ΓR = 0.5; Bose bath is composed of a
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primary phonon mode coupled to a secondary bath. Its spectral density is J(ω) = γω/
(
[(ω/ω0)

2−

1]2 +[γω0ω/(2M2
0)]

2) with γ = 0.1, ω0 = 5 and M0 = 4. Here ω0 is the frequency of the primary

phonon mode; M0 is the coupling strength between the impurity and this mode; γ is the coupling

strength between the secondary bath and the primary mode. Bias was applied symmetrically:

µL = −µR = V/2. Results of simulation are presented in terms of units of bias V0 = E0/|e|,

flux I0 = E0/~, and energy flux J0 = E2
0/~. Fig. 4.2a compares aux-DB results (solid line) with

numerically exact QMC (circles) simulations of Ref. [102], and shows excellent agreement. Here

we see steps at V = 2ω0 because at these values electrons at the fermi surface of left lead can lose

energy to excite the primary phonon mode and become resonant with the impurity level. This step

is the first Frank-Condon step [103]. Similarly as the inelastic transport in single-level Holstein

model introduced in Chapter 1.

Aux-DB simulations of the AIM with symmetric coupling to Bose bath for U = 0 (dotted

line) and U = 7.5 (dashed line) Coulomb interaction are shown in Fig. 4.2b. Note that even

in the absence of Coulomb interaction results of simulations are significantly different from

results of the RLM (compare dotted and solid lines). This is due to effective electron-electron

interaction induced by coupling to common Bose bath and the effect can be understood within

an effective negative-U model (ε̃0 = ε0−M2
0/ω0 and Ũ =U−2M2

0/ω0) which predicts doubly

populated state E2 = 2ε̃0 +Ũ =−6.4 to be the ground state of U = 0 quantum dot with energy

gap of 6.4 to its singly populated state E1 = ε̃0 = 0 . For U = 7.5 (dash-dotted line) no current

blockade is observed because electron transition between empty state (E0 = 0) and singularly

occupied state(E1 = ε̃0 = 0) is gapless. Now doubly occupied state (E2 = 1.1) is excited state. It

is interesting to note that in blockaded region energy (phonon) flux is higher than for resonant

tunneling (compare double-dotted and dash-double-dotted lines in Fig. 4.2b), which indicates

predominantly elastic character of resonant transport.
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4.5 Conclusion

The nonequilibirum DF approach introduced originally in Ref. [32] and its optimization

for steady-state simulations - the aux-DF approach [22] - are promising methods for modeling

strongly correlated open fermionic systems. Contrary to usual diagrammatic expansions the

methods can treat systems with no small parameter available. This is the situation often en-

countered in single-molecule optoelectronic devices, which are at the forefront of experimental

and theoretical research due to interesting fundamental problems and applicational perspectives

in energy nano-materials, spintronics, and quantum computation. However, application of the

aux-DF to simulations of optoelectronic devices is hindered by its inability to account for energy

exchange between molecule and plasmonic field. The latter is crucial in modeling of the devices.

Here we proposed a new nonequilibrium method, the aux-DB approach, which accounts

for both electron and boson fluxes between system and baths. The nonequilibrium aux-DB is a

super-perturbation theory inspired by equilibrium DB method [91] proposed as generalization of

the extended DMFT. Employing auxiliary QME and choosing infinite reference system makes

the approach advantageous in treating the steady-states. We utilized generic junction models of a

molecule coupled to two Fermi leads and one Bose phonon bath. The aux-DB was benchmarked

vs. numerically exact QMC results of Ref. [102]. We showed that the new scheme is both accurate

and relatively numerically inexpensive. Further development of the method and its application to

realistic systems is a goal for future research.

This chapter, in part, is a reprint of the material as it appears in ’Feng Chen, Mikhail

I. Katsnelson, Michael Galperin. arXiv:1912.08203(2019)’. The dissertation author was the

primary investigator and author of this paper.
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Figure 4.2: Electron IL and phonon IP fluxes. Shown are results for (a) RLM and (b) AIM.
In panel (a) aux-DB results (solid line, blue) are benchmarked vs. numerically exact QMC
calculation of Ref. [102]. Panel (b) compares aux-DB results for AIM with U = 0 and U = 7.5.
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Chapter 5

Auxiliary Quantum Master Equation for

Full Counting Statistics

5.1 Background

Electron transport in mesoscopic system such as molecular junctions is fundamentally

a stochastic process—for a given period of time t, the number of electrons flowing out of a

lead, ∆n, is described by certain probability distribution P(∆n, t). While current is related to the

first cumulant of this distribution, higher cumulants can yield additional important information

about the transport properties. For example, current fluctuation, so-called noise, can reveal the

charge of effective quasiparticles that participate in the transport process, such as Cooper-pair in

superconducting junctions (e∗ = 2e) [104–106] and fractional charge in fractional quantum Hall

effect [107].

The theory of studying cumulants of all orders in a transport process is called full-

counting statistics [108, 109]. Its central goal is to calculate the generating function (GF)
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Z(λ, t)≡ ∑
n

eiλnP(n, t), from which j-th cumulant C j(t) can be obtained by

C j(t)≡ 〈〈(∆n) j〉〉(t) = ∂ jlnZ(λ, t)
∂(iλ) j

∣∣∣∣
λ=0

(5.1)

where λ is called ”counting field”.

In this thesis, I’ll consider an impurity coupled to two noninteracting electronic leads

L and R, and count electrons in the L lead. We adopt the two-time measurement scheme: we

measure the electron number operator of L lead, N̂L, at two different times 0 and t, and formulate

the GF for change of electron number, ∆n(t) = NL(t)−NL(0). The whole system is initially

prepared at time 0 in decoupled equilibrium states ρ̂0 = ρ̂L⊗ ρ̂I⊗ ρ̂R, where ρ̂α = e−β(Ĥα−µαN̂α)

Tre−β(Ĥα−µαN̂α)
,

and initial state of the impurity ρ̂I can be arbitrary. After time 0 the coupling between impurity

and leads is turned on.

It can be shown that Z(λ, t) can be given by [110]

Z(λ, t) = Tr(e−iĤλt
ρ̂0eiĤ−λt) (5.2)

where Ĥλ ≡ ei λ

2 N̂LĤe−i λ

2 N̂L . The transient electron flux into left lead, IL(t)≡ 〈dN̂L(t)
dt 〉 is then given

by IL(t) =
d∆n(t)

dt = dC1(t)
dt . In the long-time limit t→∞, each of these cumulants become linear in

time. For example, S = lim
t→∞

C2(t)
t , where S is the zero-frequency noise

S≡ lim
t→∞

∫ +∞

−∞

dτ〈∆ÎL(t + τ)∆ÎL(t)〉 (5.3)

and ∆ÎL ≡ ÎL−〈ÎL〉.

In this chapter, I propose that based on the mapping scheme in Chapter 2 and by dressing

the corresponding Lindblad quantum master equation (QME) with counting field, Z(λ, t) can be

calculated exactly. An accurate mapping of the baths requires a large number of auxiliary sites,

which renders exact diagonalization impossible due to the exponential increase of Hilbert space.
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To deal with this difficulty, matrix product state (MPS) representation of the dressed Lindblad

QME in super-fermion representation [111] is adopted.

5.2 Dressed Auxiliary Quantum Master Equation

In full-counting statistics for impurity models, the noninteracting electronic baths are fully

characterized by the hybridization function (HF) of each bath [?, 112]. Now if I map each of the

original leads L and R into a set of auxiliary sites additionally coupled to full and empty baths with

constant density of states, as long as the HFs of the auxiliary baths (auxiliary modes+full+empty

bath) give good approximation for those of original baths, GF of the original system can be well

approximated by GF of the auxiliary system (IMaux). The advantage of this mapping is that GF

of IMaux can be calculated by solving a small-size Lindblad QME dressed with counting field,

which will be proved in the following.

In the auxiliary configuration, L lead is mapped into some auxiliary modes (AL) addition-

ally coupled to one full (FL) and one empty (EL) electron bath. Similarly, R lead is mapped into

AR coupled to FR and ER (see Fig.(5.1)). Compared with the strategy in [27, 31] of mapping two

leads together, the mapping scheme here has the advantage of distinguishing leads L and R, which

is necessary for FCS. The Hamiltonian of the total IMaux is

Ĥaux = ĤI + ∑
α=L,R

(
T̂ α + Ĥα

A + ∑
B=F,E

(
Ĥα

B +V̂ α
B
))

Ĥα
A = ∑

m1,m2∈Aα

Eα
m1m2

â†
αm1

âαm2

Ĥα
B = ∑

k
ε

B
αkĉ†

BαkĉBαk

T̂ α = ∑
i∈I

∑
m∈Aα

(
tα
imd̂†

i âαm +h.c.
)

V̂ α
B = ∑

m∈Aα

∑
k∈Bα

(
V α

Bmâ†
αmĉBαk +h.c.

)

(5.4)
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where ĤI, Ĥα
A and Ĥα

B are the Hamiltonians of the impurity, auxiliary modes, and full/empty baths

respectively; T̂ α is the coupling between the impurity and auxiliary modes; V̂ α
B is the coupling

between full/empty baths and auxiliary modes. Density of states of full/empty baths are constant

Nα
B (E) = ∑

k∈Bα

δ(E− ε
B
αk) = const (5.5)

Let’s define

Ôλ(t)≡ eiĤaux
−λ

tÔe−iĤaux
λ

t (5.6)

where Ô is an Bose-type operator (i.e., consists of even number of fermi creation/annination

operators) belong to I +A, and

N̂aux
L ≡ ∑

m∈AL

â†
LmâLm + ∑

B=F,E
∑

k∈BL

ĉ†
BLkĉBLk

T̂ L
λ
≡∑

i∈I
∑

m∈AL

tL
ime−i λ

2 d̂†
i âLm +h.c.

ĤIA
λ
≡ ĤI + ĤL

A + ĤR
A + T̂ R + T̂ L

λ

Ĥaux
λ
≡ ei λ

2 N̂aux
L Ĥauxe−i λ

2 N̂aux
L

= ĤI + ∑
α=L,R

[
Ĥα

A + ∑
B=F,E

(
Ĥα

B +V̂ α
B
)]

+ T̂ R + T̂ L
λ

≡ ĤIA
λ

+ ∑
α=L,R

∑
B=F,E

(
Ĥα

B +V̂ α
B
)

(5.7)

Then the equation of motion (EOM) for Ôλ(t) is

d
dt

Ôλ(t) = eiĤaux
−λ

t(iĤaux
−λ

Ô− iÔĤaux
λ

)e−iĤaux
λ

t

= eiĤaux
−λ

t(iĤIA
−λ

Ô− iÔĤIA
λ
)e−iĤaux

λ
t+

∑
α,B,m,k

eiĤaux
−λ

t
[
i(V α

Bmâ†
αmĉBαk +V α∗

Bm ĉ†
Bαkâαm)Ô− iÔ(V α

Bmâ†
αmĉBαk +V α∗

Bm ĉ†
Bαkâαm)

]
e−iĤaux

λ
t

(5.8)
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Let’s look at one of the terms in the last equation explicitly,

∑
B,k

eiĤaux
−λ

t
(

iV α
Bmâ†

αmĉBαkÔ
)

e−iĤaux
λ

t

=∑
k

eiĤaux
−λ

t
(
−iV α

FmĉFαkâ†
αmÔ+ iV α

Emâ†
αmÔĉEαk

)
e−iĤaux

λ
t

=∑
k

eiĤaux
−λ

t
(
−iV α

FmĉFαke−iĤaux
−λ

teiĤaux
−λ

t â†
αmÔ+ iV α

Emâ†
αmÔe−iĤaux

λ
teiĤaux

λ
t ĉFαk

)
e−iĤaux

λ
t

(A.2)
= − iV α

Fm ∑
k

(
e−iεF

αkt ĉFαk− i ∑
n∈Aα

V α∗
Fn

∫ t

0
dse−iεF

αk(t−s)eiĤaux
−λ

sâαne−iĤaux
−λ

s

)
eiĤaux

−λ
t â†

αmÔe−iĤaux
λ

t

+iV α
EmeiĤaux

−λ
t â†

αmÔe−iĤaux
λ

t
∑
k

(
e−iεE

αkt ĉEαk− i ∑
n∈Aα

V α∗
En

∫ t

0
dse−iεF

αk(t−s)eiĤaux
λ

sâαne−iĤaux
−λ

s

)
(A.4)
= − iV α

FM

√
2πNα

F ĉ(in)
Fα

(0)eiĤaux
−λ

t â†
αmÔe−iĤaux

λ
t− ∑

n∈Aα

Γ
Fα
mn eiĤaux

−λ
t âαnâ†

αmÔe−iĤaux
λ

t

+iV α
EMeiĤaux

−λ
t â†

αmÔe−iĤaux
λ

t
√

2πNα
E ĉin

Eα
(0)+ ∑

n∈Aα

Γ
Eα
mn eiĤaux

−λ
t â†

αmÔâαne−iĤaux
λ

t

(5.9)

where ΓBα
mn = πNα

BV α
BmV α∗

Bn , B = F,E. Treating others terms in Eq.(5.8) similarly, we can get an

equation similar as Eq.(A.9), and follow the same procedure as (A.10-13), we have EOM for

ρ̂IA
λ
(t) ≡ TrLE LF RE RF

(
e−iĤaux

λ
t
ρ̂aux

0 eiĤaux
−λ

t
)

, where ρ̂aux
0 = ρ̂LE ⊗ ρ̂LF ⊗ ρ̂IA(0)⊗ ρ̂RE ⊗ ρ̂RF is the

initial state of the whole IMaux and ρ̂αE = |empty〉〈empty|, ρ̂αF = |full〉〈full|:

d
dt

ρ̂
IA
λ
(t) =−iĤIA

λ
ρ̂

IA
λ
(t)+ iρ̂IA

λ
(t)ĤIA

−λ

+ ∑
α=L,R

∑
m1,2∈Aα

[
Γ

Eα
m1m2

(
2âαm2 ρ̂

IA
λ
(t)â†

αm1
−
{

ρ̂
IA
λ
(t), â†

αm1
âαm2

})
(5.10)

+Γ
Fα
m1m2

(
2â†

αm1
ρ̂

IA
λ
(t)âαm2−

{
ρ̂

IA
λ
(t), âαm2 â†

αm1

})]
(5.11)

The differences between Eq.(5.10) and Eq.(A.13) are: 1. lead L and R are distinguished; 2. ĤIA
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is now dressed with counting field ±λ when it appears to the left/right side of ρ̂aux
λ

respectively.

The GF of FCS for IMaux satisfies

Z̃(λ, t) = Tr
(

e−iĤaux
λ

t
ρ̂

aux
0 eiĤaux

−λ
t
)

= TrIAρ̂
IA
λ
(t)

(5.12)

Hence by solving Eq.(5.10) I have access to the GF of the IMaux, which is equal to the GF of the

original system if the mapping is exact.

5.3 Bath Mapping

Figure 5.1: (a) Original system: the impurity is coupled to two leads L and R; (b) Auxiliary
system: each lead is mapped into a full bath and an empty bath. The impurity is displayed as
red circles, the full and empty bath sites as blue and white ones.

Mapping procedure is discussed in [27] in detail. Here for simplicity I’ll assume that

each bath is only coupled to one site in the impurity. The original baths start from the thermal

equilibrium, the corresponding HFs only depend on the time difference, i.e. ∆
R/K
L/R (t1, t2) =

∆
R/K
L/R (t1− t2). Correspondingly, the initial states of the auxiliary modes should be the stationary

states when they are evolving without coupling to the impurity but is purely driven by the full and

empty baths. To simplify the preparation of the initial state, I map the original lead α(α = L,R)

into one full and one empty bath, see Fig. 5.1. The full bath is composed of some dissipative

auxiliary modes (AF
α) which are initially occupied and are characterized by Hamiltonian matrix
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EF
α and ΓF

α ; for the empty bath, auxiliary modes are initially unoccupied and are characterized

by EE
α and ΓE

α . Note that here and in the following bold E denotes Hamiltonian matrix of the

auxiliary modes and ordinary E appearing in the superscript denotes empty bath.

According to Eq.( 1.8), the greater(lesser) component of the HF of the full(empty) bath

vanishes. Hence the full(empty) bath accounts for the lesser(greater) component of the HF of the

lead respectively, i.e. ∆̃F
α and ∆̃E

α of the full and empty bath for lead α should achieve

∆̃
<
Fα(ω)→−2i f (ω;µα,Tα)Im∆

R
α(ω)

∆̃
>
Eα(ω)→ 2i [1− f (ω;µα,Tα)] Im∆

R
α(ω)

(5.13)

Due to fluctuation-dissipation theorem, this relation can be equivalently written in terms of the

retarded components:

Im∆̃
R
Fα(ω)→ f (ω;µα,Tα)Im∆

R
α(ω)

Im∆̃
R
Eα(ω)→ [1− f (ω;µα,Tα)] Im∆

R
α(ω)

(5.14)

However, with finite number of auxiliary modes, the mapping can only be achieved

approximately, and the retarded HF of the full/empty bath is given by [27]

∆̃
R
Fα(ω) = ∑

m∈AF
α

|tFα
m |2(ωI−EF

α +
i
2
ΓF

α)
−1
mm

∆̃
R
Eα(ω) = ∑

m∈AE
α

|tEα
m |2(ωI−EE

α +
i
2
ΓE

α)
−1
mm

(5.15)

where tFα
m (tEα

m ) is the coupling strength between the impurity and the auxiliary mode m in

full(empty) bath for lead α.

The central task of bath mapping is adjusting parameters t,E,Γ in Eq.(5.15) to achieve
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Eq.(5.14), and this can be done by minimize the following cost functions:

χFα =
∫

dω
[
Im∆̃

R
Fα(ω)− f (ω;µα,Tα)Im∆

R
α(ω)

]2
χEα =

∫
dω
{

Im∆̃
R
Eα(ω)− [1− f (ω;µα,Tα)]Im∆

R
α(ω)

}2
(5.16)

In favor of the applicability of MPS methods, one should avoid long-range hoppings and I

thus restrict E to tridiagonal form. Furthermore, hermiticity and gauge degrees of freedom allow

E to be real symmetric. And for reasons that we will see later in section 5.5, Γ is restricted to be

diagonal. Hence for NB auxiliary bath modes, the number of parameters assigned to t,E,Γ is

respectively 1,2NB−1,NB; totally there are 3NB parameters. So Eq.(5.16) constitutes a multi-

dimensional minimization problem, which is very demanding. An efficient numerical strategy

based on parallel tempering algorithm was put forward for this bath mapping problem in [27],

and is adopted in this thesis.

5.4 Super-fermion Representation

Once the bath parameters t,E,Γ are set, the next step is to solve the corresponding

Lindblad QME (5.10). Here I exploit the so-called super-fermion representation [31, 111] in

which Lindblad QME can be cast into a Schrödinger-type equation. Explicitly, this can be done

by introducing an augmented fermionic Fock space with twice as many sites as in IMaux. The

additional sites are a copy of the physical sites and are labeled by a tilde. A fundamental object in

this augmented space is the so-called left vacuum:

|I〉= ∑
{ni}

(−i)N({ni})|{ni}〉⊗ |̃{n̄i}〉 (5.17)

The summation runs over all possible configurations in occupation basis |{ni}〉 of the physical

system and |̃{n̄i}〉 is the corresponding state of the tilde system with inverted occupation n̄i =
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1−ni. And N({ni}) = ∑
i

ni is the total number of electrons in the non-tilde system at state |{ni}〉.

The following rules is satisfied for left-vacuum:

c j|I〉=−ic̃ j|I〉, c†
j |I〉=−ic̃†

j |I〉 (5.18)

One can define the following state vector for the dressed density operator (expecting no danger of

causing confusion, I’ll drop the ”IA” superscript and hat on operators from now on):

|ρλ(t)〉 ≡ ρλ(t)|I〉 (5.19)

Then by multiplying both sides of Eq.(5.10) by |I〉, and applying the commutation relation

[c̃ j,ρλ(t)] = 0 and [c̃†
j ,ρλ(t)] = 0, the dressed Lindblad QME is transformed into the following

form:
d
dt
|ρλ(t)〉= Lλ|ρλ(t)〉 (5.20)

where Lλ is a non-hermitian operator in the augmented space. A nice property of Lλ is that

it preserves the Abelian symmetry (charge conservation) of the original Hamiltonian, and by

making use of symmetries the computational cost can be greatly reduced.

Note also the following important relation:

Z(λ, t) = Tr(ρλ(t)) = 〈I|ρλ(t)〉, 〈I|O|ρλ(t)〉= Tr(ρλ(t)O) (5.21)

5.5 MPS and TEBD

With QME written in Schrödinger-type form, we are ready to employ matrix product

state (MPS) [15] representation of the state vector |ρλ(t)〉. MPS is designed to describe the

many-body states of one-dimensional systems, so we map IMaux shown in Fig.(5.1) into a chain

in the augmented space of SF representation, as in Fig.(5.2). Since each lead is split into two
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auxiliary baths (full and empty), there are inevitably long-range hopping between one of the two

and the impurity. The diagonal elements of Γ provide nearest-neighbor couplings between a

physical site and its tilt copy because

Γ
E
j jc jρλ(t)c

†
j |I〉= Γ

E
j jc jρλ(t)(−i)c̃†

j |I〉= iΓE
j jc̃

†
jc j|ρλ(t)〉

Γ
F
j jc

†
jρλ(t)c j|I〉= Γ

F
j jc

†
jρλ(t)(−i)c̃ j|I〉=−iΓF

j jc
†
j c̃ j|ρλ(t)〉

(5.22)

Off-diagonal elements of Γ like Γi,i+1 will result in interactions beyond next-nearest neighbors.

But long-range interactions are cumbersome to deal with in MPS, and my experience is that

adding these terms as parameters only slightly improve the bath fitting. So it improves the

computational efficiency by restricting Γ to be diagonal.

Next-nearest-neighbor couplings between two non-tilde sites or two tilde sites are due to

the non-diagonal hopping terms of the tridiagonal matrix E. The diagonal elements of both E

and Γ contribute to the on-site terms.

Figure 5.2: Auxiliary system with a chain geometry in augmented space. For the full baths
LF and RF , non-tilde sites are initially occupied while tilde sites are initially unoccupied. For
empty baths LE and RE , it’s the other way around.

The formal solution of Eq.(5.20) is

|ρλ(t)〉= eLλt |ρ0〉 (5.23)

Initially, all non-tilde bath sites of the full baths are occupied but those of the empty baths are
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unoccupied. We have freedom of the initial occupation of the impurity site, and here I choose it

to be occupied. The initial density matrix operator of IMaux is thus

ρ0 =

(
∏

i∈LF∪RF

|1i〉〈1i|

)
⊗

(
∏

j∈LE∪RE

|0 j〉〈0 j|

)
⊗ (|1I〉〈1I|)

which means

|ρ0〉= ρ0|I〉= (−i)N

(
∏

i∈LF∪RF

|1i〉⊗ |̃0i〉

)
⊗

(
∏

j∈LE∪RE

|0 j〉⊗ |̃1 j〉

)
⊗
(
|1I〉⊗ |̃0I〉

)

where N is the total occupation number of the non-tilde sites. A convenient way to construct MPS

for left vacuum state is using the following relation:

|I〉= exp(−i∑
j

c†
j c̃ j)|{0}〉⊗ |̃{1}〉 (5.24)

With chain geometry of IMaux and MPS representation of initial state vector |ρ0〉, I then

implement time-evolving block decimation technique (TEBD) [113] to propagate the state. TEBD

is realised by decomposing a short-time evolution operator eLλ∆t into a sequence of Trotter

gates, which act on two nearest-neighbor sites. The application of Trotter gates enlarges the

matrix dimension of MPS, so a singular value decomposition (SVD) is performed to fix the bond

dimension. Particularly, I’ll adopt the second-order Trotter decomposition (TEBD2) [115], which

has error O(∆t2) accumulated over the entire time interval.

Long-range interactions can be treated by swap gates [114] S(i j) = δsis′j
δs js′i

: each swap

gate exchange two neighboring sites i and j, and a series of them can move the long-range

interacting sites next to each other. For example, the next-nearest-neighbor interactions in Lλ can

be efficiently treated by swap gates (see Fig.5.3).
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Figure 5.3: (a) Swap gate exchange the states on two identical nearest-neighboring sites i and
j; (b) By applying swap gate, two pairs of next-nearest neighbors (12) and (1̃2̃) become nearest
ones. We can then act on them Trotter gates corresponding to terms eL12∆t and eL1̃2̃∆t . Finally, I
swap sites back to their original positions.

5.6 Noise

With the time-evolved state |ρλ(t)〉, we can calculate GF of FCS by Eq.(5.21), from which

all cumulants of electron transport are accessible. Particularly, zero-frequency noise S is given by

S = lim
t→∞

dC2(t)
dt

, C2(t) =
∂2lnZ(λ, t)

∂(iλ)2

∣∣∣∣
λ=0

(5.25)

In practice, we could compute Z(λ, t) for a small λ, and then S≈ 2 lnZ(λ,t+∆t/2)−lnZ(λ,t−∆t/2)
∆t(iλ)2 for

sufficiently large t.

A numerically more realiable way to calculate S is

S = 2
∂

∂λ
lim
t→∞

ImJ(λ, t), J(λ, t)≡ Tr(Jρλ(t))
Trρλ(t)

=
〈I|J|ρλ(t)〉
〈I|ρλ(t)〉

(5.26)

where J ≡ −i[NL,H] is the current operator. In numerical practise, calculating S by Eq.(5.26)

turns out to be less hampered by the truncation error of SVD than by Eq.(5.25).
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5.6.1 Proof of Eq.(5.26)

First, I need following relations:

Z(λ, t) = Tr(eiH−λte−iHλt
ρ0)

Z(0, t) = 1

dHλ

dλ
=

d
(

eiNLλ/2He−iNLλ/2
)

dλ

= eiNLλ/2 i
2
[NL,H]e−iNLλ/2

=−eiNLλ/2 J
2

e−iNLλ/2

(5.27)

Then

∂

∂t
∂2lnZ(λ, t)

∂(iλ)2 =
∂2

∂(iλ)2

{
1

Z(λ, t)
Tr
[
−i(Hλ−H−λ)e

−iHλt
ρ0eiH−λt]}

=
∂2

∂(iλ)2

{
1

Z(λ, t)
Tr [−i(Hλ−H−λ)ρλ(t)]

}
=

(
∂2

∂(iλ)2
1

Z(λ, t)

)
Tr [−i(Hλ−H−λ)ρλ(t)]

+
1

Z(λ, t)
∂2

∂(iλ)2 Tr [−i(Hλ−H−λ)ρλ(t)]

+2
(

∂

∂(iλ)
1

Z(λ, t)

)
∂

∂(iλ)
Tr [−i(Hλ−H−λ)ρλ(t)]

(5.28)

There are three terms after the last equal sign, but because

(Hλ−H−λ)|λ=0 = 0,
∂2

∂λ2 (Hλ−H−λ)|λ=0 = 0 (5.29)
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only following terms remain after taking λ = 0:

∂

∂t
∂2lnZ(λ, t)

∂(iλ)2

∣∣∣∣
λ=0

=2Tr
[

J
∂ρλ(t)

∂iλ

∣∣∣∣
λ=0

]
+2

∂

∂(iλ)
1

Z(λ, t)

∣∣∣∣
λ=0

Tr [Jρ(t)]

=2
∂

∂(iλ)
Tr [Jρλ(t)]

Trρλ(t)

∣∣∣∣
λ=0

(5.30)

Hence,

S = lim
t→∞

∂

∂t
∂2lnZ(λ, t)

∂(iλ)2

∣∣∣∣
λ=0

=2lim
t→∞

∂

∂(iλ)
Tr [Jρλ(t)]

Trρλ(t)

∣∣∣∣
λ=0

=2
∂

∂λ
lim
t→∞

Im
Tr [Jρλ(t)]

Trρλ(t)

∣∣∣∣
λ=0

(5.31)

where at the last step I used the fact that S is real.

5.7 Example

In this section, I validate this method by benchmarking against the exact solution of GF

for resonant level model, where a single spinless level is coupled to two leads L and R. Initially,

the level and leads are decoupled and leads are in equilibrium. At t = 0, the coupling is turned

on. Using the path-integral formalism, the GF based on two-time measurement scheme is given

by [116]

Z(λ, t) = det(GG′−1) (5.32)

where

G−1 = g−1−∆L−∆R, G−1
λ

= g−1−∆′
L−∆R (5.33)

Here g is the bare Green’s function of isolated level, ∆′
L is the hybridization function of lead L

dressed with counting field. All quantities in the above expression are defined in the Keldysh
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space with two time indices, which go from 0 to t:

A(t, t ′) =

AR(t, t ′) AK(t, t ′)

0 AA(t, t ′)

 (5.34)

Finally,

∆′
L(t, t

′) = exp[−iσxλ/2]∆L(t, t ′)exp[iσxλ/2] (5.35)

The implementation of dressed auxiliary QME for FCS starts from bath fitting. Here the

leads are chosen to have a flat band with a smooth cutoff [117]:

ΓL/R(ω) =
ΓL/R

(1+ eν(ω−Ωc))(1+ e−ν(ω+Ωc))
(5.36)

In what follows, I set ΓL = ΓR = 1/2 and Γ≡ ΓL +ΓR = 1 is the energy unit. We take the leads’

band cutoff Ωc to be 10Γ, and the edge width 1
ν

to be 0.1Γ. e, ~, and kB are taken to be unity. The

voltage bias V is set to be 10Γ, and µL =−µR =V/2. Temperature is 0.02Γ.

Fig.(5.4) is the result of fitting the full and empty bath components of lead L, with NB = 10.

After bath fitting, we map the auxiliary system into a chain, write the Liouvillian in super-fermion

representation and evolve the system in time by TEBD2. We evaluate GF and dressed current

by Eq.(5.21) along the way, and when the dressed current becomes stable, we calculate noise

by Eq.(5.26). There are three sources of error: imperfection of bath fitting, time-step error and

truncation error. MPS calculation is performed using the ITensor Library [118]. The exact value

of steady-state noise S is given by

S =
e2

2π~

∫ +∞

−∞

dω{T (ω)[ fL(1− fL)+ fR(1− fR)]+T (ω)[1−T (ω)]( fL− fR)
2} (5.37)

where T (ω) = 4ΓL(ω)GR(ω)ΓR(ω)GA(ω) and GR/A are the Green’s functions of the impurity
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Figure 5.4: Results of fitting the full and empty bath components of lead L with NB = 10.
(a) Imaginary part of retarded HFs of the auxiliary full bath (’Aux’, Eq.5.15) and full bath
component of lead L (’Real’, Eq.5.14); (b) Similarly for the empty bath.

level.

In Fig.(5.5), I compare the exact results by Eq.(5.32) with the ones from dressed QME

calculation done for λ = π/100. Indeed, for very small λ, the imaginary part of GF grows linearly

with time for large t. And the noise S(t)≡ dC2(t)/dt calculated by Eq.(5.25) and Eq.(5.26) match

very well in time and eventually reach the steady-state value given by Eq.(5.37).

Figure 5.5: FCS for resonant level model: dressed QME versus exact results. λ = π/100. (a)
Imaginary part of the generating function; (b) Noise S(t)≡ dC2(t)/dt given by Eq.(5.25) and
Eq.(5.26) display very nice agreement and converge to the steady value denoted by blue line.

58



5.8 Conclusion

Auxiliary QME was originally proposed to be an efficient method for solving nonequi-

librium impurity problems. In this thesis, I generalize it to the realm of full counting statistics,

which yields much more information about transport properties. Theoretical construction as

well as implementation details are given. Particularly, I propose a bath mapping scheme (full +

empty) which simplifies the preparation of bath in equilibrium. Super-fermion representation

enables MPS representation of the density matrix of auxiliary system and applicability of standard

time-evolution method TEBD2. I also prove that zero-frequency noise can be evaluated from the

steady value of dressed current. Finally, I benchmark the new method with exact solution for

resonant level model, and find nice agreement. In the future, I plan to apply this method to more

interesting models such as two level bridge coupled to optical cavity, in which one can study the

interplay between photon absorption/emission and electron tunneling.

This chapter is a preliminary draft, and will be coauthored with Michael Galperin. The

dissertation author was the primary investigator and author of this draft.
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Appendix A

Derivation of Lindblad QME Eq. (2.17)

Here we prove that reduced density matrix of S+A in the aux model satisfies Markov

Lindblad-type equation-of-motion (EOM), Eq. (2.17).

We start by considering unitary evolution of the aux model. Heisenberg EOM for bath

annihilation operator ĉCk is

d
dt

ĉCk(t) = i[Ĥaux(t), ĉCk(t)] =−iεCkĉCk(t)− i ∑
m∈A

(tC
m)
∗ âm(t) (A.1)

Its formal solution is

ĉCk(t) = e−iεCkt ĉCk(0)− i ∑
m∈A

(tC
m)
∗
∫ t

0
dseiεCk(t−s)âm(s) (A.2)
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Thus, Heisenberg EOM for an arbitrary operator Ô on S+A can be written as

d
dt

Ô(t) = i[ĤSA(t), Ô(t)]− i ∑
m∈A

{
(A.3)

∑
k∈R

[
tR
m[Ô(t), â†

m]ζ

(
e−iεRkt ĉRk(0)− i ∑

m′∈A
(tR

m′)
∗
∫ t

0
dse−iεRk(t−s)âm′(s)

)
+ζ(tR

m)
∗
(

eiεRkt ĉ†
Rk(0)+ i ∑

m′∈A
tR
m′

∫ t

0
dseiεRk(t−s)â†

m′(s)
)
[Ô(t), âm(t)]ζ

]
−∑

k∈L

[
(tL

m)
∗[Ô(t), âm(t)]ζ

(
eiεLkt ĉ†

Lk(0)+ i ∑
m′∈A

tL
m′

∫ t

0
dseiεLk(t−s)â†

m′(s)
)

+ζtL
m

(
e−iεLkt ĉLk(0)− i ∑

m′∈A
(tL

m′)
∗
∫ t

0
dse−iεLk(t−s)âm′(s)

)
[Ô(t), â†

m(t)]ζ

]}

where ζ=+/−1 if Ô contains even/odd number of fermion operators, and [, ]ζ is (anti)commutator

for ζ = (−)1.

For future reference we introduce

ĉ(in)C (t)≡ 1√
2πNC

∑
k∈C

e−iεCkt ĉCk(0) (A.4)

which satisfies anti-commutation relations

{
ĉ(in)C1

(t), ĉ(in)†
C2

(s)
}
= δC1,C2 δ(t− s) (A.5){

ĉ(in)C1
(t), ĉ(in)C2

(s)
}
=
{

ĉ(in)†
C1

(t), ĉ(in)†
C2

(s)
}
= 0 (A.6)

The delta in time is due to the fact that the contact density of states NC is constant, and, thus,

∑
k∈C

e−iεCkt ≡
∫

dεNC(ε)e−iεt = 2πNCδ(t) (A.7)

is satisfied. Note also that ∫ t

0
dsδ(t− s) f (s) =

1
2

f (t) (A.8)
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holds for arbitrary function f (t).

Using (A.4), (A.7), and (A.8) in (A.3) leads to

d
dt

Ô(t) = i[ĤSA(t), Ô(t)]

−i ∑
m∈A

{
tR j[Ô(t), â†

m(t)]ζ ĉ(in)R (t)+ζ(tR
m)
∗ĉ(in)†

R (t)[Ô(t), âm(t)]ζ

−(tL
m)
∗[Ô(t), âm(t)]ζĉ(in)†

L (t)−ζtL
mĉ(in)L (t)[Ô(t), â†

m(t)]ζ

}
(A.9)

− ∑
m1,m2∈A

{
Γ

R
m1m2

[Ô(t), â†
m1
(t)]ζ âm2(t)−ζΓ

R
m2m1

âm2(t)
†[Ô(t), âm1(t)]ζ

−ζΓ
L
m1m2

âm2(t)[Ô(t), â†
m1
(t)]ζ +Γ

L
m2m1

[Ô(t), âm1(t)]ζ â†
m2
(t)
}

where we employed definition of the dissipation matrix, Eq. (2.19).

Next we are going to write EOM for expectation value of Ô

〈Ô(t)〉 ≡ Tr
[
Ô(t) ρ̂

aux(0)
]

(A.10)

by averaging (A.9) with initial density operator of the aux model, Eq. (2.16). Because initially

S+A is from the baths and because bath L is full and R is empty (see Figure 2.1b)

ĉ(in)†
L (t) ρ̂L = ρ̂L ĉ(in)L (t) = ĉ(in)R (t) ρ̂R = ρ̂R ĉ(in)†

R (t) = 0 (A.11)

holds. Thus, second and third lines in (A.9) do not contribute, and EOM for the expectation value

of Ô(t) is

〈
d
dt

Ô(t)
〉
= Tr

[
ρ̂

aux(0) i[ĤSA(t), Ô(t)]
]
− ∑

m1,m2∈A
Tr
[

ρ̂
aux(0)

{
Γ

R
m1m2

[Ô(t), â†
m1
(t)]ζ âm2(t)−ζΓ

R
m1m2

â†
m1
(t)[Ô(t), âm2(t)]ζ (A.12)

+Γ
L
m1m2

[Ô(t), âm2(t)]ζ â†
m1
(t)−ζΓ

L
m1m2

âm2(t)[Ô(t), â†
m1
(t)]ζ

}]
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Because Ô is arbitrary in S+A, after transforming to Schrödinger picture (A.12) can be rewritten

as EOM for ρ̂aux(t)

d
dt

ρ̂
aux(t) =−i[ĤSA(t), ρ̂aux(t)]

+ ∑
m1,m2∈A

[
Γ

R
m1m2

(
2âm2 ρ̂

aux(t)â†
m1
−
{

ρ̂
aux(t), â†

m1
âm2

})
(A.13)

+Γ
L
m1m2

(
2â†

m1
ρ̂

aux(t)âm2−
{

ρ̂
aux(t), âm2 â†

m1

})]

Finally, because only operators in S+A subspace appear in the right side of (A.13), tracing out

baths degrees of freedom leads to Eq. (2.17).
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Appendix B

Derivation of quantum regression theorem

B.1 Derivation of Eq. (2.22)

Here we prove that two-time correlation function of two arbitrary operators in S+A,

〈Ô1(t1) Ô2(t2)〉 (t1 ≥ t2 ≥ 0), Eq. (2.20), can be equivalently obtained from reduced Lindblad-

type evolution in the S+A subspace of the aux model.

Let introduce t ≡ t1− t2 ≥ 0, then Ô1(t1)Ô2(t2) = Ô1(t + t2)Ô2(t2) and using Eq. (A.9)
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we get

d
dt

Ô1(t + t2)Ô2(t2) =
{

i[ĤSA(t + t2), Ô1(t + t2)]

−i ∑
m∈A

(
tR
m[Ô1(t + t2), â†

m(t + t2)]ζ1 ĉ(in)R (t + t2)

+ζ1(tR
m)
∗ĉ(in)†

R (t + t2)[Ô1(t + t2), âm(t + t2)]ζ1

−(tL
m)
∗[Ô1(t + t2), âm(t + t2)]ζ1 ĉ(in)†

L (t + t2)

−ζ1tL
mĉ(in)L (t + t2)[Ô1(t + t2), â†

m(t + t2)]ζ1

)
(B.1)

− ∑
m1,m2∈A

(
Γ

R
m1m2

[Ô1(t + t2), â†
m1
(t + t2)]ζ1 âm2(t + t2)

−ζ1Γ
R
m1m2

â†
m1
(t + t2)[Ô1(t + t2), âm2(t + t2)]ζ1

+Γ
L
m1m2

[Ô1(t + t2), âm2(t + t2)]ζ1 â†
m1
(t + t2)

−ζ1Γ
L
m1m2

âm2(t + t2)[Ô1(t + t2), â†
m1
(t + t2)]ζ1

)}
Ô2(t2)

Note that for t > 0

[ĉ(in)†
C (t + t2), Ô2(t2)]ζ2 = [ĉ(in)C (t + t2), Ô2(t2)]ζ2 = 0 (B.2)

Indeed, because from Eq. (A.9) it is clear that Ô2(t2) depends on Ô2(s) and ĉ(in)(†)C (s) only

at earlier times (s < t2) and because Eq. (A.5) shows that ĉ(in)(†)C (s) taken at different times

anti-commute with each other, Eq. (B.2) holds.

Thus, while taking the expectation value of (B.1) with respect to ρ̂aux(0), Eq. (2.16),

ĉ(in)†
L (t + t2) and ĉ(in)R (t + t2) can be moved over Ô2(t2) for any t > 0. So as in Appendix A, terms
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with ĉ(in)(†)C (t) in (B.1) again don’t contribute (see Eq. (A.11)), and we get for t > 0

d
dt

〈
Ô1(t + t2)Ô2(t2)

〉
= Tr

[{
i[ĤSA(t + t2), Ô1(t + t2)]

− ∑
m1,m2∈A

(
Γ

R
m1m2

[Ô1(t + t2), â†
m1
(t + t2)]ζ1 âm2(t + t2)

−ζ1Γ
R
m1m2

â†
m1
(t + t2)[Ô1(t + t2), âm2(t + t2)]ζ1 (B.3)

+Γ
L
m1m2

[Ô1(t + t2), âm2(t + t2)]ζ1 â†
m1
(t + t2)

−ζ1Γ
L
m1m2

âm2(t + t2)[Ô1(t + t2), â†
m1
(t + t2)]ζ1

)}
× Ô2(t2)ρ̂aux(0)

]

Rearranging evolution operators, Eq. (2.21), and separating traces over S+A and L+R yields

〈
Ô1(t + t2) Ô2(t2)

〉
= (B.4)

TrSA

{
Ô1 TrLR

[
Ûaux(t + t2,0)Ô2(t2) ρ̂

aux(0)Ûaux†(t + t2)
]}

d
dt

〈
Ô1(t + t2)Ô2(t2)

〉
= (B.5)

TrSA

{
Ô1

d
dt

TrLR

[
Ûaux(t + t2,0)Ô2(t2) ρ̂

aux(0)Ûaux†(t + t2)
]}

So that (B.3) can be rewritten as

TrSA

{
Ô1

d
dt TrLR[. . .]

}
= TrSA

{(
L†

SA(t) Ô1

)
TrLR[. . .]

}
≡ TrSA

{
Ô1 LSA(t)TrLR[. . .]

} (B.6)

where L†
SA(t) is adjoint [35] of the Liouvillian LSA(t) defined in (2.17), and where TrLR[. . .] is

used as a shorthand notation for the full expression in (B.4)-(B.5).

Taking into account that Ô1 is an arbitrary operator, we get

d
dt

TrLR[. . .] = LSA TrLR[. . .] (B.7)
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which has solution

TrLR[. . .](t) = USA(t,0)TrLR[. . .](0)≡USA(t,0) Ô2 ρ̂SA(t2) (B.8)

Substituting (B.8) into (B.4) leads to

〈
Ô1(t + t2) Ô2(t2)

〉
= TrLR

[
Ô1 USA(t1, t2)

(
Ô2 ρ̂SA(t2)

)]
(B.9)

This relation expresses two-time correlation function defined from unitary evolution of the aux

model in terms of Lindblad-type evolution of S+A subspace of the aux model. Finally, we note

that while we had restriction t > 0 in derivation of (B.3), the result is correct also for t = 0, as

one can see by direct comparison of the two sides in (B.9). Eq. (B.9) together with (2.17) leads to

(2.22).

Similarly, for t2 ≥ t1 ≥ 0 one can prove that

〈Ô1(t1)Ô2(t2)〉= 〈〈I|O−2 USA(t1, t2)O+
1 USA(t2,0) |ρSA(0)〉〉 (B.10)

B.2 Derivation of Eq. (2.27)

Here we prove that multi-time correlation functions of arbitrary operators Ôi in S+A of

the aux model defined on the Keldysh contour,

〈
TcÔ1(τ1) Ô2(τ2) . . . ÔN(τN)

〉
, (B.11)

can be evaluated from Markov Lindblad-type evolution in the S+A subspace. Here operators

Ôi are in the Heisenberg picture. Projections (one-the-contour time orderings) of multi-time
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correlation functions (B.11) will have the following form

〈
B̂1(s1)B̂2(s2)..B̂m(sm)Ĉn(tn)...Ĉ2(t2)Ĉ1(t1)

〉
(B.12)

= Tr
[
Ĉn(tn)...Ĉ2(t2)Ĉ1(t1)ρ̂aux(0)B̂1(s1)B̂2(s2)...B̂m(sm)

]

where B̂ j(s j) and Ĉi(ti) are used for operators Ôi on the backward and forward branches of the

contour, respectively (see Figure 1.3) and where

tn > tn−1 > ... > t1 ≥ 0

sm > sm−1 > ... > s1 ≥ 0
(B.13)

Note, there is no ordering between the sets {ti} and {s j} (i ∈ {1,2, . . . ,n} and j ∈ {1,2, . . . ,m}).

Let denote the time-ordering of the set {t1, t2, ..., tn,s1,s2, ...,sm} by {θ1, . . . ,θm+n}. So

that

θm+n ≥ θm+n−1 ≥ . . .≥ θ1 ≥ 0. (B.14)

We want to prove that projections of multi-time correlation functions satisfy quantum regression

theorem [35]

〈〈I|Oθm+n USA(θm+n,θm+n−1)Oθm+n−1 USA(θm+n−1,θm+n−2) . . . (B.15)

. . .Oθ1 USA(θ1,0)|ρSA(0)〉〉

where Oθi is superoperator, Eq. (2.23), corresponding to operator B̂ or Ĉ (backward or forward

branch of the contour, respectively) at real time θi.

We prove (B.15) by mathematical induction. First, we note that Eqs. (2.22) and (B.10) are

special cases of Eq. (B.15) with m+n = 2. Suppose that for any combination (m,n) satisfying
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m+n = k, Eq. (B.15) holds. Now let consider (k+1)-time correlation function

〈
B̂1(s1)B̂2(s2) . . . B̂m(sm)Ôθk+1(θk+1)Ĉn(tn) . . .Ĉ2(t2)Ĉ1(t1)

〉
(B.16)

where θk+1 > tn > tn−1 > ... > t1 ≥ 0 and θk+1 > sm > sm−1 > ... > s1 ≥ 0. As previously, we

time-order both sets,

θk+1 > θk ≥ θk−1 ≥ . . .≥ θ1 ≥ 0, (B.17)

and take the derivative with respect to the latest time

d
dθk+1

〈
B̂1(s1) B̂2(s2) . . . B̂m(sm) Ôk+1(θk+1)Ĉn(tn) . . .Ĉ2(t2)Ĉ1(t1)

〉
≡ d

dθk+1
〈〈I|Oθk+1 Uaux(θk+1,θk)Oθk Uaux(θk,θk−1) . . .Uaux(θ1,0)|ρaux(0)〉〉 (B.18)

= TrSA

{
Ôθk+1

d
dθk+1

〈〈ILR|Uaux(θk+1,θk)Oθk Uaux(θk,θk−1) . . .Uaux(θ1,0)|ρaux(0)〉〉LR

}
= TrSA

{
Ôθk+1LSA(θk+1)〈〈ILR|Uaux(θk+1,θk)Oθk Uaux(θk,θk−1) . . .Uaux(θ1,0)|ρaux(0)〉〉LR

}

where we followed the argument leading to (B.5) and (B.6) in B.1. In (B.18) Uaux is the Liouville

space analog of the Hilbert space evolution operator Ûaux defined in Eq. (2.21).

Taking into account that Ôθ1 is an arbitrary operator, we get

d
dθk+1

〈〈ILR|Uaux(θk+1,0) . . . |ρaux(0)〉〉LR (B.19)

= LSA(θk+1)〈〈ILR|Uaux(θk+1,0) . . . |ρaux(0)〉〉LR

where 〈〈ILR|Uaux(θk+1,0) . . . |ρaux(0)〉〉LR is shorthand notation for the expression introduced in

(B.18).

Solving (B.19) and utilizing quantum regression theorem for its initial condition, θk+1 =
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θk, leads to

〈
B̂1(s1) B̂2(s2) . . . B̂m(sm) Ôθk+1(θk+1)Ĉn(tn) . . .Ĉ2(t2)Ĉ1(t1)

〉
(B.20)

= 〈〈I|Oθk+1 USA(tθk+1 , tθk)Oθk USA(tθk , tθk−1) . . .Oθ1USA(tθ1,0)|ρSA(0)〉〉

which is quantum regression theorem for (k+1)-time correlation function. Thus, by induction

we prove Eq. (2.27).
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Appendix C

Supplemental Materials for Chapter 3

C.1 Derivation of Eqs. (3.5)-(3.7)

Detailed derivation of the nonequilibrium dual fermion approach was originally introduced

in Ref. [32]. For completeness here we give some details of the derivation.

We start form partition function defined on the Keldysh contour as [99]

Z =
∫

D[d∗,d]
∫

D[c∗,c]eiS[d∗,d,c∗,c] (C.1)

where

S[d∗,d,c∗,c] = ∑
1,2

(
d∗1
[
G−1

0

]
12

d2 + c∗1
[
g−1

B

]
12

c2 (C.2)

+d∗1V12c2 + c∗1V21d2

)
+Sint [d∗,d]

is the action of an interacting system (d∗ and d) coupled to non-interacting contacts (c∗ and c).

Here, G−1
0 is defined in Eq. (3.2) of the main text and g−1

B is the inverse Green function for free
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electrons in contacts [
g−1

B

]
12

= δ(τ1,τ2) [i∂τ1− εk] (C.3)

After integrating out contacts degrees of freedom [63] the system is represented by effective

action given in Eq. (3.1) of the main text.

Next we introduce a reference system, which is identical to the original one in all intra-

system interactions but differs from it by its hybridization function. The reference system can be

exactly solved, and the effective action of the original system is be related to that of the reference

system via Eq. (3.4) of the main text. In our case exact solution of the reference system is obtained

by solving the auxiliary Lindbald quantum master equation.

Next we consider the Hubbard-Stratonovich transformation (summation over repeated

indices is assumed)

ed∗1N12M−1
23 N34d4 = detD

∫
D[ f ∗, f ]e− f ∗1 D12 f2+ f ∗1 N12d2+d∗1N12 f2

with

N12 = ig−1
12 (C.4)

D14 = i∑
2,3

g−1
12
[
∆̃

B−∆
B]−1

23 g−1
34 (C.5)

so that

∑
2,3

N12M−1
23 N34 ≡ i

[
∆̃

B−∆
B]

14 (C.6)

Applying the transformation to the partition function (C.1) with the action given by Eq. (3.4) of

the main text yields

Z = Z f

∫
D[d∗,d]

∫
D[ f ∗, f ]eiS[d∗,d, f ∗, f ] (C.7)
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where

S[d∗,d, f ∗, f ] = S̃[d∗,d] (C.8)

+∑
1,2

(
− f ∗1

(
g−1 [

∆̃
B−∆

B]g−1)
12 f2 + f ∗1 g−1

12 d2 +d∗1g−1
12 f2

)
Z f =−idet(g

[
∆̃

B−∆
B]g) (C.9)

Thus, auxiliary quasi-particle - dual fermion ( f ) - was introduced.

Formal integration out of the real quasiparticle, d∗ and d, in (C.7) leads to

Z = Z f Z̃
∫

D[ f ∗, f ]ei
[

∑12 f ∗1 (GDF
0 )

−1
12 f2+V [ f ∗, f ]

]
(C.10)

where
(
GDF

0
)−1

12 is defined in Eq. (3.5) of the main text, Z̃ is the partition function of the reference

system, and V [ f ∗, f ] is unknown interaction between dual fermions.

To get the interaction V [ f ∗, f ] we expand (C.7) in f −d interaction - last two terms in

(C.8) - and integrate out real quasiparticles, d∗ and d. Taking g to be single particle Green function

of the reference system

g12 =
−i
Z̃

∫
D[d∗,d]d1d∗2 eiS̃[d∗,d] (C.11)

and comparing the resulting expression to expansion of (C.10) yields expression for V [ f ∗, f ]. In

particular, for expansion up to fourth order in f ∗ and f

V [ f ∗, f ] =
i
4 ∑

1,2,3,4
Γ13;24 f ∗1 f ∗3 f4 f2 (C.12)

Here Γ13;24 is the two-particle vertex of the reference system defined in Eq. (3.11) of the main

text. Finally, expansion of (C.10) with interaction given by (C.12) to lowest order and utilization

of the Wick’s theorem for the dual fermions yields the dual fermion self-energy in the form given

in Eq. (3.6) of the main text.
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The generating function Z[η,η∗] satisfies:

S[d∗,d, f ∗, f ,η∗,η] = S[d∗,d]+ f ∗η+η
∗ f −d∗

(
∆̃

B−∆
B) d

− f ∗
(
g−1 [

∆̃
B−∆

B]g−1) f + f ∗g−1d +d∗g−1 f

Z[η,η∗] =
1
Z

∫
D[d∗,d, f ∗, f ]eiS[d∗,d, f ∗, f ,η∗,η]

=
Z f

Z

∫
D[d∗,d]eiS[d∗,d,η∗,η]

where

S[d∗,d,η∗,η] = S[d∗,d]+η
∗[g
(
∆̃

B−∆
B)]d +d∗[

(
∆̃

B−∆
B)g]η+η

∗[g
(
∆̃

B−∆
B)g]η (C.13)

Hence,

GDF ≡−i〈 f̂1 f̂ †
2 〉= i

δ2Z[η,η∗]
δη∗1δη2

(C.14)

=−g(∆̃B−∆
B)g+g

[
(∆̃B−∆

B)G(∆̃B−∆
B)
]
g (C.15)

From which we can easily get Eq.(3.7).

C.2 Green functions from QME

To evaluate dual-fermion self-energy, one has to calculate the two-particle vertex (see

Eq.(3.6) of the main text). The latter depends on single- and two-particle Green functions of the

reference system (see Eq.(3.11) of the main text). The Green functions are obtained by employing

the quantum regression relation as proved in Chapter 1.
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Evaluation of single-particle Green functions

Here we discuss details of evaluation of single-particle Green function

g12 =−i〈Tcd̂1 d̂†
2〉re f (C.16)

where as previously d̂i = d̂mi(τi), and where subscript ‘ref’ indicates quantum mechanical and

statistical average of the reference system. Evaluation of the Green function requires consideration

of four projections

g≷+
m1m2

(t1, t2)≡ θ(t1− t2)g≷m1m2
(t1, t2) (C.17)

g≷−m1m2
(t1, t2)≡ θ(t2− t1)g≷m1m2

(t1, t2) (C.18)

where

g>m1,m2
(t1, t2) =−i〈d̂m1(t1)d̂

†
m2
(t2)〉re f (C.19)

g>m1,m2
(t1, t2) = i〈d̂†

m2
(t2)d̂m1(t1)〉re f . (C.20)

Fourier transforms of the four projections are

g>+
m1m2

(E) = ∑
γ

∑
{Si},{S′i}

[
ξ

m1
S3S′3

]∗
ξ

m2
S2S1

ρ
S
S1S′1

� S3S′3|R
(+1)
γ �� L(+1)

γ |S2S′1�

E−λ
(+1)
γ

(C.21)

g<+
m1m2

(E) =−∑
γ

∑
{Si},{S′i}

[
ξ

m1
S3S′3

]∗
ξ

m2
S′1S′2

ρ
S
S1S′1

� S3S′3|R
(+1)
γ �� L(+1)

γ |S1S′2�

E−λ
(+1)
γ

(C.22)

g>−m1m2
(E) =−∑

γ

∑
{Si},{S′i}

ξ
m2
S′3S3

[
ξ

m1
S′2S′1

]∗
ρ

S
S1S′1

� S3S′3|R
(−1)
γ �� L(−1)

γ |S1S′2�

E +λ
(−1)
γ

(C.23)

g<−m1m2
(E) = ∑

γ

∑
{Si},{S′i}

ξ
m2
S′3S3

[
ξ

m1
S1S2

]∗
ρ

S
S1S′1

� S3S′3|R
(−1)
γ �� L(−1)

γ |S2S′1�

E +λ
(−1)
γ

(C.24)
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Here ξm
S2S1
≡ 〈S2|d̂†

m|S1〉; λ
(±1)
γ , |R(±1)

γ � and� L(±1)
γ | are eigenvalue, right and left eigenvectors

of the Liouvillian L(±1).

Evaluation of two-particle Green functions

Here we provide details of evaluation for two-particle Green function

g(2)13,24 =−〈Tc d̂1 d̂3 d̂†
4 d̂†

2〉 (C.25)

To connect (C.25) to Liouville QME formulation, one has to consider 24 = 16 projections of the

Green function on the contour and 4! = 24 time orderings.

It is convenient to introduce Liouville space matrix elements of electron annihilation

operators at time-ordered (s = 0 or−) and anti-time ordered (s = 1 or +) branches of the Keldysh

contour

� S2
−S2

+|d̂s
m|S1
−S1

+�=


δS2

+,S
1
+
〈S2
−|d̂m|S1

−〉 s = 0

δS2
−,S

1
−
〈S1

+|d̂m|S2
+〉 s = 1

(C.26)

Similar definitions hold for creation operators.

Explicit form of quantum regression relation for two particle Green function will depend

on time ordering in (C.25). For example, for t4 > t3 > t2 > t1 and indicating contour projections

of operators by respectively s4, s3, s2, and s1 expression for two-particle Green function in terms
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of QME solution (Liouvillian eigenvalues λγ and eigenvectors |Rγ� and� Lγ|) is

−∑
{γi}

(−1)pe−iλ(−1)
γ3 (t4−t3) e−iλ(0)

γ2 (t3−t2) e−iλ(−1)
γ3 (t2−t1)×∑

S
∏
{si=∓}

∑
{S j

si}

� SS|d†s4
m4
|S7
−S7

+�

� S7
−S7

+|R
(−1)
γ3 �� L(−1)

γ3 |S
6
−S6

+�� S6
−S6

+|ds3
m3
|S5
−S5

+�� S5
−S5

+|R
(0)
γ2 �� L(0)

γ2 |S
4
−S4

+�

(C.27)

� S4
−S4

+|d†s2
m2
|S3
−S3

+�� S3
−S3

+|R
(−1)
γ1 �� L(−1)

γ1 |S
2
−S2

+�� S2
−S2

+|ds1
m1
|S1
−S1

+� ρ
S
S1
−S1

+

where p is permutation of creation and annihilation operators (d̂ and d̂†) in the projection. Similar

expressions can be written to other 23 time orderings.

Because time dependence is explicit in (C.27), time integrals in Eq.(3.6) of the main text

can be evaluated analytically. Also, terms in second and third rows of (C.27) can be combined

into groups in which matrix products may be pre-calculated only once and stored in memory.

Specifically for (C.27) second and third rows of the expression can be presented as product of

two matrices and two vectors

vγ3 Mγ3γ2 Nγ2γ1 wγ1 (C.28)

where

vγ3 = ∑
S,S7
−,S

7
+

� SS|d†s4
m4
|S7
−S7

+�� S7
−S7

+|R
(−1)
γ3 � (C.29)

Mγ3γ2 = ∑
S6
−,S

6
+,S

5
−,S

5
+

� L(−1)
γ3 |S

6
−S6

+�� S6
−S6

+|ds3
m3
|S5
−S5

+�� S5
−S5

+|R
(0)
γ2 �

Nγ2γ1 = ∑
S4
−,S

4
+,S

3
−,S

3
+

� L(0)
γ2 |S

4
−S4

+�� S4
−S4

+|d†s2
m2
|S3
−S3

+�� S3
−S3

+|R
(−1)
γ1 �

wγ1 = ∑
S2
−,S

2
+,S

1
−,S

1
+

� L(−1)
γ1 |S

2
−S2

+�� S2
−S2

+|ds1
m1
|S1
−S1

+� ρ
S
S1
−S1

+
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C.3 ∆̃B from QME

The easiest way to obtain self-energy due to coupling to contacts when solving reference

system with auxiliary QME was introduced in Ref. [8].

Utilizing the fact that the self-energy does not depend on intra-system interactions, one

can first consider a non-interacting (U = 0) reference model. Single-particle Green function, G0,

can be evaluated from QME solution of the model following approach described above. The

only contribution to self-energy in such non-interacting reference system comes from coupling to

contacts (hybridization) [64]

G0(E) =
[(

E−HM

)
σz−σz ∆̃

B(E)σz

]
(C.30)

Here σz is the Pauli matrix, which distinguishes direction of time propagation on the branches of

the Keldysh contour, HM is the matrix in molecular subspace, and G0 and ∆̃B are matrices in both

spatial and contour branches dimensions.

Thus, self-energy ∆̃B can be obtained from the Green function G0 as follows

∆̃
B(E) = (E−HM)σz−σz G−1

0 (E)σz (C.31)

∆̃B calculated for the non-interacting reference system can be used in the DF procedure for

interacting system, Eqs. (3.5) and (3.7) of the main text, because the self-energy is the same for

the reference system with and without intra-system interactions.
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Appendix D

Supplemental Materials for Chapter 4

D.1 Derivation of dual boson EOMs

Here we present derivation of the expressions for the zero order GFs, GDF
0 and DDB

0 , and

self-energies, ΣDF and ΠDB, for the dual boson technique, Eq. (6) of the main text.

We consider a physical system which consists from the molecule (d) coupled to Fermi (c)

and Bose (a) baths. Its partition function on the Keldysh contour is [99]

Z =
∫

c
D[d̄,d, c̄,c, ā,a]eiS[d̄,d,c̄,c,ā,a] (D.1)

where

S[d̄,d, c̄,c, ā,a] = d̄1

[
G−1

0

]
12

d2 +Sint [d̄,d]+ c̄1

[
g−1

B

]
12

c2 + ā1

[
d−1

B

]
12

a2

+ d̄1V12c2 + c̄2V21d1 + b̄1V12a2 + ā2V21b1

(D.2)

is the action of an interacting system (molecule) coupled to non-interacting contacts (Fermi bath)

and plasmon (Bose bath). Here, G−1
0 is defined in Eq. (2) of the main text and g−1

B and d−1
B are
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the inverse GFs for free electrons in the contacts and free photons in the Bose bath

[
g−1

B

]
12

= δ(τ1,τ2) [i∂τ1− εk][
d−1

B

]
12

= δ(τ1,τ2) [i∂τ1−ωα]

(D.3)

After integrating out baths degrees of freedom [63] one gets effective action presented in Eq. (1)

of the main text.

Next we introduce an exactly solvable reference system, which is identical to the original

one in all intra-system interactions but differs from it by its hybridization function. Effective

action of the original system will be related to that of the reference system via Eq. (4) of the

main text. Because direct application of perturbation theory to Eq. (4) is not possible, we apply

two Hubbard-Stratonovich transformations to introduce new particles, dual fermion ( f ) and dual

boson (η), which disentangle last two terms in Eq. (4). Following Ref. [92] we get

ed̄1N12d2 = Z f

∫
c
D[ f̄ , f ]e− f̄1α

f
12[N

−1]23α
f
34 f4+ f̄1α

f
12d2+d̄1α

f
12 f2

eb̄1M12b2 = Zb

∫
c
D[η̄,η]e−η̄1αb

12[M
−1]23αb

34η4+η̄1αb
12b2+b̄1αb

12η2

(D.4)

with

α
f = ig−1 N = iδ∆

B Z f =
(

det
[
α

f N−1
α

f
])−1

α
b = iχ

−1 M = iδΠ
B Zb = det

[
α

b M−1
α

b
] (D.5)

Applying the transformation to the partition function (C.1) with the action given by Eq. (4) of the

main text yields

Z = Z f Zb

∫
c
D[d̄,d, f̄ , f , η̄,η]eiS[d̄,d, f̄ , f ,η̄,η] (D.6)
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where

S[d̄,d, f̄ , f , η̄,η] = S̃[d∗,d]

− f̄1 g−1
12
[
δ∆

B]−1
23 g−1

34 f4 + f̄1 g−1
12 d2 + d̄1 g−1

12 f2

− η̄1χ
−1
12
[
δΠ

B]−1
23 χ

−1
34 η4 + η̄1 χ

−1
12 b2 + b̄1 χ

−1
12 η2

(D.7)

Thus, auxiliary quasi-particles - dual fermion ( f ) and dual boson (η) - were introduced.

Integrating out of the real quasiparticle, d̄ and d, in (C.7) leads to

Z = Z f Zb Z̃
∫

c
D[ f̄ , f , η̄,η]eiS[ f̄ , f η̄,η] (D.8)

with

S[ f̄ , f ,̄η,η] = f̄1
[
GDF

0
]−1

12 f2 + η̄1
[
DDB

0
]−1

12 η2

+V [ f̄ , f , η̄,η]
(D.9)

[
GDF

0
]−1

12 and
[
DDB

0
]−1

12 are defined in Eq. (6) of the main text, Z̃ is the partition function of the

reference system, and V [ f̄ , f , η̄,η] is unknown interaction between dual particles.

Figure D.1: Contributions to diagrams for dual fermion, ΣDF , and dual boson, ΠDB, self-
energies, Eq. (6). Directed solid and wavy lines (black) indicate dual fermion and dual boson
GFs, GDF

0 and DDB
0 , respectively. Triangle and square (blue) indicate vertices γ and Γ of the

reference system.

To get the interaction V [ f̄ , f , η̄,η] we expand (C.7) in f −d and η−b interactions and
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integrate out real quasiparticles, d̄ and d. Taking g and χ to be single electron and single molecular

excitaton GFs of the reference system

g12 =
−i
Z̃

∫
c
D[d̄,d]d1d̄2 eiS̃[d̄,d] ≡−i〈Tc d̂1 d̂†

2〉re f

χ12 =
−i
Z̃

∫
c
D[d̄,d]δb1 δb̄2 eiS̃[d̄,d] ≡−i〈Tc b̂1 b̂†

2〉re f

(D.10)

and comparing the resulting expression to expansion of (C.10) yields expression for V [ f̄ , f , η̄,η].

In particular, for expansion up to fourth order in f̄ , f and second order in η̄, η

V [ f̄ , f , η̄,η] = η̄1 χ
−1
12 〈b2〉re f + 〈b̄1〉re f χ

−1
12 η2

− i
4

f̄1 f̄3Γ13;24 f2 f4− η̄1 γ123 f̄2 f3− f̄3 f2 δ321 η1

(D.11)

Here γ123, δ321 and Γ13;24 are vertices of the reference system

Γ13;24 = g−1
11′ g

−1
33′
[
−〈Tc d̂1′ d̂

†
2′ d̂3′ d̂

†
4′〉re f

−g1′2′ g3′4′+g1′4′ g3′2′
]

g−1
2′2 g−1

4′4

γ123 = χ
−1
11′ g

−1
22′ 〈Tc δb̂1′ d̂2′ d̂

†
3′〉re f g−1

3′3

δ321 = g−1
33′ 〈Tc d̂3′ d̂

†
2′ δb̂†

1′〉re f χ
−1
1′1 g−1

2′2

(D.12)

Here Tc is contour ordering operator, subscript re f indicates Markov Lindblad-type evolution of

the reference system and δb̂≡ b̂−〈b̂〉re f . We note in passing that projections of the vertices γ123

and δ321 are related via [
γ

s1s2s3
123

]∗
=−δ

s̄3s̄2s̄1
321 (D.13)

where s1,2,3 ∈ {−,+} indicate branches of the Keldysh contour and s̄ is the branch opposite to s.

Finally, using (D.8) with interaction given by (D.11) in expansion of GFs for the dual
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particles

G12 ≡−i〈Tc f1 f̄2〉

D12 ≡−i〈Tc b1 b̄2〉
(D.14)

up to second order and employing the Wick’s theorem yields the dual particles self-energies given

in Eq. (6) of the main text. Corresponding diagrams are shown in Fig. D.1.

D.2 Derivation of Eq.(4.8)

The generating function Z[ζ̄,ζ, ξ̄,ξ] satisfies:

S[d̄,d, f̄ , f , η̄,η, ζ̄,ζ, ξ̄,ξ]] = S[d∗,d]− f̄ δ∆
B f − b̄δΠ

Bb+ ζ̄ f + f̄ ζ+ ξ̄η+ η̄ξ

− f̄1 g−1
12
[
δ∆

B]−1
23 g−1

34 f4 + f̄1 g−1
12 d2 + d̄1 g−1

12 f2

− η̄1χ
−1
12
[
δΠ

B]−1
23 χ

−1
34 η4 + η̄1 χ

−1
12 b2 + b̄1 χ

−1
12 η2

Z[ζ̄,ζ, ξ̄,ξ] =
1
Z

∫
c
D[d̄,d, f̄ , f , η̄,η]eiS[ f̄ , f ,η̄,η,ζ̄,ζ,ξ̄,ξ]

=
Z f Zb

Z

∫
D[d̄,d]eiS[d̄,d,ζ̄,ζ,ξ̄,ξ]

(D.15)

where

S[d̄,d, ζ̄,ζ] = S[d∗,d]+ ζ̄
∗(gδ∆

B)d + d̄(δ∆
Bg)ζ+ ζ̄(gδ∆

Bg)ζ

+ ξ̄
∗(χδΠ

B)d + d̄(δΠ
B
χ)ξ+ ξ̄(χδΠ

B
χ)ξ

(D.16)
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Hence,

GDF ≡−i〈 f̂1 f̂ †
2 〉= i

δ2Z[ζ̄,ζ, ξ̄,ξ]
δζ̄1δζ2

|
ζ̄=ζ=ξ̄=ξ=0

=−gδ∆
Bg+g(δ∆

BGδ∆
B)g

DDB ≡−i〈η̂1η̂
†
2〉= i

δ2Z[ζ̄,ζ, ξ̄,ξ]
δξ̄1δξ2

|
ζ̄=ζ=ξ̄=ξ=0

=−χδΠ
B
χ+χ(δΠ

BDδΠ
B)χ

(D.17)

From which we can easily get Eq.( 4.8).

D.3 Fitting hybridization functions with auxiliary modes
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Figure D.2: Hybridization functions of the physical (solid line, blue) and auxiliary (dashed
line, red) systems. Shown are (a) retarded and (b) Keldysh projections of the self-energy due to
coupling to contacts and (c) hybridization function due to coupling to thermal bath. Fitting is
done for parameters adopted in the first numerical example presented in the main text.

Recently, exact proof of possibility to map unitary evolution of a physical system onto

Markov Lindblad-type evolution of an auxiliary system was established for systems interacting

with Fermi [21, 27, 31, 101] and Bose [29, 100] baths. At the heart of the mapping is fitting of

hybridization functions of the physical system with set of auxiliary modes in the auxiliary system.

Here, we give details of the fitting procedure.
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Explicit form for the Markov Lindblad-type QME (9) is

dρSA(t)
dt

=−iLρ
SA(t)≡−i[ĤSA,ρ

SA(t)]+Dρ
SA(t) (D.18)

with the Liouvillian taken as

ĤSA = ĤS + ∑
n1,n2

εm1m2 ĉ†
n1

ĉn2

+∑
m,n

(
tmnd̂†

mĉn + t∗mnĉ†
nd̂m
)

+ ∑
β1,β2

ωβ1β2 ê†
β1

êβ2

+ ∑
m1,m2,β

rβ
m1m2

(b̂†
m1m2

+ b̂†
m1m2

)(êβ + ê†
β
)

Dρ = ∑
n1,n2

(
Γ
(R)
n1n2

(
2ĉn2 ρ̂ ĉ†

n1
−{ρ̂, ĉ†

n1
ĉn2}

)
+Γ

(L)
n1n2

(
2ĉ†

n1
ρ̂ ĉn2−{ρ̂, ĉn2 ĉ†

n1
}
))

+ ∑
β1,β2

γ
(P)
β1β2

(
2êβ2 ρ̂ ê†

β1
−{ê†

β1
êβ2, ρ̂}

)

(D.19)

Here ĉ†
n (ĉn) and ê†

β
(êβ) create (annihilate) excitation in auxiliary Fermi mode n and Bose mode

β, respectively.

Following Refs. [31, 101] we construct retarded, Σ̃r, and Keldysh, Σ̃K , projections of the

Fermi hybridization function in the auxiliary system as

Σ̃
r
m1m2

(E) = ∑
n1,n2

tm1n1 G̃r
n1n2

(E) t∗m2n2

Σ̃
K
m1m2

(E) = ∑
n1,n2

tm1n1 G̃K
n1n2

(E) t∗m2n2

(D.20)
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where

G̃r(E) =
(

E I− ε+ i(Γ(R)+Γ
(L))

)−1

G̃K(E) = 2i G̃r(E)
(
Γ
(L)−Γ

(R)) G̃a(E)

(D.21)

are retarded, G̃r(E), and Keldysh, G̃K(E) projections of the Fermi auxiliary modes Green’s

functions, and where G̃a(E) ≡ [G̃r(E)]† is its advanced projection. Hybridization functions

(D.20) should fit corresponding hybridization functions

Σ
r
m1m2

(E) = ∑
k∈{L,R}

Vm1k gr
k(E)Vkm2

Σ
K
m1m2

(E) = ∑
k∈{L,R}

Vm1k gK
k (E)Vkm2

(D.22)

of the physical system. Here

gr
k(E)≡

(
E− εk + iδ

)−1

gK
k (E)≡ 2πi(2nk−1)δ(E− εk)

(D.23)

are the retarded and Keldysh projections of the free electron in state k in contacts, nk is the

Fermi-Dirac thermal distribution and δ = 0+

We construct Bose hybridization function in the auxiliary system following Refs. [29,100].

For the physical system-bosonic bath coupling taken in the form

∑
m1m2

∑
α

V α
m1m2

(b̂m1m2 + b̂†
m1m2

)(âα + â†
α) (D.24)
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the effect of the bosonic environment can be fully encoded by correlation function

Πm1m2,m3m4(t− t ′) =

∑
α

V α
m1m2
〈(âα + â†

α)(t)(âα + â†
α)(t

′)〉V α
m3m4

(D.25)

Similarly, coupling to auxiliary Bose modes in (D.19) is fully described by correlation function

Π̃m1m2,m3m4(t− t ′) =

∑
β1,β2

rβ1
m1m2
〈(êβ1 + ê†

β1
)(t)(êβ2 + ê†

β2
)(t ′)〉rβ2

m3m4

≡ i ∑
β1,β2

rβ1
m1m2

(
D̃>

β1β2
(t− t ′)+ D̃<

β2β1
(t ′− t)

) (D.26)

Here D̃> and D̃< are the greater and lesser projections of Bose auxiliary mode Green’s function

D̃β1β2(τ1,τ2) =−i〈Tc êβ1(τ1) ê†
β2
(τ2)〉 (D.27)

Fourier transform of the correlation function (D.26) is

Π̃m1m2,m3m4(E) = i ∑
β1,β2

rβ1
m1m2

(
D̃>

β1β2
(E)+ D̃<

β2β1
(−E)

)
(D.28)

According to Ref. [29] in auxiliary system one considers Bose bath at zero temperature with

eigenmodes spanning energy range from -∞ to +∞. Thus, greater and lesser projections of the

Green’s function (D.27) satisfy

D̃>(E) =−2i D̃r(E)γ
(P) D̃a(E)

D̃<(E) = 0
(D.29)
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where

D̃r(E) =
(
E I−ω+ iγ(P)

)−1

D̃a(E) =
[
D̃r(E)

]† (D.30)

are the retarded projection and advanced projections.

For the correlation function (D.25) representing physical system and for the case of

thermal Bose bath with inverse temperature β

Πm1m2,m3m4(E) =
(

1+ coth
βE
2

)
(D.31)

×
(

Jm1m2,m3m4(E)θ(E)− Jm3m4,m1m2(−E)θ(−E)
)

where

Jm1m2,m3m4(E)≡ π∑
α

V α
m1m2

V α
m3m4

δ(E−ωα) (D.32)

Following Ref. [100] we stress that although the auxiliary Bose bath is taken at zero temperature

this does not restrict the temperature of Bose bath in the physical system: the information about

finite temperature will be provided by parameters of the auxiliary Bose modes.

Finally note that parameters εm1m2 , tmn, ωβ1β2 , rβ
m1m2 , Γ

(L)
n1n2 , Γ

(R)
n1n2 and γ

(P)
β1β2

of the Lindblad

equation (D.18)-(D.19) are used to fit hybridization functions (D.22) and (D.31) of the physical

system with corresponding hybridization functions (D.20) and (D.28) of the auxiliary model

employing a cost function to quantify deviation [101]. Figure D.2 shows hybridization functions

for the physical model (solid lines) and their fitting with auxiliary modes (dashed lines) as

utilized in simulations of the RLM and AIM with symmetric coupling to thermal bath presented

in the main text. We used four Fermi and one Bose auxiliary modes to fit the corresponding

hybridization functions.
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[115] S. Paeckel, T. Köhler, A. Swoboda, S.R. Manmana, S.R. Manmana, U. Schollwöck,
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