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ABSTRACT OF THE THESIS

Towards Neural Network Embeddings of Optimal Motion Planners

by

Mayur Joseph Bency

Master of Science in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2018

Professor Michael C. Yip, Chair

Fast and efficient path generation is critical for robots operating in complex environments.

This motion planning problem is often performed in a robot’s actuation or configuration space,

where popular pathfinding methods such as A*, RRT*, get exponentially more computationally

expensive to execute as the dimensionality increases or the spaces become more cluttered and

complex. On the other hand, if one were to save the entire set of paths connecting all pair of

locations in the configuration space a priori, one would run out of memory very quickly. In this

work, we introduce a novel way of producing fast and optimal motion plans by using a stepping

neural network approach, called OracleNet. OracleNet uses Recurrent Neural Networks to

determine end-to-end trajectories in an iterative manner that implicitly generates optimal motion

xi



plans with minimal loss in performance in a compact form. The algorithm is straightforward in

implementation while consistently generating near-optimal paths in a single, iterative, end-to-end

roll-out. In practice, OracleNet generally has fixed-time execution regardless of the configuration

space complexity while outperforming popular pathfinding algorithms in complex environments

and higher dimensions.
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Chapter 1

Introduction

Being able to come up with a quick and accurate motion plan is critical to robotic systems.

Motion planning involves finding a connection between two locations while avoiding obstacles

and respecting bounds placed on the robot’s movement. Such problems include the Piano Mover’s

Problem of figuring out the best way to move a piece of furniture through narrow corridors

and learning obstacle avoidance policies through model predictive control for quadcopters [1].

The majority of work in solving the motion planning problem involves online computation of

graphical or grid search strategies that scale poorly with dimensions, or sampling based strategies

that scale better with dimensions but are highly dependent on the complexity of the environments.

Furthermore, a fundamental trade-off has existed with available algorithms — the trade-off

between finding the optimal solution and finding a feasible solution quickly.

The main contribution of this work is a novel approach to the general motion planning

problem that leverages a neural-network based path generator, and produces feasible paths in

fixed time that mimic an oracle algorithm (one that can always generate the optimal paths across

the entire configuration space of the robot/environment, for any start or end goal). Our approach

leverages the Recurrent Neural Network (RNN) in order to mimic the stepwise output of an oracle

planner, moving from the start to the end location in a relatively smooth manner (Fig. 1.1 gives
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Figure 1.1: An example path generated by OracleNet, shown alongside the results of popular
path-finding algorithms A* and RRT*.

an example). Several important advantages of OracleNet that are demonstrated in this work: (1)

it generates extremely fast and optimal paths online; (2) it offers a valid path if one exists in

practice 100% of the time; (3) it has consistent performance regardless of the configuration space

complexity; and (4) it scales almost linearly with dimensions. We demonstrate the results of our

method on a point-mass robot, 3, 4, 6-degrees of freedom (DoF) simulation robots, and finally on

a 7 DoF Baxter robot (both in simulation and with the physical robot). We also show that our

algorithm scales close to linear with increase in dimensions, making it significantly faster and

more efficient for online motion planning for non-trivial problems, compared to the polynomial

or worse time complexity of popular motion planners. In general, this approach offers the starting

concept of formulating the path planning problem with a sequential neural network-based solver
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(i.e. neural motion planning) in which many algorithmic variants can be considered, such as those

that operate on environments outside the training set, operating on dynamic environments, and

operating on dynamical systems that follow complex sets of ODEs/PDEs.
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Chapter 2

Preliminaries

Motion planning begins with the concept of the configuration space of an agent. Each

point in this space is designed to represent complete and unique information about the state(s) of

the robot relevant to the planning problem. For example, a simple point-mass robot operating

in a 2D grid system will have the planar x− y cartesian coordinates as its configuration space,

whereas a 6-DoF holonomous manipulator may have each joint representing a dimension in its

6-dimensional configuration space 1. The type of configuration space chosen may have stationary,

time-varying, constrained, and movable-object representations, as per the requirements of the

planner. The problem, therefore, is to find a curve in configuration space that connects the start

and goal points and avoid all configuration space obstacles [3].

Motion planning for an agent operating in a configuration space can take the form of path

planning or trajectory planning. Path planning is tasked with generating a set of points in the

configuration space and is not concerned with how the agent is following those points. On the

other hand, trajectory planning describes how the configuration of the agent evolves over time as

well, with a trajectory being a time-parametrized function defined over a planning horizon [4].

In this work, we restrict ourselves to path planning and use the terms motion planning and path

1Configuration spaces in general are non-Euclidean [2].
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planning interchangeably, with the possibility of extending to trajectory planning for modelling

dynamical systems being discussed in Chapter 6.

This chapter is aimed at establishing the following two goals for the reader. Section 2.1

seeks to establish a backdrop for the problem that is being attempted in this thesis, mainly by

briefly describing some of the so-called “classics” of motion planning algorithms. Section 2.2

continues further by describing modern approaches to motion planning with a focus on the state

of learning-based algorithms and where the algorithm proposed in this work sits.

2.1 Background

The notion of completeness is important when discussing the effectiveness of motion

planners. A motion planning algorithm defined according to Chapter 1 is said to be complete if

a solution can be returned in a finite amount of time, if one exists, and return failure otherwise.

However, such algorithms are often computationally expensive and inefficient and therefore are

rarely used in practice. The Piano Mover’s Problem is one such example of a PSPACE-hard 2

problem in finding complete solutions.

The need for practical solutions led to the idea of resolution completeness, which redefines

or rather relaxes the completeness condition to return a valid solution based on the resolution

parameter of the algorithm is set fine enough. Several kinds of these algorithms exist, such as the

following.

• Graph-search methods discretize the configuration space of the agent as a graph (in the

special case of the nodes being orthogonal to each other, it may also be referred to as

a grid), where the nodes represent a finite collection of accessible agent configurations

and the edges represent transitions between nodes. Each edge may have a cost (possibly
2PSPACE is denoted as a class of problems that can be solved in polynomial space (also known as computer

memory). PSPACE-hard problems are known to be computationally intractable and therefore, probably not worth-
while to search for an efficient algorithm to search for an optimal solution. Instead, developing approximations and
heuristics would be more appropriate. Note that PSPACE-hard also implies NP-hard.

5



directional) associated with its transition. Given queried start and goal nodes, the path

planning problem is then defined as solving for a minimum-cost path in such a graph, with

a path being defined as a sequence of nodes to be followed starting from the start and

terminating at the goal. Graph search methods are limited to optimize only over a finite

set of paths, namely those that can be constructed from the node-traversals allowed to the

agent.

• Artificial potential fields have also been proposed as an alternative to graph-search methods

for their speed and relative extensibility to higher dimensions. Khatib [5] pioneered the

use of the artificial potential field method in the context of obstacle avoidance, with their

approach involving the use of potential fields in work space 3 as opposed to configuration

space. Repulsive potential fields are placed around obstacles and forbidden regions, and

an attractive potential field is placed around the goal, with the reasoning that the agent

experiences a generalized force equal to the negative of the total potential gradient. This

force drives the agent “downhill” towards its goal configuration until it reaches a minimum

and the optimization terminates. As with any optimization problem with ill-defined convex-

ity, the main disadvantage of this approach is the tendency for the agent to settle in local

minima. Although several heuristics have been proposed, the problem has not been fully

solved yet.

• Cell decomposition methods work by partitioning the configuration space into disjoint sets,

called cells [3]. These cells form the nodes of a non-directed connectivity graph G. Two

nodes are adjacent if they share a common boundary and an adjacency graph is computed 4.

After the space decomposition into cells has been completed, the planner uses the adjacency

3Work space for an agent is defined as the physical world it interacts with. As opposed to configuration space
which can span an arbitrary number of dimensions depending on the agent, work space does not go beyond three
dimensions.

4An adjacency graph encodes the adjacency relationship of cells, where a node corresponds to a cell and an edge
connects nodes of adjacent graphs
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graph to search for a path connecting the cells containing the start and goal. The most

popular cell decomposition technique is the trapezoidal decomposition [6] where the planar

configuration space is split into polygonal regions, with 2m-tree decomposition used for

higher dimensions. There are chiefly two disadvantages to this cell decomposition. First,

the complexity of these algorithms is exponential in the dimensions of the configuration

space. Second, there is a high cost associated with determining whether a cell is entirely

contained within the configuration space or not.

Compared to complete planners, these planners based on resolution completeness demon-

strated remarkable performance in accomplishing various tasks in complex environments within

reasonable time bounds [7]. However, as pointed out for each of the described methods above,

their practical applications were mostly limited to configuration spaces with up to five dimensions,

since graph search and decomposition-based methods suffered from large number of nodes and

cells, and potential field methods from local minima. Part of the reason why the aforementioned

algorithms struggle with the curse of dimensionality is having to know complete and explicit

information of the configuration space. This may also scale poorly with a large number of

obstacles.

Sampling-based motion planning algorithms were developed as a way to avoid this

problem. Lindemann and LaValle [8] provides an extensive look at sampling-based planners.

Due to their effectiveness and computational efficiency, sampling-based planners have gained

the status of being the preferred kind of planners for all sorts of planning problems, from static

two-dimensional planar grid-maps to complex high dimensional robots in dynamic environments.

Instead of using an explicit representation of the configuration space, sampling-based planners

rely on a collision-checking module. The planner repeatedly samples the configuration space

and adds collision-free points to a roadmap of feasible trajectories. providing information. The

roadmap is then used to construct the solution to the original motion-planning problem.

As a further approximation to the completeness problem, the concept of probabilistic
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Figure 2.1: An example of the Rapid-exploring Random Tree algorithm being used on a sample
two-dimensional configuration space to plan between two points (green being start and red being
goal). The configuration space here is the joint-space for a 2-link planar manipulator, with θ1
and θ2 representing the joint angles of the manipulator in degrees.

completeness was introduced with sample-based planners. This guarantees that the probability

of the planner returning a valid solution, should one exist, converges to one as the number of

samples approaches infinity. Moreover, Barraquand et al. [9] proved that the rate of decay of

the probability of failure is exponential, under the assumption that the environment has good

“visibility” properties 5. Fig. 2.1 shows a sample-based planner run on a configuration space.

Note that the planner itself does not know anything about the obstacles until the collision checker

returns a value.
5Barraquand et al. [9] analyzed the relation between the probability of failure and running time as a response to

the explosion of sampling-based randomized planners in the late nineties and their ability to seemingly perform well
with virtually any type of robots and empirically observed success. They define two metrics for the “goodness”” of a
configuration space and under the assumption that those two metrics hold, the running time is shown to grow only as
the absolute value of the logarithm of the probability of failure.
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2.2 Related Work

A range of techniques to solve the motion planning problem has been proposed in the past

two decades, from algorithms that emphasize optimality over computational expense, to those

that trade-off computational speed with optimality. This trade-off is in part to meet the need of

problem spaces that motion planners are trying to solve today, which involve solving for complex,

high-dimensional, dynamically-constrained systems and environments. Traditional algorithms

such as A* [10] that search on a connected graph or grid, while fast and optimal on small

grids, take exponentially longer to compute online with increasing grid sizes and environment

complexity. Sampling-based strategies such as RRT have better computational efficiency for

searching in high dimensional spaces [11] but get slowed down by their “long tail” in computation

time distribution in complex environments. Apart from using grid-based and sampling-based

motion planners, optimizing over trajectories has also been proposed, with approaches such as

using potential fields to guide a particle’s trajectory away from obstacles [5] and reformulating

highly non-convex optimization problems to respect hard constraints [12]. A review of recent

algorithms and performance capabilities of motion planners can be found in González et al. [13].

The challenge of creating and optimizing motion plans that incorporate the use of neural

networks has long been a problem of interest, though computational efficiency in solving for

deep neural networks has only recently made this a practical avenue of research. Glasius et al.

[14] was an early attempt to link neural networks to path planning by specifying obstacles

into topologically ordered neural maps and using neural activity gradient to trace the shortest

path, with neural activity evolving towards a state corresponding to a minimum of a Lyapunov

function. More recently, Chen et al. [15] proposed a method that enables the representation of

high dimensional humanoid movements in the low-dimensional latent space of a time-dependent

variational autoencoder framework.

Reinforcement Learning (RL) approaches have also been proposed for motion planning ap-
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plications. Tamar et al. [16] introduced a fully differentiable approximation of the value-iteration

algorithm capable of predicting outcomes that involve planning-based reasoning. However, their

use of Convolutional Neural Networks (CNN) to represent this approximation limits their motion

planning to only 2D grids, while generalized motion planning algorithms can be extended to

arbitrary dimensions.

Learning to generate motion plans has also been considered via a Learning-from-Demonstration

(LfD) approach. Using an expert (usually human) to provide demonstrations of desired trajec-

tories, LfD methods are able to generalize within the set of demonstrations an approximate,

underlying sequence or policy that reproduces the demonstrated behavior. LfD has been suc-

cessfully applied in various situations that involve challenging dynamical systems or nuanced

activities such as autonomous helicopter aerobatics [17], emulating gestures [18], and making

coffee [19]. Our path generating algorithm can be considered an extension of LfD since the

lines between motion planning, LfD, imitation learning, and model predictive control are getting

blurred with advancements in machine intelligence.
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Chapter 3

Methods

3.1 Problem Definition

In this work, we use the standard definition of configuration spaces (c-spaces) to construct

the environment in which our motion planning algorithm operates. For a robot with d degrees-

of-freedom (DoF), the configuration space represents each DoF as a dimension in its coordinate

system. Each d-dimensional point in the c-space represents the d joint angles of the robot and

therefore, the full configuration of the robot in the real world. Due to this property, motion

planning in c-spaces is simpler than in geometric spaces. A motion planning task involves

connecting two points in a d-dimensional c-space, with obstacles mapping from Cartesian space

to c-space in a nonlinear fashion through forward-kinematic collision checks. The GJK algorithm

for collision detection developed by Gilbert et al. [20] is a popular method used to determine if a

given point in c-space is in obstacle region or not. A necessary assumption for our algorithm is

knowledge of the configuration space, which is defined by a given robot present in a given static

constrained environment. For example, these problems arise in solving for optimal routes in a

large network of roads or navigating through the lanes of a crowded warehouse.

Let X ⊂ Rd be the c-space. Let Xobs ⊂ X be the obstacle region, such that X\Xobs is an

11



Figure 3.1: An “unfolded through time” strategy for motion planning is proposed in OracleNet.
Note that within this RNN structure, the Long Short Term Memory (LSTM) hidden layer weights
are shared across timesteps as the inputs get iteratively updated and concatenated.

open set, and denote the obstacle-free space as X f ree = cl(X\Xobs), where cl() denotes the closure

of a set. The initial start point xstart and the goal xgoal , both elements of X f ree, are provided

as query points. The objective here is to find a collision-free path between xstart and xgoal in

the c-space. Let x be defined as a discrete sequence of waypoints. x is considered valid if it is

continuous, collision free (each waypoint in the generated path should lie in X f ree), and feasible

(x(0) = xstart ,x(t) = xgoal for some finite t).

3.2 Proposed Algorithm

We propose to solve the problem of generating goal-oriented path sequences by passing

in a goal location as an auxiliary input at each step of the prediction, which provides a reminder

to the network about where it should ultimately converge. At each step, the input vector is

concatenated with the desired goal location and the resulting augmented input vector is used to

train an RNN model. The RNN is trained on optimal trajectories that span the entire configuration

12



space, which allows it to internalize an oracle-mimicking behavior that generates optimal path

sequences during rollouts. The network comprises of stacked Long Short Term Memory (LSTM)

layers that preserve information over a horizon of outputs [21], with the output layer being fully

connected to the final LSTM hidden layer. This overcomes the issue of vanishing gradients in

vanilla RNN when the required memory length is more than a few steps, decreasing its memory

capacity. In this work we concern ourselves with fixed short-term memory; our experiments

showed that using LSTMs resulted in better performance over vanilla RNNs, even though training

LSTMs are usually more difficult. Our approach may be used to encode dynamical system

behaviors as well, though we do not explicitly explore this application in this paper. Fig. 3.1 is a

schematic of the network architecture used in our approach. The error signal which is used to

train on is the mean square error (MSE) between the predicted output and the teaching signal.

The number of layers was decided on by empirically converging to an appropriate size based on

the dimensionality of the problem to be solved. Increasing the number of layers as we increase

the dimension of the c-space to capture additional degrees of freedom in the training set lead

to better performance. A practical limit in expanding network size is given by Funahashi and

Nakamura [22] that proved that any finite time trajectory of a given n-dimensional dynamical

system can be approximately realized by the internal state of the output units of a continuous

time recurrent neural network with n output units, some hidden units, and an appropriate initial

condition. Exact numbers for network size and depth are provided in Chapter 4.

3.3 Training Set Creation and Offline Training

A training set consisting of a number of valid paths created by an “expert” planner, which

we call the Oracle. We used A* as our expert to generate an optimal set of paths for training. The

c-space is sampled to create a graph with connected nodes. Two nodes are randomly selected

without replacement (based on a uniform distribution) from the set of nodes present in X f ree

13



and A* is executed to find the optimal path connecting them. This process is repeated N times

to obtain a training set consisting of N “expert” paths. Each generated path is split into their

composing waypoints to make each individual waypoint represent a sample in the training set.

The teaching signal corresponding to each sample then becomes the next waypoint in the path

sequence. That is, if x is a path with τ waypoints, the path is split into {x(0), x(1), ...,x(τ−1)}

and the corresponding teaching signals become {x(1), x(2), ...,x(τ)}. If we assume that x(τ) is

the goal point in a sequence, then the auxiliary input is concatenated as x̃(t) = [x(t),x(τ)], where

t ranges from 0 to τ. The LSTM network is trained on the x̃∀t,N.

3.4 Online Execution through Bi-directional Path Generation

Given a trained network, for testing, we select two points ystart and ygoal (not from the

training set) from X f ree and attempt to roll out a path connecting them while avoiding obstacles.

The network generates a sequence of waypoints until a final connection to ygoal occurs to complete

the path. After the process is terminated, all the sequentially generated outputs are formatted

as waypoints in the generated path. To make the path generating process more robust, a bi-

directional path generation is used 1. We start the generation process from ystart and ygoal points

simultaneously and make the two branches grow towards each other. The process is terminated

when the two branches meet, and the branches are then stitched together to form a complete path.

Fig. 3.2 shows the bidirectional stepping behavior. Instead of forcing the path to “grow” towards

an arbitrarily selected fixed goal point, the network now has the option to target a constantly

shifting goal point (the current point of the other branch). This increases the chance of the

convergence point falling with the Oracle paths on which OracleNet was trained, thus increases

feasibility and success rates, while having no impact on path roll-out time.

1This is not to be confused with bidirectional RNNs [23]
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Figure 3.2: Example of bi-directional path generation (not rewired). The green and the red
marker are the start and the goal respectively. The black path grows from the start while
simultaneously, the magenta path grows from the goal. The process is terminated when the
heads of the paths get within a set distance of each other.

3.5 Repair and Rewire

It is to be expected that OracleNet will never yield an exact duplication of an Oracle’s

behavior. Also, since the expert demonstration paths are sampled randomly on the c-space, there

may be regions in the c-space that the network has never seen in the dataset. Because of these

unseen regions, the generated waypoints may not adhere strictly to obstacle boundaries and cut

corners through obstacle regions at times. This in practice happens less than 3% in all paths

generated by the network. Naive methods may exist such as obstacle padding. However, we

propose a repair module to fix violating waypoints as they appear online while generating the

path. The repairing strategy used is straightforward to implement. When current waypoint x(t) is

generated inside an obstacle region, a direction is randomly selected at a step distance ε from

x(t-1) reach a new candidate xnew(t). Random samples are taken until the first feasible xnew(t) is

found. xnew(t) then replaces xt and then OracleNet continues. An assumption on the step size

ε is made to such that it will not cross over small features in the configuration space. With an

15



Figure 3.3: Example of bi-directional, repaired, and rewired path generation. Figure inset shows
the repair module in action (magenta line). After the path is repaired and converges successfully,
the rewire module is called to remove superfluous nodes and any kinks the repairing may have
introduced (black line).

appropriately chosen ε, feasible paths are generated 100 % of the time in practice. Alternatively,

one can produce candidates xnew(t) by running a single pass of x̃ = [x(t−1),R] where R ∈ X f ree

is a randomly selected goal state. This results in a random walk within the solution space of the

network that effectively produces a similar effect, without requiring the need to define a new

parameter ε. A final strategy is to generate a new x(t) using a one-step output of a motion planner

such as RRT. We chose to take results from the ε method as it was sufficient and fast in achieving

100% success rate in practice with minimal effect on performance.

The repair methods above, along with general network noise, will result in paths that can

be non-smooth. To deal with this, we propose a rewiring process that removes unnecessary nodes

in the paths by evaluating if a straight trajectory connecting two non-consecutive nodes in the path

is collision-free. Similar to the rewiring algorithm used in RRT*, a lightweight implementation

of this algorithm has very little processing overhead and thus can be used without a noticeable

increase in path generation times. It is interesting to note that the final path thus generated and

processed has a practical time complexity of O(n) (as shown through results in Section III).
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The full Algorithm for OracleNet in online path generation is provided in Algorithm 1.

Algorithm 1 OracleNet (Online Path Rollout)
1: procedure ORACLENET(xstart ,xgoal)
2: G← TrainedNetwork() . OracleNet is assumed to be trained
3: xcurrent ← xstart
4: path← []
5: while xcurrent 6= xgoal do
6: xcurrent ← G([xcurrent ,xgoal])
7: if Obstacle(xcurrent) then
8: xcurrent ← Repair()
9: end if

10: path.append(xcurrent)
11: end while
12: path← Rewire(path)
13: return path
14: end procedure
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Chapter 4

Results

Table 4.1: Speed and Optimality of OracleNet benchmarked against A* and RRT* in a 2D
environment

Completion Time Optimality (Ratio of Path Lengths+)
Environment A* (s) RRT* (s) OracleNet (s) OracleNet / A* OracleNet / RRT*

Simple 1 0.08 (0.06) 1.98 (3.68) 0.13 (0.18) 0.94 (0.09) 0.84 (0.16)
Simple 2 0.09 (0.07) 1.23 (1.76) 0.24 (0.18) 0.95 (0.02) 0.86 (0.11)
Simple 3 0.07 (0.06) 0.93 (2.9) 0.16 (0.19) 0.955 (0.02) 0.86 (0.10)
Simple 4 0.08 (0.05) 1.53 (2.43) 0.18 (0.20) 0.96 (0.09) 0.87 (0.12)

Difficult 1 0.07 (0.05) 2.69 (3.54) 0.18 (0.10) 0.96 (0.03) 0.87 (0.10)
Difficult 2 0.07 (0.05) 3.67 (6.31) 0.18 (0.12) 0.96 (0.03) 0.88 (0.12)
Difficult 3 0.09 (0.06) 5.17 (11.57) 0.17 (0.12) 0.95 (0.21) 0.87 (0.12)
Difficult 4 0.05 (0.04) 8.79 (12.81) 0.18 (0.09) 0.94 (0.14) 0.89 (0.11)

Values are listed as “mean (standard deviation)” for 8 different environments.
+Lower is better. Below 1 means that OracleNet produces shorter paths.

To appropriately evaluate the performance and capability of OracleNet, we test it on a

number of distinct environments. The experiments were conducted in a 2D Gridworld with a

point robot having translation capabilities only, 3-link, 4-link, and 6-link robot manipulators.

For all experiments presented here, training is accomplished with Tensorflow [24] and Keras, a

high-level neural network Python library [25], with a single NVIDIA Titan Xp used for GPU

acceleration.
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Figure 4.1: 8 environments are used in the 2D Gridworld experiments. The top row has “simple”
environments, numbering from the left, while the bottom row has “difficult” environments. Each
environment shows a single roll-out of OracleNet. Unlike pathfinding algorithms, no expanding
search is required.
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4.1 2D Gridworld

Fig. 4.1 shows snapshots of 8 environment examples, 4 considered “simple” environments

for popular motion planning strategies such as RRT*, and 4 “difficult” environments. An

environment is considered simple if the obstacles are convex and widely spaced apart, while

difficult environments consist of either a large number of obstacles or highly non-convex obstacles

forming narrow passageways. Each continuous space environment is 100 units in length and

width. A* is run on a unit grid of 100 x 100 on this environment to generate 20,000 valid Oracle

paths for training OracleNet. This set was split in accordance to the 80-20 rule, with 20% being

kept for testing to make sure overfitting does not occur. The network architecture consists of 4

LSTM layers each of 256 hidden units. Due to the similarity in model architectures and dataset

sizes, all 8 cases took 5.5 hours to converge.

To benchmark our algorithms performance with existing motion planning algorithms,

we use RRT* and A*. RRT* is a version of RRT where heuristic cost is added to encourage

optimality of the path in a sampling-based continuous space. Three performance metrics are used:

success rate, roll-out time, and path optimality. A generated path is considered successful if none

of the waypoints encroach into obstacle region. Roll-out time measures the time taken for the

network to generate waypoints from start to goal (or, in the bidirectional case, the time taken

for both branches to meet). Path optimality is simply the fraction of the path length generated

by OracleNet when benchmarked against paths generated by A* and RRT* respectively. 1000

randomly initialized trials were conducted for each of the 8 environments. Table 4.1 shows that

OracleNet manages to be comparable to A* and faster than RRT* even for a small 2D grid while

being slightly more optimal in both cases. This is due to the rewiring module and the network

being able to generate points in continuous space as opposed to being restricted to a discrete

grid in A*. Thus, the proposed algorithm may be a suitable alternative even for small grids with

limited connectivity, if path optimality is the priority.
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4.2 3-Link Planar Manipulator

Figure 4.2: A histogram of the test cases used to evaluate performance on a 3-link arm. Refer
Table 4.2 for means and standard deviations. Note the Gaussian shape of the distribution for
OracleNet, compared to the left-skewed exponential distributions of A* and RRT*. Higher
standard deviations for A* and RRT* cause the generation times to have a much wider spread,
while OracleNet’s much tighter spread indicates its consistency in performance and near fixed-
time execution.

To demonstrate the extensibility of the proposed method to higher dimensions, we tested

the algorithm on a 3-link manipulator. The base link has movement range 0 to 2π while the

subsequent links can move between −π to π. To train the RNN, we discretized the 3-dimensional

joint angle c-space into a 3D uniform grid with 50 nodes on each axis, resulting in a total of 503 =

125,000 uniformly spaced nodes. As in the 2D case, A* is used to generate the training set. To get

an accurate representation of the complete c-space in the training set (which directly correlates

to the increased number of nodes in the grid used here for training), we use 400,000 examples

paths and follow the same steps described for the 2D case. Keeping in mind the increased number

of dimensions to learn, we updated the architecture to have 6 layers with 256 units each. For

our performance evaluation, we randomly generate 1000 pairs of start and goal locations in

continuous c-space. Paired with the repair and rewire modules discussed in the previous sections,
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we observed a 100% success rate in finding feasible paths. Generation times and path optimality

is benchmarked against A* and RRT*. A* for the 3D case, given space connectivity in 3D space,

is allowed to have a maximum of 26 neighbors for maximum path optimality. Table 4.2 shows that

OracleNet scales much better than pathfinding algorithms such as A* and RRT*. An interesting

observation to note is the low standard deviation of path generation times for OracleNet. This is

further expanded on in the histogram of the test cases shown in Fig. 4.2. This is indicative of the

consistency of OracleNet in producing its paths across the entire c-space, whereas A* and RRT*

are heavily influenced by the relative locations of the query points and the obstacles. More about

this is discussed in Section V.

4.3 4-Link Planar Manipulator

To further study performance scaling in higher dimensions, OracleNet is implemented for

4-link robot manipulator, keeping the link geometries and constraints from before. Note that even

though the workspace appears similar to the one used in the previous experiment, the c-space

completely changes due to the extra link. Each joint angle axis of the c-space is discretized

into 40 uniformly spaced nodes, giving rise to a total of 404 = 2.56 x 106 nodes. The network

architecture was updated to a deep network consisting of 6 stacked LSTM layers, each with 400

units. As before, the training set for OracleNet is generated using A*, with a maximum of 1

million valid paths used to train the network. 1000 test cases randomly sampled through the

continuous c-space, and 100 % success rate is achieved. Table 4.2 shows the relevant performance

statistics.
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Table 4.2: Performance of RNN-based motion planners in higher dimensions benchmarked
against A* and RRT*

Completion Time Optimality (Ratio of Path Lengths+)
Environment A* (s) RRT* (s) OracleNet (s) OracleNet / A* OracleNet / RRT*
3-link (3D) 2.707 (4.28) 3.83 (6.68) 0.22 (0.21) 1.01 (0.14) 0.75 (0.20)
4-link (4D) 61.87 (95.07) 18.21 (14.76) 1.18 (0.87) 0.99 (0.13) 0.86 (0.11)
6-link (6D) - 29.32 (6.25) 1.24 (0.72) - 0.85 (0.17)

Values are listed as “mean (standard deviation)”.
+Below 1 means that OracleNet produces shorter paths.

4.4 6-Link Planar Manipulator

Next, OracleNet is demonstrated on a 6-link robot manipulator. To get a reasonably sized

grid for discretization the c-space, we used a very sparse resolution of 10 uniformly spaced

samples per axis, making a total of 106 nodes in the uniform grid. Similar to the previous

experiment, 1 million valid paths generated using A* was used for training. As before, 1000 test

cases were generated using OracleNet with 100 % success rate. Table 4.2 shows the relevant

performance statistics.
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4.5 Baxter Simulation

As a final demonstration of OracleNet’s capabilities, we show its application on a hu-

manoid dual-arm Baxter robot1. We perform two tasks (more about how the tasks were selected

further into this section) with the proposed network architecture and training procedure on a

simulator for the Baxter.

The Baxter robot used for our experiments, shown in Fig. 4.4 2. ROS (Robot Operating

System) SDK (version: ROS Kinetic Kame) is used to control and program the robot with Baxter

RSDK running on Ubuntu 16.04 LTS. ROS is a collection of software frameworks for robot

software development, widely used for perception, planning, localization and mapping, and

various other algorithms. In this experiment, robot control is achieved by passing in joint angle

information at each time-step.

We train the network to output a sequence of 7 DoF joint-angles (for one arm) for the

robot to follow from a starting configuration to a goal configuration. Fig. 4.5 shows the setup of

the environment for the robot. The robot, after training, is expected to generate a list of feasible

configurations (if they exist) connecting given start and goal configurations. Due to the large

number of dimensions in the configuration space, it becomes infeasible to discretize it to a grid

of reasonable resolution and use graph search algorithms such as A* to generate optimal paths.

Instead, we use MoveIt! and leverage Open Motion Planning Library (OMPL) 3 to generate a set

of paths between randomized valid configurations using RRT-Connect [26]. RRT-Connect is an

efficient sampling-based planner that combines RRT’s sampling scheme with a simple greedy

heuristic to generate quick single-query paths.

We generate a relatively small dataset with 100,000 paths and train on it using a model

1Baxter is a robot manufactured by Rethink Robotics. Although originally envisioned as an industrial robot
aimed at small and medium companies, it has gained popularity as a research and teaching tool due its ease of setup
and relative low-cost.

2Image taken from sdk.rethinkrobotics.com, c©2015 Rethink Robotics.
3MoveIt! is an open source motion planning framework that incorporates motion planning, manipulation, 3D

perception, kinematics, control and navigation. For planning in particular, it uses several sample-based planners
defined in OMPL.
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r0.5

Figure 4.4: A diagram of one of the arms of a Baxter robot with its 7 revolute joints labelled.
The robot consists of a torso, 2 DoF head and two 7 DoF arms (shoulder joint: s0, s1; elbow
joint: e0, e1; wrist joint: w0, w1, w2), integrated cameras, sonar, torque sensors, and direct
programming access via a standard ROS interface.

Figure 4.5: The robot is boxed in between three tables with a two-stories shelf in front of it.
Two objects are placed on the shelf - a cuboidal object on the upper level and a duck on the
lower level.
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with a reduced number of layers (2 and 3 layers with 400 units each were experimented with).

Due to the significantly constrained work-space in which the Baxter has to operate, connecting

arbitrary configurations for testing may not always lead to viable paths. Even RRT-Connect, the

“expert planner” used here, frequently failed to generate viable paths before timing-out and since

OracleNet by definition tries to emulate its expert’s behaviour, its failure in generating paths for

certain configurations is only to be expected. We are confident that with a higher quality training

dataset, our algorithm will be able to replicate the near-perfect success rates posted for the 6-Link

manipulator in the previous section. In all cases, however, OracleNet was able to generate smooth

paths connecting the chosen configurations with average and standard deviation of generation

times as 0.56 and 0.39 seconds respectively.

To simulate real-word demands made of planners and manipulation-oriented robots such

as the Baxter, we selected two simple tasks for the Baxter to perform with the joint-angle

sequences being produced by OracleNet. It is important to note at this point that task-planning

is not the objective here, and so the start and goal configurations for each leg of the task were

manually selected. We also take advantage of the fact that the Baxter’s two arms are symmetric.

In other words, by changing signs of joint angles appropriately, one can get both arms to act as

mirror images of each other with a single 7 DoF configuration. With this in mind, it is entirely

feasible to train only on one 7 DoF arm and simultaneously control both arms locally. The caveat

here is that each arm has to be restricted to its half of the workspace, since the algorithm will not

recognize the other arm as an object in the configuration space and so, will not be able to plan

around it while generating paths during testing.

For the first task, we command the robot to move its arms from their initial positions, plan

towards configurations where they are able to grab 4 objects on the shelf, and finally return to

their configurations with the held objects. See Fig. 4.6 for a composite image of the simulated

4The 7 DoF arm of the Baxter does not include its gripping end-effector in its configuration, as shown in Fig. 4.4.
Even though in our results and simulations we show the Baxter “gripping” the objects in question, in practice the
objects are merely attached to the end-effector and act as an extra 9th link of the arm. An alternative approach would
be to use vacuum (suction) grippers to grab and hold on to objects.
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Baxter executing OracleNet generated paths for this task.

For the second task, we demonstrate weak cooperative capabilities of OracleNet with

a simple robot hand-over task (refer Fig. 4.6). Once again, we stress here that our proposed

algorithm does not solve task planning but merely is a vehicle to generate motion plans extremely

fast. The left arm, after being initialized to a position on the left table, is instructed to plan towards

the duck on the shelf. After it reaches the desired configuration and grabs the duck, the left arm is

instructed to plan towards a predetermined hand-over location where it can safely transfer the

object to the right arm without being in danger of colliding with it. Meanwhile, the right arm

also simultaneously moves from its initialized position towards the hand-over location to meet

the left arm. After the duck has been successfully passed between the two arms, the right arm is

then instructed to plan towards to a location on the right arm after which the task is declared to be

successfully executed.
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(a)

(b)

Figure 4.6: (a) A composite image of the Baxter executing the first task. The trail of the arms
show the path taken by them to reach their respective objects. The right arms plans towards
the duck while the right arm plans towards the green cuboid. (b) A composite image of the
Baxter executing the second task. The right arms plans towards the duck and after reaching a
suitable position, grabs it. Meanwhile, the left arm plans towards a predetermined position in
the center for the handover. The right arm then plans towards this position with the duck in
grasp. Finally, after the handover is successfully executed, the left arm, along with the duck,
moves to a position on the left table and the experiment is terminated.

29



4.6 Scalability and Effects of Path Length

Fig. 6.1 shows the scalability of OracleNet with dimensions. In conjunction with Table 4.1,

the figure shows that OracleNet provides minimal improvements to readily accessible algorithms

like A* in low dimensional cases with small grid sizes (low resolution). In spaces with dimensions

greater than 2, OracleNet scales far better, as A* (paired with a Euclidean distance heuristic)

scales exponentially worse with dimensions, and RRT* (depending on the trade-off selected

between step size and path optimality), scales polynomial at best. Results presented in Table 4.2

and Fig. 6.1 present the trends that show a modest increase in execution time for OracleNet while

path optimality rivals A* and far outstrips RRT*.

Fig. 4.7 shows the spread of generation times of paths when arranged as a function of path

length (demonstrated on the 3-link arm). OracleNet has a linear relationship to how far away the

query points are located, meaning that stepping through the environment is done consistently with

a fixed time. For pathfinding algorithms such as A*, the farther apart the query points are, the

more chances are a number of nodes required to be explored increases exponentially (polynomial

with an appropriately chosen admissible heuristic). The fixed-time behavior of OracleNet is

especially valuable in time-critical scenarios where a feasible path must be known in fixed time.
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Figure 4.7: OracleNet and A* path generation times plotted as a function of path lengths for the
3-link robot presented here. Note the near fixed-time generation times for OracleNet, irrespective
of where the query points are located in the entire c-space.
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Chapter 5

Efficient Sample Generation

This chapter deals with the discussion of a few additions to the original algorithm presented

in Chapter 3. Even though the experiments performed in this chapter seem to have far better

results than the original OracleNet as defined in the preceding chapters, due to constraints of

time a more thorough investigation could not be performed and therefore, the results presented in

Chapter 4 still stand as OracleNet’s benchmark.

Recall that the network is trained on a set of dense paths - i.e., paths that have been

generated by searching over a graph of nodes. A waypoint in a given path is considered to be

contributing if after performing the rewiring operation described in 3.5, that waypoint is retained.

In a configuration space that is not overly crowded with obstacles, this might mean that several

paths will have points that do not contribute to the path. The question then becomes - is it

possible for the network to be trained to generate only contributing points in path with the implicit

understanding that the straight line connecting two contributing points remains completely in

collision-free configuration space?

The network as defined in the 3 takes in the current waypoint in the path and based on

the context of the supplied goal, outputs the next waypoint in the path. Under this new idea of

generating only contributing points in a path, the trained network should output only a sequence
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(a) (b)

Figure 5.1: Two of the gridworld environments used in Chapter 4 with only the contributing
points in the entire training set plotted. The darker a point is, the more persistently it appears in
the training set and the more likely it is being produced as a contributing point in context of a
path.

of contributing points, thereby greatly reducing the total number of points generated per path.

To do this, the training set has to be processed accordingly. Each path in the training set is ran

through the rewiring algorithm and all the non-contributing points are removed. Since we use A*

to generate our training set and due to its property of generating optimal paths over the defined

graph, certain sections of the graph tend to be visited more frequently than others. This ends up

reducing the training set to a relatively small subset of the total nodes that persistently contribute

the most in paths connecting arbitrary points. Fig. 5.1 shows an example of this compacted

training set for two sample environments.

Since the network now can be trained on this reduced data-set, the network size can also

be suitably scaled down. This adds to the already substantial speed-up provided by having to

generate only contributing points. Experiments were performed with this scaled down dataset

and network on some of the gridworld environments presented in Chapter 4. The results were

promising when measured with the metrics defined in the preceding chapter. Fig. 5.3 shows this in

action on two 2D Gridworld environments and a 3 dimensional configuration space derived from a

3-Link Manipulator. Note the relative lack of superfluous non-contributing points in the generated
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path. Since the straight lines connecting each of these points together remains completely in

collision-free configuration space, the network becomes free from having to generate dozens of

points.

Figure 5.2: A comparison of average path generation times for the original OracleNet and the
modified version presented in this chapter. The largest reduction in path generation time comes
from the higher dimensional configuration spaces, where we believe we overestimated network
sizes in the first place.

Fig. 5.2 shows an overlay of path generation speeds for the original OracleNet algorithm

and the modified version presented in this chapter. The combined effect of smaller networks and

fewer forward passes dramatically reduce total path generation times, as evidenced in the graph.

This further strengthens our claim of OracleNet being a fixed-time planner which is orders of

magnitude more favourably scalable than traditional planners, as the increase in path generation

times with increasing configuration space dimensions is shown to be negligible.
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(a) (b)

(c)

Figure 5.3: Sample paths generated by the modified OracleNet path generation network. The
effect of going from generating dozens of points to generating less than 5 has a dramatic effect
on how many times the network has to perform a forward pass and therefore, speed of path
generation.
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Chapter 6

Conclusion

The three main qualities required of any successful motion planner are feasibility, speed,

and optimality. While feasibility is usually non-negotiable, speed and optimality can often be

traded for each other depending on what the priorities are. This work attempts to achieve both

high speed as well as optimality while simultaneously preserving feasibility. The experiments

performed in the various environments presented cover a range of cases that support this effort.

Using a discrete uniform grid to build the training set allows us to estimate the efficiency

of the dataset and the generalizing ability of the network. The fact that it is possible to successfully

generate paths between two continuous free floating points when it is trained only on a sparse

discrete grid indicates generalizing ability of the network. The 6-link experiment is a good

example of this. Even with just 10 uniformly spaced discrete samples per axis, the network

managed to find optimal collision-free paths connecting continuous points sampled arbitrarily

in the c-space. A second metric used to define training set efficiency is the so-called “c-space

compression factor”, F . This factor refers to the ratio of all collision-free paths that can possibly

be generated on the grid to the number of paths actually used in the training set. A well-trained

network with strong generalizing capabilities will have a high value for this ratio. Table 6.1 shows

the F values recorded for the experiments presented in Section III. The 2D experiments conducted

36



Figure 6.1: A comparison of average path generation times for our algorithm, A*, and RRT*
for all the cases presented here. Because of the unreasonably high complexity of running A* in
a 6-dimensional c-space with full connectivity, it was chosen not to be included. The scalability
for online path generation is far better for OracleNet and produces near-optimal paths through
the entire space which cannot be done practically with other competing methods (i.e. saving and
referencing a subset of optimal paths in memory)

here are low-dimensional spaces with a higher fraction of obstacle samples, therefore a relatively

large dataset is required to represent the obstacles implicitly. On the other hand, the sparsity

of high dimensional spaces can be leveraged to get good generalizing performance even with

a relatively small dataset. Note that F , on its own, is not sufficient to estimate the generalizing

power of the network; it has to be taken in context with the resolution of the grid used to discretize

the continuous c-space.

Another effect of network size beyond the required training data directly correlate with

path generation times, an increasing network size will increase the path generation time at a

comparable rate. While overfitting is avoided (as described in Section III), larger networks produce

minimal performance improvements, and it is worth empirically honing it to an appropriate

network size. A strategy to reduce network size while retaining performance and potentially

improving robustness is using dropout [27].

A unique property of OracleNet is with regards to real-time execution. Unlike any other
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Table 6.1: C-space compression factors for the environments presented in Section IV

Environment C-space Compression Factor, F
Gridworld (2 dimensional c-space) 2500

3-link (3 dimensional c-space) 25000
4-link (4 dimensional c-space) 3,000,000
6-link (6 dimensional c-space) 1,000,000

motion planning strategy (with the exception of the potential field strategies), a movement can be

initiated immediately before a path through the environment is found. Because OracleNet encodes

optimal behaviors, one can execute OracleNet under the belief that any step it takes will move

towards the right direction. Issues such as repair and rewiring can be resolved by considering an

N-step horizon, which is a typical strategy in online motion planning and specifically re-planning.

Thus, in practice, one can expect that a robot can move and react instantaneously once given its

goal state.

The speed and invariance of performance to environments do come at a cost, namely the

creation of a dataset, and time and computation power to accurately generate paths. This cost

is easily accepted if the algorithm is viewed as an extremely fast way to create online optimal

and feasible motion plans for any start and goal state, in any trained environment, given that

the process of creating training data and training of the network occurs offline. As mentioned

previously, potential real-world applications of this algorithm include warehouse scenarios, robot

grasping, and hand-off.

Given a foundational framework for mimicking Oracles using neural networks, several

extensions can be pursued. Future work can involve adapting to dynamic environments, unseen

environments via transfer learning, improving sampling strategies for Oracles (i.e. training data

selection), and combinations of these methods for task-based planners.
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Appendix A

Performance trends with variable dataset

and network sizes

To analyze the learning capabilities of OracleNet, we performed experiments on environ-

ment ’Difficult 2’ (refer to Fig. 4.1) with variable dataset and network sizes. Success rates and

path optimality (benchmarked against A*) are used to measure performance trends. For obvious

reasons, it is not possible to compare all dataset sizes to all network sizes, therefore the trends

presented here are meant to serve as an approximate guide to selecting reasonable datasets and

network configurations. Note that all trends presented here do not involve the use of the repair

and rewire modules, since the purpose is to (1) study the role of dataset and network sizes in

generating successful paths, and (2) to show that with sufficient data and an appropriately chosen

well-trained network, OracleNet is able to generate near-optimal feasible paths on its own and

repair is needed only to handle the edge cases while rewire takes it closer to being absolutely

optimal. Thus, the paths generated for the analysis presented here are directly generated by the

network and do not involve any correction/processing.
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Figure A.1

A.1 Variable Dataset Sizes

The network size is kept fixed here (refer to the network architecture described in 4) and

the dataset size is incrementally increased to a maximum of 100,000 valid A* generated paths.

It is to be expected that the network will predict paths more accurately when a larger training

set is provided. Note that success rates reach greater than 90% with 20,000 training paths and

continue on an upward trend till it reaches 99% when 60,000 paths are considered for training.

Path optimality for OracleNet climbs quickly to reach A*’s level of optimality and does not seem

to be as dependent on dataset size as success rate (only the optimality statistics of successful

paths are considered).

From the graph, it can be inferred that selecting a dataset size between the two afore-

mentioned values to get a good raw success rate while relying on repair/rewire to handle the

remaining 3 % of the cases is the reasonable strategy to choose. Also, the environment chosen

here has a large number of arbitrarily placed obstacles leading to a high degree of non-linearity in

path shapes, hence a larger than average dataset may be required.
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Figure A.2

A.2 Variable Network Sizes

The dataset size is kept fixed here at 100,000 valid paths while the network size (number

of parameters, with each increment indicating an additional layer with 256 units) is kept variable.

Note that the network configuration used in the paper and in the previous section has 2 million

(2 M) parameters. It has already been established in the previous section that using 100,000

paths with 2 M parameters leads to > 99% success rate, which is corroborated here as well. It is

interesting to note the falling performance metrics when network size grows beyond a certain

range. This can be attributed to the network having too many trainable weights as compared to

training data which causes it to overfit quickly and perform poorly with unseen test sets.
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[13] David González, Joshué Pérez, Vicente Milanés, and Fawzi Nashashibi. A review of
motion planning techniques for automated vehicles. IEEE Transactions on Intelligent
Transportation Systems, 17(4):1135–1145, 2016.

[14] Roy Glasius, Andrzej Komoda, and Stan CAM Gielen. Neural network dynamics for path
planning and obstacle avoidance. Neural Networks, 8(1):125–133, 1995.

[15] Nutan Chen, Maximilian Karl, and Patrick van der Smagt. Dynamic movement primitives in
latent space of time-dependent variational autoencoders. In Humanoid Robots (Humanoids),
2016 IEEE-RAS 16th International Conference on, pages 629–636. IEEE, 2016.

[16] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. In Advances in Neural Information Processing Systems, pages 2154–2162, 2016.

[17] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobatics through
apprenticeship learning. The International Journal of Robotics Research, 29(13):1608–1639,
2010.

[18] Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G Caldwell, and Aude G Billard.
Learning and reproduction of gestures by imitation. IEEE Robotics & Automation Magazine,
17(2):44–54, 2010.

[19] Jaeyong Sung, Seok Hyun Jin, and Ashutosh Saxena. Robobarista: Object part based
transfer of manipulation trajectories from crowd-sourcing in 3d pointclouds. In Robotics
Research, pages 701–720. Springer, 2018.

[20] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal on Robotics
and Automation, 4(2):193–203, 1988.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[22] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by contin-
uous time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[23] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

43



[24] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, and Matthieu Devin. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[25] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[26] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE
International Conference on, volume 2, pages 995–1001. IEEE, 2000.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

44




