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S̃. When D(U ||Ũ) is zero, we have found the correct map, S∗. . . . . . . . . 15

Figure 3.1. An example mapping computed to push a 2-dimensional bimodal distri-
bution to a standard Gaussian distribution. The mapping is depicted from
both the perspective of a Kernel Density Estimate of U and V (top), as
well as from the perspective of the samples themselves (bottom). . . . . . . 40

Figure 3.2. An example mapping computed to push a 2-dimensional bimodal distri-
bution to a standard Gaussian distribution. Here, we notice a slight loss
in the structure of V as a result of the decreased expressiveness of the
parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.3. 9 examples of pushing a distribution represented by each of the MNIST
handwritten digits in 2-dimensional space, to a 2-dimensional standard
Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.4. An example of a sequential mapping to push a bimodal distribution to
a standard Gaussian distribution. S1, S10, S20, and S30 are represented
here, and as we move forward in the sequence, we see the push gradually
beginning to approach V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.1. A high level graphic of the ADMM process with respect to our optimal
transportation framework. The key thing to note is that all ADMM
variable updates can be parallelized across N, and the only update that
requires all other variables is the B-update. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.2. Comparison of wall-clock computation time in seconds for various prob-
lems using the CPU implementation and GPU implementation on a single
GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.3. Comparison of wall-clock computation times in seconds vs. dimension
on a single GPU system to an 8-GPU system on AWS . . . . . . . . . . . . . . . 63

vi



Figure 5.1. Top Image: A heatmap representing changes in spectral power across the
EEG array as motor imagery is performed on either side. Bottom Image:
A laboratory example of a real-time motor imagery task. . . . . . . . . . . . . . 67

Figure 5.2. The basic encoder/decoder-based communication framework . . . . . . . . . 67

Figure 5.3. A simplified communication model based on the discussion in [73]. . . . 72

Figure 5.4. A 2-dimensional version of the BSC BCI described in Section 5.1.2. At
every time step, the query point Qt is updated based on user responses,
and as such, so are the dividing lines. The large numbers simply represent
indices for identifying each quadrant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.5. An example of how we can split the problem into two sub-problems,
and hand 2 users 1 sub-problem each. Based on the combination of the
responses from the two users, we can infer which quadrant in the overall
problem W lies in based on the values in the table. . . . . . . . . . . . . . . . . . . 75

Figure 5.6. When we push from πt−1 to P, we effectively “stretch” out the mass
around the peak in πt−1, to make the space uniform; this “stretching” is
illustrated by the stretching of the image of Shannon. . . . . . . . . . . . . . . . . 77

Figure 5.7. A depiction of the two, mathematically equivalent, scenarios of updating
the query point. In Scenario 1, we warp the message point. In Scenario 2,
we warp the query point instead, thus leaving both the space, as well as
W , unwarped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.8. Our 2 subjects connected to their associated client interfaces to perform
the multi-user BCI task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.9. A depiction of the live experiment’s progress over time. By commu-
nication iteration 9, the posterior had mostly already converged on the
message point, showing the effects of the maximized communication rate. 80

Figure 5.10. A comparison of performance of the naive Gaussian LLR classifier (left)
and the transport map-based LLR classifier (right) on the Wake vs. Light
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.11. A comparison of performance of the naive Gaussian LLR classifier (left)
and the transport map-based LLR classifier (right) on the Light vs. REM
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.12. Samples drawn from each of the Udigit distributions using our inverse
sequential maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



Figure 5.13. General reinforcement learning workflow. The learning agent takes an
action in the environment given the state, the environment returns a
reward and new state, and the agent engages in a learning procedure to
refine its behavioral model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.14. The preference-based reinforcement learning optimal transport workflow 99

Figure 5.15. We tested our approach on these 3 environments of the OpenAI Gym
toolkit - InvertedPendulum-v2, InvertedDoublePendulum-v2, and Hopper-
v2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.16. We tested our approach on these 3 environments of the OpenAI Gym
toolkit - InvertedPendulum-v2, InvertedDoublePendulum-v2, and Hopper-
v2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



ACKNOWLEDGEMENTS

I would like to acknowledge Professor Todd P. Coleman, who has been my advisor

for almost seven full years. The completion of my program and all the work described in this

dissertation would not have been possible without his guidance and support during my time at

UCSD. Over all these years, he has always been there when I needed it, and has not only been

a fantastic mentor, but has also become a great friend.

I would also like to acknowledge Professor William Griswold, who has served as my

co-advisor since I entered the PhD program. Bill has been greatly supportive of my efforts

throughout the years, ever since I took Software Engineering courses with him during my first

2 years at UCSD, and has been a fantastic co-advisor.

I would also very much like to acknowledge Professor Gary Cottrell, Professor Sanjoy

Dasgupta, and Professor Terry Jernigan, for being on my graduate committee, and taking the

time out of their teaching and research lives to hear and read about my work.

And finally, I would also like to acknowledge the entire Coleman Lab, many of whom I

have formed extremely valuable collaborations with, both for work described in this dissertation,

as well as other projects that gave me the experience and knowledge I needed to get to this

point. Beyond that, I thank the Lab as well for the countless meetings, presentations, and chats

that have both educated and inspired me throughout the years.

Chapters 2,3,4 and 5 feature the reprint of much of the text in “A distributed framework

for the construction of transport maps”, Mesa, Diego A.; Tantiongloc, Justin; Mendoza,

Marcela; Coleman, Todd P., which has been submitted to Neural Computation in 2018, [52].

The dissertation author was a primary co-investigator of this work.

Chapter 5 additionally contains applications originally described in “An information

and control framework for optimizing user-compliant human computer interfaces”, Proceedings

of the IEEE, Tantiongloc, Justin; Mesa, Diego; Ma, Rui; Kim, Sanggyun; Alzate, Cristian H;

Camacho, Jaime J; Manian, Vidya; Coleman, Todd P., 2017, [73], of which the dissertation

ix



author was the primary investigator, and “Diffeomorphism learning via relative entropy con-

strained optimal transport”, GlobalSIP 2016, Coleman, Todd P.; Tantiongloc, Justin; Allegra,

Alexis; Mesa, Diego A.; Kang, Dae; Mendoza, Marcela, 2016, [16], of which the dissertation

author was the primary investigator as well as presenter at the GlobalSIP conference in 2016. I

would also like to acknowledge Dr. Vidya Manian, Cristian Alzate, and Jaime Camacho, of the
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ABSTRACT OF THE DISSERTATION

Scalable Measure Transportation and Applications in Machine Learning and Human Computer
Interfaces

by

Justin Cua Tantiongloc

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2018

Professor Todd P. Coleman, Co-Chair
Professor William Griswold, Co-Chair

The field of optimal transportation is a broad area of theory pertaining to the computa-

tion of a mapping to transform one probability distribution into another. Many computational

strategies solving the transport problem spanning decades of research have led to several

interesting applications in areas such as statistics, economics, machine learning and computer

science. However, there also exist many limitations to these algorithms, including the ever-

present difficulty of scaling to larger datasets, both with respect to dimension and number

of available samples from which we would like to extract useful information. Furthermore,

xii



although we have seen a dramatic increase in the availability of powerful distributed computa-

tional resources throughout the past few decades, such as publicly available CPU clusters and

GPU compute nodes, many modern algorithmic approaches to the transport problem are not

specifically designed with parallelism in mind to accommodate such frameworks. In a world

where the continuous interaction between human users and distributed computational resources

drives our technologically modern lives, this capability is critical, especially with applications

that are expected to work in real-time.

Building upon previous research from our group, this work investigates a parallelized,

computational problem to create optimal transport maps that is designed with the notion

of remote scalability in mind; this work focuses on a CUDA-based implementation of the

framework that utilizes GPU computational resources to accommodate analysis of data in

higher dimensions not often seen in the field of computational optimal transportation, and that

furthermore scale with the availability of additional hardware. We will also present applications

using this framework in several different areas of machine learning with an emphasis on human-

computer interfaces, including a novel multi-user brain-computer interface, a classification

problem pertaining to automated sleep-staging based on electroencephalographical (EEG) data,

and an example of generative modeling using the MNIST dataset. Finally, we’ll discuss a future

direction for application of this framework to preference-based deep reinforcement learning.
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Introduction

Optimal transportation is a broad field of study involving the computation of a mapping

function, otherwise known as a transport map, to transform one probability distribution into

another. Over the span of several centuries, we have witnessed an extremely impressive

evolution of research in this area, as well as seen applications of the framework to a wide

variety of problem areas ranging from economics, to physics, and even to machine learning.

While the high-level statement of the problem is seemingly a simple one, there is quite the large

number of theoretical considerations underlying the problem that gives rise to the wealth of

potential applications it can accommodate, and the understanding of these theoretical aspects

of the problem reveal just how powerful of an approach optimal transportation can be.

Building upon previous work from our group [48, 41, 51], the primary goal of this

dissertation is to showcase a recent advance in the optimal transportation literature achieved by

our research group and myself, in the form of a novel distributed, computationally efficient

optimization problem and algorithm to compute such optimal transportation mappings. We

very much stand on the shoulders of giants, and build upon a wealth of previous literature

to theoretically justify and solidify our approach as a viable alternative, and at times, even

preferred methodology of performing optimal transportation relative to the many computational

approaches presented by those who have come before us.

In addition to deriving our optimization problem to compute a transport map, we also in-

vestigate the notion of sequential mappings where several individual maps are chained together

to achieve an overall desired transformation and evaluate the advantages and disadvantages

1



to this approach. Furthermore, we will discuss the details and performance of a CUDA-based

parallel implementation in which we have instantiated our problem. Finally, we will highlight

several interesting applications of our framework in the realm of machine learning, with an em-

phasis on human-computer interfaces. In doing this, our aim is to showcase how this approach

can become yet another powerful instrument in the machine learning scientist’s toolbox.

This dissertation will be organized as follows: Chapter 1 will begin with a brief walk

through the history of optimal transportation, and tell the story of how the problem formulation

began and later evolved over several centuries of research and investigation. We will also

present several of the most important theoretical conclusions rooted in previous literature that

our approach relies on in showing feasibility and correctness. Thus, this chapter will serve as a

critical historic foundation of all theoretical discussion in subsequent chapters.

Chapter 2 will revisit our group’s previous work on optimal transport using a Kullback-

Leibler (KL) divergence-based optimization problem. This will provide the theoretical founda-

tion from which the novel work within this dissertation will be built.

Chapter 3 begins by examining two of the important limitations of the work in Chapter

2: scalability and the potential need for regularization. To address the issue of scalability, we

will further revisit previous work from our group regarding the formulation of a parallelizable

version of the KL-based formulation from Chapter 2 via the Alternating Directions Method of

Multipliers (ADMM) [51]. After describing the theoretical aspects of the original problem, we

will dive into the novel investigation contained within this dissertation, and identify several

areas where the algorithm can be further modified and improved to the end of accommodating

a wider variety of problems. This analysis culminates in the formulation of a slightly different

optimization problem relative to [51] that specifically takes advantage of the Knothe-Rosenblatt

rearrangement to represent our mappings in a more computationally feasible manner. Addition-

ally, we will examine the scenario where several maps are chained together to form a sequence

of transport mappings that are intended to achieve a desired overall transformation, and develop

2



some theoretical underpinnings explaining why this approach makes sense. In this context, we

present a modified version of the original objective function that has an additional Wasserstein

distance-based loss term associated with it, and discuss how this term affects the behavioral

aspects of the sequential mapping, and why it can be useful.

Chapter 4 will primarily serve as an implementation-based discussion of the theoretical

framework described in Chapter 3. We will discuss methods through which we instantiated

all the theory from previous sections into actionable code design that ultimately made it

into our current CUDA implementation of the optimal transport framework. We will also

discuss concrete ways to make certain aspects of the theoretical implementation convenient

to implement, and less abstract than the more theory-oriented discussion in previous sections.

Finally, we present a few metrics and benchmarks for evaluating how the implementation

performs on either a single GPU or multi-GPU system.

Chapter 5 will purely be dedicated to discussing several different applications of the

framework to real-world example problems. The first application will be a reproduction of

work from [73], where we apply our optimal transport framework to the theory of Posterior

Matching [70] and construct a multi-user brain-computer interface. Next, we will instantiate

our framework in the context of classification of electroenchephalography (EEG) signals for

automated sleep stage identification based on results published in [16]. We then demonstrate the

relatively high-dimensional optimal transportation capabilities of our framework via generative

modeling of handwritten digits from the MNIST dataset, as originally reported in [52]. And

finally, we also introduce a proposed future direction and proof-of-concept demonstration of

an application of our optimal transportation methodology to the field of deep reinforcement

learning, emphasizing the computational scalability of the algorithm and how it may potentially

be applicable to situations with near-real-time constraints.
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Chapter 1

A Background on Optimal Transporta-
tion

Here, we provide a high level discussion about the nature of the optimal transportation

problem and a brief history of optimal transportation research.

1.1 The Monge and Kantorovich Formulations

The purpose of optimal transportation is to identify a mapping function to transform

one probability density into another, while minimizing some measure of transport cost. One

intuitive, physical example we can use to envision this idea is to imagine the process of

reshaping a pile of sand from one arrangement into another, while trying to minimize the

average distance that each individual grain of sand must travel to achieve the rearrangement.

See Figure 1.1 for a simple, graphical representation of this process.

Within the optimal transport literature, there are two texts that offer very comprehensive

analyses and treatments of the subject: Optimal Transport: Old and New by Cédric Villani [76],

and Optimal Transport for Applied Mathematicians by Filippo Santambrogio [65]. The overall

scope of both of these texts is well beyond the work that will be discussed in this thesis, but in

this section we will discuss the basic background of optimal transport that will be necessary for

the analyses in subsequent chapters. For an in-depth understanding of the mathematical theory

of optimal transport however, there is really no substitute for reading these two, very detailed,
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Figure 1.1. In optimal transportation, we seek a mapping S that transforms a source, or “push-
from” distribution, U , to a target, or “push-to” distribution, V , while minimizing a transport
cost, such as the average Euclidean distance between moving a mass from a location in U to a
location in V .

texts.

More formally, in optimal transportation, we seek a map S that is defined as follows:

Definition 1.1 (Push-Forward) Let W be a convex subset of D-dimensional Euclidean space,

P(W) be the set of all probability measures on W, and U,V ∈ P(W) be probability measures. A

transport map S transforms, or “pushes”, U to V (denoted as S#U =V ), if a random variable

X with distribution U results in Y , S(X) having distribution V .

The earliest form of the full optimal transportation problem applied to densities was

formalized in 1781 by Gaspard Monge, and with the definition above, we can express the

general optimal transportation problem as:

inf
S:W→W

∫
w∈W

c(w,S(w))dU(w) (1.1)

s.t. S#U =V

where c(x,y) : W×W→ R+ is some cost function associated with transporting x to y,

and for which the optimal minimizer of (1.1) will be denoted as S∗.
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Leonid Kantorovich revisited the optimal transport problem in 1942, and derived a

relaxation to Monge’s original formulation. In the Kantorivich problem, the aim is to identify a

coupling between U and V , also called a transport plan, that we denote as γ : W×W→R. The

transport plan can be interpreted in several ways, but perhaps the most effective is to consider

it is in the following way: if γ is an optimal transport plan from U to V , γ(x,y) denotes how

much mass out of u is being transferred from a coordinate x to a coordinate y in v. In other

words, Kantorovich’s formulation is a relaxation of Monge’s problem in the sense that it allows

for mass from a single source to be split among several destinations during transport from U to

V . Kantorovich’s problem can be written as:

inf
γ∈Γ(u,v)

∫
W×W

c(x,y)dγ(x,y) (1.2)

where Γ(u,v) represents the set of all measures on the product space W×W that have

marginals equal to u and v. In other words, Kantorovich’s problem relies on this feasible set to

impose the S#U =V constraint. In general, (1.2) will have a smaller value than (1.1) by virtue

of the fact that (1.1) always induces a coupling, but the coupling may have to split probability

masses during the transport (e.g. in the case of discrete probability distributions).

Furthermore, when the cost function c is of the form d(x,y)p for some integer p, the

cost of the transport using an optimal transport map is known as the p-Wasserstein Distance,

and is a distance metric on the space of probability distributions [13, 76]. We can define the

p-Wasserstein Distance in terms of an expectation in the following way:

Definition 1.2 (Wasserstein Distance) For U,V ∈ P(W), the p-Wasserstein Distance is de-
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fined as:

Wp(U,V ), inf
γ

E(X ,Y )∼γ [d(X ,Y )p]

s.t. X ∼U, Y ∼V (1.3)

Regarding the Monge and Kantorovich problems, we can now provide one of the most

important theorems from the optimal transportation literature:

Theorem 1.1 (Existence of Optimal Map and Transport Plan) Let U,V ∈ P(W) be proba-

bility measures. If U and V admit densities with respect to the Lebesgue measure, u and v,

respectively, and if the cost function has the structure c(x,y) = h(x− y) where h is a strictly

convex function, then there exists a unique optimal transportation map S∗ that minimizes (1.1),

and from S∗ there is an associated optimal transport plan γ∗ that minimizes Equation (1.2)

[13, 27, 76]

From Definition 1.2, we also have the following corollary to Theorem 1.1:

Corollary 1.1 If U and V are probability measures with densities with respect to the Lebesgue

measure, u and v, respectively, then the p-Wasserstein Distance can also be written in terms of

the transport mapping S as:

Wp(U,V ) = inf
S:W→W

∫
w∈W

d(w,S(w))pu(w)dw (1.4)

s.t. S#U =V

One assumption often used throughout the optimal transportation literature is that the
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cost function is the squared Euclidean distance, giving rise to the 2-Wasserstein Distance:

W2(U,V ) = inf
S:W→W

∫
w∈W
||w−S(w)||2u(w)dw (1.5)

s.t. S#U =V

We will leverage Theorem 1.1 and Corollary 1.1 heavily to show that our novel optimal

transport approach presented from Chapter 2 and onward has a feasible solution. Furthermore,

we will be using the 2-Wasserstein Distance to our advantage in Chapter 3. In summary, we can

give the following succinct statement regarding this distance metrict: we denote the minimizer

of (1.5) as an optimal transport map S∗ that is optimal with respect to the squared Euclidean

distance, and the minimum value it achieves is the 2-Wasserstein Distance.

1.2 Modern Methods and Applications

Many optimal transport researchers have preferred to use the Kantorovich problem as

the basis of forming a computational solution to the transport problem as the constraints are

much easier to account for relative to the Monge problem. Some examples of work solving the

Kantorovich problem for a variety of applications can be found in [31, 64, 59, 57, 66].

Several authors then proposed regularized versions of the problem so as to increase

the computational efficiency even further, whether it be through entropy-based regularization

[20, 28, 71], or L2-based [22]. Through the use of regularization, many application areas that

were originally out of reach became practically and computationally feasible to accommodate,

and for this reason, several recent approaches to the problem still rely on regularization for

tractibility [69, 9].

To solve for the Kantorovich transport plan, problems are often formulated as discretized

approximations of the expectation of the transport cost. That is, one normally assumes they have

access to a finite numbers of samples from U and a finite number of samples from V to perform
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the optimization, and solve for a coupling in a discrete sense. Because of this, one of the most

important distinctions between the Monge transport map and the Kantorovich transport plan is

that transport plans do not inherently provide the ability to perform “out-of-sample” mappings;

that is, the discretized transport plan is not defined outside of the initial set of samples from U

and samples from V . As such, a secondary optimization problem must be solved to approximate

the transport map itself for samples not included in the original sample set used to create the

transport plan. One of the most common methods of generating a transport map in this way is

to perform a barycentric projection given the transport plan [78, 21], and in the specific case of

the squared Euclidean distance measure, the barycentric projection is indeed representative of

the optimal transport plan [2]. A more recent approach uses deep networks to approximate the

barycentric projection, leading to increased scalability in larger problem sizes [69].

Throughout the years that optimal transport has existed as a booming area of theoretical

research, it has also found a home in a wide range of practical application areas. Perhaps

one of the oldest application areas is image analysis, where optimal transportation distances

have historically been used to represent a distance metric between images for the purpose

of related-image retrieval, or image registration [46, 64, 32]; in general it can be difficult to

represent a distance metric between images in a meaningful way. However, the p-Wasserstein

distance (also often called the Earth Mover’s Distance in much of the literature) can provide a

very natural way to represent the “discrepancy” between two candidate images. Transport has

also been used as a means of transforming or blending images [63, 26].

In slightly more machine learning-oriented use-cases, optimal transport has been very

prominently used in the realm of domain adaptation [17, 18]. Broadly speaking, in a do-

main adaptation problem, the high-level assumption is that one wants to train a machine

learning model, but the training data originates from a somewhat different domain than the

testing/evaluation/live data. In this case, a mapping that transforms the training domain to the

testing domain or vice-versa can be particularly useful for still allowing the training data to be
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useful in the training process. This is especially practical in situations where data from one

domain is more easily acquired than data from another related domain, yet the model is still

expected to perform well in either domain come time to deploy it.

Historically speaking, optimal transportation methodologies using the Kantorovich

problem to solve for the transport plan, and subsequently barycentric projection to extrapolate

the result to the full transport map have been constrained to relatively small dimension, usually

in image processing applications where feature spaces range from R3 to R30 at most. But with

recent advances that take advantage of deep networks to parameterize either the barycentric

projection, or the transport map directly, larger problems have become feasible to accommodate,

such as the generative MNIST model demonstrated in [69], a 784-dimensional problem.

1.2.1 Transport vs. Optimal Transport and Novel Contributions

As we prepare to discuss the specific formulation of the optimal transportation problem

that this work focuses on, it is worth noting that our approach is somewhat different from the

classical approach stemming from Kantorovich’s relaxation of the Monge problem. While the

notion of the optimal transport cost is taken into consideration in certain incarnations of our

problem (specifically, that discussed in Section 3.4.1 and beyond), our initial formulation that

we will be discussing in Chapter 2 begins with the Kullback-Leibler Divergence as an objective

function, a significantly different approach to the transport problem than the techniques cited

in this section. However, as we will show throughout this dissertation, this formulation can

lead to further problem formulations that do indeed take the optimal transport cost into account,

bridging the gap between the KL-Divergence objective, and more traditional optimal transport

methods.

We will conclude this introductory chapter by summarizing the novel contributions of

this dissertation for which the dissertation author was the primary investigator. Sections 3.3

and 3.4 begin the discussion of novel developments with two large modifications made to our

10



group’s previously published optimal transport framework in [48, 51], as well as theoretical

discussions of the implications of both modifications. Chapter 4 takes a more implementation-

based approach to the discussion, describing several strategies that were used to make coding

of the novel optimal transport problem more convenient. While the original implementations

of our transport problem were constrained to running on CPUs, Section 4.4 takes advantage of

a new CUDA-based implementation and provides evaluation metrics of solving the transport

problem on different GPU architectures, and offers a few insights into the practical hardware

scalability of the algorithm. Section 5 describes an array of applications of the various transport

formulations. The density estimation problem (Section 5.2, [16]), generative modeling example

(Section 5.3, [52]), and partially-completed reinforcement learning application (Section 5.4),

all used the new GPU implementation. The brain-computer interface application (Section

5.1, [73]) used a previously coded CPU implementation of the transport problem, as it was

chronologically completed prior to the development of the content of Sections 3.3 and onward.
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Chapter 2

Kullback-Leibler-based Measure Trans-
port

In this chapter, we review a version of the optimal transportation problem utilizing

the Kullback-Leibler divergence as the basis of the objective function originally described in

previous work from our group [40, 42, 41]. This work was also inspired by Monge’s problem,

as well as further previous work in [25]. This formulation will serve as the starting point for

the novel modifications discussed in subsequent sections of this dissertation, and as the basis

for the parallelized problems in Chapter 3.

2.1 Kullback-Leibler Divergence as an Objective Function

We recall that the goal of optimal transportation is to identify a transport map S that

pushes probability measure U to probability measure V , or in other words, a map S such that

S#U =V in accordance with Definition 1.1. We now present the definition of a diffeomorphism

as follows:

Definition 2.1 (Diffeomorphism) A map S : W→W is a diffeomorphism if S is invertible,

and both S and S−1 are differentiable.

For any such diffeomorphism that solves the optimal transportation problem, the fol-

lowing Jacobian equation holds for u and v:
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Figure 2.1. A visual representation of the effect of a transport map on the underlying space,
when U has a standard Gaussian in its upper-right quadrant, and V is a uniform distribution

u(x) = v(S(x))|detJS(x)| (2.1)

where JS(x) is the Jacobian of the map S evaluated at the point x. From a conceptual

perspective, the Jacobian can be thought of as a representation of how the mapping “warps”

space around the point it is evaluating in order to facilitate the desired mapping from U to V .

Figure 2.1 shows an example of how the map can potentially warp the domain of a probability

distribution. In this example, U has a standard Gaussian distribution centered in the top-right

quadrant of the space, and V is a uniform distribution. The image of Shannon represents

the shape of the space; as the map pushes U to V , the probability mass in the upper-right

quadrant of U gets “stretched” to redistribute the mass to warp the space to a uniform-like

shape, resulting in the stretching effect seen in the right-hand image of Shannon.

Furthermore, not only can it be shown that there exists a diffeomorphism that can

achieve the solution to the optimal transportation problem, but even more specifically, it can be

shown that there exists a monotonic diffeomorphism that achieves the solution [76].
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Definition 2.2 (Monotonic Diffeomorphism) A diffeomorphism S is considered monotonic,

or orientation-preserving, if JS(w)� 0 for all w ∈W.

Thus, when searching for solutions for the optimal transportation problem, we can

safely restrict our search to a feasible set composed of only monotonic diffeomorphisms, and

we will denote this set as D+. With this smaller feasible set, we can also make a modification to

(2.1) by removing the absolute value around the determinant in the specific case of monotonic

mappings, and the monotonic Jacobian becomes:

u(x) = v(S(x))detJS(x) (2.2)

This simplification will indeed become extremely useful as we move forward. If we

consider (2.2), we see that the density u is intentionally left by itself on the left-hand side

of the equation. We can interpret this in the following way: if we assume V to be a fixed

probability measure, then for any candidate mapping S̃ that pushes to V that may or may

not solve the optimal transportation problem, we induce a candidate measure Ũ that has a

density ũ. This candidate measure Ũ may or may not be the actual U that we wish to push

to V , but by interpreting Ũ as induced by S̃, S̃ becomes a free variable over which we can

perform optimization. We can then consider the Kullback-Leibler (KL) divergence as a means

of measuring the “distance” between Ũ and U .

Definition 2.3 (Kullback-Leibler Divergence) For U,V ∈ P(W), the Kullback-Leibler Diver-

gence, or relative entropy, is a measure of deviation between two probability distributions, and

is given as

D(U ||V ) = EU

[
log

u(X)

v(X)

]
(2.3)

With this definition in hand, we can then interpret the optimal transport problem in our

context as a minimization over all possible S̃ of the KL-Divergence between U and Ũ :
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Figure 2.2. A graphical representation of the Kullback-Leibler-based objective function. Our
goal is to minimize the KL-Divergence between U and Ũ over S̃. When D(U ||Ũ) is zero, we
have found the correct map, S∗.

min
S̃∈D+

D(U ||Ũ(·; S̃)) (2.4)

where the notation Ũ(·; S̃) is used to make clear the fact that Ũ can be seen as an

induced function of a candidate mapping S̃. Because of the fact that the KL-Divergence is

exactly zero only when the two arguments represent exactly the same probability distribution,

this minimization will ensure that we will be targeting a Ũ that is exactly U . We will once

again denote the solution to (2.4) that successfully pushes U to V as S∗. Figure 2.2 depicts an

abstract graphical representation of the logic behind this objective function. Here, the circle

represents P(W), of which U , Ũ , and V are members. Interpreting V as a pre-set probability

distribution that doesn’t change, our goal is to optimize over S̃ until Ũ is precisely U . The

blue line represents the KL-Divergence between Ũ and U , and when the KL becomes zero, we

conclude that Ũ =U , and S̃ = S∗

From here, we are only a few derivations away from the formulation we will be focusing
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on for the duration of the dissertation. If we assume that the expected value of the log of the

push-from density u is finite, we can combine (2.4) and (2.2) in the following way:

min
S̃∈D+

D(U ||Ũ(·; S̃)) (2.5)

= min
S̃∈D+

EU

[
log

u(X)

ũ(X ; S̃)

]
(2.6)

= min
S̃∈D+

−h(u)−EU [log ũ(X ; S̃)] (2.7)

= min
S̃∈D+

−EU [log ũ(X ; S̃)] (2.8)

= min
S̃∈D+

−EU [logv(S̃(X))+ logdetJS̃(X)] (2.9)

Here, h(u) represents the Shannon differential entropy of u, and we get (2.8) from (2.7)

as h is fixed with respect to S̃ and KL-Divergence is non-negative; we then get (2.9) from

(2.8) by combining with (2.2). To take the analysis one step further still, if we also make the

assumption that v is log-concave, we can state the following theorem about Equation (2.9),

previously proven in [41, 51]:

Theorem 2.1 (Convex Push-Forward) If U,V ∈ P(W) admit densities u and v, respectively,

and if E[| logv(X)|]< ∞, and if v is log-concave, then:

min
S̃∈D+

−EU [logv(S̃(X))+ logdetJS̃(X)]

is a convex optimization problem.

To ease computation of (2.9), our general approach will be to make a Monte Carlo

approximation of the expectation with samples drawn from U . Putting all the pieces together,

we arrive at a sample-based version of the problem that we can solve, which we succinctly
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express here as an argmin over the feasible set of positive semidefinite diffeomorphisms given

samples Xi ∼U for i = 1 . . .N:

S∗ = arg min
S̃∈D+

1
N

N

∑
i=1

[− logv(S̃(Xi))− logdet(JS̃(Xi))] (2.10)

In general, to solve the problem we only need three things:

1. N independent samples from U , where N is sufficiently large to ensure a good approxi-

mation of the expectation

2. Log-concavity of v

3. Knowledge of v up to a normalization constant

Note that without item 2 above, the problem can still potentially be solved, although

the objective function becomes nonconvex and one runs the risk of arriving at poor solutions

associated with suboptimal local minima.

Nevertheless, given these three components, we can effectively guarantee that Equation

(2.9) is convex, and effectively solve for our optimal map. It is also worth noting that knowledge

of distribution U is actually not necessary, as long as we have independent samples drawn from

it. This is particularly effective if U represents a probability distribution from which we observe

samples from the real world, say, in an experiment or other data-gathering scenario. Another

notable degree of freedom we have with respect to U is that U need not have any particular

structure (e.g. log-concavity) to ensure that (2.9) is a convex optimization problem. We will

indeed be using these facts to our advantage for several of the applications discussed in Chapter

5.

One key property to note about the KL-Divergence objective is that it does not actually

aim to find the optimal transport map, as there is no notion of distance between a source point

from U and a destination point from V within the objective (e.g. the Euclidean distance from
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the original Monge problem). More accurately stated, the objective merely encodes a problem

to seek a transport map that successfully pushes U to V . That being said, Section 3.4.1 will

augment this objective function to take into account the actual optimal transport cost with

respect to the Euclidean distance, and discuss the implications this has for sequential mapping

as well.

2.2 Parameterization of the Transport Map

In order to make computation tractable, we must designate a means by which we wish

to parameterize the transport map S̃. For this purpose, we will use a linear combination of

multivariate polynomial basis functions, or polynomial chaos expansion, as in several instances

of previous work [40, 25, 51, 52, 16]. That is, given some vector x=(x1,x2, . . . ,xd, . . . ,xD)∈W,

we can form a multivariate basis function φj(x), where j represents a multi-index of length D,

j = ( j1, j2, . . . , jd, . . . , jD), using a product of D-many univariate polynomials ψ jd of degree jd:

φj(x) =
D

∏
d=1

ψ jd(xd) (2.11)

This allows us to represent one component of an arbitrary map S ∈D+ as a weighted

linear combination of the basis functions with coefficients bd,j as:

Sd(x) = ∑
j∈J

bd,jφj(x) (2.12)

where J represents the set of multi-indices in the representation specifying the order of

the polynomials in the associated expansion, and d denotes the dth component of the mapping.

In order to make this problem finite-dimensional, we must truncate the expansion to some fixed

maximum-order O:

J =
{

j ∈ ND :
D

∑
i=1

ji ≤ O
}

(2.13)
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We can now approximate any nonlinear function S ∈D+ as:

S(x) = BΦ(x) (2.14)

where K , |J | is the size of the index set and the number of basis functions being used

in the expansion, Φ(x) = [φj1(x), . . . ,φjK(x)]
T ] is a K-length vector of basis function evaluations

at the evaluation point x, and B ∈ RD×K is a matrix of coefficients.

We can now give a finite-dimensional version of (2.10) as:

B∗ = arg min
B̃

1
N

N

∑
i=1

[− logv(B̃Φ(Xi))− logdet(B̃JΦ(Xi))] (2.15)

s.t. B̃Jφ (Xi)� 0, i = 1, . . . ,N (2.16)

where Jφ (x) =
[

∂φji
∂x j

(x)
]

i, j
is the Jacobian matrix of the basis evaluated at the point x. Note

that in (2.15), we have modified our optimization problem to find the argmin over the space of

coefficient matrices that parameterize our transport map.

In terms of selecting which polynomial basis to use, there are several ways to make a

decision. In applications where U is assumed known, the basis functions are usually chosen to

be orthogonal with respect to U [81, 67]:

∫
W

φj(x)φi(x)u(x)dx = 1i=j (2.17)

where 1 is the indicator function. However, in practice, one can technically use any basis of

polynomials, and as long as the truncation length K is sufficiently large, the approximation

of the parameterized map would theoretically suffice. And with this parameterization of the

transport map, we have a complete, finite-dimensional version of the optimization problem that

can be actually be solved in a computationally efficient manner.
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Chapter 3

Scalability and Regularization of the Opti-
mal Transport Problem

In this chapter, we will investigate two modifications to the Kullback-Leibler Divergence

based optimal transportation framework presented in Section 2.1: addressing the issue of

scalability by reformulating the problem as a distributed computation via the Alternating

Directions Method of Multipliers, and adding a regularization term to the objective via the

Wasserstein metric. In addition, we will present a theoretical and computational discussion on

how the Wasserstein regularization term plays a role in using compositions of several maps in

sequence [51, 52].

3.1 A Global Consensus Problem

We begin our analysis by once again looking at the sample-based optimal transportation

problem we derived in Section 2.1, Equation (2.15):

B∗ = arg min
B̃

1
N

N

∑
i=1

[− logv(B̃Φ(Xi))− logdet(B̃JΦ(Xi))]

s.t. B̃Jφ (Xi)� 0, i = 1, . . . ,N

Upon examination of (2.15), we see that this optimization problem is, more generally
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speaking, of the form

min
x

N

∑
i=1

fi(x) (3.1)

To be more clear, the optimization problem we would like to solve is a sum of N-many

objective terms, where each of the objective terms is convex (under the assumption that v is

log-concave), and each objective term is a function of a single variable over which we would

like to perform optimization, B̃. The key insight here is that problems of this form are often

separated into N-many independent optimization problems that can be carried out in parallel by

using a global consensus strategy instead; in other words, rather than treat the optimization

variable as a single variable shared across each term of the objective, we instead optimize over

N-many optimization variables, but impose a constraint that they must ultimately be identical

when a solution is found [8, 11]:

min
x1,x2,...,xN ,z

N

∑
i=1

fi(xi) (3.2)

s.t. xi− z = 0, i = 1, . . . ,N (3.3)

Here, the optimization is now separable across the summation, as we’ve introduced a

separate optimization variable for each of the N objective functions, and added the consensus

constraint across them. With this in mind, we can now write a global consensus version of

(2.15):
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min
B̃i,B

1
N

N

∑
i=1

[− logv(B̃iΦ(Xi))− logdet(B̃iJΦ(Xi))]

s.t. B̃iJφ (Xi)� 0, i = 1, . . . ,N

B̃i = B, i = 1, . . . ,N (3.4)

Here we have used somewhat of a shorthand notation for the optimization variables, as

the optimization is over B̃i for all i = 1, . . . ,N, as well as B; in other words, we have N+1 many

optimization variables in this problem, and the final solution, B∗, will be the final value of B. As

another interpretation, we can also think of each sample, Xi, as independently inducing some

random Ũi through each of their associated maps B̃i, and the act of solving this problem can be

thought of as iteratively reducing the distance between each Ũi and the true U by reducing the

distance between each B̃i.

3.2 Parallelization via ADMM

With the global consensus form of the problem, we can now reformulate (3.4) within

the framework of the Alternating Direction Method of Multipliers (ADMM) [51]. In general,

ADMM is an iterative strategy that allows for the decomposition of large optimization problems

involving many optimization variables into separate local sub-problems which are much easier

to solve individually, and can further be solved sequentially with their results combining to

yield the solution to the overall joint optimization problem. One of the most comprehensive

reviews and treatments of the strategy can be found in this work by Boyd [11], but the general

steps are outlined as follows.

Under mild assumptions, ADMM not only allows for sequential decomposition of

an optimization problem over separate variables, but it is also guaranteed to converge with

sufficient iterations. The most general form of a problem amenable to ADMM is the following:
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min
x,z

f (x)+g(z) (3.5)

s.t. Ax+Bz = c (3.6)

where Ax+Bz = c is a set of constraints. We then form the Lagrangian by raising the

constraints to the objective and adding an associated vector of dual variables, λ :

min
x,z

f (x)+g(z)+λ
T (Ax+Bz− c) (3.7)

From the Lagrangian, we then form the penalized form of the optimization as:

Lρ(x,z,λ ) = f (x)+g(z)+λ
T (Ax+Bz− c)+

ρ

2
||Ax+Bz− c||22 (3.8)

where ρ > 0 is a penalty parameter. In this form, ADMM then dictates that the

optimization can be performed by alternating between solving for the variables x and z in

sequence, followed by an update to the dual variables, the latter of which is dependent on the

penalty parameter ρ which can be interpreted as a step size for the dual update:

xk+1 = arg min
x

Lρ(x,zk,λ k) (3.9)

zk+1 = arg min
z

Lρ(xk+1,z,λ k) (3.10)

λ
k+1 = λ

k +ρ(Axk+1 +Bzk+1− c) (3.11)

where the k superscript denotes iteration index. Under relatively mild assumptions,
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ADMM guarantees that in this form, as k→ ∞, the values of xk and zk will converge to the true

solution to the original joint optimization problem [11].

Using this framework, we can now derive the parallelized version of (3.4), following

previous work from our research group [51, 52]. Moving forward, for notational clarity, we will

write Φi instead of Φ(Xi), and Ji instead of JΦ(Xi). We also introduce the following auxiliary

variables:

• BΦi , pi : represents the optimal transport transformation of a point Xi using the current

consensus variable

• BJi , Zi : represents the evaluation of the consensus-variable-based Jacobian at the point

Xi

We can now write the constrained version of 3.4 as:

min
B̃i,Zi,pi,B

1
N

N

∑
i=1
− logv(pi)− logdetZi (3.12)

s.t. BΦi = pi : γi (D×1)

BJi = Zi : λi (D×D)

B̃i−B = 0 : αi (D×K)

Zi � 0

where we have denoted the dual variable that will be associated with each constraint,

as well as its dimensionality to the right of the constraint itself. And now the final step that

remains is to form the fully-penalized Lagrangian as:
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L(B̃i,Zi, pi,B,γi,λi,αi) =
1
N

N

∑
i=1
− logv(pi)− logdet Zi (3.13)

+
1
N

N

∑
i=1

γ
T
i (pi−BΦi)+ tr(λ T

i (Zi−BJi))+ tr(αT
i (B̃i−B))

+
1
N

N

∑
i=1

ρ

2
||B̃i−B||22 +

ρ

2
||BΦi− pi||22 +

ρ

2
||BJi−Zi||22

To make one aspect of this notation slightly more clear, note that the penalized La-

grangian is actually a function of N-many of each optimization variable with the exception of

the consensus variable, hence the subscript i for these variables. However, each ith instance of

each variable is only dependent on the ith instance of the other variables, which will allow us to

ultimately parallelize the computation across N-many threads, a more detailed discussion of

which will be presented in the following section.

ADMM then allows us to solve for each of these variables in sequence using only the

most recent versions of each in subsequent optimization sub-problems. Echoing the ADMM

update format from earlier, we can represent the sequential updates for our problem in the
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following way:

Bk+1 = arg min
B

L(B̃k
i ,Z

k
i , pk

i ,B,γ
k
i ,λ

k
i ,α

k
i ) (3.14)

B̃k+1
i = arg min

B̃i

L(B̃i,Zk
i , pk

i ,B
k+1,γk

i ,λ
k
i ,α

k
i ) (3.15)

Zk+1
i = arg min

Zi

L(B̃k+1
i ,Zi, pk

i ,B
k+1,γk

i ,λ
k
i ,α

k
i ) (3.16)

pk+1
i = arg min

pi

L(B̃k+1
i ,Zk+1

i , pi,Bk+1,γk
i ,λ

k
i ,α

k
i ) (3.17)

γ
k+1
i = γ

k
i +ρ(pk+1

i −Bk+1
Φi) (3.18)

λ
k+1
i = λ

k
i +ρ(Zk+1

i −Bk+1Ji) (3.19)

α
k+1
i = α

k
i +ρ(B̃k+1

i −Bk+1) (3.20)

3.2.1 Closed Form Updates

Upon closer examination of the penalized Lagrangian, we can actually derive closed-

form solutions for the updates for Bk+1, B̃k+1
i , and Zk+1

i . In this section, we will describe these

derivations in more detail.

The consensus variable, Bk+1, has an associated loss function stemming from the

penalized Lagrangian of:

C(B) =
1
N

N

∑
i=1

γ
T
i (pi−BΦi)+ tr(λ T

i (Zi−BJi))+ tr(αT
i (B̃i−B)) (3.21)

+
1
N

N

∑
i=1

ρ

2
||B̃i−B||22 +

ρ

2
||BΦi− pi||22 +

ρ

2
||BJi−Zi||22

An important thing to note is that this loss function is necessarily convex, and as such

we can derive a closed form solution fairly easily. We first take the first-order derivative of this

expression to arrive at:
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∂C(B)
∂B

=
1
N

N

∑
i=1
−γ

k
i Φ

T
i −λ

k
i Ji−α

kT
i (3.22)

+
1
N

N

∑
i=1

ρ(BJi−Zk
i )J

T
i +ρ(B− B̃k

i )+ρ(BΦi− pk
i )Φ

T
i

We then set this equation to zero, and express it in terms of B:

B
[
ρ

(
I +

1
N

N

∑
i=1

ΦiΦ
T
i + JiJT

i

)]
(3.23)

=
1
N

N

∑
i=1

[ρ(B̃k
i + pk

i Φ
T
i +Zk

i JT
i )+ γ

k
i Φ

T
i +λ

k
i JT

i +α
k
i ]

If we then define

L,
[
ρ

(
I +

1
N

N

∑
i=1

ΦiΦ
T
i + JiJT

i

)]
and

M ,
1
N

N

∑
i=1

[ρ(B̃k
i + pk

i Φ
T
i +Zk

i JT
i )+ γ

k
i Φ

T
i +λ

k
i JT

i +α
k
i ]

then the closed form solution for Bk+1 is simply M ·L−1.

For B̃i, we can form a similar loss function:

C(B̃i) =
ρ

2
||B̃i−Bk+1||+ tr(αkT

i (B̃i−Bk+1)) (3.24)

Taking the first-order derivative of this loss function with respect to B̃i, setting to zero,

and solving for B̃i, we arrive at a closed-form update of:
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B̃k+1
i =− 1

ρ
α

k
i +Bk+1 (3.25)

Finally, we can derive the slightly more involved closed-form update for Zi as follows.

We refer to [12] to derive the first-order optimality condition for the loss function associated

with Zi as

−Z−1
i +ρ(Zi−Bk+1Ji)+λ

k
i = 0

→ ρZi−Z−1
i = ρBk+1Ji−λ

k
i (3.26)

We then take the eigenvalue decomposition of the right hand side of (3.26):

ρBk+1Ji−λ
k
i = QΛQT (3.27)

where Λ = diag(v1, . . . ,vD), and QT Q = QQT = I. Multiplying (3.26) by QT on the

left and by Q on the right gives us the following:

ρZ̃i− Z̃−1
i = Λ (3.28)

where Z̃ = QT ZiQ. Furthermore, a diagonal solution to this equation is given by:

Z̃i,( j j) =
v j +

√
v2

j +4ρ

2ρ
j = 1, . . . ,D (3.29)

Note that to enforce the positive semidefiniteness of Zi, we specifically take the positive

root of this equation. Then finally, our closed-form Zi update becomes

Zk+1
i = QZ̃iQT (3.30)
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3.2.2 The pi-update

The final ADMM variable update we need to consider is the update for pi, Equation

(3.17). If we look at the loss function associated with pi, we get

C(pi) =− logv(pi)+
ρ

2
||Bk+1

Φi− pi||22 + γ
kT
i (pi−Bk+1

Φi) (3.31)

Unlike the other optimization variables, the existence of a closed-form solution for the

pi update is dependent on the specific structure of the distribution v. Therefore, the pi update

can potentially necessitate other optimization procedures to solve, such as a gradient-based

method, under certain circumstances. In Chapter 5, we will demonstrate both an instance of

when the pi update can in fact be solved in closed form (when v is a Gaussian density), and

when it cannot (Bayesian inference with a logistic likelihood).

3.2.3 Optimizing the Structure of the Transport Map

An important consideration in ensuring that the computation of a transport map using

the above methodology is efficient is the underlying structure of the map parameterization.

In Section 2.2, we presented a parameterization of the transport map utilizing a polynomial

chaos expansion and the multi-index set J , each member of which denoted the orders of

univariate polynomial terms involved in the product for each multivariate basis term. For this

fully-expressive mapping, each component of the output of the mapping, denoted Sd , is a

function of every component of the input point, like so:

S(xi) =



S1(x1
i ,x

2
i , . . . ,x

D
i )

S2(x1
i ,x

2
i , . . . ,x

D
i )

...

SD(x1
i ,x

2
i , . . . ,x

D
i )


(3.32)
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However, this parameterization tends to be infeasible to use in high dimension (D is very high)

or with exceedingly high order polynomials (O is very high) due to the exponential rate at

which the number of polynomials increases with respect to D and O. In terms of the basis length

K = |J |, the number of terms for the fully-expressive mapping is
(D+O

D

)
. Combined with the

number of optimization variables required to solve the ADMM formulation, the fully-expressive

mapping caused out-of-memory errors for dimensions as low as D = 10 to 15, depending on the

size of N, drastically limiting our ability to apply the framework to realistically-sized problems.

To the end of easing computation in this manner, we refer to [49], where two less

expressive, but more computationally feasible, map structures were discussed. In this section,

we will reproduce the discussion of these two other parameterization, manifesting in two

different multi-index sets that can be used alternatively to J .

The first alternative to the fully-expressive map is the Knothe-Rosenblatt (KR) map

[10], which our group also previously used within the context of generating transport maps for

optimal message point feedback communication [48]. For the KR map, each dth component

of the output is only a function of the first d components of the input, resulting in a lower-

triangular mapping, and thus the mapping has the following structure:

S(xi) =



S1(x1
i )

S2(x1
i ,x

2
i )

...

SD(x1
i ,x

2
i , . . . ,x

D
i )


(3.33)

Both the KR and fully-expressive mapping described before perform the transport from one den-

sity to another, but with different geometric transformations. An example of these differences

can be found in Figures 3 and 4 of [48].

A KR arrangement gives rise to the following modified multi-index set (note that the

multi-index set is now sub-scripted according to the dimension of the data, as membership in
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the set is dependent on the data component):

J KR
d =

{
j ∈ ND :

D

∑
i=1

ji ≤ O∧ ji = 0,∀i < d
}
, d = 1, . . . ,D (3.34)

However, even the full KR mapping results in
(D+O

D

)
−D basis terms, and so the size

complexity of the parameterization can indeed still be a problem.

An even less expressive parameterization still is a KR mapping that ignores all multi-

variate polynomials that are a function of more than one data component of the input, resulting

in the following multi-index set:

J KRSV
d =

{
j ∈ ND :

D

∑
i=1

ji ≤ O∧ ji jl = 0,∀i 6= l∧ ji = 0,∀i > d
}
, d = 1, . . . ,D (3.35)

We will refer to this parameterization as the “Single Variable” Knothe-Rosenblatt

mapping, which itself only results DO+1 total basis terms, making it by far the most computa-

tionally tractable, albeit the least effective function approximation. That being said, however,

we will be presenting several applications in Chapter 5 that do in fact take advantage of the

Single Variable KR mapping, and still manage to achieve relatively good performance at the

corresponding machine learning task.

3.3 A Knothe-Rosenblatt Optimal Transportation Problem

An especially useful property of the KR parameterization, applicable to both the full

KR and Single Variable mappings, is the following identity for the Jacobian of the map:

logdet(JS(Xi)) =
D

∑
d=1

log∂dSd(Xi) (3.36)

where ∂dSd(Xi) represents the partial derivative of the dth component of the mapping
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with respect to the dth component of the data, evaluated at the point Xi. Furthermore, the

positive-semidefiniteness of the Jacobian can equivalently be enforced for a lower-triangular

mapping by ensuring the following:

∂dSd > 0, 1≤ d ≤ D (3.37)

We are then in a position to write a Knothe-Rosenblatt special-case version of (3.4).

To this end, we first introduce a few new variables to assist with the notation (as well as the

imminent conversion of the objective function to an ADMM problem):

• Φd
i represents the partial derivative of Φi taken with respect to the dth component of the

input data. Therefore, B̃Φd
i = ∂dS(Xi) ∈ RD, and ∂dSd(Xi) is simply the dth component

of B̃Φd
i .

• 1d represents a one-hot vector of length D with the one in the dth position

• Y d
i , B̃Φd

i

Using this new notation, we can fully express the Knothe-Rosenblatt special-case of

(3.4) as:

min
B̃i

1
N

N

∑
i=1

[− logv(B̃iΦ(Xi))−
D

∑
d=1

logY d
i 1d]

s.t. Y d
i 1d > 0, i = 1, . . . ,N, d = 1, . . . ,D

B̃Φ
d
i = Y d

i

B̃i = B, i = 1, . . . ,N (3.38)

One very key advantage here to note relative to the original fully-expressive mapping

formulation is that the positive-semidefiniteness constraints has been replaced by positive scalar

33



constraints instead, which are computationally much easier to handle. Indeed, as we continue

with the ADMM derivation, we will see that these scalar constraints end up effectively replacing

the Eigenvalue decomposition of (3.27) with a scalar quadratic equation evaluation instead,

leading to much quicker computation. Furthermore, as a prelude to upcoming sections, it is

also worth mentioning at this point that this constraint modification also makes it much easier

to implement the ADMM formulation of this problem in CUDA, as Eigenvalue decompositions

in large quantities (for example, N-many of them, as the original formulation required) can still

be quite the computational bottleneck on GPUs.

3.3.1 Parallelized Knothe-Rosenblatt Optimal Transport

Now we will derive the parallelized, consensus ADMM version of (3.38). This process

will, in general, look very similar to that of Section 3.2. We begin by introducing two auxiliary

variables (in addition to Y d
i and Φd

i presented in the previous section) to assist with the

formulation:

• B̃Φi = pi : once again, this represents the mapping of a sample Xi through the mapping

parameterized by the optimization variable B̃

• Zd
i =Y d

i 1d : Zd
i represents the dth component of Y d

i . Therefore, Zd
i is a scalar value, while

Y d
i is a vector of length D. Note that there is somewhat of a notational inconsistency

between Y d
i and Zd

i ; in the former case, the superscript d denotes the fact that Y d
i is

the partial derivative of the mapping with respect to the dth component of the input

data, but in the latter case, the superscript d indicates that Zd
i is the dth component of

Y d
i . Although this may be notationally confusing, it does make further analysis a bit

simpler, as the superscript of d is consistently associated with optimization variables now

being potentially indexed by d in addition to by i. Furthermore, this is an echoing of the

notation used in our previous work as well [52].
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With all of these auxiliary variables in place, we rewrite (3.38) as:

min
B̃i,pi,Y d

i ,Z
d
i ,B

1
N

N

∑
i=1
− logv(pi)+

ρ

2
||B̃i−B||22 +

ρ

2
||BΦi− pi||22

D

∑
d=1
− logZd

i +
ρ

2
(Y d

i 1d−Zd
i )

2 +
ρ

2
||BΦ

d
i −Y d

i ||22 (3.39)

s.t. BΦi = pi : γi (D×1)

B̃i−B = 0 : αi (D×K)

Y d
i 1d = Zd

i : β
d
i (1×1)

BΦ
d
i = Y d

i : λ
d
i (D×1)

Zd
i > 0 (3.40)

where we have denoted the corresponding dual variables and their dimension to the right of

each constraint. Once again, we emphasize that the superscript d in this formulation represents

the fact that in addition to having variables associated with each data sample indexed by i, some

variables are now unique to an index over dimension as well. For example, there are DN-many

Z variables that must be solved for in this formulation. We can now raise the constraints to

form the fully-penalized Lagrangian as:

Lρ(B̃i,Zd
i ,Y

d
i , pi,B;γi,αi,β

d
i ,λ

d
i )

=
1
N

N

∑
i=1
− logv(pi)+ γ

T
i (pi−BΦi)+ tr(αT

i (B̃i−B))

+
ρ

2
||B̃i−B||22 +

ρ

2
||BΦi− pi||22

+
D

∑
d=1
− logZd

i +β
d
i (Z

d
i −Y d

i 1d)+λ
dT
i (Y d

i −BΦ
d
i )

+
ρ

2
(Y d

i 1d−Zd
i )

2 +
ρ

2
||BΦ

d
i −Y d

i ||22 (3.41)
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Similar to before, the final ADMM update equations for each variable are closed-form, with the

exception with the optimization over pi. We will echo Section 3.2 and begin by showing the

sequential order of update equations we use during the optimization process; note that in order

to not confuse the superscript d from ADMM iteration index, we will enclose the iteration

index k in parentheses for clarity:

B(k+1) = arg min
B

Lρ(B̃
(k)
i ,Zd(k)

i ,Y d(k)
i , p(k)i ,B;γ

(k)
i ,α

(k)
i ,β

d(k)
i ,λ

d(k)
i ) (3.42)

B̃(k+1)
i = arg min

B̃i

Lρ(B̃i,Z
d(k)
i ,Y d(k)

i , p(k)i ,B(k+1);γ
(k)
i ,α

(k)
i ,β

d(k)
i ,λ

d(k)
i ) (3.43)

Zd(k+1)
i = arg min

Zd
i

Lρ(B̃
(k+1)
i ,Zd

i ,Y
d(k)
i , p(k)i ,B(k+1);γ

(k)
i ,α

(k)
i ,β

d(k)
i ,λ

d(k)
i ) (3.44)

Y d(k+1)
i = arg min

Y d
i

Lρ(B̃
(k+1)
i ,Zd(k+1)

i ,Y d
i , p(k)i ,B(k+1);γ

(k)
i ,α

(k)
i ,β

d(k)
i ,λ

d(k)
i ) (3.45)

p(k+1)
i = arg min

pi

Lρ(B̃
(k+1)
i ,Zd(k+1)

i ,Y d(k+1)
i , pi,B(k+1);γ

(k)
i ,α

(k)
i ,β

d(k)
i ,λ

d(k)
i ) (3.46)

γ
(k+1)
i = γ

(k)
i +ρ(p(k+1)

i −B(k+1)
Φi) (3.47)

α
(k+1)
i = α

(k)
i +ρ(B̃(k+1)

i −B(k+1)) (3.48)

λ
d(k+1)
i = λ

d(k)
i +ρ(Y d(k+1)

i −B(k+1)
Φ

d
i ) (3.49)

β
d(k+1)
i = β

d(k)
i +ρ(Zd(k+1)

i −Y d(k+1)
i 1d) (3.50)

3.3.2 Knothe-Rosenblatt Closed-Form Updates and Results

As previously mentioned, we can now derive the closed-form solutions to all of the

optimization variable updates, with the exception of pi. In fact, the general form of the update

for pi remains the same as

arg min
pi

− logv(pi)+
ρ

2
||B(k+1)

Φi− pi||22 + γ
(k)T
i (pi−B(k+1)

Φi)
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In addition, the closed-form update for B̃i remains the same as well:

B̃(k+1)
i =− 1

ρ
α
(k)
i +B(k+1) (3.51)

As such, all that remains is to derive the closed-form updates for B, Y d
i , and Zd

i .

The cost function associated with B is given by

C(B) =
1
N

N

∑
i=1

ρ

2
||B̃(k)

i −B||22 +
ρ

2
||BΦi− p(k)i ||

2
2

+ γ
(k)T
i (p(k)i −BΦi)+ tr(α(k)T

i (B̃(k)
i −B))

+
D

∑
d=1

ρ

2
||BΦ

d
i −Y d(k)

i ||22 +λ
d(k)T
i (Y d(k)

i −BΦ
d
i ) (3.52)

Taking the first order derivative, setting to zero, and putting the equation in terms of B gives us:

B
[
ρ(I +

1
N

N

∑
i=1

ΦiΦ
T
i +

D

∑
d=1

Φ
d
i Φ

dT
i )
]

=
1
N

N

∑
i=1

ρB̃(k)
i +ρ p(k)i Φ

T
i + γ

(k)
i Φ

T
i +α

(k)T
i

+
D

∑
d=1

ρY d(k)
i Φ

dT
i +λ

d(k)
i Φ

dT
i (3.53)

And by letting

L = ρ(I +
1
N

N

∑
i=1

ΦiΦ
T
i +

D

∑
d=1

Φ
d
i Φ

dT
i ) (3.54)

and

M =
1
N

N

∑
i=1

ρB̃(k)
i +ρ p(k)i Φ

T
i + γ

(k)
i Φ

T
i +α

(k)T
i +

D

∑
d=1

ρY d(k)
i Φ

dT
i +λ

d(k)
i Φ

dT
i (3.55)
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we can once again express the final closed-form update of B as:

B(k+1) = M ·L−1 (3.56)

The loss function associated with Zd
i for a given i and given d is:

C(Zd
i ) =− logZd

i +
ρ

2
(Y d(k)

i 1d−Zd
i )

2 (3.57)

+β
d(k)
i (Zd

i −Y d(k)
i 1d) (3.58)

Relative to the original ADMM formulation, Zd
i is a scalar value for any given i and any given d.

Thus, taking the derivative and setting to zero, we get the following scalar quadratic expression:

ρZd2
i +(β

d(k)
i −ρY d(k)

i 1d)Zd
i −1 = 0 (3.59)

As we would like to enforce the constraint that Zd(k+1)
i be greater than 0, we set the closed-form

solution to the positive root of (3.59):

Zd(k+1)
i =

ρY d(k)
i 1d−β

d(k)
i +

√
(β

d(k)
i −ρY d(k)

i 1d)2 +4ρ

2ρ
(3.60)

Finally, the loss function associated with Y d
i is:

C(Y d
i ) =

ρ

2
(Y d

i 1d−Zd(k+1)
i )2 +

ρ

2
||B(k+1)

Φ
d
i −Y d

i ||22

+β
d(k)
i (Zd(k+1)

i −Y d
i 1d)+λ

d(k)T
i (Y d

i −B(k+1)
Φ

d
i ) (3.61)

Taking the derivative, setting to 0, and putting in terms of Y d
i , we arrive at the following
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closed-form update for Y d
i :

Y d(k+1)
i = (ρZd(k+1)

i 1T
d +ρB(k+1)

Φ
d
i +β

d(k)
i 1T

d −λ
d(k)T
i ) · (ρ1d1T

d +ρI)−1 (3.62)

Using this formulation, as well as these closed-form updates, Figure 3.1 shows the resulting

behavior of a mapping designed to push a synthetic 2-dimensional bimodal distribution to a

standard Gaussian distribution using the full Knothe-Rosenblatt parameterization. For a map

pushing to a Gaussian with mean µ and covariance Σ, the pi update does admit a closed-form

solution, making it a very efficient solve:

pk+1
i = (ρBk+1

Φi− γ
k+1
i +Σ

−1
µ) · (Σ−1 +ρI)−1 (3.63)

As U was a synthetic distribution in this case, we readily drew “training” samples from U to

construct the mapping using our computational framework, which was constructed using a

Full Knothe-Rosenblatt parameterization of order 8. We then drew a new batch of “testing”

samples from U to evaluate the quality of the computed map. The figure depicts the transport

of these testing samples from the perspective of a Kernel Density Estimate of U and V using

the non-transported/transported samples, respectively (top row), and from the perspective of

the non-transported/transported samples themselves (bottom row). The key thing to notice

that while we do not use a fully-expressive mapping, the performance of the map is still quite

impressive in terms of transforming samples to the desired V distribution.

For comparison, Figure 3.2 is a similar depiction of the behavior of a Single Variable

Knothe-Rosenblatt, order 8 mapping designed to perform the same push from U to V , using the

same samples from U to train/test the mapping as was used for the first figure. When comparing

the two figures, the loss in transport quality indeed becomes obvious as we move from the

full Knothe-Rosenblatt mapping to the Single Variable version. This tradeoff between model

complexity and map performance is a very important consideration for any application of this
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Figure 3.1. An example mapping computed to push a 2-dimensional bimodal distribution to a
standard Gaussian distribution. The mapping is depicted from both the perspective of a Kernel
Density Estimate of U and V (top), as well as from the perspective of the samples themselves
(bottom).

framework, and is highly dependent on use-case constraints, and availability of computational

hardware. However, while the Single Variable Knothe-Rosenblatt mapping has a significantly

less expressive basis than the Full Knothe-Rosenblatt mapping, it still has very much acceptable

performance in many cases, and should not necessarily be ignored as an option for any practical

application.

And finally, Figure 3.3 shows a “stress-test” we performed using our full Knothe-

Rosenblatt mappings. The purpose of this example is to investigate how the Knothe-Rosenblatt

mapping performs in situations where U has highly irregular structure, and even borderline

discontinuous density. First, we randomly selected images from the MNIST dataset (one per

digit), and treated the greyscale intensities of each image as representative of a probability

distribution. Using the greyscale pixel intensities for each image, we then drew samples across

each image in 2-dimensional space, and added a small amount of Gaussian noise to each draw
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Figure 3.2. An example mapping computed to push a 2-dimensional bimodal distribution to a
standard Gaussian distribution. Here, we notice a slight loss in the structure of V as a result of
the decreased expressiveness of the parameterization

to help smooth out the samples (not adding the Gaussian noise essentially amounts to drawing

from a discrete probability mass function as the pixels themselves are discrete bins, which is

fully incompatible with our framework in a theoretical sense). This methodology of turning

“images into samples” is not that out of the ordinary in the field of image processing with

optimal transport maps, and is often used to investigate transport between 2 different images,

so it will serve as an interesting stress test here for our algorithm.

Figure 3.3 is divided into 9 cells, one for each handwritten digit. The initial drawing of

samples resulted in the top left and bottom left images in each cell showing samples distributed

in the shape of each digit (bottom left of each cell), as well as a Kernel Density Estimate of

these samples (top left of each cell). We then computed a Knothe-Rosenblatt map of order

8 to push each of these MNIST-digit distributions to a standard Gaussian, represented by the

top right and bottom right images in each cell in the figure. While the pushes are seemingly

headed in the right direction, there is clearly some degradation in the performance of the maps
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Figure 3.3. 9 examples of pushing a distribution represented by each of the MNIST handwritten
digits in 2-dimensional space, to a 2-dimensional standard Gaussian distribution

when U is highly irregular. The push-to densities for most of these trials ended up having a

mean of 0 and an essentially identity covariance, as desired. However, the overall structure of

each V still falls somewhat short of the perfect symmetry of a standard Gaussian. Nevertheless,

these transports did perform reasonably well, given the shape of U , especially in cases where

U looked particularly out of the ordinary, such as the digit 3 or 5. In addition, because the

original greyscale images are perfectly white text overlaid on perfectly black backgrounds, even

adding the small amount of Gaussian noise to the initial sample draws may not be enough to

circumvent some of the discontinuities at the border between where the digit was written on the

black background, and the background itself. This may explain some of the discontinuous-like

structure in V , such as where there are gaps of empty space in V (such as the the north-side of

the push-to density for the digit 4, or the center of the push-to density for the digit 6), when it’s

rather supposed to be a perfectly smooth Gaussian distribution.
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3.4 Sequential Mapping and Wasserstein Regularization

In this section, we introduce a scheme for using many individually computed maps

in sequential composition to achieve an overall effect of a single mapping from U to V . By

using a sequence of maps to transform U to V instead of a single map, one can theoretically

rely on models of lower complexity to represent each map in the sequence, as although each

map is, on its own, “weak” in its modeling complexity and ability to induce large changes

in the distribution space, the combined action of many such maps together can potentially

successfully transform samples as desired. This is especially attractive for model structures

that increase exponentially in complexity with problem size, such as with the fully-expressive

polynomial map described in previous sections. However, even in the case of the Single

Variable Knothe-Rosenblatt maps where K = DO+1, the length of the basis can still get quite

high when in particularly high dimension, or when using extremely high order polynomials.

Moving forward, we first take a brief look at a non-equilibrium thermodynamics

interpretation of this methodology to further justify the use of such a strategy. We believe the

discussion pertaining to the physics of the problem is a very intriguing concept to think about

in terms of linking the worlds of thermodynamics with optimal transport, and so we try to

expand on that relationship in the following section. Subsequently, we then derive a slightly

different ADMM problem to implement it using the well-studied Wasserstein distance as a

compositional “regularization term” that will ultimately allow us to use lower-complexity maps

in sequence to approximate a total map that achieves a more powerful transformation from U

to V overall. The use of the word “regularization” will become more clear as our discussion

continues.
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3.4.1 Non-Equilibrium Thermodynamics and Sequential Evolution of
Distributions

One approach to interpreting sequential composition of maps and justify its usage is to

borrow ideas from statistical physics. Assume we would like to build a composition of maps in

the following way:

S(x) = SM ◦SM−1 ◦ . . .S2 ◦S1(x), x∼U (3.64)

s.t. S#U =V (3.65)

where in this notation, the subscript of a map Sm represents the position of the map in the

sequence.

Here, the “push-to” density v can be interpreted as an equilibrium density of particles

in a system, which we can term ρ∞, and every mth map in the sequence can be considered

one “step” of evolution of a distribution that has yet to reach equilibrium, starting with an

out-of-equilibrium density at m = 0 of u. As such, for this section, we can consider the push-

from density u as the non-equilibrium density at time-step 0, termed ρ0. It is worth noting

here that the ρ in this section is not the same as the ρ used in previous sections to denote the

ADMM penalty parameter. But we use ρ here to represent densities to stay consistent with the

notation of Jordan, Kinderlehrer and Otto’s work in [38], where much of this discussion draws

inspiration from.

Since ρ∞ is an equilibrium density, it can be written as a Gibbs distribution (with

temperature equal to 1 for simplicity): v(x) = ρ∞(x) = Z−1 exp(−Ψ(x)). For example, if V is

a standard Gaussian, then Ψ(x) = 1
2x2. Assuming the particles obey the Langevin equation, it

is well known that the evolution of the particle density as a function of time, denoted ρt : t ≥ 0,

obeys the Fokker-Planck equation. It was shown in [38] that the trajectory of (ρt : t ≥ 0) can
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be interpreted from variational principles. Specifically :

Theorem 3.1 ([38] Theorem 5.1) Define ρ0 = u, and ρ∞ = v, and assume that D(ρ0||ρ∞)<∞.

For any h > 0, consider the following minimization problem:

F1(ρ),
1
2

W2(ρk−1,ρ)+hD(ρ||ρ∞) (3.66)

ρk , arg min
ρ∈P(W)

F1(ρ) (3.67)

where h serves as a hyperparameter. As h ↓ 0, the piecewise constant interpolation which

equals ρk for t ∈ [kh,(k+1)h] converges weakly in L1(RD) to (ρt : t ≥ 0), the solution to the

Fokker-Planck equation.

In the event that v is log-concave, this also has implications for the exponential conver-

gence to equilibrium with this statistical physics perspective:

Theorem 3.2 (Bakry & Émery [6]) If v is uniform log-concave, namely:

∇
2
Ψ(x)� λ I

for some λ > 0 with I the D×D identity matrix, then:

D(ρt ||ρ∞)≤ e−2λ tD(ρ0||ρ∞)

We now note that for h > 0, 3.66 encodes a sequence (ρm : m≥ 0) of densities which

evolve towards ρ∞ = v. As such, from Theorem 1.1, there exists an S1 ∈ D+ for which

S1 #ρ0 = ρ1, and more generally, for any m≥ 0, there exists Sm ∈D+ for which Sm #ρm−1 = ρm.

As 3.66 operates on the evolution of the probability densities themselves, our goal now is to

explicitly recast the theoretical result from 3.66 in terms of our optimal transport maps Sm

instead. With that, we have the following theorem and proof:
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Theorem 3.3 (Sequence of Maps) Define F2 : D+→ R as:

F2(S),
1
2
Eρm−1 [||X−S(X)||2]+hD(ρm−1||ũ(·;S))

Sk , arg min
S∈D+

F2(S) (3.68)

Then F1(ρk) = F2(Sk) and Sk #ρm−1 = ρm

Proof We first recall from Section 2.1 that ũ(·;S) represents the fact that a distribution ũ is

induced by a candidate mapping S, and a given push-to distribution v, which in this case is ρ∞.

Combined with the invariance of relative entropy under an invertible transformation, for a map

S ∈D+, the following are equivalent:

D(ρm−1||ũ(·;S)) = D(ρm−1||S−1 #ρ∞) = D(S#ρm−1||ρ∞) (3.69)

As such, we can also define the following F3:

F3(S),
1
2
Eρm−1[||X−S(X)||2]+hD(S#ρm−1||ρ∞) (3.70)

and furthermore, F3(S) = F2(S).

From Corollary 1.1, W2(ρm−1,S#ρm−1)≤ Eρm−1[(X−S(X))2] for S ∈D+. Also, since

the relative entropy terms of F3 and F1 are equal, it follows that F3(S)≥F1(S#ρm−1) for S∈D+.

And finally, recalling that Corollary 1.1 tells us that Sm ∈D+ such that Sm #ρm−1 = ρm exists,

we can conclude that

Eρm−1[||X−Sm(X)||2] =W2(ρm−1,ρm) (3.71)

and so F3(Sk) = F2(Sk) = F1(ρk). �

As a result, we can now show how a composition of maps underlies how a sample from
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U = ρ0 can give rise to a sample from ρm:

ρm = Sm #ρm−1 = Sm ◦Sm−1 #ρm−2 = Sm ◦ · · · ◦S1 #ρ0 (3.72)

Moreover, since as h ↓ 0, Sm starts to approach the identity map and ρm ' ρm−1. Thus for

small h > 0, each Sm should be estimated with reasonable accuracy using lower-order map

parameterizations. That is, S can be described as the composition of M maps as:

S(x) = SM ◦ . . .◦S2 ◦S1(x) (3.73)

where x ∼U , such that each Sm is of relative low-order in the polynomial chaos expansion

(assuming we’re using polynomial representations of the map; in a more general sense, a better

phrasing might be that the sequential maps can be “lower-complexity” by this argument).

Note that (3.68) as written above involves the expectation with respect to ρm−1. Since

our scheme operates sequentially, we have already estimated S1,S2, . . . ,Sm−1, and generate

approximate i.i.d samples from ρm−1 by first generating Xi ∼ ρ0 = u, i = 1, . . . ,N, and con-

structing

Zi = Sm−1 ◦ · · · ◦S1(Xi) (3.74)

Recalling Equation (2.4) from our original KL-Divergence based optimization problem, and its

equivalence to Equation (2.8) in an optimization setting, we can finally arrive at the primary

formulation we will be working with in a sequential mapping setting. We can apply the

Wasserstein distance to the objective in exactly the same way as in Equation (3.66) to give us:

min
S∈D+

1
N

N

∑
i=1

[
θ ||Zi−S(Zi)||2− log ũ(Zi;S)

]
(3.75)

where the sum is approximating an expectation with respect to ρm−1 instead of (nec-

essarily) ρ0 = U , and θ = 1
2h can be thought of as an inverse “step-size” in the following
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way: if we are computing the mth map in a sequential chain, we can generate independent

samples from ρm−1 using (3.74), and solve problem (3.75) to find a map S∗m that pushes ρm−1

forward closer to ρ∞ =V . The extent to how “far” the S∗m manages to push ρm−1 towards ρ∞ is

dictated by the parameter θ , where as θ gets larger, S∗m begins to approach the identity map. As

θ ↓ 0, the problem can be interpreted as taking more aggressive steps to map ρm−1 to ρ∞, and

indeed, when θ = 0, we have exactly Equation (2.8) which intends to find a single mapping

to push from U to V ; as such, the advantage to having larger θ is it regularizes the extent of

the transport at each step, and so theoretically, lower complexity maps will suffice to perform

the individual, smaller, steps in the compositional transformation. Hence, as the number of

compositions M in (3.73) increases, ρM approaches ρ∞. Even moreover, when v is uniform

log-concave, then by Theorem 3.2, this greedy, sequential approach still guarantees exponential

convergence.

3.4.2 Putting it all together: Sequential Knothe-Rosenblatt Maps

To combine the analysis with our Knothe-Rosenblatt optimization problem, Equation

(3.38), we first recall that in the KR case:

min
S̃∈D+

D(U ||Ũ(·; S̃) (3.76)

= min
S̃inD+

EU [− log ũ(X ; S̃)] (3.77)

= min
S̃∈D+

EU [− logv(S̃(X))− logdetJS̃(X)] (3.78)

= min
S̃∈D+

EU [− logv(S̃(X))−
D

∑
d=1

log∂d S̃d(X)] (3.79)

≈ min
S̃∈D+

1
N

N

∑
i=1

[− logv(S̃(Xi))−
D

∑
d=1

log∂d S̃d(Xi))] (3.80)

where (3.76) is the original KL-Divergence based optimal transportation problem that

ultimately equates to both (3.77) and (3.78) as shown in Section 2.1 (just reproducing here for
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convenience), (3.79) follows from Equation (3.36) and the Knothe-Rosenblatt property of the

map, and (3.80) is a Monte Carlo approximation of the expectation.

Then, by combining with (3.75), we arrive at our 2-Wasserstein regularized Knothe-

Rosenblatt transport problem:

S∗ = arg min
S̃

1
N

N

∑
i=1

θ ||Xi− S̃(Xi)||22− logv(S̃(Xi))−
D

∑
d=1

log∂d S̃d(Xi) (3.81)

s.t. ∂d S̃d(Xi)> 0, d = 1,2, . . . ,D i = 1,2, . . . ,N

where DKR
+ is the set of all monotonic diffeomorphisms with the Knothe-Rosenblatt

property. Though each map must be calculated sequentially after the previous one (so as to

generate samples from ρm−1 at every sequence step), each map in the sequence can still be

computed using the distributed framework described in Section 3.3.1. In Figure 3.4, we show

an example of a sequential mapping in action, with intermediate steps in the sequence pictured

to emphasize the gradual nature of the push from U , a bimodal 2-dimensional distribution, to V ,

a standard Gaussian distribution. Each map in the sequence was a Full Knothe-Rosenblatt map

of order 8, with θ = 5. In this example, the first, tenth, twentieth, and thirtieth mappings in the

sequence are represented using both a Kernel Density Estimate of the transported samples at

that sequential mapping stage (top row), as well as using the transported samples themselves

(bottom row).

Note that this scheme is also compatible with the non-KR version of the formulation

from Section 3.2, with the appropriate reversion to the logdet term in the objective function.

But we specifically frame the problem from the perspective of the KR formulation first and

foremost, as this is what we actually used in the applications involving sequential mappings

that will be discussed in Chapter 5.

49



Figure 3.4. An example of a sequential mapping to push a bimodal distribution to a standard
Gaussian distribution. S1, S10, S20, and S30 are represented here, and as we move forward in
the sequence, we see the push gradually beginning to approach V .

3.4.3 Change to Closed-Form Updates

In truth, the one and only change to the closed-form updates for the KR-ADMM

framework is actually only to the update of the consensus variable, B. This manifests from

the fact that B is the only ADMM variable involved in the 2-Wasserstein term in the objective

function in (3.81), via S(Xi). Because of how simple this change is, and for the sake of

conciseness, we will simply only show two things in this subsection: we will show the fully-

penalized Lagrangian of the updated problem, followed by the updated closed-form solution

of B (i.e. omitting the more in-depth derivations we did for the original problem). We will

highlight the only changes made to the original framework in red in the following equations.
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The fully-penalized Lagrangian of the 2-Wasserstein regularized problem is:

Lρ,θ (B̃i,Zd
i ,Y

d
i , pi,B;γi,αi,β

d
i ,λ

d
i )

=
1
N

N

∑
i=1

θ ||BΦi−Xi||22− logv(pi)+ γ
T
i (pi−BΦi)+ tr(αT

i (B̃i−B))

+
ρ

2
||B̃i−B||22 +

ρ

2
||BΦi− pi||22

+
D

∑
d=1
− logZd

i +β
d
i (Z

d
i −Y d

i 1d)+λ
dT
i (Y d

i −BΦ
d
i )

+
ρ

2
(Y d

i 1d−Zd
i )

2 +
ρ

2
||BΦ

d
i −Y d

i ||22 (3.82)

where Xi, i = 1, . . . ,N are samples drawn from u = ρm−1. And the updated B update is:

B = M ·L−1

M ,
1
N

N

∑
i=1

ρB̃(k)
i +ρ p(k)i Φ

T
i +2θXiΦ

T
i + γ

(k)
i Φ

T
i +α

(k)T
i

+
D

∑
d=1

ρY d(k)
i Φ

dT
i +λ

d(k)
i Φ

dT
i

L, ρ

(
I +

1
N

N

∑
i=1

ΦiΦ
T
i +

2θ

ρ
ΦiΦ

T
i +

D

∑
d=1

Φ
d
i Φ

dT
i

)
(3.83)
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Chapter 4

ADMM Implementation Details

This chapter will go through some of the implementation details of the Knothe-

Rosenblatt-specific formulation from Section 3.3. Especially for applications in higher di-

mensions and with a larger number of input samples for computing the map, using the Single

Variable Knothe-Rosenblatt parameterization of the mapping is often the most feasible way

to keep problem complexity to tractable levels, both in terms of computation time, as well as

memory consumption. As a result of this observation, we will be focusing specifically on the

Knothe-Rosenblatt formulation in terms of our discussion on implementation details.

4.1 Using ADMM To Parallelize Over Threads

The ADMM framework allows for easy parallelization in the case of problems that

can be reformulated as a global consensus problem, such as what we’ve done in the previous

sections. If we consider the Knothe-Rosenblatt optimization problem, Equation (3.39), the

problem is very clearly separable across N, as every nth optimization variable is only dependent

on the nth-indexed version of every other variable, with the exception of the consensus variable

B, which is globally shared amongst all parallel problems.

This leads to the natural parallelization scheme depicted in Figure 4.1. Here, we begin

with a “distribute” phase where a master thread distributes the current value of B(k) to all N

threads for use in associated variable updates, with all variables initialized randomly at the
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beginning of the ADMM process. This is the one phase of the process that is not parallelized

via our ADMM formulation (i.e. we still take advantage of parallelizable operations as far as

running linear algebra/other mathematical operations on the GPU whenever we can, but the B

update has no parallelizability from the perspective of ADMM). Each nth thread then iterates

over the rest of their associated nth optimization variables, including their own version of the

mapping coefficients, B̃i. After the iteration of variable updates is over, we enter a “reduction”

phase, where the results from each thread are consolidated by the master thread to compute

B(k+1). In terms of computation time, the B-update is definitely the bottleneck, as it involves

what amounts to an ND-long loop of outer products in the Knothe-Rosenblatt case, at every

ADMM iteration, and cannot be parallelized with respect to any of the ADMM variables. Note

that in this figure, dotted boxes labeled d = 1 . . .D represent operations that must be performed

D times, for D-many variables. However, each of these D variables can be considered its own

ADMM variable, and thus can be updated sequentially as well.

However, upon closer examination of (3.53), (3.54) and (3.55), or (3.83) in the regular-

ized case, we see that L is actually a static component of the computation - that is, it does not

depend on any of the iterative ADMM variables at all. As such, given the initial input samples

Xi, i = 1, . . . ,N, we can pre-compute this component of the update before ADMM even begins

to save on computation time.

4.2 Polynomial Representation

As mentioned in Section 2.2, one can select which polynomial basis they would like to

use based on the structure of U [81, 67], in the sense that certain polynomials result in different

convergence rates of the approximation. For example, if U is a Gaussian distribution, it is

ideal to use the Hermite polynomials to parameterize the map. Similarly, if U is the Gamma

distribution, it is ideal to use the Laguerre polynomials [81].

However in practice, when U has arbitrary structure, the Hermite polynomials can
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Figure 4.1. A high level graphic of the ADMM process with respect to our optimal transporta-
tion framework. The key thing to note is that all ADMM variable updates can be parallelized
across N, and the only update that requires all other variables is the B-update.
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provably approximate any mapping, as long as K is large enough. Therefore, for all of the

applications we will discuss in Chapter 5, we do indeed use the Hermite polynomials as the

map parameterization.

In terms of implementation, the simplest way we’ve found to represent the index sets

J , J KR and J KRSV is by maintaining a simple D×K matrix of univariate indices, as this

leads to a very natural way to enforce the lower-triangular constraint for Knothe-Rosenblatt

maps. Here, we’ll give a few concrete examples for clarification in practical use-cases and

implementation.

In the case of the fully-expressive map, recall that the index set is:

J =
{

j ∈ ND :
D

∑
i=1

ji ≤ O
}

where O is the maximum allowed order of the polynomial basis. For example, when D = O = 3,

the resulting index set matrix will have the following form:

J =
[

0 1 2 3 0 0 0 1 1 2 0 0 0 1 1 2 0 0 1 0
0 0 0 0 1 2 3 1 2 1 0 1 2 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 3

]

where every kth column represents jk, one D-long multi-index for a single multivariate polyno-

mial basis term, φjk . In each kth column, each element represents the order of the univariate poly-

nomial in the tensor product associated with φjk . So when jk = [j1
k , j

2
k , j

3
k ], and xi = [x1

i ,x
2
i ,x

3
i ],

then φjk(xi) = ∏
D
d=1 ψjd

k
(xd

i ), where ψn is the nth univariate polynomial in the polynomial series

chosen (e.g. Hermite, Laguerre, etc.). We can then build each basis vector Φ(xi) for some input

vector xi by iterating over the columns of this matrix, and building [φj1(xi),φj2(xi), · · · ,φjK(xi)]

accordingly for use in our optimization problem.

In the event that we want to switch to a different map parameterization, all we need to
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do is change the members of this matrix. Recall the definition of J KR
d :

J KR
d =

{
j ∈ ND :

D

∑
i=1

ji ≤ O∧ ji = 0,∀i > d
}
,d = 1, . . . ,D

In this case, the size of the set Kd , |J KR
d | becomes dependent on the component of the

mapping. Revisiting our previous example with D = O = 3, we have the following 3 multi-

index sets:

J KR
1 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ j2 = j3 = 0}

=
[

0 1 2 3
0 0 0 0
0 0 0 0

]
J KR

2 =
{

j ∈ N3 :
3

∑
i=1

ji ≤ O∧ j3 = 0}

=
[

0 1 2 3 0 0 0 1 1 2
0 0 0 0 1 2 3 1 2 1
0 0 0 0 0 0 0 0 0 0

]
J KR

3 =
{

j ∈ N3 :
3

∑
i=1

ji ≤ O}

=
[

0 1 2 3 0 0 0 1 1 2 0 0 0 1 1 2 0 0 1 0
0 0 0 0 1 2 3 1 2 1 0 1 2 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 3

]
(4.1)

To implement a lower-triangular map, we can simply construct Φ according to the

full multi-index set ordering of J KR
D , and constraining the coefficient matrix B to have zeros

embedded with the following structure:

Definition 4.1 (Lower-Triangular Coefficient Matrix) . A coefficient matrix B ∈ RD×K cor-

responds to a lower-triangular, or Knothe-Rosenblatt, transport map if it can be expressed

as:

B =


wT

1 0 0 0 0 0 0

. . . wT
d . . . 0 0 0

. . . wT
D . . .

 (4.2)
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where each wd ∈ RKd

In other words, to create a lower-triangular mapping, we just ensure that every dth

row of the coefficient matrix B has, at most, Kd non-zero coefficients at the beginning of each

row. This makes sense as long as the multi-index matrix is constructed such that each J KR
d

constitutes the left D×Kd-sized submatrix of J KR
d+1, as depicted in (4.1); i.e. notice how the

columns of J KR
1 are also the first K1 = 4 columns of J KR

2 , and so on. This implies that the

first K1 members of Φ will only be a function of x1, the first K2 members of Φ will only be a

function of x1
i and x2

i , etc. The following matrix representation should make things more clear.

This is an expanded view of the mapping function BΦi = S(xi):



b1,1 b1,2 . . . b1,K1 . . . 0 0 0

b2,1 b2,2 . . . . . . b2,K2 . . . 0 0
...

bD,1 bD,2 . . . . . . . . . . . . . . . bD,KD


︸ ︷︷ ︸

B



Φ(x1
i )

Φ(x1
i ,x

2
i )

...

Φ(x1
i , . . . ,x

D
i )


︸ ︷︷ ︸

Φi

=



S1(x1
i )

S2(x1
i ,x

2
i )

...

SD(x1
i , . . .x

D
i )


(4.3)

To fulfill our KR assumption, we assume that Φi is a column vector of the polynomial bases
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evaluated at xi, ordered according to how many components of xi the bases are a function of.

I.e., if Kd = |J KR
d |, then Φ(x1

i ) are the first K1 basis functions that are only a function of x1,

Φ(x1
i ,x

2
i ) are the K2−K1 basis functions that are only a function of x1 and x2, and so on. As

such, as only the first Kd elements of every dth row of B are potentially non-zero, the map

should have the appropriate Knothe-Rosenblatt structure by construction.

In the case of the Single Variable Knothe-Rosenblatt map, the index set becomes the

following subset of J KR
d for all d:

J KRSV
d =

{
j ∈ ND :

D

∑
i=1

ji ≤ O∧ ji jl = 0,∀i 6= l∧ ji = 0,∀i > d
}
, d = 1, . . . ,D

Creating an index matrix that enforces this property requires simply removing all columns from

J KR
d that have more than one non-zero element in them. So for D = O = 3:

J KR
1 =

{
j ∈ N3 :

3

∑
i=1

ji ≤ O∧ j2 = j3 = 0∧ ji jl = 0,∀i 6= l}

=
[

0 1 2 3
0 0 0 0
0 0 0 0

]
J KR

2 =
{

j ∈ N3 :
3

∑
i=1

ji ≤ O∧ j3 = 0∧ ji jl = 0,∀i 6= l}

=
[

0 1 2 3 0 0 0
0 0 0 0 1 2 3
0 0 0 0 0 0 0

]
J KR

3 =
{

j ∈ N3 :
3

∑
i=1

ji ≤ O∧ ji jl = 0,∀i 6= l}

=
[

0 1 2 3 0 0 0 0 0 0
0 0 0 0 1 2 3 0 0 0
0 0 0 0 0 0 0 1 2 3

]
(4.4)

In terms of implementation, the 0-embedding strategy from Definition 4.1 still applies, as long

as the complete index set is constructed as J KRSV
D , and the number of non-zero coefficients in

each dth row is |J KRSV
d | instead.
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4.3 Inverting Knothe-Rosenblatt Maps

In this section, we will go into more detail about a means to invert a Knothe-Rosenblatt

mapping using this polynomial representation that was previously mentioned in [49] and [52].

Computing the inverse map becomes fairly straightforward given the above methodology of

representing B and Φi.

If we want to invert a sample S(xi), this defines a system of equations that can be solved

row-by-row for each component of the mapping S(xd
i ) in the form of a polynomial root-finding

problem for each row. or example, we first solve for x1
i , the solution of which we can call x1∗

i

by finding the (single variable) root of:

[
b11 b12 . . . b1(K1)

]Φ(x1
i )

= S(x1
i ) (4.5)

Subsequently, we can solve for x2∗
i plugging in x1∗

i into the second equation:

[
b21 b22 . . . . . . b2(K2)

]



Φ(x1∗
i )

Φ(x1∗
i ,x2

i )


= S(x2

i ) (4.6)

and so on. This is only possible because of the Knothe-Rosenblatt property, and the “layer-by-

layer” increasing chain of dependencies on components of xi as you iterate over the dimension

of the mapping. Ultimately, this results in D-many single variable root-finding problems per

sample to invert, and the order of the polynomial that must be solved for will be equal to the
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order of the polynomial chosen to represent the basis.

4.4 Running on GPUs

Our CUDA implementation of this framework allows us to run our algorithm on Nvidia

GPUs, and to take advantage of the very high parallelizability of these devices. The original

prototype implementation of our ADMM formulation was designed for a single CPU thread,

and Figure 4.2 compares the wall-clock performance in seconds between the single-CPU-thread

implementation of the ADMM problem (i.e. no parallelization, and all individual N-many

ADMM variables are updated sequentially) and the single-GPU implementation of the ADMM

problem. The figure compares 4 cases, of varying problem sizes (N) and varying dimension (d),

for the same toy problem used before of pushing a bimodal distribution to a standard Gaussian,

extrapolated to higher dimension, of course. For each case, full Knothe-Rosenblatt maps of

various polynomial orders ranging from 2 to 5 were compared (the absence of entries for certain

orders is due to lack of memory, once again emphasizing the exponential increase of basis terms

when using the full KR mapping), with computation time being determined by convergence

of the iterative change of the dual variables to a set threshold. The key thing to note in this

figure is the fact that the speedup associated with the parallelized GPU implementation is quite

dramatic in every single case, even for d = 10, which would very much be applicable to many

image processing applications.

However, we obviously wish to accommodate even higher-dimensional problems if

possible. To this end, there are two possible solutions:

1. Use the Single Variable Knothe-Rosenblatt mapping

2. Use more GPUs

Indeed, our GPU implementation is also designed to accommodate multiple GPUs running

on the same host, and with research support from Amazon Web Services, we were able to
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Figure 4.2. Comparison of wall-clock computation time in seconds for various problems using
the CPU implementation and GPU implementation on a single GPU

benchmark many larger problem sizes with respect to the Single Variable Knothe-Rosenblatt

mapping, and with respect to running multiple GPUs. Figure 4.3 shows the results of these

benchmark tests. We performed the same transport problem, from a bimodal distribution to

a standard Gaussian, for dimensions 5,10,20,50,100,150 and 200, with a constant number of

samples of N = 1000. Each of the maps in this figure was also a composition of 10 sequential

Single Variable Knothe-Rosenblatt maps of order 2, and θ = 3. Convergence was once again

determined by monitoring the change in dual variables. The orange curve labeled “1 GPU” was

obtained using a single Nvidia GTX 1080ti GPU, and the blue “AWS” curve corresponds to the

performance using an AWS instance equipped with 8 Nvidia Tesla V100 GPUs. The 1-GPU

curve terminates prematurely as the 1080ti ran out of memory for this specific setup around a

problem size of D = 230, whereas the 8-GPU can go well beyond that (the 784-dimensional

MNIST problem discussed in Section 5.3 uses this exact same AWS instance).

The trending of the curves shows that, as expected, as problem dimension increases,

61



a multi-GPU system will continue to maintain reasonable computation times, at least when

compared to the single-GPU system. Furthermore, even if the orange curve were extrapolated

further (beyond the memory limits of the 1080ti), the trending pattern of the two curves

indeed suggests that the discrepancy of the computation time as dimension grows larger would

only become more pronounced. In other words, the multi-GPU system seems to develop an

increasingly large speedup multiplier with respect to the single-GPU system as dimension

increases, as the blue curve is growing at a much smoother pace. It is worth noting that the

multi-GPU curve is still experiencing exponential growth, however. This makes sense, as we

are not only actually parallelizing the computation with respect to the number of samples,

which remains a static size of 1000, but we are also taking advantage of parallelized linear

algebra operations whenever we can, such as for all of the dot products and outer products

being performed in our closed-form ADMM solutions. All of those operations require more

parallel threads as problem size increases. As a result, the finite number of parallel threads the

GPUs can accommodate does saturate faster as dimension increases, thus resulting in CUDA

kernels having to queue up for execution after a certain problem size is reached.

But nevertheless, these results show a healthy way to scale our problems to relatively

high dimensions, with computation times that are very much reasonable for their associated

problem sizes. In terms of memory usage, while it may seem somewhat of a “brute-force”

solution, allowing scalability across GPU’s also provides a way to distribute samples and their

corresponding ADMM variables across multiple devices allowing for the algorithm to continue

to accommodate more memory-intensive problems as we add more devices to the host or

cluster, all by virtue of the ADMM formulation.
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Figure 4.3. Comparison of wall-clock computation times in seconds vs. dimension on a single
GPU system to an 8-GPU system on AWS
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Chapter 5

Applications

In this chapter, we will be taking a close look at some of the applications we have

applied our optimal transportation framework to. These applications are summarized as follows:

a multi-user brain-computer interface [73], a density estimation problem for the automated

classification of sleep stages using multivariate EEG data [16, 52], and a demonstration of our

ability to produce high-dimension maps via a generative model for MNIST handwritten digits

[52]. In addition, we will showcase preliminary findings for an application of our framework to

a Bayesian inference problem in the context of a preference-based deep reinforcement learning

framework, that, while not yet completed, has shown extremely promising results that very

much warrant additional research.

5.1 An Application to Posterior Matching and a Multi-
User Brain-Computer Interface

This section is primarly a reprint of much of the material from “An information and

control framework for optimizing user-compliant human computer interfaces” in the Proceed-

ings of the IEEE, Tantiongloc, Justin; Mesa, Diego A.; Ma, Rui; Kim, Sanggyun; Alzate,

Cristian H.; Camacho, Jaime J.; Manian Vidya; Coleman, Todd P., 2017, [73], with some

simplifications and conceptual omissions made to better suit the context of this dissertation. For

a complete version of the discussion as it pertains to team decision theory, and feedback-based
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communication over a noisy channel, the reader is highly encouraged to read [73] in its entirety,

as many of the theoretical aspects of the system are described in full within that work, but not

necessarily here.

Using the optimal transportation framework described above applied to R2, we in-

stantiate a novel, proof-of-concept brain-computer interface (BCI) where the goal is to allow

2 human users to specify a point on a geographic map to a computer learning agent using

only brain signals measured with electroenchephalography (EEG). It is worth noting that this

project was completed chronologically before the formulation of even the first ADMM problem

described in [51], and as such, used a purely serial, CPU-based implementation of our optimal

transportation problem.

The BCI we will be discussing in this section highlights two very important concepts

that lie at the heart of its design:

• By using optimal transport, we can efficiently structure the communication between the

human users and the computer system over the inherently noisy EEG communication

channel in order to maximize the rate of information communication

• We also adhere to design principles pertaining to human-computer interfaces that aim to

make the task for the users as conceptually simple as possible by abstracting away details

of the underlying system from the users whenever possible

5.1.1 Motor Imagery

We will be leveraging motor imagery as the signaling mechanism between the human

and computer agent in this project, as it is a particularly well-studied neurological phenomenon

that is provably easy to identify and classify using EEG [60, 61, 62]. Motor imagery refers to

an imagined movement of certain parts of the body that is not actually physically executed. In

the context of our BCI, we will use motor imagery to acquire a binary (0 or 1) signal from the

users by asking them to imagine moving either their left or right hand. It is well known that this
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type of motor imagery can be characterized by changes in EEG power within the Mu (8-12 Hz)

band between the left and right sides of the brain. Figure 5.1 illustrates the spatially-distributed

nature of these power-changes in more detail: the top image depicts a spatial heatmap of how

motor imagery leads to spatial changes in Mu frequency power. When the subject imagines a

left-side movement, the Mu band experiences an increase in spectral power on the left side of

the brain. Similarly, upon right-side imagined movement, the Mu power on the right side of the

brain increases. The bottom image is an example of an actual motor imagery task carried out in

a laboratory setting, where the subject is attempting to use motor imagery to mentally move

the ball on the screen either to the left or right. For this application, the exact details of how

classification was performed on the raw EEG signals can be found in previous work from our

group in [50].

5.1.2 Human Computer Interfaces and Optimizing Communication
Efficiency

Here we will discuss the information model that we will be structuring our BCI on,

and how it lends itself to maximizing the efficiency of our communication channel. We begin

the discussion by first assuming a single-user BCI for simplicity. In the most general sense, a

human-computer interface is a system that facilitates signaling between human and computer

agents in some meaningful way. The computer can relay sensory information to the user about

what it interpreted so that subsequent signaling can be corrective in nature. This causal feedback

loop allows the human and computer to cooperate via an iterative process, as shown in Figure

5.2.

In our case, we will focus on the specific scenario where the human agent, modeled

as an “encoder”, is modeled as possessing some form of abstract information or knowledge,

which can be represented as W ∈W, that they would like to reliably convey to the computer

agent, modeled as a “decoder”, over a noisy channel with feedback. This abstract piece of

knowledge is sometimes referred to as the ”message point”. Also note that the message point
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Figure 5.1. Top Image: A heatmap representing changes in spectral power across the EEG
array as motor imagery is performed on either side. Bottom Image: A laboratory example of a
real-time motor imagery task.

Figure 5.2. The basic encoder/decoder-based communication framework
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does indeed lie in the space over which our optimal transportation map will operate, and thus it

remains consistent with the notation from earlier in Section 2.1. Furthermore, at every time

step t, the human agent iteratively generates input signals to the noisy channel, Xt , as a function

of the underlying message point, and feedback of all the information the computer has causally

seen so far, which we denote as Y t−1 (the superscript denotes “all Y up until time t−1”). Each

output of the noisy channel is governed by a probabilistic model, P(Y |X), and gives rise to

the state variable, Zt , updated by the computer agent. This state variable can manifest itself

in a variety of ways depending on the application, e.g. Zt could represent the actuation of a

signal in the environment or on an external device, or it may represent a continuously updated

probability distribution, etc. Thus, we can say that the encoder is governed by a collection of

time-varying encoding functions e = {et : W×Yt−1→ X}T
t=1, and the decoder governed by a

collection of time-varying decoding functions, d = {dt : Yt → Z}T
t=1, whereby each channel

input Xt and decoder state Zt is given by:

Xt = et(W,Y t−1) (5.1)

Zt = dt(Y t) (5.2)

5.1.3 Connection To Team Decision Theory

The human and computer are cooperating to achieve a common goal, and this can be

manifested from the lens of team decision theory as a joint maximization of a reward function,

subject to constraints on the information structure:

(e∗,d∗) = arg max
e,d

T

∑
t=1

E
[
rt(W,X t ,Zt)

]
(5.3)

s.t. Xt = et(W,Y t−1) (5.4)

Zt = dt(Y t) (5.5)
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These classes of decentralized control problems fall into the category of “non-classical infor-

mation structure” problems that are in general notoriously “difficult” to solve [34]. However,

for certain types of reward functions, information-theoretic convex relaxations can be tight and

solve the original problem [44].

For certain subclasses of such team decision problems, it is known that there exist

optimal signaling schemes for which the encoder and decoder strategies do not vary with time,

and obey the following minimal structure [30, 77, 7]:

xt = ē(w,zt−1) (5.6)

zt = d̄(zt−1,yt) (5.7)

The important thing to note here is that the encoder strategy ē : W×Z→ X still represents the

strategy embodying the human agent, and similarly, the decoder strategy d̄ : Z×Y→ Z still

represents the strategy embodying the computer agent; the distinction now is that both ē and d̄

are time-invariant, yet performance of this communication framework is still optimal from an

information-theoretic perspective.

5.1.4 Posterior Distribution as a State Variable

For this application, we will primarily focus on the class of reward functions pertaining

to maximizing how much uncertainty about W is being reduced on average with every use

of the communication channel. More specifically, we consider maximizing the mutual infor-

mation between W and the observations Y T , which is equivalent to minimizing the amount

of uncertainty of W , given Y T (e.g. minimizing posterior entropy) [75, 37]. As such, we now

consider Z= P(W) to be the space of probability distributions over W, and Zt can be treated as

the posterior distribution of W given Y t . We can then define the sequential information gain

reward function as [30]:

69



rt(W,X t ,Zt) = log
dZt

dZt−1
(W ) (5.8)

Because of the sequential nature of Bayes’ rule, if we let πt = Zt be the posterior

distribution over W at time t, we can define a decoder strategy consistent with the structure of

(5.7):

πt = d̄(πt−1,Yt) (5.9)

d̄∗(πt−1,Yt)(dw),
πt−1(dw)P(Yt |ē(w,πt−1))

β
(5.10)

where β is the standard Bayesian normalization constant. As such, for any encoder strategy in

this Bayesian scenario, it follows that:

T

∑
t=1

E
[
rt(W,X t ,Zt)

]
=

T

∑
t=1

I(W ;Yt |Y t−1) = I(W ;Y T ) (5.11)

In terms of maximizing the mutual information between W and Y t for any time step t, it

is probably the easiest approach to reason about how this can be done in the context of a specific

noisy channel model. In our case, we first look at the well-known Binary Symmetric Channel

(BSC) studied by Horstein [35]. The capacity of a noisy channel defined by the distribution

P(Y |X) is given by the maximum mutual information between X and Y over all possible input

probability distributions P(X) [19]:

C = max
P(X)

I(X ;Y ) (5.12)

and we designate the maximizer of this quantity as P∗(X). For many commonly-used

channels, P∗(X) is well known. For a BSC in particular, the mutual information maximizing

input distribution is the uniform distribution over the input alphabet into the noisy channel, i.e.

P(0) = P(1) = 0.5. We will discuss the BSC model in more detail as we go further.
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The mutual information of our model is upper-bounded by the capacity:

1
T

I(W ;Y T )≤C (5.13)

where equality holds if and only if [19, 70]:

• Xt is statistically independent of Y t−1

• Xt ∼ P∗(X)

Therefore, all we need to do is ensure that both of these properties holds, and we can

guarantee that we are achieving communication capacity. Within this context, maximizing

mutual information is a necessary condition to guarantee that the posterior πt−1 converges to a

point mass at W as rapidly as possible; in many situations, given other technical conditions, it

is also sufficient [70]. The original posterior matching scheme in [70], as well as our group’s

generalization of the scheme to arbitrary dimension [48] which this section is based on, attains

the upper bound of (5.13) with equality.

5.1.5 Human Friendly Feedback

As we have modeled the human user as an encoder within this framework, our expecta-

tion at this point is that the human must present an encoder strategy of the form Xt = e(W,Zt−1);

in other words, the human must decide on the next noisy channel input based on knowledge of

the message point in conjunction with knowledge of the decoder’s posterior distribution on W .

In practice, this is extremely inconvenient for the human user; how would a human being keep

track of a posterior distribution, or otherwise know how to reason about it in real time in order

to come up with an encoding strategy to determine Xt? This is quite a tall order indeed, and so

we should decide on a way to make this process more tractable from a human perspective.

In Figure 5.3, we have made a few modifications to the encoder/decoder scheme. Rather

than imagine the human as the entire encoder module, we partition the responsibilities of the
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Figure 5.3. A simplified communication model based on the discussion in [73].

encoder between the human and computer agent (the blue solid box represents the human, and

the 2 solid green boxes represent computer agent tasks). Here, instead of directly giving the

human the entirety of the previous noisy channel outputs and/or the entire posterior Zt , we

choose to assign the computer agent the task of condensing the knowledge of Zt to a simpler

piece of information, Qt ∈W, which we call the query point. The dotted purple box represents

the true encoder module, given the traditional communication scheme, and the dotted orange

box the traditional decoder; these two boxes have been added to the figure to emphasize the

fact that the traditional communication model we have discussed up until this point is still a

valid modeling framework for our system, and we have just re-allocated the more fine-grained

responsibilities between the human and computer agent. In this model, the human may now

just use the combination of W and Qt to come up with their encoding strategy, which we can

then design to be much simpler compared to forcing them to work with the entire posterior.

Continuing on with our BSC example, we will now make the above discussion more

concrete by providing a specific application of the posterior matching scheme in the human-
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computer interface setting. Consider a BSC model with crossover probability ε:

P(Y = y|X = x) =


1− ε, if y = x

ε, if y 6= x
(5.14)

and W = [0,1], and X = Y = {0,1}. The human user in this situation would update

their channel input Xt at every time step t given access to the message point, W , and the query

point, Qt . As Xt is, by definition, a function of W , the noisy channel model also serves as the

likelihood model in our Bayesian update of the posterior πt .

To ensure that Xt ∼ P∗(X) = [0.5,0.5]T , we can simply define a feedback rule for the

computer agent that dictates a query point that tries to guarantee an equal probability of Xt

being a 0 or a 1. The query point is an embodiment of the information gathered thus far, and

generated by the computer agent as a form of feedback for the human to respond to. In order

to guarantee that Xt ∼ P∗(X), we can designate the following very simple query and response

rule for the computer agent and human, respectively:

Qt = median(πt−1) (5.15)

Xt =


0, W ≤ Qt

1, otherwise
(5.16)

In this case, at every time step the computer agent need only compute the posterior

distribution and relay the median of the distribution to the human agent as Qt . From the

perspective of the human, their task becomes almost trivially simple: given Qt , they simply

signal whether the message point W is greater than or less than Qt . This simple comparison

yields the uniform input distribution we desire as well, as W has equal probability of lying on

either side of Qt from the perspective of the posterior. Perhaps the most important interpretation
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Figure 5.4. A 2-dimensional version of the BSC BCI described in Section 5.1.2. At every time
step, the query point Qt is updated based on user responses, and as such, so are the dividing
lines. The large numbers simply represent indices for identifying each quadrant.

of Qt is this: it is the most informative question the computer can ask the human to the end of

learning what W actually is in the case of a BSC. Another more computer science-oriented way

to potentially interpret this scheme is as a binary search on the [0,1] line in the presence of

noise, and the probabilistic model must be integrated into the problem to compensate for the

effect of the noise of the communication channel.

5.1.6 Posterior Matching in 2 Dimensions with Optimal Tranportation

In this section, we will discuss how to generalize the previous scheme to a 2-dimensional

demonstration application: a multi-user BCI whose aim is to signal a message point in R2

shared by the users to a computer agent using only binary motor imagery-based EEG signals.

Consider the user interface in Figure 5.4. Here, we have overlaid 2 intersecting lines dividing a

map of the United States into 4 partitioned regions, and we define the query point Qt as the

intersection of these two lines. Therefore, the query point changes at every iteration, as do the

dividing lines. Assuming the human users have a shared location of interest in mind, W , that

they would like to signal to the computer, the goal of the users is to interact with the computer

agent in some way in order to ultimately move the query point precisely to the location of

interest using their binary EEG signals.

Given a query point Qt in this context, we then denote the 4 quadrants that we have

divided the query space into as Γk,t for k = 0 . . .3, and denote the north quadrant as index 0,
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Figure 5.5. An example of how we can split the problem into two sub-problems, and hand 2
users 1 sub-problem each. Based on the combination of the responses from the two users, we
can infer which quadrant in the overall problem W lies in based on the values in the table.

the east quadrant as index 1, the west quadrant as index 2, and the south quadrant as index 3.

This application is an extension of the BSC example in the sense that it can still be seen

as a symmetric channel, but in higher dimension. With the partition notation above in mind,

the goal of the users is then simply to signal which quadrant W lies in at every iteration, which

is in a sense an analogous task to the “higher or lower than 0.5” signal from the BSC example,

except in 2 dimensions. In practice, we can then split the task in half as depicted in Figure 5.5,

one user receiving the image of the positive sloping line, and one receiving the image of the

negative sloping line. The task for each user then simply becomes to designate whether the

message point lies to the left (Y =0) or right (Y =1) of the dividing line they are shown. Given

the response from both users, we can then infer which quadrant within the overall problem the

message point lies in, based on the table in the figure.

In the case of arbitrary dimension symmetric channels, the mutual information maxi-

mizing input distribution into the noisy channel is still the uniform distribution, and as such, we

must once again guarantee that the probability of all user responses into the noisy channel are

equal in order to achieve capacity. In general, this can be difficult to do, as it is not immediately

clear as to how to divide the query space into 4 quadrants of equal probability mass from

the perspective of the posterior distribution πt−1, which is now a probability measure in 2
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dimensions as well. Indeed, we can use optimal transportation to assist us here.

Consider a scenario where we build an optimal transportation map St that pushes from

πt−1 to the prior P(W ), which we assume to be uniform. In other words, from our previous

discussion on optimal transport we will be assigning U = πt−1, and V = P(W ) = uniform. One

way we can interpret the action of this map is depicted in Figure 5.6. At the end of timestep

t, we compute the posterior distribution πt−1 based on the observation of Yt−1. The red dots

in the figure designate the query point that would achieve a partition of the mapping into 4

quadrants of equal mass. Our map, by construction, “warps” space from the updated posterior

space back to a uniform space. In this situation, it is clear which query point in this uniform,

newly-warped space divides the space into 4 quadrants of equal probability mass: it is simply

the center of the image.

Technically speaking, the users can then do the following in the next time step: the

users can use St to warp the query point W to a new point Wt , and signal to the machine in

which quadrant of the newly warped uniform space Wt lies in. This is depicted as Scenario 1 in

Figure 5.7. However, the act of using St to push W to Wt would be extremely difficult for the

human to do in practice, i.e. they would have to know how to warp their own message point in

their head, or somehow otherwise match an image of the warped space with where the message

point is, either of which is a highly impractical thing to do. So we use an alternative method:

rather than have the user warp the message point, we instead ask the computer agent to warp

the query point.

To accomplish this, we can use S−1
t to transform the midpoint of the original unwarped

space to the newly warped posterior space. This makes sense since the map was originally

designed to push from the posterior to a uniform space; therefore, the inverse map will push

from the uniform space to the posterior space, and by warping the midpoint of the image

through the inverse map, we should get the corresponding point in the posterior space that

divides the space into 4 quadrants of equal mass, which we can then use as our new query point.

76



Figure 5.6. When we push from πt−1 to P, we effectively “stretch” out the mass around the
peak in πt−1, to make the space uniform; this “stretching” is illustrated by the stretching of the
image of Shannon.

This mapping process, which we ultimately use in our live system as demonstrated in Figure

5.4, is depicted in Scenario 2 of Figure 5.7 and is by far the more convenient and intuitive

process from the perspective of a human user.

Finally, after implementing the above framework in fully working real-time code, we

carried out the experiment in conjunction with our collaborators at the University of Puerto

Rico, Mayagüez. Figure 5.8 depicts what the C++ client program’s user-interface looked like

to our 2 subjects, one located in San Diego, one located in Puerto Rico. Before the experiment

began, the subjects agreed on a message point on a map of the UCSD campus to specify to the

computer agent. As described in the section above, each subject was shown only one of the

dividing lines out of the two, and was asked to use their motor imagery identify whether or not

the point of interest lay to the left, or right of the line they were shown. Figure 5.9 shows the

interface as seen from a master server program coordinating the efforts between the two client

programs. The red dot designates the agreed-upon message point, and the images to the right

of each map shows the current state of the posterior distribution. After only 9 communication

iterations, the posterior had essentially converged to a point mass, and the dividing lines had
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Figure 5.7. A depiction of the two, mathematically equivalent, scenarios of updating the query
point. In Scenario 1, we warp the message point. In Scenario 2, we warp the query point
instead, thus leaving both the space, as well as W , unwarped.

centered on the point of interest.
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Figure 5.8. Our 2 subjects connected to their associated client interfaces to perform the
multi-user BCI task.
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Figure 5.9. A depiction of the live experiment’s progress over time. By communication
iteration 9, the posterior had mostly already converged on the message point, showing the
effects of the maximized communication rate.
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5.2 Density Estimation of EEG Sleep Study Data

In this section, we will describe an application of our optimal transportation framework

to density estimation in the context of automated sleep staging based on single-channel EEG

recordings. This work was originally reported in ‘Diffeomorphism learning via relative entropy

constrained optimal transport”, GlobalSIP 2016, Coleman, Todd P.; Tantiongloc, Justin; Allegra,

Alexis; Mesa, Diego A.; Kang, Dae; Mendoza, Marcela, 2016, [16], in which the dissertation

author was the primary investigator as well as presenter at the GlobalSIP conference in 2016.

If we’ve generated a transport map, S, one useful application of the mapping is to

perform density estimation of a sample x∼U , using Equation (2.2):

u(x) = v(S(x))detJS(x)

In this situation, we assume that we have training samples drawn from U (e.g. having

observed samples from some natural phenomena or experiment), and we would like to perform

density estimation either on those samples, or samples we may acquire in the future. To

accomplish this, we can then construct a mapping S that pushes from the unknown U from

which our training samples are drawn, to some distribution V that we intentionally select

to be easy to handle analytically, such as designating V as a standard Gaussian distribution,

V = N (0,Σ). In this context, V becomes a “dummy distribution” that is purely used for

the sake of computing the density estimate u(x) using Equation (2.2) in conjunction with a

properly constructed map S#U = V . The natural advantage to using transport maps in this

context is that there need not be any constraints on the structure of U beyond having continuous

density, i.e. U can be highly multimodal, or otherwise arbitrarily shaped, and we can achieve

good performance in our density estimation of U with a properly constructed transport map.

Furthermore, we can take advantage of the scalability of our parallelized version of the map

construction process to more comfortably scale the application in this context to potentially
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high dimension.

As an example of the application of transport maps to density estimation, we will show

results on an automated sleep-staging paradigm using single-channel EEG recordings, which

are certainly indicative of our transport maps’ ability to perform effective, multivariate density

estimation. Identifying the different sleep stages a patient is in as they progress through a night

of sleep can be beneficial for the treatment of many different conditions such as sleep apnea,

insomnia, and narcolepsy [33]. Currently, however, sleep staging is performed manually by

trained sleep technicians, and as such, involves a considerable amount of effort to score an

entire night of sleep. Moreover, there is a non-trivial variability between different technicians’

scoring methods, which hinders interpretability by clinicians [82]. In light of this, we will

demonstrate here the ability to use transport maps to do binary classification on two pairs of

sleep stages that are particularly interesting in terms of being able to differentiate one from

the other: discerning the Wake vs. Light sleep stages (i.e. when the patient is more or less

awake, vs. when they are in the beginning moments of sleep), and discerning the Light vs.

REM (rapid-eye-movement, a slightly deeper stage of sleep relative to the Light stage) sleep

stages. Historically, the Wake vs. Light classification problem typically nets high classification

performance even using the most naive of models, as EEG signals associated with the Wake and

Light stages tend to be very physiologically dissimilar from each other. However, the opposite

can be said for discerning Light sleep stages from REM sleep stages, as they tend to look

physiologically similar. Thus, we have chosen to evaluate our approach with one typically easy

classification problem, as well as a relatively more challenging one. Moreover, this experiment

will only use data recorded from a single, frontal, channel of EEG, as there is much motivation

in a research context for increasingly non-invasive and non-intrusive in-home monitoring of

sleep stages [39].

For this experiment, several patients have spent an entire night of sleep in a clinical

monitoring setting. To turn this experiment into a supervised classification problem, we require
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ground-truth labels for our recorded EEG data; to this end, a trained technician generated a

clinical hypnogram for each patients’ night of sleep, designating what they believed to be the

patients’ stage of sleep at each time point through the night. Using data collected from frontal

electrodes placed on the forehead of each patient for the duration of sleep, we partitioned the

data into 30-second time-windows, and the power spectra from the alpha, theta, sigma, and delta

frequency bands were extracted from each time-window, consistent with the feature-extraction

process described in [39]. Thus, we are left with feature vectors in R4, and labels indicating

what stage of sleep each feature vector (and thus each time-window) corresponds to.

We can integrate our transport mapping into this framework by learning the densities

pertaining to each specific sleep stage, and then using knowledge of these densities to perform

a simple log-likelihood ratio classification test. We assume that the data gathered in our sleep

study were sampled from some unknown densities conditioned upon the sleep state, Ustate. We

therefore need a transport map Sstate to push from Ustate to V =N (0,Σ). For two given classes

of interest, we can then use Equation (2.2) to build a classifier using these transport mappings

by performing a log-likelihood ratio (LLR) test with the LLR given as:

LLR(x) = log
(

UA(x)
UB(x)

)
=

CA

CB
− 1

2
(SA(x)−µ)T

Σ
−1(SA(x)−µ)

+
1
2
(SB(x)−µ)T

Σ
−1(SB(x)−µ)+

DA

DB

where A and B represent the class labels we are specifically interested in, and DA and

DB represent logdet(JSA(x)) and logdet(JSB(x)), respectively. Thus, the two scenarios we will

consider are:

1. A = Wake, B = Light
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2. A = Light, B = REM

Using this framework, we performed 5-fold cross validation for each of the 2 binary classifica-

tion problems, with a 20/80 test/training split over 4932 time-windows per class (total 9,864

data points) for the first problem, and 6592 time-windows per class (total 13,184 data points)

for the second problem. Training sets were used in our optimal transportation framework

to construct mappings Sclass, class ∈ {Wake,Light,REM}, using fully-expressive polynomial

parameterizations of order 5 (higher orders did not seem to significantly increase performance).

We then compare the performance of an LLR classifier using our transport map-based density

estimation to a very naive LLR classifier where densities are assumed to be Gaussian. For the

densities that were assumed to be Gaussian, the training sets in each fold were also used to

estimate the means and covariances.

Figures 5.10 and 5.11 show the performance of these two classifiers for both classi-

fication problems in the form of ROC curves for each of the 5 folds, as well as an average

curve for each problem and classifier. Under the naive Gaussian assumption, the LLR test for

Wake vs. Light achieves an average area-under-the-curve (AUC, perfect performance would be

1.0) of 0.733. Even using such a naively structured classification model, this somewhat decent

performance is expected given that the classification of the Wake vs. Light sleep stages is

typically considered an easier problem. But even so, the transport map-based classifier achieved

an average AUC of 0.916, a significant improvement over the naive classifier.

Similarly, in the Light vs. REM case, the average AUC for the Gaussian classifier is

0.532, which is representative of a classifier model that is basically guessing labels (an AUC

of 0.5 represents a completely naive classifier that just guesses labels at complete random).

Again, this makes sense, as this classification problem is much more on the challenging side.

By comparison, the transport map approach achieved an average AUC of 0.806, again showing

significant improvement in this challenging scenario, and using a relatively simple classification

method like LLR.
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Figure 5.10. A comparison of performance of the naive Gaussian LLR classifier (left) and the
transport map-based LLR classifier (right) on the Wake vs. Light problem.

Figure 5.11. A comparison of performance of the naive Gaussian LLR classifier (left) and the
transport map-based LLR classifier (right) on the Light vs. REM problem.

From these two proof-of-concept test cases, it is clear that the transport map approach

does quite a reasonable job at estimating the class specific densities for this problem, and shows

that it could potentially be viable for other application areas involving density estimation of

arbitrarily-shaped densities as well.
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optimal transport framework.

5.3 Generative Modeling of MNIST Data

In this section, we present a demonstration of our transport map framework’s ability to

generate maps for transporting relatively high-dimensional data with reasonable model accuracy

with a generative model for the MNIST handwritten digits dataset [45]. This application was

originally described in “A distributed framework for the construction of transport maps”,

Mesa, Diego A.; Tantiongloc, Justin; Mendoza, Marcela; Coleman, Todd P., which has been

submitted to Neural Computation in 2018,[52], of which the dissertation author was a primary

co-investigator.

Generative modeling problems entail observing a large dataset with samples from

some unknown distribution U and attempting to learn a representation or model so that new

independent samples from U can be generated. Perhaps some of the most popular recent

methods of achieving this is through the use of deep neural networks, specifically variational

autoencoders [43], generative adversarial networks [29], and auto-regressive neural networks.

These models have consistently led to impressive results in a number of applications, but their

tractibility and theory are still not fully developed. That being said, the purpose of this section is

not necessarily to draw comparisons between our approach and previously developed methods

for generative modeling. Rather, the purpose of this section is to present our transport map

framework as a viable alternative that indeed has a rich, theoretical backbone to the formulation,

and to motivate further study and comparison between optimal transportation methods and deep

network-based methods for generative modeling (or perhaps some intersection of the two), both

in terms of performance and scalability. Furthermore, this example demonstrates our ability to

generate maps in relatively high dimension as far as optimal transportation is concerned, which

further emphasizes how approaches like ours can scale with hardware availability.

Similar to the density estimation case, we assume that samples from each class of
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MNIST data is drawn from some Udigit , where digit denotes the MNIST written digit associated

with the distribution. We then construct a sequential mapping, Sdigit that pushes Udigit to a

dummy distribution V = N (0,Σ). In the density estimation case, we made the decision to

designate V in this way as it allowed for convenient computation in Equation (2.2) to evaluate

u(x). However, in this scenario, the logic behind this decision is slightly different; we would

like to use our mapping as a way to generate samples from U , and as such, if we have a

distribution V that is easy to draw samples from, we can then push those samples through the

inverse of our mapping to generate samples from U . More formally, we can draw samples

zi ∼ V , and subsequently compute S−1(zi) ∼U . Because of this V can once again be any

distribution of our choosing, but we choose a standard Gaussian distribution for the sake of

being able to very easily draw samples from it.

Each image in the MNIST dataset is a 28x28 pixel image; therefore, by flattening each

image into a vector of data, our maps will operate in R784. Each map we constructed comprised

a 15-map sequence using the Single Variable Knothe-Rosenblatt parameterization, θ = 2, and

each sequential map being of order 2. To compute the inverse transformation, we used the

methodology described in Section 4.3. Figure 5.12 shows the result of this process in the form

of samples drawn from our mappings. Each row consists of 10 individual samples drawn from

the corresponding Udigit , and most of the generated images seem to be properly representative

points drawn from their respective distributions.

This example is particularly interesting as we can draw parallels between it and the

demonstration of a similar generative model in [69]. Although the methodology is inherently

very different in that work, with respect to both the objective functions used to solve the

problem, as well as the parameterization using a deep network rather than a polynomial chaos

expansion, it is extremely interesting to see optimal transport successfully carried out in such

high dimension. As mentioned in Chapter 1, optimal transport is sometimes unsuccessful at

being applied to problems of even higher than 100 dimensions, as many classical approaches
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Figure 5.12. Samples drawn from each of the Udigit distributions using our inverse sequential
maps

become quite computationally taxing as dimension increases, both in terms of time and space.

But it is an exciting prospect to see how far parallelized methodologies that scale well with

hardware such as our approach, and deep network-based parameterization methods such as

Seguy et al’s approach from [69] can take optimal transportation applications in the future.

5.3.1 Acknowledgments

I would like to acknowledge my co-first-authors of [52], Dr. Diego A. Mesa and

Marcela Mendoza for all the helpful contributions and discussions pertaining to the GPU

implementation that made this high dimensional problem possible. In addition, I would like to

acknowledge Amazon Web Services for providing research funds that allowed us to take full

advantage of their GPU compute instances, without which this problem would quite literally

have been computationally impossible for us to solve.

88



5.4 Bayesian Inference for Preference-Based Deep Rein-
forcement Learning

In this section we will present preliminary results for an application of our optimal

transportation framework to the field of deep reinforcement learning (DRL). We will discuss

the current state of progress with respect to this application here, and then at the end of the

section discuss potential future directions for the research to go. In addition, this application

to DRL is actually also technically a Bayesian inference problem, and so this section serves a

dual purpose of showcasing the Bayesian inference capabilities of the mapping process as well.

5.4.1 The Reinforcement Learning Problem

In reinforcement learning, the general goal is to teach a computer agent to behave

within some environment in a maximally efficient way by allowing the agent to act within

the environment and decide which actions are preferable in any particular situation [72]. This

efficiency is normally quantified by the maximization of some notion of “reward” over time.

Most modern reinforcement learning problems are formalized as Markov Decision Processes

(MDPs) that involve the following key components:

• A state space, S, that denotes the set of all possible states the environment can be in

• An action space, A, that denotes the set of all possible actions the agent can take

• A policy, π : S→ A that represents the agent’s behavior in the environment, and maps

states to actions (potentially stochastically, in which case, π(a|s) is a probability distribu-

tion conditioned upon the current state)

• A reward function, r : S×A→R, that represents a numerical reward given a state-action

pair
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• A model of the environment, T (s′|s,a), where s′,s ∈ S, a ∈ A, that represents the proba-

bility of arriving in state s′, given an action a taken in a state s.

Within the environment, we discretize the agent’s behavior into time steps; at every

time step, t, the environment takes on a state st , and the agent takes some action at based on

its policy πt . The environment then changes its state based on the model T , the agent sees the

new state, st+1, as well as receives a reward for performing its last action, r(st ,at), and takes

another action based on the new state. This process continues either infinitely, or until some

environment-specific termination condition is fulfilled. Given this definition of the problem,

the overall goal of the agent is to find a policy that maximizes the expected reward over time

over the distribution of potential initial states:

arg max
π

Eπ

[ ∞

∑
t=0

γ
tr(st ,at)|s0 = s

]
(5.17)

where γ is a discount factor between 0 and 1. The maximizer of (5.17) will be π∗, the optimal

policy with respect to the environment. Beyond the policy, there are two other functions of

interest within the array of reinforcement learning computational strategies:

• The state-value function, Vπ : S→ R. The Vπ function represents the expected return of

beginning in a state s, and then following the policy π from there for an infinite number

of timesteps, or until termination. In other words Vπ(s) = Eπ

[
∑

∞
t=0 γ tr(st ,at)|s0 = s] and

can loosely be considered as how much value we assign to a state s overall with respect

to the current policy.

• The state-action-value function Qπ : S×A→R. The Qπ function is similar to Vπ , except

it is defined as the expected return associated with starting in a state s, taking an action a,

and then following π starting the next timestep until infinity/termination. In other words

Qπ(s,a) = Eπ

[
∑

∞
t=0 γ tr(st ,at)|s0 = s,a0 = a

]
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Figure 5.13. General reinforcement learning workflow. The learning agent takes an action in
the environment given the state, the environment returns a reward and new state, and the agent
engages in a learning procedure to refine its behavioral model.

There is a wide array of strategies designed over many years of research that aim to

maximize Equation (5.17) but more often than not, they involve an iterative process where an

agent continuously interacts with an environment, observes the rewards it receives for taking

certain actions in certain states, and then iteratively refines an estimate of the best policy π̂ ,

or an estimate of the value function V̂ , or an estimate of the state-action value function, Q̂, or

some combination of those three quantities, to the end of finding a behavioral strategy that

consistently nets it better and better rewards. The general reinforcement learning process

is depicted in Figure 5.13. Furthermore, the recent resurgence in interest in deep networks

has given rise to a relatively new sub-field within reinforcement learning known as Deep

Reinforcement Learning, where deep networks are used as parameterized models representing

some combination of π̂ , V̂ , and Q̂, and occasionally, other components of the reinforcement

learning framework as well [54, 55, 47, 53].

5.4.2 Preference-based Reinforcement Learning

The type of reinforcement learning problem we will be addressing is known as pref-

erence based reinforcement learning, and in this section, we will be focusing on the specific

subset of preference-based reinforcement learning frameworks pertaining to learning an ap-
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proximation of the reward function r. A more complete survey of all the other sub-areas of

preference-based reinforcement learning can be found in [79].

Throughout the history of reinforcement learning research, many simulated environ-

ments have been developed as test-benches for the ever-evolving toolbox of reinforcement

learning strategies, such as the widely-used OpenAI Gym toolkit [14]. For most of these simu-

lated environments, a reward function is manually designed and implemented to accommodate

learning the task at hand, and custom tailored to represent the desired behavior for the agent to

learn when it is placed within a particular environment. However, there are a few potentially

harmful issues with this approach:

• Reward Hacking [3] : When reward functions are handcrafted, sometimes agents can

learn strategies that happen to maximize the reward function, without learning to quali-

tatively perform the task at hand. The classic example of this presented in [3] is where

a robot is designed to learn to clean a room, and the reward function is designed such

that the robot gains high reward when it sees less messes in the room. An example of a

potential “hack” to this reward would simply be to cover all the messes in the room with

some other object without actually cleaning them, which technically fulfills the reward

criterion, but fails to accomplish the actual task.

• Reward Shaping [56] : When designing reward functions, especially in simulated envi-

ronments, system designers and engineers may inadvertently encode desired behaviors

into the reward function itself, thus steering the agent to the desired behavior in a way

that is unfair relative to what the environment may be like in the real world. In [56],

this phenomenon is termed “reward shaping”, and can potentially lead to agents that

perform well in simulation during training, but then fail to perform in the real world, as

the simulated/training reward function was far too artificially informative.

Besides these two issues, there also exists the issue of reward functions potentially being far

too complicated to design by hand at all, especially by engineers or machine learning scientists
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who may not necessarily be experts in the task themselves. In this sitaution, we may rely on the

knowledge of someone who is an expert at the task, and try to integrate their knowledge into

the learning problem.

However, this approach presents its own set of complications: Imagine a scenario where

a world-renowned tennis player was asked to handcraft a reward function for a tennis-playing

environment so a robot could learn to play tennis. One problem could be that the tennis player

may not necessarily be able to quantify their expertise in terms of states, actions, and rewards;

i.e. sometimes when we develop an exceedingly high level of expertise in some task, we just

“know” how to do the task well, and may not necessarily be able to put numbers to it. Secondly,

the tennis player may be an expert in tennis, but they may not be an expert in reinforcement

learning, and they may find it difficult to design a reward function that meshes well with

the MDP-based framework in a technical sense. Machine learning scientists may often be

successful in crafting reward functions for certain tasks like learning to balance a pole on a

cart, or teaching a stick figure in a physics engine to walk or run (all of which are standard

OpenAI Gym environments), simply because not only do they reasonably know how to do these

tasks themselves, but they are also familiar with the intricacies of the reinforcement learning

framework itself, and can more easily “meld” those two worlds together. For something

like tennis, a tennis expert may know how to play the sport, but may not understand the

reinforcement learning framework, and the machine learning scientist may understand the

reinforcement learning framework, but not necessarily know how to play the sport, which leads

to a mismatch of expertise in designing a training environment or computer agent.

Preference-based reinforcement learning is an attempt to mitigate the effects of all of

these problems by allowing reward function approximations to be educated by human experts

in a task environment, in as intuitive of a way as possible. The idea is to present the expert with

some task that is minimally technical, yet is capable of allowing us to efficiently extract their

expertise in some form, and integrate their knowledge into the design of our reinforcement
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learning systems. To that end, our specific case will involve learning an approximation of

the reward function which we denote r̂ : S×A→ R from some kind of input from a human

user or users (more precisely, [79] refers to this approximation as a “utility” function, as it

is not fixed, and therefore induces a changing optimal policy over time, but we will not be

making that specific distinction here, and just refer to r̂ as the approximated reward function

for simplicity). The most common modeling methodology for this approximation uses a linear

sum of parameterized basis terms:

r̂(s,a) =
K

∑
k=0

θ
T

φk(s,a) (5.18)

where φk can be any desired sequence of basis terms or features of state-action pairs,

and θ is a vector of parameters. In this scenario, we can imagine our learning task as attempting

to infer the values of θ given some sort of interaction with our human user(s), which we define

next.

In our learning framework, the learning agent will present a pair of simulated state-

action trajectories, τ1 = [s1
1,a

1
1,s

1
2,a

1
2, . . .s

1
T ,a

1
T ] and τ2 = [s2

1,a
2
1,s

2
2,a

2
2, . . . ,s

2
T ,a

2
T ], where T is

some maximum simulation length. These trajectories can be simulated by the learning agent

given its current policy estimate, π̂ , in the simulation environment. For each trajectory pair,

(τ1,τ2), the human expert can then communicate which of the trajectories is preferable to the

other, in terms of accomplishing the desired task at hand. Therefore, the human response can

be interpreted as a binary response variable Y ∈ {1,2}, where Y = 1 implies that τ1 is preferred

over τ2, and Y = 2 implies the opposite. Described more intuitively, the computer agent in this

framework will show examples of what it thinks the desired behavior is, and the human expert

will correct it, or reinforce it, based on those demonstrations.

Given M-many responses to M-many trajectory pair queries, we can them formalize

the problem as computing the posterior distribution over θ given the responses: P(θ |Y M).

Indeed, this Bayesian inference strategy has been used in the past in this exact context, but
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using a variety of loss functions, and/or likelihood functions to approximate the posterior

[1, 80, 24, 79].

For our purposes, we will be using a sigmoid-based likelihood function inspired by [24]

and [15]. The former uses the sigmoid function as a Bayesian likelihood as we will be, but the

latter uses it as a loss term for a deep-network-based approximation of the reward function. In

our scenario, we can interpret the likelihood as the following:

P(Y = 1|θ) = exp(∑T
t=0 r̂θ (s1

t ,a
1
t ))

exp(∑T
t=0 r̂θ (s1

t ,a1
t ))+ exp(∑T

t=0 r̂θ (s2
t ,a2

t ))

P(Y = 2|θ) = 1−P(Y = 1|θ) (5.19)

If we define Φ(τi) = ∑
T
t=0 ∑

K
k=0 φk(si

t ,a
i
t) for i = 1,2, then we can plug (5.18) into

(5.19), to make the following simplification to the likelihood expression:

P(Y = 1|θ) = 1
1+ exp(−θ T (Φ(τ1)−Φ(τ2)))

P(Y = 2|θ) = 1−P(Y = 1|θ) (5.20)

With this formulation, if we interpret Φ(τ1)−Φ(τ2) as a feature vector that is a function

of the trajectory pair (τ1,τ2), we can interpret the entire problem as a whole as a Bayesian

binary logistic regression problem over those feature vectors, with the trajectory preferences

serving as class labels.

5.4.3 Transport Maps for Bayesian Inference

Given that this problem can effectively be reduced to an instance of Bayesian inference

with a sigmoid likelihood model, we are finally ready to integrate our optimal transport map
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framework. In a Bayesian inference setting, the posterior distribution is given by Bayes’ Rule:

f (X |Y ) = f (Y |X) f (X)

βY
(5.21)

where f (X) is the prior, f (Y |X) is a likelihood distribution, and βY is a normalization

constant. In general, βY is very difficult to compute, which usually makes it difficult to

draw independent samples from the posterior for the purpose of approximating it, computing

expectations of it, or otherwise characterizing it. Historically, typical approaches to circumvent

this difficulty and acquire (approximately) independent posterior samples involve Monte Carlo

methods, such as Markov Chain Monte Carlo (MCMC) simulation [4], and indeed, previous

works like [80, 24] do use these methods to approximate posterior expectations. However, if

truly independent samples are desired, these methods tend to be computationally inefficient, as

very long simulations need to be performed due to statistical dependency between sequentially

simulated samples in the chain. Transport maps have previously been used to help mitigate this

problem in the following broad sense [25, 49, 41]: if we construct a transport map S to push

U to V , where we define U as a Bayesian prior, and V as the Bayesian posterior, we can draw

independent samples from the prior (which should typically be easy to draw samples from),

push it through S, and obtain statistically independent samples from the posterior. Assuming

the computational process to identify S can be done quickly and efficiently, this process is often

dramatically faster than using traditional sampling methods to draw from the posterior.

In the context of our optimal transport formulation, this involves a very simple extension

to the objective function. Defining U as the prior, f (X), and V as the Bayesian posterior, f (X |Y ),

we combine Equations (2.2) and (5.21) and write:

f (X) = f (S(X)|Y )det(JS(X)) (5.22)

=
f (Y |S(X)) f (S(X))

βY
det(JS(X)) (5.23)
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For the purpose of optimization, we can safely ignore the normalization constant βY and directly

plug the numerator from (5.23) into (2.8) to give us a new objective function:

min
S̃∈D+

−EU [log ũ(X ; S̃)] (5.24)

= min
S̃∈D+

−E f (X)[log f (Y |S̃(X))+ log f (S̃(X))+ logdet(JS̃(X))] (5.25)

≈ min
S̃∈D+

− 1
N

N

∑
i=0

log f (Y |S̃(Xi))+ log f (S̃(Xi))+ logdet(JS̃(Xi)), Xi ∼ f (X) (5.26)

Similar to our logic from Section 2.1, this problem also becomes a convex optimization problem

as long as the prior and likelihood densities are log-concave. And finally, in the context of

ADMM this special case only requires a very straightforward change of applying Bayes’ Rule

to the update of pi in Equation (3.31):

p∗i = arg min
pi

− log f (Y |pi)− log f (pi)+
ρ

2
||Bk+1

Φi− pi||22 + γ
kT
i (pi−Bk+1

Φi) (5.27)

Beyond this, the remainder of variable updates in our ADMM formulation, either for the

fully-expressive mapping case or Knothe-Rosenblatt case, remain exactly the same.

5.4.4 Applying Transport Maps to Preference-Based Reinforcement
Learning

In our reinforcement learning problem, the posterior is over the space of model param-

eters, θ , and we can construct a transport map from P(θ) to P(θ |Y M) given the procedure

described above by only modifying our pi update. If we assume a uniform prior, we can

ignore the − log f (pi) term in (5.27). Furthermore, given that we have M-many trajectory pairs,

ηm = (τ1,τ2)m, m = 1, . . . ,M, accompanied by M-many user responses denoting trajectory
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preferences, Ym, m = 1, . . . ,M, we can plug in our sigmoid likelihood for − log f (Y |pi) as:

p∗i = arg min
pi

−
M

∑
m=0

[
log f (Ym|pi,ηm)

]
+

ρ

2
||Bk+1

Φi− pi||22 + γ
kT
i (pi−Bk+1

Φi) (5.28)

where the likelihood can be represented as a log-sum of the individual likelihoods over all our

trajectory-pair queries, and the likelihood is expressed as being a function of the trajectory

pair itself. One implementation detail we should mention is that since a sigmoid likelihood

means we cannot derive a closed-form update, we must use gradient methods to optimize

(5.28), which while straightforward to implement, does add to computation time. However, in

practice, the algorithm is still relatively fast to converge as sigmoid functions are typically easy

to optimize in this way anyway.

When all is said and done, the overall algorithm can be summarized in the following

way, after random initialization of πk and r̂:

1. Use πk to generate M trajectory pairs in given environment ηm, m = 1, . . . ,M

2. Have human expert rate trajectories and give responses Ym, m = 1, . . . ,M

3. Use optimal transport to approximate map between prior and posterior with ηm and

Ym, for m = 1, . . . ,M, and use map to draw N samples from posterior and compute

expectation of posterior as the new parameterization of reward function θ̂

4. Train agent’s policy to π̂k+1 (or Q-function or V -function, depending on reinforcement

learning algorithm used) using reinforcement learning algorithm of choice for T iterations

with newly updated reward approximation r̂
θ̂

5. Repeat from Step 1

Note in Step 4 above, the exact nature of the learning process depends on the learning

algorithm used - because our transport map process isolates changes to only the reward
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Figure 5.14. The preference-based reinforcement learning optimal transport workflow

function, this step can be populated in a plug-and-play fashion by any reinforcement learning

agent of choice (e.g. Trust-Region Policy Optimization, Proximal Policy Optimization, Q-

Learning, etc.) and the entire workflow should more or less be compatible. Thus, we have an

alternating optimization problem where we alternate between partially optimizing r̂, and then

partially optimizing the computer agent using the reinforcement learning algorithm of choice.

This workflow is graphically represented in Figure 5.14, with the red numbers indicating the

corresponding step above.

5.4.5 Preliminary Results

In this section, we will discuss some of the preliminary results we achieved us-

ing the strategy described above. For this evaluation, we used the OpenAI Gym toolkit’s

InvertedPendulum-v2, InvertedDoublePendulum-v2, and Hopper-v2 environments based on

the Mujoco library [74] as test cases (Figure 5.15). Furthermore, we leveraged the Proximal

Policy Optimization (PPO) reinforcement learning agent strategy [68] to learn the policy and

99



Figure 5.15. We tested our approach on these 3 environments of the OpenAI Gym toolkit -
InvertedPendulum-v2, InvertedDoublePendulum-v2, and Hopper-v2.

value function for any given reward function approximation, as this is one of the most recent

approaches that has achieved state-of-the-art performance on the OpenAI Gym toolkit as a

whole. For all results, sample trajectories were rated by an oracle module that based its ratings

on the true reward function encoded into OpenAI Gym. However, the oracle module also had a

10 percent chance of accidentally inverting its rating for any given trajectory pair, to simulate a

notion of error that may come into effect when a human rater is used to designate preferred

trajectories.

We began with the OpenAI-baselines [23] implementation of PPO, and made small

modifications to make the agent fit more cleanly with our optimal transportation framework.

However, we maintained the same hyperparameter settings described in [68] for use with

Mujoco environments so that we could compare our performance to those in the publication.

The reward function is treated as a function of both state and action, but the dimensionality

of the mapping problem is also dependent on the choice of basis of the reward function

approximation. For all the experiments discussed here, the reward function was parameterized

as a fifth order polynomial with the same basis terms as the Single Variable Knothe-Rosenblatt

multi-indices (i.e. no mixed multivariate terms in the basis). As a result, the dimensionality of

the environments’ state and action spaces, and the resulting dimension of our transport maps

which we denote as D, given this reward function approximation are summarized as follows:

• InvertedPendulum-v2 : state dimension = 4, action dimension = 1, D = 26
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• InvertedDoublePendulum-v2: state dimension = 11, action dimension = 1, D = 61

• Hopper-v2 : state dimension = 11, action dimension = 3, D = 71

For all maps, a sequence of 3 Single Variable Knothe-Rosenblatt models were used, θ =

1. Figure 5.16 shows the performance achieved using our optimal transport-based framework,

represented as a learning curve taking the average reward gained over the previous 100 episodes

plotted vs the number of timesteps for learning agent training (a very common metric throughout

the literature). Furthermore, each learning curve is itself an average over 5 runs of the algorithm

in the given environment.

For InvertedPendulum-v2, the performance is comparable to most of the reinforcement

learning agents in the literature. In this task, the maximum reward the agent can earn for any

episode is 1000, which our agent achieves quite readily around 100,000 timesteps.

For InvertedDoublePendulum-v2, we actually achieve slightly better results than that of

the vanilla PPO agent in [68]. Whereas the vanilla agent achieves roughly an average reward

of around 7000 according to the publication, our agent extends towards an average reward of

8000.

However, for Hopper-v2, our performance falls short of the published PPO findings.

Whereas the vanilla agent in [68] achieves roughly around 2000 of average reward after 500,000

timesteps or so, our achieves no higher than an average of 1500. While we are currently not

entirely sure why this is not so, one hypothesis for why this is happening is pertinent to the

explore vs. exploit dilemma [72]. The explore vs. exploit dilemma is a term describing a the

tradeoff between an agent choosing to maximize rewards of the state-action combinations it has

seen thus far in its experience within the environment, and an agent continuing to investigate

state-action combinations that have not yet been seen in order to potentially uncover state-action

combinations that yield even higher rewards.

A potential problem with our model is that our reward function approximation may

require a fair bit more state-action space exploration than the vanilla agent that uses the true
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Figure 5.16. We tested our approach on these 3 environments of the OpenAI Gym toolkit -
InvertedPendulum-v2, InvertedDoublePendulum-v2, and Hopper-v2.

reward function to learn the task, and our agent does not explore the state-action space nearly

enough given its current implementation. In other words, in our case, the agent may need to

explore the space so as to demonstrate trajectories to the human expert that are more informative

than those it has demonstrated thus far; if the agent never even tries to demonstrate trajectories

of higher value to the expert, the expert has no way of communicating that those trajectories

are “better” than what it’s currently already doing. Thus, our model may be more sensitive to

the “explore” side of the explore vs. exploit dilemma than when using a perfectly informative,

handcrafted reward function, which absolutely seems like a problem that can be remedied

with the proper approach. One possible remedy to this problem may be adding a decaying

noise model that adds a bit of perturbation to actions taken, and then levels off over time, so

as to encourage further exploration of the state-action space to find state-action combinations

that yield better results at least in the early stages of learning. Another possible solution is to

experiment with different values of the clipping hyperparameter, ε , of the PPO algorithm, as

different values can influence the desire for the agent to explore as well.

These results certainly seem promising to the end of applying optimal transport to

reinforcement learning in this context. There is still much work to be done to truly realize the

power of how transport maps might be useful here, but there are indeed directions of potential

future work that may be of interest. More discussion on these issues can be found in Chapter

6.
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Chapter 6

Conclusions and Future Work

In this work, we have presented an evolving line of optimization problems aimed at

computing optimal transport mappings. Chapter 2 laid the foundation of a previously described

Kullback-Leibler Divergence approach to forming the objective function for our optimization

problem, Chapter 3 revisited the first parallelized formulation of the algorithm via ADMM, and

then presented the novel version of the problem that takes advantage of the Knothe-Rosenblatt

mapping and its properties, and further augmented that problem with a novel Wasserstein

regularization term leading to a theoretically-backed means of performing sequential optimal

transportation. Chapter 4 discussed some of the strategies used for the implementation of the

framework, and details to give a more practical perspective on the algorithm. Finally, Chapter

5 showcased applications of this framework in a variety of contexts. First, we discussed

the design of a multi-user brain-computer interface based on posterior matching. Next, we

applied the framework to a density estimation problem for automated sleep-staging. Then,

we demonstrated the framework in the context of a relatively high-dimensional generative

modeling problem using the MNIST dataset. Finally, we concluded the chapter by showcasing

some promising results for an application in preference-based reinforcement learning.

The field of optimal transport has a rich history of algorithms and strategies to acquire

these elusive transport maps, all of which have their advantages and disadvantages. We will

conclude this dissertation with a discussion on areas of future work that naturally follow the
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results we discussed here.

Non-convexity - In Section 3, we explained that one of the requirements of our frame-

work was the log-concavity of the V distribution. However, this is technically not required

from the perspective of our formulation. Indeed, even for non-log-concave V , our framework

can potentially find maps to push to V , but may ultimately require more involved optimization

procedures amenable to non-convex optimization problems.

Furthermore, while some algorithms result in better approximations of the map, they

may take significantly longer to compute. And while some strategies rely on less expressive

approximations of the mapping model, they are more amenable to parallelization and scale

better with increasing availability of hardware in terms of computation time. In general, our

strategy leans more towards the latter, especially in a world that is certainly moving towards

using deep neural networks as map approximations. That being said, one very interesting point

of future work for this general formulation is thinking about how we might incorporate deep

networks into our problem as a map parameterization. This obviously leads to the loss of

convexity of our problem, among other complications, but the area of non-convex optimization

theory itself is a growing field of interest that is consistently becoming theoretically richer with

every passing month, especially with the recent resurgence in interest in deep learning [36].

Multiple GPUs on Multiple Hosts - A fairly straightforward improvement we can

make to our CUDA implementation is to extend its capabilities to be able to accommodate

distributed computing over multiple GPUs across multiple hosts. As of the writing of this

document, this is still a work in progress, but it would almost certainly improve our performance

for especially large problems, and make even larger problems computationally feasible. One

thing to consider though, when distributing computation across GPUs, is the tradeoff between

the gains achieved through finer distribution of computation, and the overhead associated with

engaging more GPU devices. For problems below a certain size, it may not be beneficial

to engage too many GPUs, as the overhead associated with moving data to/from that many
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devices, or launching CUDA kernels on many devices, can overshadow any gains we may

potentially see from the parallelization in the first place. That being said, the best way to really

gauge where those tradeoffs stand is to perform an exhaustive set of benchmarks across many

different system configurations and empirically determine where adding more hardware really

begins to prove advantageous as a function of problem size.

Future Work in Reinforcement Learning - There is a wide range of future work that

can take place in the context of reinforcement learning as described in Section 5.4. While the

preliminary results in this context are not necessarily the best thus far, we feel they are certainly

indicative that this approach seems promising, although it requires much more future research

to really flesh out the details. Furthermore, not only does the optimal transportation framework

allow for an alternative means to estimate posterior expectations of the reward model parameters,

but since we are capable of quickly drawing samples from the posterior, it also allows for

potential selection of trajectory queries through information-theoretic characterization of the

posterior distribution.

The framework thus far relies on generating trajectories arbitrarily, without consider-

ing whether certain trajectory queries are potentially more informative than others from an

information-theoretic perspective. However, it stands to reason that some queries may be more

effective in providing information about the user’s reward function relative to others. This can

potentially be quantified by generating M candidate trajectory pairs, and then approximating

the expected reduction in posterior entropy, EY
[
−
∫
X f (x|Y ) log f (x|Y )dx

]
, for each trajectory

pair using transport maps, and then only querying the user with the one that results in the largest

drop in entropy (or alternatively, the first few “top ranked” queries in this regard). The queries

that result in the largest drop in entropy would theoretically represent the “most informative”

queries out of the candidates. As there are only 2 discrete values for Y , this problem would

involve only computing 2 transport maps per query.

There exist several ways to use samples from a distribution to estimate the entropy [58],
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but there is an interesting way this can be done that further takes advantage of our optimal

transport maps. For every mth candidate query we can generate a transport map to the mth

potential posterior termed Sm, generate N samples from each posterior Xm
n , n = 1, . . . ,N, m =

1, . . . ,M, and then create another transport map that pushes each mth batch of these samples

to a standard Gaussian SDE
m . SDE

m , m = 1, . . . ,M can then be used as a density-estimation map

similar to the process described in Section 5.2, which can then directly be used to estimate the

posterior entropy with samples drawn from each posterior.

Optimizing the query strategy and choosing the most informative queries is of utmost

importance as queries to a human can be a relatively expensive operation: queries that require

active human participation can take a significant amount of time, and can induce fatigue in the

user resulting in query responses that decline in quality over time. Therefore, minimizing the

number of queries we need to make to acquire sufficient information about the reward function

is quite an important task indeed.

Previous work has certainly attempted to make similar optimizations to the query

strategy as well, such as in [15], where are ensemble of deep learning models representative of

the reward function model are used to approximate a variance in trajectory rewards. Or in [24],

where the construction of ideally informative query trajectories is formulated as an optimization

problem in itself. But it is still a problem that eludes a concrete “best” solution overall, with

different approaches resulting in a tradeoff between increasingly broad approximation and

computational feasibility, so this is definitely an interesting potential topic of future work in

this context.

Physical Interpretations and Connections to Deep Learning The original Monge-

Kantorovich formulation of optimal transportation very much had a physical interpretation to

the problem - moving a pile of earth from one shape to another. As we discussed in Section

3.4.1, and as previously described in [38], there is also a theoretical relationship between

optimal transport and computational thermodynamics. Continuing to think about how transport
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is inherently related to physical phenomenon is an ongoing discussion that can potentially

reveal additional interesting insights into the process of computing transport maps, similar

to our discussion in 3.4.1. Furthermore, the sequential nature of the compositional mapping

problem discussed in this work has loose similarity to a deep neural network, as a cascading

chain of non-linear functions. Indeed, works like [5] are beginning to uncover what might be a

fundamental relationship between optimal transportation and modern deep learning techniques,

which is quite the exciting prospect indeed. If such a relationship can be established with

more solid footing, perhaps the rich theoretical history behind optimal transportation can be

effectively applied to deep learning as well, to an extent.

In conclusion, this dissertation attempts to provide several valuable insights into the

historically significant field of optimal transportation, and its place in the modern machine-

learning-oriented world. There are certainly still many questions that must be explored when

deciding where exactly optimal transport, and our formulation specifically, fits in with the

myriad other machine learning algorithms we have these days, but they are questions that I truly

believe can lead to some fantastic developments in our technological evolution. With publicly-

available distributed computational resources becoming more and more available to the general

public, it is also of critical importance to begin extending the rich theoretical underpinnings of

optimal transport to distributed contexts as well, especially if we may want to apply transport to

applications that may require the luxury of real-time constraints, or human-computer interfaces

in general. It is certainly the hope of this dissertation author that this work acts as yet another

stepping stone in the right direction in that regard.
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