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Hereditary, and AHR-Dependent Components
Paul C. Boutros1,2*, Ivy D. Moffat1, Allan B. Okey1, Raimo Pohjanvirta3,4
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Abstract

Rat is a major model organism in toxicogenomics and pharmacogenomics. Hepatic mRNA profiles after treatment with
xenobiotic chemicals are used to predict and understand drug toxicity and mechanisms. Surprisingly, neither inter- and
intra-strain variability of mRNA abundances in control rats nor the heritability of rat mRNA abundances yet been established.
We address these issues by studying five populations: the popular Sprague-Dawley strain, sub-strains of Long-Evans and
Wistar rats, and two lines derived from crosses between the Long-Evans and Wistar sub-strains. Using three independent
techniques – variance analysis, linear modelling, and unsupervised pattern recognition – we characterize extensive intra-
and inter-strain variability in mRNA levels. We find that both sources of variability are non-random and are enriched for
specific functional groups. Specific transcription-factor binding-sites are enriched in their promoter regions and these genes
occur in ‘‘islands’’ scattered throughout the rat genome. Using the two lines generated by crossbreeding we tested
heritability of hepatic mRNA levels: the majority of rat genes appear to exhibit directional genetics, with only a few
interacting loci. Finally, a comparison of inter-strain heterogeneity between mouse and rat orthologs shows more
heterogeneity in rats than mice; thus rat and mouse heterogeneity are uncorrelated. Our results establish that control
hepatic mRNA levels are relatively homogeneous within rat strains but highly variable between strains. This variability may
be related to increased activity of specific transcription-factors and has clear functional consequences. Future studies may
take advantage of this phenomenon by surveying panels of rat strains.
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Introduction

The brown Norway rat, Rattus norvegicus, is a major model

organism for pharmacogenomic and toxicogenomic research and

is widely used to assess the potential human toxicities of drugs

[1,2,3]. Rat research also has a strong physiological focus and a

long history of disease-related model systems [4,5], although rat

genetics is currently more rudimentary than mouse and other

model organisms. The recent sequencing of the rat genome has

increased the amount of mechanistic work done in this model [5],

and has underpinned additional pharmacogenomic and toxicoge-

nomic studies [6,7].

An experimental system is only as valuable as our understanding

of its limitations. If an experimenter cannot identify, understand,

and ultimately control sources of variability, the system will not

lead to robust experimental conclusions. When dealing with a

model organism, it is necessary to consider the variability between

members of the population as well as among different sub-

populations of the same species. These features are captured in

analyses of intra- and inter-strain variability amongst presumed

genetically identical members of the population.

For transcriptomic studies, several groups have evaluated intra-

and inter-strain variability in various model organisms. For

example, the relative contributions of gender, genotype, and age

to transcriptional variance in Drosophila have been assessed in detail

[8,9]. In mice, several studies have considered the effects of strain-

to-strain variability on behaviour [10,11]. A few analyses linking

mRNA levels to sequence variation in human cell culture lines

have also been performed [12,13,14]. Indeed, in these latter cases

and a few other studies the heritability of mRNA expression

profiles has also been assessed [15,16,17].

Surprisingly, however, these important characterizations of

model organisms have not been extended to the rat; only very

limited comparisons of inter-strain variability have been per-

formed [18,19,20]. To estimate the intra- and inter-strain

variability in mRNA abundance in rat liver, one might consider

the results from a closely related species, such as mouse. A recent

study of mouse liver mRNA levels demonstrated relatively high

intra-strain variability, coupled to relatively low inter-strain

variability across five mouse strains (3 in-bred and 2 out-bred)

[21], although large inter-strain variability has also been reported

[17]. If inter-strain differences are large in the rat, this would
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challenge the generality of the commonly applied current practice

of using single rat strains for pharmacogenomic and toxicoge-

nomic studies.

We assessed the effect of strain on mRNA expression profiles of

control rat liver by surveying three strains and two lines. In striking

contrast to the published mouse data, we found very large inter-

strain variability. This variability is non-random: genes differen-

tially expressed across strains are clustered in islands of the

genome, are enriched for specific functional categories, and

appear to be partially driven by differential transcription-factor

activities. Further, we explicitly link mRNA expression to a

particular allele whose variation across the five strains is known

and well-characterized, the aryl hydrocarbon receptor. Expression

profiles in rat liver are highly heritable, with the vast majority of

genes displaying directional genetics. Finally, the genes that display

inter-strain variability are different in rat than in mouse.

Results

To evaluate intra- and inter-strain variability in mRNA

abundances in the rat we assessed hepatic mRNA levels in control

animals (corn oil treated) from three (sub-) strains and two lines of

rat. We chose to focus on liver because of its relatively low degree

of cellular heterogeneity and its importance in drug and xenobiotic

metabolism. The three strains selected were Sprague-Dawley (S-D,

out-bred), Long-Evans (Turku/AB) (L-E, in-bred) and Han/Wistar

(Kuopio) (H/W, random-bred/closed-colony). S-D and the back-

ground strains of L-E and H/W are amongst those most widely

used in biomedical research. The two lines are descendants of L-

E6H/W crosses, and are termed Line-A and Line-C [22]. Corn

oil is expected to have minimal effects on basal hepatic mRNA

abundances, but was included in our experiments to mimic actual

pharmacological and toxicological studies where it is a frequently

used solvent for lipophilic compounds. We carefully validated the

quality and performance of our microarray data (Figures S1, S2,

S3, and see below).

For each strain or line, we assessed hepatic mRNA expression in

four independent animals. We selected those genes that are most

variable and subjected them to pattern-recognition [23]. This

unsupervised machine-learning analysis perfectly separated the

five strains/lines (Figure 1). Importantly, the two lines clustered

together. Thus a simple and unbiased analysis shows profound

inter-strain differences in steady-state hepatic mRNA levels.

Analysis of Intra-Strain Variability
To assess intra-strain variability, we performed a variance

analysis on our transcriptome-wide array data. For each array

feature we calculated the within-strain (W) and between-strain

variances (B) using a mixed model. We calculated the total

variance (T = W+B) and used the ratio W/T as an unbiased

estimator of intra-strain variability in mRNA abundances. This

type of analysis has been applied to the study of cancer [24], but to

our knowledge this is its first application to the genetics of gene

expression. Our complete W/T results are given in Table S1.

We analyzed the distribution of W/T values at different

expression levels within each strain by dividing ProbeSets into four

groups based on their normalized signal intensity: ,4 (unex-

pressed), 4–8 (low level of expression), 8–12 (medium level of

expression), and .12 (high level of expression). Histograms for

each of these groups (Figure 2A) show a unimodal distribution

centred near 0.5 (indicating equal intra-strain and inter-strain

variability), combined with a sharp peak near 1.0 (indicating all

variance is within strains).

Previous analyses of cancer samples [24] showed that W/T

values were tightly associated with gene function. Thus we tested

the hypothesis that W/T values are associated with specific

functional groups by performing Gene Ontology enrichment

analysis using the GOMiner tool. We divided ProbeSets into ten

equally-spaced groups, based on W/T values ranging from 0 to 1,

and performed GO enrichment analysis on each. We selected all

GO terms strongly enriched in at least one group (p,1025) and

subjected them to divisive hierarchical clustering (Figure 2B).

Several trends are evident: protease inhibitors tend to have low

W/T values, lipid-metabolizing genes tend to have intermediate

ones, and RNA-binding genes tend to have high ones. We note

that the number of genes in each interval differs slightly, creating

differences in power that are unaccounted for in this analysis. Our

complete analysis relating W/T to Gene Ontology terms is given

in Table S2.

Analysis of Inter-Strain Variability
Our variance analysis suggested that most genes expressed in

control rat liver showed greater inter-strain variability than intra-

strain variability. To quantify the inter-strain variability we

employed a linear-modelling analysis [25]. We compared the

mRNA levels of all ten pairs of strains/lines: complete data for all

ProbeSets are available in Table S3. At a false-discovery rate of

1%, the average pair of strains had 5586311 differentially-

expressed ProbeSets. Importantly the two descendants of L-E6H/

W crosses (Line-A and Line-C) were the most similar pair, with

only 85 ProbeSets differentially expressed between them. The

rankings of strain-to-strain variability were consistent across a

broad range of FDR thresholds (Figure 3A). To confirm the

unsupervised analysis described above, we filtered ProbeSets based

on the F-statistic from the linear-model fit and performed

clustering (Figure S4). An identical clustering profile was observed

regardless of whether ProbeSets were selected based on overall

variance filter or on the F-statistic. Thus our unsupervised analysis,

our variance analysis, and our statistical analysis all confirm that

inter-strain variability exceeds intra-strain variability by a large

margin.

To validate our high-throughput results, we embarked on

extensive validation by real-time PCR. We selected 21 genes for

validation, selected to have a wide-range of differential expression

and mRNA abundance. For each of these genes, we assayed its

mRNA levels in three or more strains, using between three and six

animals for each strain. In total, then, we performed 366 RT-PCR

validations. We calculated all pair-wise fold-changes and com-

pared them to the fold-changes calculated from the microarray

data (Table S3). We plotted the array and PCR results against one

another (Figure 3B) and observed a high correlation between the

two assays (Pearson’s R = 0.839, p,2.2610216).

Analysis of AHR-Dependent Variability
The previously published rat genome sequence was derived

from a highly inbred sub-strain of Brown Norway rat [26] and, to

our knowledge, no genome-wide SNP or copy-number analyses of

the five rat strains/lines we studied exist. If such datasets were

available it would be possible to attempt to link specific genomic

features with variations in mRNA profiles. In the absence of such a

genome-wide sequence analysis, however, there is one specific

locus known to differ across the five strains/lines: the aryl

hydrocarbon receptor (Ahr).

It has been well-established that the Ahr regulates induction of

multiple drug-metabolizing enzymes, mediates dioxin toxicity

[27], and plays important developmental roles [28,29]. One of the

three strains used here, Han/Wistar, bears a mutant Ahr [30]. This

mRNA Levels in Control Rat Liver
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Ahr variant leads to a dramatic resistance to dioxins, but with no

apparent developmental defects. While one of the lines (Line-A)

also bears this mutant Ahr, the other (Line-C) and the Long-Evans

and Sprague-Dawley strains harbour wild-type AHR proteins.

To assess the global effect of this variant AHR on mRNA levels

in rat liver we performed a second linear-modelling analysis. Each

of the five strains/lines was modelled as having strain-specific and

AHR-specific components. Many ProbeSets appeared to show

Ahr-variant specific expression patterns: 15 ProbeSets showed an

effect of the variant Ahr at a 0.1% FDR, 42 ProbeSets were

affected at 1% FDR, and 105 ProbeSets were affected at 5% FDR

(Table 1 and Table S4). This finding is particularly striking given

the fact that the Line-A and Line-C strains have nearly identical

transcriptomes (Figures 1 & 3, and Figures S1 & S4).

Focusing on the 105 ProbeSets affected by Ahr genotype at 5%

FDR, we interrogated their response to stimulation by AHR

ligands. We compared these 105 ProbeSets to a study of

alterations in mRNA abundances in four strains of rats induced

by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a potent AHR

ligand [31]. In all H/W, L-E, and Line-A rats there was minimal

relationship between the genes induced by TCDD (Figure 4A–C),

with correlations ranging from 20.06 to +0.03. In Line-C rats

(Figure 4D). However, there was a significant association, with a

modest, but statistically-significant correlation of 0.19

(p = 3.361026). We then looked at genes stimulated by TCDD

in mouse liver [32] to see if there was any cross-species

conservation and, again, found no correlation (Figure 4E).

These data suggested that the vast majority of genes basally

affected by AHR genotype differ from those stimulated by

exogenous ligands – a similar conclusion to that reached by study

of liver [33] and kidney [32] of Ahr2/2 mice. We thus compared

the rat genes to those mouse genes affected by ablation of the Ahr

locus. We observed a small, but statistically significant correlation

of 0.14 (p = 0.0035, Figure 4F). This small, but non-random

overlap between mouse and rat at the basal level mimics

observations in TCDD-exposed animals [34,35]. Four genes

showed statistically significant changes in both species: branched

chain keto acid dehydrogenase E1 (up in rat, down in mouse),

glyoxalase 1 (up in both species), beta ureidopropionase (down in

both species), and GrpE-like 1 (down in both species).

Because the Han/Wistar and Line-A rats that bear the mutant

Ahr are very similar genetically, it is theoretically possible that the

Ahr-dependent expression patterns are artifacts of recombination

events. If this were the case we would expect to see these

concentrated into islands within the genome. When we mapped

these 105 ProbeSets onto the genome no such islands were

observed (Figure 5A).

We employed the same approach to assess if genes that show

inter-strain variability were concentrated into specific regions of

the genome. We selected those ProbeSets showing significant

inter-strain variability in the pair-wise analysis (p,0.001 based on

the F-statistic) and mapped them onto the rat genome (Figure 5B).

Putative ‘‘hotspots’’ are evident on chromosomes 1, 4, 7, 10, 13,

16, and 20. Previously, in mouse, we found that genes whose

mRNA levels are influenced by Ahr status alone as well as genes

that respond to AHR activation by dioxin are widely dispersed

across the genome with only modest clustering into ‘‘hotspots’’

[33].

Figure 1. mRNA Abundances Across Five Rat Strains and Lines. The hepatic mRNA abundance profiles of five rat strains and lines were
determined using microarray methods. Following pre-processing, the variance of each ProbeSet was calculated: those having a variance above 0.25
were subjected to divisive hierarchical clustering using the DIANA algorithm. Data were mean-centered and root-mean-square-scaled prior to
clustering. Columns are genes, rows are individual animals. The colour-bar for the rows indicates the strain or line of that animal. Yellow, Long-Evans;
Red, Han/Wistar; Dark Blue, Line-A; Light Blue, Line-C; Green, Sprague-Dawley.
doi:10.1371/journal.pone.0018337.g001

mRNA Levels in Control Rat Liver
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Figure 2. Intra-Strain Variability in mRNA Abundance. To assess the variability of mRNA abundances within and between strains of rats we
performed a variance analysis using a mixed model. For each ProbeSet, we calculated the variance between strains (B), the variance within strains (W)
and, from these, the total variance (T = W+B). The ratio W/T shows how much of the variability in signal is related to strain-assignment and how much
is related to individual variability. A W/T value of 1 indicates high within-strain variability, while a value of 0 indicates high inter-strain variability. A)
Histograms showing the distribution of W/T values at four different mRNA levels calculated for each strain show a generally unimodal distribution

mRNA Levels in Control Rat Liver
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Analysis of Function by Gene Ontology
The above analyses identified numerous genes whose mRNA

levels are strain-specific or AHR-dependent by varying degrees of

magnitude. It is important to know if genes that show strain-

dependent differences in mRNA abundance represent a random

selection of the genome or are biased towards specific functional

pathways. If specific functions are enriched this would imply that

the results of pharmacogenomic and toxicogenomic studies will

depend on strain-selection. For genes exhibiting Ahr-dependent

mRNA levels, functional enrichment can shed light on the

mechanism by which the aberrant Ahr isoform protects animals

from dioxin toxicity.

To address these questions at a genome-wide scale we employed

gene-ontology enrichment analysis [36] for each pair-wise

comparison amongst strains, as well as for genes exhibiting Ahr-

dependent expression. We identified the most enriched GO terms

across all eleven conditions by summing the log10|P| values and

selecting terms with a cumulative score below 210 (i.e. an

unadjusted cumulative enrichment probability of 10210). We

subjected these terms to divisive hierarchical clustering (Figure 6).

This clustering analysis has three salient features. First, AHR-

specific GO terms and GO-terms generated from the Line-A vs.

Line-C pair-wise comparison cluster closely together. This is

reassuring, since the two lines should be highly similar outside of

their AHR loci because of their common origin in L-E6H/W

crosses [22]. Second, Han/Wistar (red) displays a consistent

difference from the other strains/lines, as demonstrated by their

co-clustering. Third, the most distant cluster contains the

comparison of the dioxin-resistant Line-A rats with the two

dioxin-sensitive strains, Sprague-Dawley and Long-Evans.

To confirm that our findings are independent of the p-value

threshold of 10210, we repeated this analysis using GO terms with

cumulative probabilities below 1025 (Figure S5), 1027.5 (Figure

S6), 10220 (Figure S7), and 10230 (Figure S8).

Having examined the global perturbation of pathways across

different strains, we next considered the specific GO terms

enriched in these analyses. Selected results are in Table 2; the

complete GO analysis is in Table S5. Some functional groups are

specifically altered in only some pair-wise comparisons. For

example, calcium ion binding (GO:0005509) genes are differen-

tially expressed between S-D and LnA rats (p = 3.8961028) but

not in any other pair-wise comparisons. Other functions are

differentially altered in one strain relative to all others, such as

oxidoreductase activity (GO:0016491) which is differentially

expressed in H/W rats relative to the other four strains/lines

(p,1.0561024 for all four pair-wise comparisons). Finally, and

perhaps most interestingly, genes exhibiting Ahr-dependent mRNA

abundance are enriched for those involved in cholesterol

absorption (p = 1.0561025).

Analysis of Transcription-Factor Binding-Site Enrichment
Our microarray analyses identified both inter-strain and AHR-

dependent trends in mRNA expression profiles. The Gene

Ontology analysis outlined above suggests that these trends are

functionally coherent: specific biological pathways or functions

were enriched, while others were not. We hypothesized that the

most probable mechanism underlying this occurrence would be

differential activity of specific transcription-factors. To test for this

differential occurrence we performed an analysis of transcription-

factor binding-sites (TFBSs). We analyzed the promoters of genes

showing strain- or Ahr-dependent mRNA expression for enrich-

ment or depletion of the sequence motifs for 123 different site-

specific DNA-binding proteins. For each TFBS, our analysis

determined the probability that this site was enriched or depleted

amongst genes whose mRNA abundance showed Ahr- or strain-

dependency.

The results from this analysis (Table 3) indicate that nine

separate TFBSs are enriched in one or more contrast. As with the

analysis of GO functions, some effects were strain-specific, while

others were more general. One prominent strain-specific effect is

the enrichment of putative ID1 target genes differentially

expressed in Long-Evans relative to Line-A, Line-C, and

Sprague-Dawley (p = 0.003 for each comparison). A more general

Figure 3. Pair-Wise Comparisons of Rat Strains/Lines. A) Linear-
modelling was used to identify differentially-expressed ProbeSets
between all ten pairs of rat strains/lines. The number of ProbeSets
differentially expressed for each pair (y-axis) is plotted as a function of
the P-value threshold (x-axis). The ranking of different pairs remains
consistent, independent of the threshold selected. B) To validate our
analysis 21 genes were also assessed using gold-standard real-time RT-
PCR. For each gene all pair-wise comparisons were made and the fold-
changes calculated. This led to 131 comparisons that were made by
both RT-PCR and microarray. When these are plotted in log2-space it is
clear that the two assays yield highly correlated measurements
(Pearson’s R = 0.839; p,2.2610216).
doi:10.1371/journal.pone.0018337.g003

with a secondary peak with high W/T values. The distribution generally flattens as expression levels rise. B) ProbeSets were divided into ten groups
based on their W/T values, and subjected to Gene Ontology enrichment analysis. All GO terms enriched at p,1025 in at least one group were
selected and subjected to divisive hierarchical clustering. Rows represent GO terms, columns represent groups with specific W/T ranges, and the
individual cells in the heatmap represent the 2log10 of the p-value for enrichment of the GO term in that group.
doi:10.1371/journal.pone.0018337.g002
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effect is enrichment of AP2 binding-sites in eight of the eleven

strain pairs. Two TFBSs were enriched in genes with Ahr-

dependent abundances: AP2 and NR2F1 (COUP-TF1).

Heritability of mRNA Abundance
The complex inheritance of quantitative traits can occur in

several ways. If the phenotypes of the offspring lie between the

extremes of the two parents, then the trait is said to display

directional genetics. If, on the other hand, the phenotype shows

more extreme values in the offspring than in the parents, then the

trait is said to display interacting loci. Because our study contains

the mRNA expression profiles of two lines descended from L-

E6H/W crosses, along with those of the parental strains, we could

distinguish between these two possibilities for each ProbeSet on

the array.

To analyze the heritability of mRNA expression across all loci,

we calculated separately where the mRNA expression profiles of

the Line-A and Line-C progeny lie relative to the two parental

strains. Distance values of 0.0 indicate that mRNA levels in the

line are equivalent to those in the lower-abundance strain; values

of 1.0 indicate levels equivalent to the higher-abundance strain. If

the distance is less than 0 or greater than 1, then the mRNA levels

of the line lie outside the two parental strains. We plotted the

results separately for ProbeSets with greater L-E signal than H/W

signal (Figure 7A) and those where H/W signal is greater than L-E

signal (Figure 7B). In each case a very strong peak between 0 and 1

was observed, with few extreme outliers. These results indicate

that the majority of ProbeSets follow directional genetics. A third

phenomenon, transgressive segregation, could not be evaluated

here because only two crosses were available.

To rigorously identify outliers than might contain evidence of

interacting loci, we searched our pair-wise linear model for

ProbeSets that displayed statistically significantly more extreme

signals in either of the two lines than in the two parents. In total,

41 ProbeSets were found to have genetic interactions, including 7

found in both Line-A and Line-C (Asgr2, Ctnnb1, Galt, Garabarapl2,

RGD1311563, Slco2a1, and an expressed locus). The full set of

interacting loci is given in Table S6.

Cross-Tissue Conservation of Inter-Strain Variability
We wondered if genes that showed strain-dependent mRNA

levels in liver would be similar or different from those that showed

strain-dependent mRNA levels in other organs or tissues. As a

simple way of analyzing this effect we used a public dataset of rat

genes that showed strain-dependent abundances in kidney of two

strains: Sprague-Dawley and Fischer 344 [18]. We took their

dataset, mapped the GenBank identifiers to UniGene build

Rn.171 and extracted the F-statistics from our linear model.

Where multiple ProbeSets corresponded to a single gene, we made

no assumptions about which ProbeSet was more accurate and

directly averaged the F statistics. The kidney study divided genes

into three overlapping groups: those showing mRNA abundances

Table 1. Selected ProbeSets Showing AHR-Dependent mRNA Levels.

ProbeSet Symbol Entrez Gene ID M Q Gene Title

1384240_at Agtr1a 24180 6.9 3.76610215 angiotensin II receptor, type 1 (AT1A)

1369291_at Agtr1a 24180 5.8 4.66610213 angiotensin II receptor, type 1 (AT1A)

1381968_at Creg_predicted 289185 22.3 4.0161027 cellular repressor of E1A-stimulated genes
(predicted)

1372342_at Mrvldc1 309375 5.9 3.1461026 MARVEL (membrane-associating) domain
containing 1

1368826_at Comt 24267 22.9 6.4461026 catechol-O-methyltransferase

1387981_at Olr59 170816 3.6 3.9161025 olfactory receptor 59

1376796_at Rab14 94197 1.1 2.3861024 RAB14, member RAS oncogene family

1387144_at Itga1 25118 23.3 4.3861024 integrin alpha 1

1368171_at Lox 24914 6.7 1.2761023 lysyl oxidase

1367593_at Sepw1 25545 22.3 1.7761023 selenoprotein W, muscle 1

1372925_at Sirt3_predicted 293615 2.3 2.0061023 sirtuin 3 (silent mating type information
regulation 2, homolog) 3 (S. cerevisiae)
(predicted)

1368172_a_at Lox 24914 3.4 2.3561023 lysyl oxidase

1368155_at Cyp2c12 25011 23.9 8.7261023 cytochrome P450, family 2, subfamily c,
polypeptide 12

1367609_at Mif 81683 1.2 1.3461022 macrophage migration inhibitory factor

1375936_at Dsc2 291760 22.9 1.9161022 desmocollin 2

1388917_at Myo1d 25485 21.0 2.0261022 myosin ID

1370154_at Lyz 25211 21.8 2.8661022 lysozyme

1367988_at Cyp2c23 83790 20.5 3.4161022 cytochrome P450, family 2, subfamily c,
polypeptide 23

1370698_at Udpgtr2 286954 1.4 5.1161022 liver UDP-glucuronosyltransferase,
phenobarbital-inducible form

Following pre-processing, a linear-modelling approach was used to identify ProbeSets associated with AHR status. A subset of these is shown here. The M-values
represent the magnitude of difference in expression caused by the mutant AHR in log2 space. For example, 1368826_at has an M-value of 22.9, indicating a 7.5-fold
repression in signal intensity in rats that harbour the variant AHR. The column Q gives the false-discovery rate (a multiple-testing adjusted p-value).
doi:10.1371/journal.pone.0018337.t001
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dependent on diet, gender, and strain. For all genes in those three

groups that could be mapped to our dataset, we extracted their F-

statistics and summarized them into boxplots (Figure 8A). Genes

showing strain-dependent mRNA abundances in rat kidney

showed a slight, but statistically-insignificant trend towards higher

F-statistics in our liver dataset.

These data are limited by the use of different types and number

of strains used in the two studies. Nevertheless, they do suggest that

strain-dependent mRNA profiles will be tissue-specific. Further

studies will be needed to address this question rigorously.

Cross-Species Conservation of Inter-Strain Variability
The extent of inter-strain variability in hepatic mRNA levels is

very large: hundreds of genes display inter-strain variability. This

variability is non-random, as demonstrated by the clustering of

biological replicates, the functional coherency of the set of

Figure 4. Comparison of Ahr Effect in Other Datasets. We next studied the set of genes whose mRNA levels were different between rats
harbouring the wildtype Ahr allele (i.e. Long-Evans, Sprague-Dawley, and Line-C rats) and those harbouring the mutant AhrH/W allele (i.e. Han/Wistar
and Line-A). We examined the response of these genes to a potent AHR ligand, TCDD, in four rat strains, in wildtype C57/BL6J mice, and in Ahr2/2

mice. A) The effects of the AhrH/W genotype in control rats were uncorrelated to the effects of TCDD in H/W rats (R = 0.034, P = 0.60) B) The basal
effects of the AhrH/W genotype in rats were uncorrelated to those of TCDD in L-E rats (R = 0.036, P = 0.26) C) The basal effects of the AhrH/W genotype
in rats were uncorrelated to those in Line-A rats (R = 20.064, P = 0.16) D) The basal effects of the AhrH/W genotype in rats were weakly, but statistically
significantly, correlated to those in Line-C rats (R = 0.19, P = 3.361026) E) The basal effects of the AhrH/W genotype in rats were uncorrelated to the
effects of TCDD in C57BL/6J mice (R = 0.026, P = 0.65). F) The basal effects of the AhrH/W genotype in rats were weakly, but statistically significantly,
correlated to the effects of genetic ablation of the Ahr locus in mice (R = 0.14, P = 0.0035).
doi:10.1371/journal.pone.0018337.g004
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perturbed genes, and the identification of specific TFBSs enriched

in each strain-to-strain comparison. Further, analysis of the two

lines descended from L-E6H/W crosses indicates that these

differences are largely hereditary, with the vast majority following

directional genetics.

Given this broad set of similarities, we hypothesized that similar

sets of genes would display inter-strain variability in rat and its close

rodent relative, mouse. To test this hypothesis we downloaded data

from a previously published survey of steady-state hepatic mRNA

levels in five strains of mouse [21]. To ensure optimal matching of

homologs between these two species, we re-annotated each gene on

the mouse array by mapping the provided GenBank accession IDs

directly to a current UniGene build (Mm.168). We then employed

the Homologene database to identify rat and mouse homologs. In

total, 1332 matches between array elements were identified,

representing 1018 unique pairs of genes.

We first compared the reported mouse Q-values and our own

rat P-values (Figure 8B). Surprisingly, no association was observed

(Spearman’s rho = 20.04, p = 0.22). We repeated this analysis on

the F-statistics and, again, did not see an association (data not

shown). To ensure that the presence of multiple matches to each

gene was not confounding our analysis we collapsed replicate

ProbeSets in three different ways: by taking the mean, the

minimum, and the maximum. The correlation analysis was

repeated for each of these three datasets, and again no association

was observed (data not shown). We conclude that genes that

display inter-strain variability in the mouse are not more likely to

display inter-strain variability in the rat, at least across the five

mouse strains and five rat strains/lines considered in these two

studies. Interestingly, the published mouse study found only 1.25%

(66 of 5,285) of the transcripts on their array to be variable across

strains at a 10% pFDR. By contrast, using an FDR threshold two

orders of magnitude more stringent (0.1%), we identified three

times more inter-strain variability (733/15,923 = 4.6%).

Discussion

Intra-Strain Variability
The variability in mRNA abundances amongst individuals has

been the subject of several previous studies [8,9,21,37] in other

species, but previously only one limited study (with no public data)

has addressed this question in the rat [38]. Inter-individual

variability is a major confounding variable in clinical studies

[39,40,41], thus the better we understand this phenomenon, the

better we will be able to control for it. To address this issue, we

introduced a mixed-modelling method, previously used success-

fully in oncogenomic studies, for comparing the variance within

and amongst populations [24]. We show that a large number of

genes display inter-individual variability and that the ratio of inter-

individual to inter-strain variability is strongly related to gene

function (Figure 2B). This finding corroborates that from an earlier

study of Fischer F344 rats, where 8,833 genes were differentially

expressed in at least one rat [38]. It is important to note that, by

itself, this analysis says nothing about the magnitude of variance,

only about how it is partitioned within individuals and strains. To

address the limitations of the mixed-model analysis, we also

verified these results using two independent methods: unsupervised

clustering and linear-modelling.

Taken together, these data suggest that a large number of genes

exhibit small-magnitude intra-strain variability. Our analysis could

be strengthened by the use of technical replicates, to allow

modelling of the variability associated with animal dissection,

RNA extraction, and microarray hybridization. However all of

these sources of variability would exaggerate intra-strain variabil-

ity, making our conclusions a lower-bound on inter-strain

heterogeneity. Further, it is important to note that all analyses

presume that members of the populations are genetically identical.

This is not strictly the case for the one out-bred (S-D) and the one

closed-colony (H/W) strain used here. However, S-D and H/W

rats are very widely used, and the lack of genetic identity would

heighten, rather than reduce intra-strain variability, making our

conclusions conservative. We also note that in the previous study

of F344 rat, the authors suggest that less than 1% of genes show

two-fold changes, corresponding to ,88 genes – a similar number

to that observed here [38].

Inter-Strain Variability
Inter-strain variability affects, on average, 538 ProbeSets

between each pair of strains/lines in this study. This is an

Figure 5. Genome-Wide Mapping of Differential Expression. To
determine if differentially-expressed ProbeSets were localized to
specific portions of the rat genome we plotted the entire genome,
with one chromosome per line. Each gene was plotted with a white bar
representing its location on the chromosome and its position on the
plus (up) or minus (down) strand. A) Genes showing AHR-dependent
expression have been colour-coded in red (down-regulated) or blue
(up-regulated). The AHR itself is in black on chromosome 6. B) Genes
displaying strain-specific mRNA abundances were identified by using a
linear model and selected ProbeSets where the F p-value,0.001. These
genes are plotted in black, and form clear clusters throughout the
genome.
doi:10.1371/journal.pone.0018337.g005
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Figure 6. Gene Ontology Analysis of Differentially-Expressed Genes. To identify functional trends and similarities amongst pairs of strains,
we again employed Gene Ontology enrichment analysis. Those genes differentially expressed (padjusted,0.05) in each strain were used, and only
those GO terms significantly enriched at a cumulative probability of pcumulative,10210 were selected. The p-values for these selected GO terms were
subjected to divisive hierarchical clustering, with the contrasts as rows, the GO terms as columns, and the colour of individual cells indicating the
2log10 of the p-value for enrichment. The two colour bars on the right side of the figure indicate the two strains compared in this contrast. Yellow,
Long-Evans; Red, Han/Wistar; Dark Blue, Line-A; Light Blue, Line-C; Green, Sprague-Dawley; Black, AHR.
doi:10.1371/journal.pone.0018337.g006

Table 2. Selected Enriched Gene Ontology Categories.

GO ID AHR HW HW HW HW LE LE LE LnA LnA LnC GO Term

LE LnA LnC SD LnA LnC SD LnC SD SD

GO:0005509 20.04 0.00 20.02 20.01 20.01 21.64 20.09 20.30 20.01 27.41 20.33 calcium ion binding

GO:0005737 21.40 23.55 210.07 27.80 27.38 21.67 23.49 217.14 22.17 20.08 210.07 cytoplasm

GO:0005739 22.49 21.02 26.52 23.66 22.21 20.56 20.84 26.54 22.41 20.10 23.96 mitochondrion

GO:0005770 20.78 24.67 20.57 22.40 24.37 20.28 20.11 21.88 20.52 20.92 22.71 late endosome

GO:0005886 20.28 20.23 0.00 20.09 20.54 20.47 20.03 20.04 20.03 28.46 20.64 plasma membrane

GO:0006082 20.91 22.66 20.93 20.30 23.52 20.91 20.43 29.95 21.43 20.01 21.03 organic acid
metabolic process

GO:0006629 22.31 22.32 23.37 21.50 27.18 20.92 21.92 27.95 25.16 20.08 21.87 lipid metabolic
process

GO:0008202 21.05 20.52 22.03 21.23 24.10 21.10 21.96 24.64 23.60 20.03 23.07 steroid metabolic
process

GO:0009060 0.00 20.50 27.30 20.40 20.39 20.36 20.13 22.44 20.44 20.41 20.48 aerobic respiration

GO:0016491 22.10 24.83 28.63 23.98 25.07 20.51 21.37 210.42 23.72 20.04 22.42 oxidoreductase
activity

GO:0019882 20.52 20.98 21.22 23.65 25.12 20.37 21.14 25.29 20.29 21.59 23.29 antigen processing
and presentation

GO:0030300 24.98 0.00 22.03 21.48 0.00 20.23 21.12 20.26 24.08 20.34 21.39 regulation of
cholesterol
absorption

GO:0048037 21.40 20.67 26.40 21.59 23.11 20.71 20.51 25.04 24.32 20.09 21.94 cofactor binding

GO:0048731 20.05 20.03 0.00 20.11 20.01 21.96 20.86 20.01 20.01 29.95 20.41 system development

ProbeSets differentially expressed between strains/lines or showing AHR-dependent effects were identified using linear models and subjected to Gene Ontology
enrichment analysis to identify specific pathways or functions modulated. A selection of enriched GO terms is shown. The numeric values are log10 P-values for
enrichment of the GO term. For example, a value of 23 indicates a 0.001 probability that the observed enrichment occurred by chance alone. Each column corresponds
to a separate contrast, either of two strains (e.g. H/W vs. L-E or L-E vs. S-D) or of the AHR-dependent genes.
doi:10.1371/journal.pone.0018337.t002
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underestimate of the overall inter-strain variability because the two

lines used here are closely related to their parental strains.

With such large inter-strain variability, it is critical to

understand if these genes are randomly distributed across the

genome or if, instead, they are biased to specific locations and

functions. We found that genes that exhibit inter-strain variability

are localized into ‘‘islands’’ in the genome (Figure 4), which may

reflect trends in allelic heterogeneity or copy-number variation

[42]; large variations in copy-number exist between different

inbred mouse strains [43]. Further, specific functional groups are

enriched in each strain (Figure 5), increasing the probability that

the observed expression differences will have large phenotypic

effects. We considered one possible mechanism for these

expression differences by performing a library-based search for

transcription-factor binding-sites. Multiple transcription-factor

motifs were found to be enriched in a combinatorial fashion

across these strains.

Thus our results suggest that variability in hepatic mRNA

abundances may cause some of the known phenotypic differences

among strains. This variability may be caused in part by copy-

number variation and in part by altered transcription-factor

activities, although the relative contribution of these factors

remains to be determined.

AHR-Dependent Effects
It would be of great interest to know which single-nucleotide

and copy-number polymorphisms are present in each of the

animals of each strain/line used in this study so that we could

comprehensively estimate their effect on mRNA abundances.

Such a study is currently prohibitively expensive. Therefore, we

focused on the one genomic locus whose status was known and

variant amongst the five strains/lines: the aryl hydrocarbon

receptor (Ahr) locus. Our analysis of mRNA changes associated

with the Ahr locus provides an exemplar of how multi-strain,

multi-replicate transcriptomic data can be used to assess the

functional impact of specific polymorphisms. It would be of clear

interest and utility to expand this analysis to groups of strains with

varying genotypes of other critical pharmacological or toxicolog-

ical genes, especially genes encoding nuclear receptors that

regulate transcription such as CAR, GR, LXR and PXR.

The AHR is a major xenobiotic sensor and also plays important

role in normal physiology [27,28,29,44]. Previous work by our

group showed that an aberrant form of the AHR leads to a

profoundly reduced sensitivity to many dioxin-induced toxicities

[22,30,45]. Two of the strain/lines used here (H/W and LnA)

harbour the aberrant Ahr, while the remaining three do not. We

used linear-modelling to identify Ahr-dependent changes in mRNA

abundance and identified 105 ProbeSets showing significant

associations with Ahr status at a 5% false-discovery rate. To

determine if these changes were the effects of other cis-acting loci

linked with the Ahr during recombination, we looked at their

genomic distribution. None of the 105 ProbeSets were located in

close proximity to the Ahr locus itself, and no ‘‘islands’’ of

expression were identified that might indicate recombination-

mediated effects. Accordingly, our results appear to reflect genuine

AHR-mediated changes in abundance.

The gene whose transcript level was most greatly affected by

AHR genotype was angiotensin II receptor type I (Agtr1a); levels

were more than 50-fold higher in rats that have a deletion in the

AHR transactivation domain than in rats with wildtype AHR

(Table 1). The angiotensin II receptor plays a key role in

regulation of blood pressure. Interestingly, if the AHR is knocked

out in mice, plasma levels of angiotensin II, the main ligand for the

angiotensin II receptor, rise 9-fold [46]. Further, angiotensin II is

elevated in Ahr-null mice, and the AHR-associated gene Bmal1 lies

within a hypertension-susceptibility locus [47]. These observations,

when considered in combination with the elevation of angiotensin

II receptor in rats with an altered AHR transactivation domain,

suggests that one physiologic function of the AHR is to suppress

activity of the angiotensin II system and reduce the potential for

Table 3. Analysis of TFBS Enrichment.

Motif ID AHR HW HW HW HW LE LE LE LnA LnA LnC Motif Name

LE LnA LnC SD LnA LnC SD LnC SD SD

MA0003 0.007 ,0.001 NS ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 TFAP2A AP2

MA0017 0.002 NS NS NS NS NS NS NS NS NS NS NR2F1 NUCLEAR
RECEPTOR

MA0034 0.998 NS NS NS NS NS NS NS 0.998 NS NS GAMYB TRP-CLUSTER

MA0049 NS ,0.001 ,0.001 ,0.001 NS ,0.001 ,0.001 ,0.001 NS ,0.001 ,0.001 Hunchback ZN-FINGER,
C2H2

MA0057 NS 0.022 0.038 0.010 ,0.001 ,0.001 ,0.001 ,0.001 NS ,0.001 NS ZNF42_5-13 ZN-
FINGER, C2H2

MA0065 NS NS NS ,0.001 NS NS NS NS NS NS NS PPARG-RXRA NUCLEAR
RECEPTOR

MA0074 ,0.001 NS NS NS NS NS NS NS NS NS NS RXR-VDR NUCLEAR
RECEPTOR

MA0115 NS NS ,0.001 ,0.001 NS ,0.001 ,0.001 NS NS ,0.001 ,0.001 NR1H2-RXR NUCLEAR
RECEPTOR

MA0120 NS NS NS NS NS 0.003 0.003 0.003 NS ,0.001 ,0.001 ID1 ZN-FINGER, C2H2

ProbeSets differentially expressed between strains/lines or showing AHR-dependent effects were identified using linear models. The promoter regions for these genes
were extracted from UCSC build rn4 of the rat genome and analyzed for transcription-factor binding-site (TFBS) enrichment using a library of 123 position-weight
matrices. Statistical significance was estimated using five separate tests, and only those matrices enriched in at least four of the five are reported here. The Motif ID is the
identifier given in the JASPAR library, and the numeric columns correspond to the p-value for enrichment (close to zero) or depletion (closer to one) of that motif in
each contrast. The p-values reported here are from 1,000 permutations of a background dataset of hepatically expressed genes (see Methods). NS, not significant
(p,0.05).
doi:10.1371/journal.pone.0018337.t003
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hypertension and subsequent cardiac hypertrophy and fibrosis

[46].

Comparison of Rat and Mouse Inter-Strain Variability
Our experiments clearly show that inter-strain variability is a

major phenomenon in the rat liver, involving hundreds of genes.

Mechanistically it may be driven in part by copy-number variation

or other regional genomic factors, and in part by differences in

transcription-factor activities. Additional factors likely play a role,

including epigenetic variations in methylation patterns or histone-

modifications. We sought to determine if those genes displaying

inter-strain variability in rat would be predisposed to it in another,

closely related species, the mouse.

Upon mining a public dataset [21], we found no association

between inter-strain variability in the two species. Formally, this

may be a result of technical artifacts such as circadian effects [48],

the small number of strains/lines used in each study (five), or the

use of somewhat different statistical models. A more thorough and

systematic cross-species study, incorporating technical replication,

will be required to fully address these concerns. Nevertheless, our

results provide an upper-bound on this variability and we believe

that these confounding factors are minor. First, our study

identified hundreds of genes, yielding a large number of data-

points to be compared between the two species. Even subtle effects

can be inferred from such large datasets. Second, while the

statistical models are different, they are highly related, and in each

study the specific genes in question were validated in multiple

ways.

If strain-variability is not evolutionarily conserved, then this

suggests that no single strain will be optimally representative of

humans. Rather, to appropriately model human variability it may

be most efficient to survey a panel of diverse strains. The

techniques used here might be usefully employed to select this

panel by identifying the most diverse representatives to be

included.

Methods

Ethics
All animal study plans were approved by the Animal

Experiment Committee of the University of Kuopio and the

Provincial Government of Eastern Finland (Approval ID: ESLH-

2008-07223/Ym-23).

Animal Handling
Three rat strains/lines harbouring wildtype Ahr were selected:

Sprague-Dawley (S-D), Long-Evans (Turku/AB) (L-E), and Line-C

(LnC). Two rat strains/lines harbouring mutant AHR were

selected: Han/Wistar (Kuopio) (H/W) and Line-A (LnA). Back-

ground information on the H/W and L-E strains can be found

elsewhere [49]. The mutant AHR has been described elsewhere

[30], as have the Line-A and Line-C strains [22]. Four animals of

each strain were obtained from the breeding colonies of the

National Public Health Institute, Division of Environmental

Health, Kuopio, Finland; they were fed and housed under

identical conditions in this facility. All animals were males 10–12

weeks old. Liver was harvested between 8:30 and 11:00 from rats

treated by gavage with corn oil vehicle for 19 hours. The dose of

corn oil was 4 mL/kg, which corresponds to approximately 15%

of the daily calorie intake of the rats. The oral gavage procedure

may have introduced some modest changes in mRNA expression

[50]. Total RNA was extracted from both rat and mouse livers

using Qiagen RNeasy kits according to the manufacturer’s

instructions (Qiagen, Mississauga, Canada). Total RNA yield

was quantified by UV spectrophotometry and RNA integrity was

verified using an Agilent 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, CA).

mRNA Quantitation by Real-Time PCR
Total RNA (2 mg) was reverse-transcribed into cDNA using

oligo-dT primer p(dT)15 (Roche Applied Science, Laval, QC,

Canada) and Superscript II RNA polymerase according to the

manufacturer’s instructions (Invitrogen, Carlsbad, CA). Real-time

PCR was performed on an MX4000 system (Stratagene, La Jolla,

CA) using in-house designed primers and 59fluorogenic probes to

amplify from 250 ng of cDNA, as described elsewhere [51] and

using Applied Biosystems gene expression assays to amplify from

100 ng of cDNA as described by the manufacturer (Applied

Biosystems, Forest City, CA). Table S7 provides sequences for all

primers/probe sets used.

Normalized expression (NE) was calculated using NE = 22DDCt,

where Ct is the threshold cycle to detect fluorescence. PCR

Figure 7. Heritability of mRNA Abundances. To analyze the
heritability of mRNA abundances we used the two parental strains (L-E,
H/W) and two lines resulting from L-E6H/W crosses (LnA, LnC). For each
ProbeSet on the array we calculated where the Line-A and Line-C
expression levels lie relative to the two parental strains. Values of zero
indicate equivalent expression to the lower of the two parental strains,
while values of one indicate equivalent expression to the higher of the
two parental strains. A) Gaussian density plots of expression distances
for Line-A and Line-C rats for ProbeSets where L-E expression is higher
than H/W expression. B) Gaussian density plots of expression distances
for Line-A and Line-C rats for ProbeSets where L-E expression is lower
than H/W expression.
doi:10.1371/journal.pone.0018337.g007
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amplification efficiency was determined from a 10-fold serial

dilution of a pool of cDNA; efficiency ranged from 90–110% for

all genes examined. The data were normalized to either Actb or

Gapdh.

For each gene, the PCR measurements were compared between

all pairs of strains using a two-tailed t-test with Welch’s adjustment

for heteroscedasticity. Fold-changes were calculated, then log2-

transformed for plotting.

Pre-Processing and Statistical Analysis of Microarray Data
Affymetrix RAE230A arrays were run according to manufac-

turer’s protocols at The Centre for Applied Genomics at The

Hospital for Sick Children (Toronto, Canada). Four independent

biological replicates (separate animals) were run for five strains of

rat – Long-Evans, Han/Wistar, Sprague-Dawley, Line-A, and

Line-C – for a total of 20 arrays. The raw array data have been

deposited into the GEO repository with accession: GSE10448.

Microarray data were loaded into the R statistical environment

(v2.6.1) using the affy package (v2.12.0) [52]. These data were pre-

processed using the GC-RMA version of the RMA pre-processing

algorithm [53], as implemented in the gcrma package (v2.10.0).

Data were investigated for spatial and distributional homogeneity.

All clustering analyses employed divisive hierarchical clustering

using the DIANA algorithm as implemented in the cluster package

(v1.19.9) and with Pearson’s correlation as a similarity metric.

Heatmaps were visualized using the lattice (v0.17-4) and

Figure 8. Comparison of Inter-Tissue and Inter-Species Variability. A) We compared inter-strain variability in mRNA abundances between
different rat tissues by using a public dataset dataset of inter-strain variability in kidney of two rat strains. We reannotated their data to UniGene build
Rn.171. The kidney study grouped genes into four categories: all genes (All), genes showing diet-dependent mRNA abundances (Diet), genes
showing gender-dependent mRNA abundances (Gender), and genes showing strain-dependent mRNA abundances (Strain). The F-statistics for genes
in each of these four groups were log2-transformed and summarized in box-plots. While genes showing a strain-dependence in kidney showed a
trend towards strain-dependence in liver, this was not statistically significant (p.0.05). B) We compared genes that have strain-dependent hepatic
mRNA abundances in rat to those with similar characteristics in mice by using a public dataset of five mouse strains. We reannotated their data to
UniGene build Mm.168 and employed build 58 of the Homologene database to identify mouse and rat ortholog pairs. For each ortholog pair
identified, we plotted the unadjusted P-value for rat inter-strain variability (y-axis) against the published q-value for mouse inter-strain variability (x-
axis). No association between the two metrics is observed (Spearman’s rho = 0.04, p = 0.22).
doi:10.1371/journal.pone.0018337.g008
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latticeExtra (v0.3-1) packages. Clustering was either based on

global variance thresholds (per ProbeSet, across all 20 animals) or

on global F-statistic thresholds (see below).

Intra-strain variability was assessed using the ratio of the within-

strain variance to the total variance, as described previously [24].

Binning of samples by signal intensity was done separately for each

strain.

Model-based t-tests were fit using the limma software package

(v2.12.0) and subjected to an empirical Bayes moderation of the

standard error [25]. P-values from this analysis were corrected for

multiple testing with false-discovery rate adjustment [54]. Two

separate linear models were fit:

Simple Model : Yi~HWizLEizLnAizLnCizSDi

Genetic Model : Yi~HWizLEizSDizAHRi

In the simple model, each strain/line is represented as a

separate term in the linear model fit. A contrast matrix

corresponding to all pair-wise comparisons was extracted, and

the global F-statistic was used as a proxy for inter-strain variability

in mRNA levels.

In the complex model, the proportion of the three parental

strains is used to set the coefficients in the linear model fit. Thus

the Han/Wistar arrays have a value of 1.0 for the H/W

coefficient, and 0.0 for the L-E and S-D coefficients. The LnA

and LnC animals receive values of 0.5 for the H/W and L-E

coefficients, and 0.0 for the S-D coefficient. The value of the AHR

coefficient is set as 1.0 if the animal harbours a variant AHR and

0.0 if the animal harbours a wild-type AHR.

For both models, we set our significance threshold at

padjusted,0.05. For the simple model we assessed threshold

sensitivity by varying the p-value threshold in log steps from

1021 to 1027 and calculated the number of differentially-expressed

ProbeSets at each value.

To identify genes with evidence for interacting loci [15]

we focused on those ProbeSets with statistically significant

(padjusted,0.05) differential expression between Long-Evans and

Han/Wistar rats. For each such ProbeSet we calculated the

distance between Line-A and Line-C rats and the two parental

strains using:

Dis tan cetest~
Ytest{Ylow

Yhigh{Ylow

Where ‘‘test’’ is either Line-A or Line-C, Y indicates the

normalized signal intensity, and ‘‘high’’ refers to either Long-

Evans or Han/Wistar rats depending on which has higher signal

intensity, and ‘‘low’’ refers to either Long-Evans or Han/Wistar

rats depending on which has lower signal intensity. Gaussian kernel

densities were fit to the distance values in the R statistical

environment (v2.6.1). To identify specific ProbeSets displaying

strong evidence of interacting loci we used the simple model

described above. We selected those ProbeSets where the

normalized signal intensity of Line-A or Line-C rats was

significantly different (padjusted,0.05) from both the parental

strains with identical coefficient signs. That is, cases where Line-

A or Line-C expression lay outside both of the parental strains.

Genes were annotated with version na24 of the Affymetrix

NetAffx annotation (http://www.affymetrix.com). Genomic local-

ization of AHR-responsive genes was performed using the

geneplotter (v1.16.0), annotate (v1.16.1), and rae230a (v2.0.1)

packages, all in version 2.6.1 of the R statistical environment.

Transcription-Factor Binding-Site Analysis
We used a library-based method to search for transcription-

factor binding-sites enriched or depleted in specific gene sets [55].

Using the CLOVER software package [56] we queried a 2005

version of the JASPAR database containing 123 position-weight

matrices [57]. To ensure that our results were robust, five separate

permutation tests were used. We employed simple mononucleotide

and dinucleotide randomization as well as randomization of the

position-weight matrices themselves. Additionally, two back-

ground datasets were used. The first contained the promoters of

all genes present on the RAE230A array and the second contained

the promoters of all putatively expressed genes. Expressed genes

were identified as those with an average normalized signal

intensity of 4 or greater. This threshold was derived by analyzing

the expression of y-chromosome genes in females [24]. In total

5042 of the 9735 unique Entrez Gene IDs on the RAE230A array

were ‘‘expressed’’ at this threshold. For each permutation test

1,000 randomizations were performed with a p-value threshold of

0.05 and a scores threshold of 5. Only motifs significantly enriched

or depleted in at least four tests are reported. We note that for

highly repetitive matrices, randomization of the matrix columns

will be biased against true signals. Genomic sequences from

21,000 to +1,000 relative to the transcriptional-start site were

used, for sequences of 2,001 bp. These sequences were extracted

from build rn4 of the rat genome using annotation from the

UCSC genome browser database downloaded on 2007-04-07

[58].

Gene Ontology Enrichment analysis
Functional enrichment analysis was performed using the

GOMiner tool [36]. All rat databases, look-up options, ontologies,

and evidence levels were included. False-discovery rates were

estimated with 1,000 randomizations and a 10% FDR threshold

was set. We formed the matrix of GO-terms by contrasts using all

pair-wise contrasts from the simple model and the AHR term from

the complex model. The log10(P) values for each GO-term were

summed. Subsets of the matrix containing those GO terms with

sums of at least 5, 7.5, 10, 20, and 30 were generated. These

subsets were clustered using Pearson’s correlation as the distance

metric and the DIANA divisive hierarchical clustering algorithm

as implemented in the cluster package (v1.11.9) for the R statistical

environment (v2.6.1). The clustering patterns were visualized using

heatmaps as generated by the lattice (v0.17-4) and latticeExtra

(v0.3-1) packages.

Comparison of AHR Genes With Public Data
Genes showing basal differences in mRNA abundance between

strains bearing different AHR alleles were further compared to

public datasets. First, we analyzed microarray data on the effects of

ligand stimulation in rat liver. A dataset studying the response to

TCDD of four rat strains in our study (H/W, L-E, Line-A, and

Line –C) was analyzed [31]. ProbeSets were mapped between the

two studies based on Entrez Gene IDs, and only those statistically

significant in either dataset (padjusted,0.05) were retained. The

magnitude of the response to TCDD was then plotted against the

magnitude of the response to variant AHR alleles. The Pearson

correlation between these two variables was calculated. Second,

we analyzed microarray data on the effects of both AHR genotype

and ligand stimulation in mouse liver [32]. ProbeSets were

mapped separately to Entrez Gene IDs for the rat and mouse

datasets, and then merged using the Homologene database (build
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64). For ProbeSets that were statistically significant in either

dataset (padjusted,0.05) the magnitude of the response to variant

rat alleles in the current study was plotted against the magnitude of

the mouse response to TCDD and against the magnitude of the

effect of ablation of the AHR locus in mice. Again, Pearson’s

correlation was calculated between each pair of variables. These

analyses were performed in the R statistical environment (v2.9.2)

and used the lattice package (v0.17-26) for plotting.

Kidney-Liver Comparative Analysis
To contrast inter-strain variability in two rat tissues, we

downloaded the supplementary data from Seidel et al. [18]. We

updated the annotation of their microarray by directly matching

each GenBank accession ID to a UniGene cluster and Entrez

Gene ID using UniGene build Rn.171. We then matched genes

between our simple pair-wise comparison analysis and their

dataset using Entrez Gene IDs. We extracted the F-statistic for

each matching gene. In cases where multiple ProbeSets existed for

a single gene, we averaged the F statistics for all ProbeSets to avoid

biasing our analysis. Boxplots of the F-statistics in log2-space were

created for each subset predefined by Seidel and co-workers [18],

as well as for all genes matching between the two arrays. Two-

tailed unpaired t-tests were used for statistical analysis, with

Welch’s adjustment for heteroscedasticity. All analyses were

performed in the R statistical environment (v2.6.2).

Rat-Mouse Comparative Analysis
To compare inter-strain variability between rat and mouse we

downloaded the supplementary data from Pritchard et al. [21]. We

updated the annotation of their microarray by directly matching each

GenBank accession ID to a UniGene cluster and Entrez Gene ID

using UniGene build Mm.168. We then matched the mouse genes to

their rat homologs using build 58 of the Homologene database.

Correlation analyses used Spearman’s rho. To account for cases

where multiple rat ProbeSets existed for a single murine gene, we

repeated our analysis with unaggregated data, data aggregated by

taking the mean F-statistic across ProbeSets, data aggregated by

selecting the minimum F-statistic across ProbeSets, and data

aggregated by selected the maximum F-statistic across ProbeSets.

Supporting Information

Figure S1 Agglomerative hierarchical clustering of un-pre-

processed data.

(PPT)

Figure S2 RNA degradation plots for all arrays in experiment.

(PPT)

Figure S3 Density plot of all Probes prior to normalization.

(PPT)

Figure S4 Divisive hierarchical clustering of expression data

using an F-statistic filter.

(PPT)

Figure S5 Clustering of Gene Ontology data at Pcumulative,1025.

(PPT)

Figure S6 Clustering of Gene Ontology data at Pcumulative,1027.5.

(PPT)

Figure S7 Clustering of Gene Ontology data at Pcumulative,10220.

(PPT)

Figure S8 Clustering of Gene Ontology data at Pcumulative,10230.

(PPT)

Table S1 Complete W/T analysis for all ProbeSets. The within-

strain (W), between-strain (B), and total (T) variances are given for

every ProbeSet, along with the mean signal intensity, the expression

quartile (high, medium, low, unexpressed) and the ratio W/T.

(XLS)

Table S2 Complete table of log10 p-values for enrichment of all

GO terms for all W/T groups. Each decile of W/T (i.e. 0.0 to 0.1)

is listed as a column, and the rows correspond to all GO terms

represented by genes on the microarray. Each cell gives a log10|P|

value for the enrichment (Fisher’s Exact test) of that GO term in

genes in that decile of W/T.

(XLS)

Table S3 Complete linear model fit for all coefficients using simple

pair-wise model. For all ProbeSets on the microarray (rows) a number

of database annotations are given (UniGene Cluster, Gene Name and

Symbol, Entrez Gene ID, SwissProt Accession). A series of ten

columns gives the multiple-testing adjusted p-value for differential

expression of each ProbeSet in each pair of rat strains/lines.

(XLS)

Table S4 Complete linear model fit for all coefficients using

AHR-dependent model. For all ProbeSets on the microarray

(rows) a number of database annotations are given (UniGene

Cluster, Gene Name and Symbol, Entrez Gene ID, SwissProt

Accession). The average signal intensity (A) is also given,

followed by the coefficients of each strain and of the AHR

effect. The t-statistics and naı̈ve and multiple-testing adjusted p-

values are also given for each term in the model. Finally, the F

statistic and p-value for the entire model are shown for each

ProbeSet.

(XLS)

Table S5 Complete table of log10 p-values for enrichment of all

GO terms for all contrasts. For each contrast from the strain-wise

linear-model fit (columns) the p-values for enrichment of each GO

term (rows) are shown in log10-space.

(XLS)

Table S6 Table of all interacting loci identified. A list of the 48

ProbeSets/lines that show evidence of interaction, with the line

exhibiting signal intensities outside either of its parental strains.

The Gene Symbol, Name, Entrez Gene ID, and order of strains is

given for each.

(XLS)

Table S7 List of all primer and probe sequences used in real-

time PCR experiments.

(XLS)
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