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ABSTRACT OF THE DISSERTATION 

 

Gardening Effect of Host Genetics on Human Intestinal Mucosal Microbiome  

and Its Link to Inflammatory Bowel Disease 

 

by 

 

Maomeng Tong 

Doctor of Philosophy in Molecular and Medical Pharmacology 

University of California, Los Angeles, 2014 

Professor Jonathan Braun, Chair 

 

 Inflammatory bowel disease (IBD) is a set of chronic, relapsing inflammatory 

diseases of the intestine. The two major subtypes of IBD are Crohn's disease (CD) and 

ulcerative colitis (UC). Although the pathogenesis of IBD remains largely unknown, 

Crohn’s disease is considered to result from the interaction of environmental factors, 

including intestinal microbiota, with host immune mechanisms in genetically susceptible 

individuals. Recent advances in sequencing technologies have allowed us to characterize 

the IBD associated dysbiosis in unprecedented depth. However, phylogenetic profiling 

can only provide limited information on the functional implication of these alterations. To 

address this analytical challenge, we developed the novel mucosal lavage sampling 

approach, which enabled the profiling of multi’omic molecular features including 



iii 

 

microbiome, metaproteome and metabolome. Combined with host genomic information, 

these tools can provide us with unprecedented understanding of the dynamics of host–

microbial interaction, and help us to investigate the pathogenesis of inflammatory bowel 

diseases.  

 Another analytical challenge to identify microbial taxa consistently representing 

IBD associated dysbiosis is the high complexity and low inter-individual overlap of 

intestinal microbial composition. This difficulty can be overcome by an ecologic analytic 

strategy to identify modules of interacting bacteria (rather than individual bacteria) as 

quantitative reproducible features of microbial composition in normal and IBD mucosa. 

We developed the strategy to analyze microbial composition using microbial co-

occurrence network approach. This strategy uncovered 5 reproducible functional 

microbial communities (FMCs) detectable in the mucosa of all individuals. The 

quantitative levels of two FMCs were significantly associated with IBD states. Imputed 

metagenome analysis indicated the functional importance of the disease associated 

modules reflected by the enrichment of virulent and pathogenic pathways. Thus, these 

modules appear to define novel microbial communities within the intestinal microbial 

ecology, some of which are commonly and stably modified by the IBD disease state, and 

may be of particular relevance for microbial pathogenesis and intervention.  

 Using this experimental and bioinformatic framework, we investigated the 

microbial gardening effect of FUT2 gene and its link to Crohn’s disease. 

Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H 

antigen in body fluids and on the intestinal mucosa. Non-secretors, who are homozygous 
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for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to 

Crohn's disease. In healthy individuals, imputed metagenomic analysis revealed 

perturbations of energy metabolism in the microbiome of non-secretor and heterozygote 

individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and 

vitamin metabolism, and glycan biosynthesis and metabolism related pathways; and, the 

depletion of amino acid biosynthesis and metabolism. Similar changes were observed in 

mice bearing the FUT2-/- genotype. Metabolomic analysis of human specimens revealed 

concordant as well as novel changes in the levels of several metabolites. Human 

metaproteomic analysis indicated that these functional changes were accompanied by 

sub-clinical levels of inflammation in the local intestinal mucosa. In an extended cohort 

containing both healthy and CD individuals, the phylogenetic composition of intestinal 

mucosal microbiota was affected by an interaction of Crohn’s disease status and FUT2 

genotype. Decreased abundances of Firmicutes were associated with both CD and FUT2 

risk allele. At metagenomic level, a distinct signature of amino acid metabolism deficiency 

was identified in CD and non-secretor microbiome. Such changes were also reflected at 

metabolomic level in the proximal gut region. Taken together, FUT2 gene increased the 

risk of Crohn’s disease by changing the microbial composition and function to a disease-

like state. The CD associated perturbations of metagenome and metabolome were driven 

by the FUT2 risk allele.  

 The same experimental and bioinformatic approach can also be applied to study 

the composition and functional changes of mucosal associated microbiota in other chronic 

inflammatory disease, namely HIV-1 infection. In the rectal mucosa, microbial 
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composition and imputed function in HIV-positive individuals not receiving cART was 

significantly different from HIV-negative individuals. Genera including Roseburia, 

Coprococcus, Ruminococcus, Eubacterium, Alistipes and Lachnospira were depleted in 

HIV-infected subjects not receiving cART, while Fusobacteria, Anaerococcus, 

Peptostreptococcus and Porphyromonas were significantly enriched. HIV-positive 

subjects receiving cART exhibited similar depletion and enrichment for these genera, but 

were of intermediate magnitude and did not achieve statistical significance. Imputed 

metagenomic functions, including amino acid metabolism, vitamin biosynthesis, and 

siderophore biosynthesis differed significantly between healthy controls and HIV-infected 

subjects not receiving cART. In the cervicovaginal mucosa, significant differences in 

alpha and beta diversity were observed between HIV-negative and HIV-positive women, 

with the latter enriched of organisms associated with bacterial vaginosis and depleted of 

Lactobacilli. These ecologic changes occurred concomitantly with significant 

metagenomic and immunologic differences. Such functional pathways may represent 

novel interventional targets for HIV therapy if normalizing the microbial composition or 

functional activity of the microbiota proves therapeutically useful. 
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Introduction  
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 Inflammatory bowel disease (IBD) is a set of chronic, relapsing inflammatory 

diseases of the intestine. The two major subtypes of IBD are Crohn's disease (CD) and 

ulcerative colitis (UC). Although the pathogenesis of IBD remains largely unknown, 

Crohn’s disease is considered to result from the interaction of environmental factors, 

including intestinal microbiota, with host immune mechanisms in genetically susceptible 

individuals (6, 7).  

 Recent advances in next-generation sequencing technologies have allowed 

researchers to assess the composition and variation of human microbiome in an 

unprecedented depth. Since the launch of major microbiome research initiatives including 

the Human Microbiome Project (HMP) and Metagenomics of the Human Intestinal Tract 

Project (MetaHIT), our knowledge have expanded significantly regarding how the 

composition and function of gut microbiome affect human health (8, 9). However, several 

analytical issues emerged for sequencing based microbiome study. The first challenge is 

the high complexity and low inter-individual overlap of intestinal microbial composition (8, 

10, 11). This variability has complicated the association of microbial phylogenetic 

composition with disease, in that it is challenging to determine if the absence of a given 

phylotype in a healthy or disease subject is due to the pathogenic physiology or simply 

temporal or inter-individual stochastic fluctuations. Although a “core microbiome” at the 

gene level is identifiable (12), the core feature at the organismal lineage level, which 

resolves functionally redundant phylotypes into distinct communities, has not yet been 

defined. In the context of IBD microbial pathogenesis, due to the limitations of current 

microbial analysis, reproducible microbial features established for human IBD are quite 
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limited: reduced alpha diversity, and a small number of elevated or reduced taxa 

detectable at the level of patient categories but only sporadic at the level of individual 

patients. Accordingly, these findings are sufficient neither to test the current pathogenesis 

concept, nor to provide a strategy to classify and monitor individual patients for disease-

associated microbial taxa.  

 The second challenge is that phylogentic profiling of microbiota only provide limited 

insight into the metagenomic functional outcomes of such dysbiosis. The intestinal 

mucosal ecosystem harbors an assortment of host factors, microbiota, and metabolites. 

A central goal and methodologic challenge in human-associated microbial ecology is to 

identify dietary, metabolic, and host and microbial factors that drive microbial community 

structure (8, 13). Identification of such relationships is fundamental for us to understand 

the host-microbial interaction in IBD pathogenesis and for interventional strategies to alter 

microbiota composition and function in the context of dysbiosis. Indeed, direct analysis of 

metabolic output by and interactions between microbial species is a burgeoning 

investigative field, but challenging methodologically (14, 15).  

 Dysbiosis, which refers to perturbations of the normally stable intestinal microbiota, 

has been associated with the development and progression of inflammatory bowel 

diseases (16-18). The reasons for such associations are not yet clear and may reflect 

either causal or secondary processes due to the impact on microbial composition and 

function of inter-individual variability and the contributions of environment and host 

genetics (19). In the meantime, genome-wide association studies have identified a 

complex set of polymorphisms that confer varying levels of genetic risk for IBD (20). 
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Functional annotation of the host genes tagged by these loci suggests that impaired 

handling of commensal microbes and pathogens is a prominent factor in disease 

development. Determining the extent of host genetic influence on the composition and 

function of the gut microbiome is an important next step in understanding the mechanisms 

linking these genetic traits with microbial function and disease biology.  
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CHAPTER 2 

Lavage Sampling Enables Multi’omic Analysis of Mucosal Associated Microbiota 
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Abstract 

Background 

 To study the dysbiosis of host-associated intestinal mucosal microbiota in chronic 

diseases, appropriate collection and pre-processing of biospecimens from humans is 

necessary for accurate analysis of microbial composition.  

Methods 

 64 subjects were recruited, including 32 normal subjects (NM), 16 Crohn’s disease 

patients in remission (CD), and 16 ulcerative colitis patients in remission (UC). 190 

mucosal lavage samples were collected from different anatomical regions of these 

subjects. To profile phylogenetic composition, the hyper-variable region 4 of the 16S 

ribosomal RNA gene was then amplified and sequenced on an Illumina HiSeq 2000. The 

soluble metabolites of the same samples were analyzed using quadrupole time-of-flight 

(Q-TOF) mass spectrometry.  

Results 

 Microbial composition and phylotype richness of lavage samples were comparable 

with the 16S sequence datasets generated from fecal or tissue samples. High yields of 

soluble fraction proteins and metabolites were produced from lavage samples, which 

enabled the identification of robust, disease-specific biochemical features of the mucosal 

surface.  

Conclusion 
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 Lavage sampling, by permitting microbial and biochemical analysis from the same 

mucosal site, is a novel strategy for integrated multi’omic analysis to functionally 

characterize the intestinal microbial ecosystem.  
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Introduction 

 The importance of host-associated commensal microbiota in maintaining the 

health of humans has been well appreciated. Dysbiosis of microbiota is implicated in 

various chronic diseases including obesity, diabetes, inflammatory bowel disease, HIV, 

vaginosis, asthma and other immune related chronic disorders (Kinross et al., 2011). 

Recent advances in sequencing technologies have enabled the profiling of microbial 

compositions with unprecedented depth and coverage at significantly lower cost, and 

therefore substantially improved our understanding of host-associated microbiome in 

different habitats.  

 To study the dysbiosis of host-associated intestinal mucosal microbiota in chronic 

diseases, appropriate collection and pre-processing of biospecimens from humans is 

necessary for accurate analysis of microbial composition. The two widely used 

approaches of sampling intestinal microbiota are stool samples and biopsy. Compared 

with fecal samples, collection of lavage samples is warranted for two reasons: first, the 

phylogenetic composition of mucosa-associated microbiota is distinct from that of the 

luminal compartment (1, 21); second, fecal samples are a mixture of products from all 

intestinal regions, which may obscure the unique biogeography of host-bacteria 

interactions along intestine (22). In addition to the invasiveness, biopsy specimens also 

cannot be used to assess microbial metabolites and proteins as much of the material 

would derive from human cells.  

 Routine screening colonoscopy can be slightly modified to collect mucosal lavage 

samples that can be used for combined phylogenetic, proteomic, and metabolomic 



9 

 

analysis. Prior to the procedure, patients scheduled for colonoscopy are consented per 

IRB requirements. Samples may then be collected any time during endoscopic 

examination, though physicians have historically preferred to collect samples upon 

completion and with retraction of the endoscope. During a typical colonoscopy, mucosal 

washes are routinely collected and discarded. Therefore, only slight modifications are 

necessitated for implementation of this protocol. Collected mucosal lavage samples can 

then be processed further and analyzed using many potential methods, including high-

throughput sequencing or mass spectrometry for proteomic and metabolomic analysis. 

 

Materials and Methods 

Patient cohorts and lavage sample collection 

 A previously assembled patient cohort of 64 subjects was examined (Table 2-1) in 

accord with human subject protocols approved by the institutional review boards of 

University of California Los Angeles and Cedars Sinai Medical Center. All enrolled 

subjects were prepared for colonoscopy by taking Golytely the day before the procedure. 

The mucosal lavage samples representing the mucosal luminal interface were collected 

from different intestinal regions as described previously (22). All the lavage samples in 

this cohort were collected from non-involved intestinal regions, which excluded the 

potential influence of active inflammation on the mucosal microbiota as much as possible. 

Subjects metadata, including diagnosis, gender, age, and colon regions sampled, were 

recorded. The influence of medication on the microbiome was not evaluated, due to the 

unavailability of data.  
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16S rRNA gene sequencing and microbial composition analysis 

 After collection, the sample was centrifuged at 3,500g for 15 minutes to separate 

the microbiota from the soluble fraction. Genomic DNA was extracted as described in 

Costello et al.(23). The hyper-variable region 4 of the 16S ribosomal RNA gene was then 

amplified and sequenced on an Illumina HiSeq 2000 as described in Caporaso et al. (24). 

The sequence data is deposited in European Bioinformatics Institute [EMBL: ERP001780]. 

The median read length of sequences that passed quality filtering is 90 bp and the 

average read length is 88 bp with a filtering threshold of 75bp. For quality control, all the 

singletons were removed, and samples with fewer than 3,000 reads were excluded from 

the following analyses. The 97% OTUs were picked against the Greengenes reference 

database (February 4th, 2011) first, then reads that did not match a Greengenes 

sequence at 97% or greater sequence identity were clustered de novo using uclust (25). 

Taxonomy of each OTU was assigned by blasting the representative sequence against 

Greengenes reference database (26) (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi). 

These steps were performed using Quantitative Insights Into Microbial Ecology (QIIME) 

v1.4.0 (27).  

 Alpha rarefaction was performed using the Phylogenetic Diversity index. Ten 

sampling repetitions were performed at each sampling depth ranging from 10 to 3,000 

reads. The comparison of alpha diversity between two groups at certain sampling depths 

was performed using a two-sided Student t test. Significance was defined as a P value of 

less than 0.05. Beta diversity was estimated by computing unweighted UniFrac distances 
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between samples using QIIME. Principal coordinates analysis (PCoA) was applied to 

reduce the dimensionality of the resulting distance matrix.  

Mass spectrometry analysis 

 For metabolomics analysis, each human lavage samples was subjected to solid-

phase extraction to eliminate a polymeric contaminant believed to originate from the 

lubricant used during colonoscopy preparation. The eluate was dried and reconstituted in 

2% acetonitrile in water prior to MS analysis. A 5 μL aliquot of extracted metabolites from 

each sample was injected onto a reverse-phase 50 × 2.1 mm ACQUITY 1.7-μm C18 

column (Waters Corp, Milford, MA) using an ACQUITY UPLC system (Waters Corp, 

Milford, MA). A Waters Q-TOF Premier was operated in negative-ion (ESI-) or positive-

ion (ESI+) electrospray ionization mode with a capillary voltage of 3200 V and a sampling 

cone voltage of 20 V in negative mode and 35 V in positive mode. Data were acquired in 

centroid mode with a mass window of 50 to 850 m/z, and processed using MassLynx 

software (Waters Corp, Milford, MA).  

 

Results 

Microbiome dataset from lavage samples recaptured IBD associated dysbiosis 

 To study the host-microbial interaction at the mucosal luminal interface, 179 lavage 

samples were collected from different intestinal regions of 64 subjects; this cohort and 

these samples were previously used in a metaproteomic study of IBD (22) (Table 2-1). 

The microbiota from these samples were profiled by multiplex sequencing, and a total of 

1,236,641 reads (6,909/sample on average) were generated after quality control. 10,208 
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species level OTUs were then generated by collapsing the reads at a 97% sequence 

similarity threshold. At the phylum level, the bacterial community from lavage sample 

mainly consisted of Bacteroidetes (44.29%), Firmicutes (35.48%), Proteobacteria 

(6.76%), Tenericutes (1.63%) and Verrucomicrobia (1.35%) (Figure 2-1). Other phyla 

were also detected at relatively low abundances (<1%) including Actinobacteria and 

Fusobacteria. We compared our dataset with other 16S sequence datasets generated 

from fecal or tissue samples after re-processing them using the same OTU picking and 

taxonomy assignment algorithms. Given the difference of sequencing platforms, primer 

sets and colon regions, the Tong dataset was comparable with other intestinal microbial 

datasets in terms of microbial composition and phylotype richness.  

 The IBD-associated dysbiosis of mucosal microbiota has been delineated in detail 

in several investigations (16, 28, 29). Specifically, IBD patients have fewer Firmicutes and 

a concomitant increase in Proteobacteria, validated in several independent cohorts (30, 

31). To determine whether previously reported alterations were also observed in our 

dataset, we compared the relative abundances of each phylum between disease states 

using analysis of variance (ANOVA). In contrast to controls, IBD patients harbored 

relatively more abundant Actinobacteria (FDR corrected P = 0.006 for UC, < 0.0001 for 

CD), accompanied with the depletion of Firmicutes (FDR corrected P = 0.056 for UC, 0.25 

for CD) in these subjects (Figure 2-2 A). The increases of Proteobacteria (FDR corrected 

P = 0.254 for UC, 0.143 for CD) and Tenericutes (FDR corrected P = 0.115 for UC, 0.157 

for CD) were also observed in IBD patients, although not statistically significant. Taken 

together, microbial composition represented by this study cohort, and captured by lavage 
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sampling, reflected the changes of relative abundances of enteric microbiota in IBD 

subjects at phylum level observed in other datasets and sampling methods.  

 The reduction in bacterial diversity in IBD patients is a consistent finding across 

studies (16, 32, 33), although it is still unknown whether this alteration is causative or a 

secondary effect of IBD. Compared with controls, the phylogenetic diversities of UC and 

CD subjects at 97% OTU level were significantly lower (Figure 2-2 B), and the difference 

was more evident in CD (t-test, P = 0.0003) than that in UC subjects (t-test, P = 0.0056) 

at the depth of 3,000 reads per sample. This data indicates that the lower microbial 

diversity previously observed in patients with active IBD also persists in clinically 

quiescent phases of disease. 

 To evaluate the similarity between microbial communities in lavage samples from 

control and IBD subjects, the beta-diversity measured by unweighted distance matrix was 

calculated for each sample. The principal coordinate analysis (PCoA) plot showed that 

the samples clustered by diagnosis (Figure 2-2 C). The IBD-associated dysbiosis of 

mucosal microbiota was reflected by the cluster of samples enriched for IBD, especially 

CD subjects. 55% of the IBD samples (49% of UC and 61% of CD) were in this cluster, 

whereas only 8% of the controls were in this IBD enriched clusters. The clustering was 

evident considering the heterogeneity of the pathogenesis of IBD (34), although control 

samples can be observed in the IBD enriched cluster and not all the IBD samples were 

grouped into this subset.  

Metabolomic profiling of mucosal luminal interface using lavage samples  
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 We profiled the soluble metabolites of the same lavage samples using Q-TOF MS. 

The analysis generated a rich metabolomic dataset consisting of 649 and 576 spectral 

features in the cecum and sigmoid regions, respectively. Putative IDs were assigned to 

372 ions by comparing their m/z values to those available in online databanks using a 

predefined mass error window of 20 ppm. The putative IDs were then used to map out 

the ions to various metabolomic pathways in the KEGG dataset. In accord with our 

previous study, ~50% of all metabolites were located at the terminal end of metabolic 

pathways, suggesting enrichment for end-products (3).  

 

Discussion 

 Mucosal sampling provided robust differentiation at the individual patient level that 

has not been achieved previously by analysis of the fecal compartment and conventional 

analyses (individual phylotypes levels, community alpha-diversity, or principal component 

analysis) (30, 31). How might the design features of the study have contributed to this 

outcome? One distinction was the first use of mucosal lavage for depth microbial analysis. 

Lavage samples microbiota embedded in the superficial mucin, but may also include 

luminal fecal residue remaining after intestinal preparation. Mucosa-associated microbial 

composition varies across segments of the intestine, and distinct as well from the fecal 

compartment (23, 35). Due to the predominant inter-individual signal, it is uncertain 

whether the lavage compartment yields a distinct microbial composition from mucosal or 

fecal sampling.   
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 Nonetheless, compared to fecal samples, mucosal lavage is from a defined (~1 

cm2) area of mucosal surface (22), and therefore captures a local microbial community 

more homogeneous for local metabolic exchange and interaction in the microenvironment. 

Indeed, since the local habitat modifies the functional state of the microbial community, 

lavage samples can be analytically extended to define microbial state (by transcriptional 

and metagenomic analysis of the bacterial pellet) and the habitat (by biochemical analysis 

of supernatant proteins and metabolites). We have recently reported high yields of soluble 

fraction proteins and metabolites by lavage sampling, and have uncovered robust, 

disease-specific biochemical features of the mucosal surface (22). Lavage sampling, by 

permitting microbial and biochemical analysis from the same mucosal site, could be 

extended to integrated multi’omic analysis to functionally characterize the intestinal 

microbial ecosystem. And, owing to its noninvasiveness, lavage sampling in contrast to 

biopsy or surgery permits longitudinal sampling which is an important barrier to monitoring 

the mucosal microbiota and its dynamic temporal state (10, 23). 
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Figures and Tables 

Figure 2-1 

 

Figure 2-1. Phylum level microbial compositions of faeces, lavage and tissue 

samples. Biospeciemens from faeces (Costello (23), Turnbaugh (12) and Caporaso 

(10)), lavage samples (Tong) and tissue samples (Frank (16)) were compared. Only 

predominant phyla with relative abundances higher than 0.1% in Tong dataset were 

depicted in the bar graph, and the phyla with low abundances were grouped together. 

For Costello and Caporaso datasets, only the fractions of intestinal microbiota were 

shown here.  
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Figure 2-2 
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Figure 2-2. Shifts of mucosal microbial composition in IBD patients in remission. 

(A) The change of relative abundance between disease states at phylum level. *: P < 

0.05 compared to control, ANOVA. (B) Phylogenetic diversity curves for the microbiota 

from lavage samples. Mean ± 95% CI was shown. (C) Communities clustered using 

PCoA of the unweighted UniFrac distance matrix. Each point corresponds to a sample 

colored by disease phenotype. The dotted line indicated the cluster of samples enriched 

for IBD subjects.  
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Table 2-1. Demographic information of Tong dataset 

 Control  UC  CD  

Subject (64)  32  16  16  

Gender  

Male  20  9  11  

Female  12  7  5  

Age (Average ± SD)  60 ± 12  36 ± 12  41 ± 12  

Sample (179)  90  43  46  

Anatomical region  

CE (1)  1  0  0  

AS (47)  25  15  7  

TR (22)  4  8  10  

DE (57)  31  12  14  

RE (52)  29  8  15  

 

Note: on average, 3 samples of different intestinal regions were collected from each 

subject. UC, ulcerative colitis; CD, Crohn’s disease; CE, cecum; AS, ascending colon; TR, 

transverse colon; DE, descending colon; RE, rectum. 
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CHAPTER 3 

Bacterial Co-Occurrence Network at the Mucosal-Luminal Interface 
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Abstract 

Background 

 Abnormalities of the intestinal microbiota are implicated in the pathogenesis of 

Crohn's disease (CD) and ulcerative colitis (UC), two spectra of inflammatory bowel 

disease (IBD). However, the high complexity and low inter-individual overlap of intestinal 

microbial composition are formidable barriers to identifying microbial taxa representing 

this dysbiosis. These difficulties might be overcome by an ecologic analytic strategy to 

identify modules of interacting bacteria (rather than individual bacteria) as quantitative 

reproducible features of microbial composition in normal and IBD mucosa.   

Methods 

  To investigate the change of microbial ecology on the intestinal mucosal surface 

and its role in the pathogenesis of IBD, 16s ribosomal DNA (rDNA) extracted from the 

bacterial pellets were sequenced by Illumina HiSeq 2000 to determine the phylogenetic 

distribution of the microbiomes. The microbial co-occurrence network was constructed 

according to the abundance profiles of each genus, and the functional microbial 

communities (FMCs) were detected via weighted correlation network analysis. The gene 

content of 1,119 KEGG reference genomes was used to infer the approximate gene 

content of the detected 97% OTUs in our dataset using Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt) (v0.1), and the 

metabolic pathways were re-constructed using HUMAnN (v0.98) 

Results 
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  Analysis of weighted co-occurrence network revealed 5 microbial modules. These 

modules were unprecedented, as they were detectable in all individuals, and their 

composition and abundance was recapitulated in an independent, biopsy-based mucosal 

dataset. Two modules were associated with healthy, CD, or UC disease states. Imputed 

metagenome analysis indicated that these modules displayed distinct metabolic 

functionality, specifically the enrichment of oxidative response and glycan metabolism 

pathways relevant to host-pathogen interaction in the disease-associated modules. The 

highly preserved microbial modules accurately classified IBD status of individual patients 

during disease quiescence, suggesting that microbial dysbiosis in IBD may be an 

underlying disorder independent of disease activity. Microbial modules thus provide an 

integrative view of microbial ecology relevant to IBD.  

Conclusion 

 These modules appear to define novel microbial communities within the intestinal 

microbial ecology, some of which are commonly and stably modified by the IBD disease 

state, and may be of particular relevance for microbial pathogenesis and intervention.  
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Introduction 

 Inflammatory bowel disease (IBD), a spectrum of chronic, relapsing inflammatory 

intestinal diseases, results from the interaction of environmental factors, including 

intestinal microbiota, with host immune mechanisms in genetically susceptible individuals 

(6, 7). Human and animal studies demonstrate the involvement of intestinal microbiota in 

the onset or perpetuation of inflammation, and intensive efforts have search for individual 

bacterial species and specific bacterial products in the pathogenesis of IBD (36-38). 

However, rather than revealing a single agent responsible for disease, these studies have 

uncovered a variety of bacterial taxa and products that can either promote or attenuate 

the inflammatory disease state. Moreover, the relevant microbiota differ in accord with the 

genetic susceptibility traits of the host (29, 39-41). These insights have shifted the concept 

of microbial pathogenesis in IBD away from specific pathogens and towards ecologic, 

community-level change (42), and raised concomitant challenges of establishing 

coherent concepts and analytic strategies to identify microbiota relevant to disease risk 

or disease activity in individual IBD patients.  

 In recent years, the phylogenetic and functional characterizations of the human 

enteric microbiota in IBD have been elucidated with the help of second-generation 

sequencing platforms. One striking feature of human intestinal microbiome is its great 

inter-individual phylotypic variation (8, 10, 11). This variability has complicated the 

association of microbial phylogenetic composition with disease, in that it is challenging to 

determine if the absence of a given phylotype in a healthy or disease subject is due to 

the pathogenic physiology or simply temporal or inter-individual stochastic fluctuations. 



24 

 

Although a “core microbiome” at the gene level is identifiable (12), the core feature at the 

organismal lineage level, which resolves functionally redundant phylotypes into distinct 

communities, has not yet been defined. In the context of IBD microbial pathogenesis, this 

has prompted the current concept that an individual’s distinct microbial composition 

(shaped by host genetics, founder effects, and diet) may create a disease-susceptible 

ecology prone to blooms of pathobionts (and/or busts of protective taxa) when stressed 

by environmental, metabolic, or viral disturbances (43). However, due to the limitations of 

current microbial analysis, reproducible microbial features established for human IBD are 

quite limited: reduced alpha diversity, and a small number of elevated or reduced taxons 

detectable at the level of patient categories but only sporadic at the level of individual 

patients. Accordingly, these findings are sufficient neither to test the current pathogenesis 

concept, nor to provide a strategy to classify and monitor individual patients for disease-

associated microbial taxa.  

 To validate this concept and allow clinical translation, we must move beyond 

existing studies of taxon and/or gene composition to instead quantify relevant features of 

the microbial community at the ecological level. Extensive inter-species interactions exist 

in the highly complex intestinal microbial ecosystem (44, 45). Investigating the hundreds 

of thousands of possible pairwise inter-species interactions in a defined system is not 

feasible (46), especially because few known intestinal microbes are cultivable. 16S rRNA 

gene profiling allows us infer inter-species correlations from relative abundance profiles. 

Several benchmarking studies have documented microbial co-occurrence in different 

environments (47-50), but the role of inter-species interactions during the pathogenesis 
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of chronic disease remains largely unexplored. Here we adopted a methodology for 

phylogenetic network analysis to search for such interactions, suggesting that the human 

mucosal surface bacterial community is organized into 5 highly preserved modules. Two 

of these modules are reciprocally associated with inflammatory bowel disease.  

 

Materials and Methods 

Construction of microbial co-occurrence network 

 We first defined a co-occurrence similarity measure which was used to define the 

network. Assume that the vector xi specifies the abundance of the i-th genus across the 

samples, the pair-wise Sparse Correlations for Compositional data (SparCC) ρij was 

inferred from the abundance profile of each genus xi and xj as the measurement of co-

occurrence relationship. A signed weighted adjacency matrix (network) was defined by 

raising ρij to a power aij = (0.5 + 0.5ρij) ^ β, with β = 4 (51). The power is a soft threshold 

that preserves the continuous nature of the underlying co-occurrence information. The 

relatively low power of 4 (chosen with the scale free topology criterion) likely reflected the 

fact that the network was comprised of relatively few nodes (263 genera). Once the 

network was constructed, modules were then defined as branches of a hierarchical 

clustering tree based on the topological overlap measure, because it is a highly robust 

measure of network interconnectedness. The modules were detected after applying the 

dynamic tree cut method (52). These network modules (clusters) were interpreted as 

functional microbial communities (FMCs). To summarize the profiles of co-occurrence 

modules, we calculated the eigengenus, which provides a mathematically optimal way of 
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summarizing the co-occurrence patterns of all genera belonging to each module. To 

identify modules (FMCs) that were correlated with clinical traits, we used correlation tests 

to relate each eigengenus to the clinical traits. These steps were performed using 

WGCNA package (version 1.13) in R (version 2.13.1) (53).  

Module preservation analysis 

 Meta-analysis was performed with two mucosal microbial datasets: the previously 

published “Frank” dataset (16), and the “Tong” dataset presented in this paper (using the 

same biospecimens described in a recently reported patient cohort (22)). Prior to meta-

analysis, the taxonomy of each OTU in Frank dataset was re-assigned by blasting the 

representative sequence against Greengenes reference database. The common 

phylotypes at genus level that were present in both dataset were then identified. After this 

filtering step, 1,196,466 out of 1,236,641 reads (96.8%), or 129 out of 263 genera in Tong 

dataset, and 13,165 out of 15,172 reads (86.8%), or 129 out of 263 genera in Frank 

dataset were included in the following analysis. To determine whether a FMC found in the 

reference dataset was also present in the test dataset, we used a powerful module 

preservation statistic implemented in the R software function modulePreservation (54). 

For each module, the aggregate measure of module preservation was termed the 

preservation Z-summary statistic. The higher the value of the Z-summary statistic is for a 

given module, the stronger the evidence that the module is preserved in the test dataset. 

Comprehensive simulation studies led to the following thresholds: a module shows no 

evidence of preservation if its Z-summary statistic is smaller than 2; a Z-summary statistic 

larger than 5 (or 10) indicates moderate (strong) module preservation.  
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Imputation of microbial gene content and metagenomes of FMCs 

 The OTU table of the 5 FMCs in Tong dataset was generated with 1 count for each 

97% OTU in a given FMC. The gene content of 1,119 KEGG reference genomes was 

used to infer the approximate gene content of the detected 97% OTUs in our dataset 

using Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States (PICRUSt) (v0.1). The functional traits copy numbers of the reference genomes 

represented in the format of KEGG KO functions can be downloaded from the PICRUSt 

website (http://picrust.github.com). To predict the functional traits of non-sequenced 

microbial genomes (i.e. 97% OTUs) in Tong dataset, a phylogenetic tree of 97% OTUs in 

Greengenes database was constructed using 16S marker gene. The tree has tips 

representing both sequenced referenced genomes and non-sequenced genomes. Then 

the ancestral state reconstruction (ASR) was run for this tree to make predictions for each 

KO functions for every internal node and unsequenced tips in the phylogenetic tree. The 

program output the inferred metagenome represented by KEGG Orthology for each FMC. 

Taking the PICRUST KO gene abundance inferences as inputs, the metabolic pathways 

were re-constructed using HUMAnN (v0.98) (55).  

 

Results 

Defining a microbial co-occurrence network at the intestinal mucosal surface  

 Extensive inter-species interactions are likely to operate among mucosal-

associated microbiota residing in the complex and functionally diverse ecosystem of the 

intestines, either locally through formation of biofilms or through diffusion of nutrients and 
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metabolites longitudinally along the intestine (56, 57). Such interactions can thus be 

potentially reflected by the co-occurrence and co-exclusion patterns inferred from 

abundance profiles of phylotypes (58). Therefore, in addition to individual phylotypes, we 

must identify IBD-associated microbial community structures. To test the hypothesis that 

interactions among microbes increase our ability to classify samples according to clinical 

state, we constructed the microbial co-occurrence network using an approach specifically 

tailored for the 16S profiling data (Figure 3-1). The edge connecting each pair of nodes 

was the co-occurrence estimate inferred from the relative abundance profiles of genera 

using the sparse correlation measure SparCC (59), which ranged from -0.541 to 0.774, 

suggesting strong co-exclusion and co-occurrence relationships between phylotypes. As 

described in Methods, we transformed the SparCC correlation measure into a weighted 

network.   

Identification of highly preserved functional microbial communities (FMCs) 

 To understand the topological structure of a network, one crucial step is to define 

modules, which are groups of highly connected nodes. In biological networks, modules 

can correspond to functional subunits such as protein complexes (60) or molecular 

pathways (61). There is an extensive literature on clustering procedures, including simple 

k-means, partitioning around medoid, hierarchical clustering, message passing and 

model-based methods (62-65). To determine if the genera in the microbial co-occurrence 

network can form network modules, we adapted weighted correlation network analysis 

(implemented in the WGCNA package) to construct microbial modules which can be 

interpreted as functional microbial communities (FMCs). WGCNA uses a measure of 
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shared protein neighbors (based on the topological overlap measure) as input of 

hierarchical clustering. The height in the dendrogram is a measure of dissimilarity based 

on the topological overlap matrix; modules are defined as branches of a hierarchical 

cluster tree (51, 53). WGCNA is attractive in our study since it provides module 

preservation statistics that allowed us to assess the reproducibility of modules across 

different data sets; provides a measure of intramodular connectivity that can be used to 

define intramodular hub genera (66); and, allows us to summarize each module by its 

module eigengenus.  

 We first calculated the pair-wise topological overlap matrix after the soft-

thresholding step to reduce the noise-level weak correlations (Methods). After grouping 

the nodes based on their topological overlaps using hierarchical clustering, we identified 

5 functional microbial communities (Figure 3-2 A), which consisted of 5 to 167 

phylogenetically diverse genera. Using the same method, analysis of the Frank dataset 

(263 genera) identified 6 microbial modules (Figure 3-2 B), with a similar numerical range 

of genera per module. The Tong and Frank datasets shared 129 genera. This reduced, 

common set of shared phylotypes yielded a similar module organization: 4 modules in the 

Tong dataset, and 2 modules in the Frank dataset.  

 To quantitatively evaluate the degree of module preservation, we carried out a Z-

summary test. Alternative statistics are available to assess the quality and reproducibility 

of clusters among datasets (54, 67-71). An advantage of the Zsummary statistic is that it 

allows for significance thresholds: Z-summary <2 indicates no significant module 

preservation; 2<Z-summary<10 indicates moderate preservation; and, Z-summary>10 
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indicates strong preservation. Also, in previous work comparing WGCNA's module 

preservation statistics to a robust alternative method (the in-group proportion test of Kapp 

and Tibshirani (72)), both tests were highly correlated under a number of simulation 

conditions, and the Zsummary statistic had distinct advantages for studying the 

preservation of network modules (53, 54, 73).  

 As expected, all 4 modules of the shared 129 genera from the Tong dataset were 

highly preserved in the Frank dataset (Figure 3-2 C), with the blue FMC demonstrating 

the strongest preservation. Conversely, all the modules in the Frank dataset were also 

well-preserved in the Tong dataset (Figure 3-2 D). Given the methodological differences 

between Tong and Frank datasets, the co-occurrence pattern of these genera can still be 

observed at mucosal surface. We expected even more significant preservation when 

comparing datasets collected from same compartment and analyzed using same 

methodology. Indeed, when using another lavage sample dataset, referred hereafter as 

the mucosal luminal interface or MLI dataset, as the reference, 4 modules of the shared 

233 genera from the Tong dataset were highly preserved in the MLI dataset, with much 

higher Z-summary statistics. Thus, there were 2 core modules (turquoise and blue) in 

these datasets, despite the difference of sampling methods. These results indicated that 

the FMCs identified using our approach were not dataset specific, but robust and 

reproducible ecological structures commonly existing at the intestinal mucosal surface.  

Identification of functional microbial communities (FMCs) associated with IBD 

 An optimal summary of the genus abundance profiles of a given FMC is the module 

eigengenus. In the Tong dataset, we found that the turquoise FMC was significantly 
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associated with Crohn’s disease state (P = 4 × 10-5, Pearson correlation) (Figure 3-2 E). 

The blue FMC was negatively associated with IBD states, although not statistically 

significant. If the turquoise FMC was merely a group of individual CD-associated genera, 

it would include most of the 17 genera that were significantly enriched in CD samples 

(ANOVA, FDR corrected P < 0.05). However, only 7 of them were assigned to the 

turquoise FMC, indicating that FMCs also captured other intricate and underlying 

ecological relationships. Strikingly, classification of IBD status using the two core FMCs 

as quantitative microbial biomarkers achieved higher accuracy (17/47, or 36.2%) 

compared to using individual genera (Figure 3-3), indicating that the microbial modules 

allowed quantitative and reproducible microbial monitoring of the intestinal mucosa. 

Because the two core FMCs were highly preserved in both datasets, the same 

associations were also observed in the Frank dataset. The turquoise FMC was positively 

associated with IBD states, most significantly with UC (P = 9 × 10-7, Pearson correlation), 

whereas the blue FMC was negatively associated with CD (P = 1 × 10-9, Pearson 

correlation) (Figure 3-2 F). The associations were stronger in the Frank dataset than 

those in the Tong dataset, possible because the samples were from patients with active 

disease. Consistent with previous observation (29), the blue FMC was also negatively 

associated with the NOD2 risk allele in the Frank dataset, supporting the hypothesis that 

the CD-associated dysbiosis was driven by the NOD2 risk allele (39, 74).  

 After defining modules, we sought to analyze them by intuitive topological concepts 

such as intramodular connectivity, to better describe the network structure. Therefore, we 

determined the kME value (intramodular connectivity based on the module eigengenus) 
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to define the correlation between each genus and the respective module eigengenus. 

Because nodes with high connectivity, i.e. the hubs, are centrally located within the 

module, they may be functionally essential as keystone species in the context of biological 

networks (75) and during the assemblage of a disease associated FMC. Indeed, in the 

turquoise FMC, the intramodular connectivities of the genera enriched in CD samples 

were significantly higher than those of the other members (t-test, P < 0.001). Potential 

pathobiont genera such as Enterococcus (76) and Escherichia (including adherent-

invasive Escherichia coli (77)) can also be observed among the hub genera of CD-

associated turquoise FMC. In the blue module, one of the intramodular hub genera was 

Faecalibacterium, a genus including the anti-inflammatory commensal bacterium 

Faecalibacterium prausnitzii, that is negatively associated with Crohn’s disease (28, 78, 

79). Accordingly, the relative abundance of Faecalibacterium decreased by 2-fold in 

Crohn’s disease samples (ANOVA, FDR corrected P = 0.006). Other short-chain fatty 

acid (SCFA) producing bacteria including Eubacterium, Roseburia, Faecalibacterium and 

Coprococcus were also observed in the blue FMC (80-82). Taken together, these data 

demonstrated the functional importance of the FMCs associated with CD.  

Metabolic inference and reconstruction of functional microbial communities 

 The disease associations of the well preserved FMCs suggest that these co-

occurred microbial communities represent distinct functional units at the mucosal surface. 

To profile the metabolic capabilities of FMCs, the approximate gene contents of the 

detected phylotypes in each FMCs were inferred using the 1,119 KEGG reference 

genomes. After aggregating the individual inferred genomes according to module 
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membership, the relative abundances of metabolic pathways in each FMC were re-

constructed.  The functional profiles of FMCs were significantly variable (Figure 3-4). The 

representation of the functional groups that were likely essential for life in the gut was 

highly consistent across FMCs including those for carbohydrate and amino-acid 

metabolism (for example glycolysis/gluconeogenesis (KO00010), pyruvate metabolism 

(KO00620) and glycine, serine and threonine metabolism (KO00260)). In contrast, 

several virulent pathways including bacterial invasion of epithelial cells (KO05100) and 

pathogenic Escherichia coli infection (KO05130) were only present in the IBD-associated 

turquoise FMC. Variably represented pathways included glycan degradation (KO00511) 

and glycosaminoglycan degradation (KO00531), which were over-represented in the UC-

associated brown FMC; and, glutathione metabolism (KO00480), which was enriched in 

turquoise FMC. With respect to the former, murine defects in mucosal barrier function due 

to depletion of intestinal O-glycans causes spontaneous colitis (4). Regarding the latter, 

an increase in glutathione metabolism is a feature of intestinal microbiome in 

inflammatory bowel disease (18). These observations, combined with the disease 

association, indicated that the imputed virulent metabolic functions carried out by the 

disease associated FMCs contributed to the pathogenic and chronic inflammatory state 

of intestinal mucosal surface.  

 

Discussion 

 We have developed a novel strategy using an ecologic mucosal microbial 

framework, minimally invasive mucosal sampling, short-read Illumina sequencing, 
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network analysis, and imputed metagenomics. This strategy uncovered 5 microbial 

modules detectable in the mucosa of all individuals, and reproducible in an independent 

mucosal resection dataset (Figure 3-2). The quantitative levels of two modules were 

significantly associated with disease states (Figure 3-2 E). More than 70% of the subjects 

can be correctly classified as control or IBD patients using genera from rectal sampling 

alone (Figure 3-3), which is a minimally invasive procedure compared to endoscopic 

biopsy, and thus notable for clinical translation. Imputed metagenome analysis indicated 

the functional importance of the disease associated modules reflected by the enrichment 

of virulent and pathogenic pathways (Figure 3-4). Thus, these modules appear to define 

novel microbial communities within the intestinal microbial ecology, some of which are 

commonly and stably modified by the IBD disease state, and may be of particular 

relevance for microbial pathogenesis and intervention.  

 The present study uncovered similar networks of co-occurrent and co-exclusive 

microbiota, confirming shared features detected in the fecal and mucosal lavage 

compartments.  In addition, extending the analysis to WGCNA uncovered 5 reproducible 

microbial modules, each comprised of distinct but phylogenetically mixed group of 

organisms, and a blend of positive and negative microbial interactions.  We have termed 

them functional microbial communities (FMCs), with the speculation that they reflect a 

physically localized and biologically integrated microbial network. Since each module is 

defined by both positively and negatively microbial interactions, we speculate that they 

will be defined by a distinctive ensemble of biologic factors, such as host 
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microenvironment and microbial gardening, microbial cross-feeding and competition, and 

microbial small molecule and environmental modification (83-86).    

 Therapeutic intervention targeting microbial dysbiosis in inflammatory bowel 

disease is an important prospect for changing the natural history for patients with 

inflammatory bowel disease. However, the heterogeneity and temporal variation of 

microbial composition requires new concepts to define the target of microbial intervention, 

and analytic tools to accurately sub-stratify and monitor individual patients. In our study, 

all 5 of the FMCs identified were present in all the subjects, but with different overall 

abundances that varied with disease states. In the CD-associated turquoise FMC, the 

difference of intramodular connectivity suggested that the pathogenic microbes were 

more likely to be the core members of the microbiota, rather than opportunistic pathogens. 

Direct evidence for the physical localization of such ecological structures could be 

validated using methods such as fluorescence in situ hybridization, whereas functional 

features of these communities would require comprehensive metagenomic or 

biochemical analysis. In this respect, a recent metaproteomic study of the mucosa surface 

detected a physical microgeographic mosaic of proteins, which might represent a 

biochemical counterpart to the microbial modules.  

http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/In_situ
http://en.wikipedia.org/wiki/Hybridisation_(molecular_biology)
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Figures and Tables 

Figure 3-1 

 

Figure 3-1. Overview of the methodology for inferring microbial co-occurrence 

network and identifying functional microbial communities.
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Figure 3-2 

 

Figure 3-2. Identification of preserved functional microbial communities (FMCs) 

associated with disease phenotype across studies. Hierarchical clustering 

dendrograms of genera based on microbial co-occurrence network using the Tong 

dataset (A) and the Frank dataset (B) are shown. In the dendrograms, each color 

represents one FMC, and each branch represents one genus. The Z-summary statistic 
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plots (y-axis) as a function of the module size are shown for the Tong dataset (C) and 

the Frank dataset (D). Each point represents a module labeled by color. The dashed 

blue and red lines indicate the thresholds Z = 2 and Z = 10, respectively. FMC-trait 

correlations and P values of the Tong dataset (E) and the Frank dataset (F). Each cell 

reports the correlation coefficient (and P value) derived from correlating FMC 

eigenvectors (rows) to traits (columns). The table is color-coded by correlation 

according to the color legend. Collection site: University of California Los Angeles or 

Cedars Sinai Medical Center; Colon region: 5 anatomical regions coded from 0 to 5, 

which are cecum, ascending colon, transverse colon, descending colon and rectum.  
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Figure 3-3 

 

Figure 3-3. Classification of control and IBD subjects using nearest shrunken 

centroids analyses of the relative abundances of bacterial genera and FMCs from 

lavage samples. Only subjects (n = 47) that had matched samples from both 

descending colon and rectum regions were included in the analysis. Control and IBD 

samples with leave-one-out cross-validated probabilities higher than 50% were 

considered correctly classified. Diamond, classification using 30 genus-region variables 

(error = 18/47, or 38.3%); Square: classification using 39 rectum genera variables (error 
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= 14/47, or 29.8%); Triangle, classification using 4 FMC-region variables (error = 17/47, 

or 36.2%). 
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Figure 3-4 
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Figure 3-4. Variations of KEGG metabolic pathways in the functional microbial 

communities. The heatmap shows the functional profiles of FMCs (columns) based on 

the relative abundance of KEGG metabolic pathways (rows) after z score 

transformation. The color bar on top shows module membership. The dendrograms 

show the hierarchical clustering of columns and rows respectively using Euclidean 

distance.  
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CHAPTER 4 

Reprograming of Gut Microbiome Energy Metabolism by the FUT2 Crohn’s 

Disease Risk Polymorphism 
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Abstract 

Background 

 Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of 

the H antigen in body fluids and on the intestinal mucosa. The H antigen is an 

oligosaccharide moiety that acts as both an attachment site and carbon source for 

intestinal bacteria. Non-secretors, who are homozygous for the loss-of-function alleles of 

FUT2 gene (sese), have increased susceptibility to Crohn's disease. 

Methods 

 To characterize the effect of FUT2 polymorphism on the mucosal ecosystem, we 

profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage 

samples from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 

sese). To investigate the change of microbial ecology on the intestinal mucosal surface 

and its role in the pathogenesis of IBD, 16s ribosomal DNA (rDNA) extracted from the 

bacterial pellets were sequenced by Illumina HiSeq 2000 to determine the phylogenetic 

distribution of the microbiomes. The gene content of 1,119 KEGG reference genomes 

was used to infer the approximate gene content of the detected 97% OTUs in our dataset 

using Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States (PICRUSt) (v0.1), and the metabolic pathways were re-constructed using 

HUMAnN (v0.98). To profile the meta-proteome of lavage samples, matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed 

using the soluble fraction of the lavage samples. The soluble metabolites of the same 

samples were analyzed using quadrupole time-of-flight (Q-TOF) mass spectrometry.  
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Results 

 Imputed metagenomic analysis revealed perturbations of energy metabolism in the 

microbiome of non-secretor and heterozygote individuals, notably the enrichment of 

carbohydrate and lipid metabolism, cofactor and vitamin metabolism, and glycan 

biosynthesis and metabolism related pathways; and, the depletion of amino acid 

biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2-

/- genotype. Metabolomic analysis of human specimens revealed concordant as well as 

novel changes in the levels of several metabolites. Human metaproteomic analysis 

indicated that these functional changes were accompanied by sub-clinical levels of 

inflammation in the local intestinal mucosa.  

Conclusion 

 The colonic microbiota of non-secretors is altered at both the compositional and 

functional levels, affecting the host mucosal state and potentially explaining the 

association of FUT2 genotype and Crohn's disease susceptibility.   
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Introduction 

 The human intestinal microbiome contributes vital biological functions to healthy 

hosts, including maintenance of immune homeostasis, modulation of intestinal 

development, and enhanced metabolic capabilities (8, 9, 12, 87, 88). Dysbiosis, which 

refers to perturbations of the normally stable intestinal microbiota, has been associated 

with the development and progression of many conditions, including inflammatory bowel 

diseases (IBD) (16-18, 89), type 2 diabetes (90), and obesity (12). The reasons for such 

associations are not yet clear, and may reflect either causal or secondary processes due 

to the impact on microbial composition and function of inter-individual variability and the 

contributions of environment and host genetics (19). The contributions of such factors on 

human microbial composition are beginning to emerge through dietary and environmental 

studies (18, 91-93), as well as twin studies (12, 93-95), respectively. However, much work 

is still necessary to fully understand the extent of host genetic influence on the 

composition and function of the gut microbiome, and the mechanisms linking these 

genetic traits with microbial function and disease biology. 

 A recent genome-wide association study (GWAS) published by our group identified 

Fucosyltransferase 2 (FUT2) gene as a Crohn’s disease (CD) risk locus (96), a finding 

that has been validated in a meta-analysis of Crohn’s disease and ulcerative colitis 

genome-wide association scans (20). However, the molecular mechanism of the 

association between non-secretor status and CD remains unknown. Mucin 2 (muc2), the 

predominantly secreted mucin in the colon, plays an important barrier role in intercepting 

and excluding bacteria from the mucosal cell surface, therefore reducing host 
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susceptibility to colitis (97-99). Research from our group has shown that aberrant 

glycosylation of muc2 core proteins causes spontaneous colitis in mice (4). Both the core 

1- and core 3-derived O-glycans of mucin core proteins are terminally fucosylated, which 

serve as interceptive binding structures for bacteria (100). Moreover, a subset of human 

intestinal microbiota produce glycosidases capable of hydrolyzing α-1,2-fucosyl linkages 

present in various mucin-type glycoproteins, as well as mucus glycan structures that are 

not capped by fucose (101). A mass spectrometry based analysis of insoluble colonic 

mucin of both Fut2-null and wild type mice (102) identified 17 different oligosaccharides 

with up to eight sugar residues of which 11 were neutral, five sulfated and one sialylated. 

The most abundant structures were composed of core 2 (Galβ1-3(GlcNAc β1-6)GalNAc-) 

glycan sequence with some based on core 1 (Galβ1-3GalNAc-) glycan structures. The 

primary difference in oligosaccharides was the presence of terminal fucose residues 

forming the blood group H-type epitope in most of the oligosaccharides in wild type mice. 

In contrast, all the peaks for oligosaccharides carrying blood group H type epitopes were 

absent in the Fut2-null mice. Therefore, FUT2 deficiency may alter the composition of 

intestinal microbiota by affecting either microbial adhesion and/or utilization of host 

derived glycans, potentially leading to dysbiosis.  

 The phylogenetic composition in non-secretor individuals have been characterized 

in several studies recently (40, 103, 104), showing that the FUT2 genotype was 

associated both with deviations of overall community ecology and with altered 

abundances of specific microbes. However, these descriptions did not address the 

degree to which these alterations were functional, nor their potential mechanisms of 
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action in IBD risk. Both questions are of particular interest because microbial composition 

can exhibit large inter-individual variations compared to function-based analyses even in 

healthy individuals (9). This may also be one of the reasons for existing between-study 

discrepancies (40, 103), other than the difference between measurements of the 

luminal/fecal microbiota and those at the mucosal surface (21). Since bacterial 

colonization largely occurs in the outer mucous layers (98) where the residual glycans 

that fuel bacterial growth are degraded, lavage sampling of the mucosal surface 

compartment coupled with functional and metabolic profiling is arguably more biologically 

relevant to host-microbial glycan metabolism.  

 We present here a comprehensive description of the mucosal luminal interface of 

healthy individuals distinguished by secretor status, capturing multiple aspects of the 

microbial ecosystem including microbiome composition, imputed function, metabolome 

and proteome. 16S rRNA gene sequencing can be used to characterize the composition 

and diversity of the microbiota, and with recent advances it allows us to impute 

functionality of the microbiome. Deeper insight into microbial functionality can be provided 

by combining 16S rRNA gene sequencing with proteomic and metabolomic data (105). 

We detailed the phylogenetic and functional profiles of the mucosal microbiome 

associated with FUT2 polymorphism, indicating a strong effect of host genetics on the re-

programing of energy metabolisms into dysbiotic setting. The combination of multi’omic 

analysis also provided us with unprecedented understanding of the dynamics of host-

microbial interaction.  
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Materials and Methods 

Subject Cohort and Lavage Sample Collection 

 A subject cohort of 131 individuals (Table 4-1) was recruited from patients 

presenting for screening colonoscopy at Cedars-Sinai Medical Center. Following 

institutional review board approval, subjects were consented and then included in the 

study if colonoscopy did not reveal any mucosal abnormalities. Enrolled subjects were 

prepared for colonoscopy by taking Golytely the day before the procedure. The mucosal 

lavage samples representing the mucosal luminal interface were collected from cecum 

and sigmoid colon as described previously (22).  

Animals 

 All animal protocols were in accordance with Administrative Panel on Laboratory 

Animal Care, the Stanford Institutional Animal Care and Use Committee. Conventionally 

housed Fut2-/- mice (B6.129X1-Fut2tm1Sdo/J; backcrossed 12 generations with 

C57BL/6J) were re-derived as germ free (GF) and maintained in gnotobiotic isolators. 

Eight week old non littermate GF Fut2-deficient Fut2-/- (n=10), wild-type Fut2+/+ (n=10; 

C57BL/6J) and heterozygous Fut2+/- (n=8) mice were colonized with feces obtained from 

a healthy human donor (secretor) by oral gavage of 200µl of human fecal sample (male, 

age 38, American diet). The sample was prepared by mixing stored frozen human fecal 

sample with filter-sterilized pre-reduced phosphate buffered saline. Mice were singly 

housed and maintained in gnotobiotic isolators on a strict 12h light cycle for the 

experiment. Mice were fed a standard autoclaved mouse diet (Purina LabDiet 5K67). 
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Fecal samples were collected 4 weeks after humanization for 16S rRNA gene sequencing 

using the 454 titanium platform.  

Genotyping 

 The SNP rs601338 (G > A) defines secretor status in Europeans and Africans 

(106). We used rs516246, which is in strong linkage disequilibrium with rs601338, to infer 

secretor status. Estimate of linkage between rs516246 and rs601338 is 100%. These 2 

SNPs tag each other perfectly as they are in perfect LD with one another, with R-square 

of 1.0 and D-prime of 1.0, according to Hapmap3 release 2, CEU population. The 

individuals with the homozygote A/A genotype are defined as nonsecretors. In this cohort, 

97% (38/39) of the subjects are Caucasian. One subject is African American, who is 

heterozygous G/A genotype for rs516246, and therefore categorized as Sese. Mouse 

genomic DNA was prepared from ear tissue obtained by ear punch. PCR amplification 

using three primers (F: 5’CCTGCCATGCTTTCTTTCCTG3’ R: 

5’ATTCCTTCTCTGACAGGGTTTGG3’ (WT), 5’ TGGGTAACGCCAGGGTTTTC3’ (KO)) 

yielded either a 191bp band (Fut2-/-) or 154 bp band (Fut2+/+) or both (Fut2+/-). 

16S rRNA Gene Sequencing and Microbial Composition Analysis 

 Genomic DNA was extracted as previously described (3). The V4 region of 16S 

ribosomal RNA genes were amplified and sequenced on an Illumina HiSeq 2000 as 

previously described (3). HiSeq reads were processed using QIIME v1.5.0 (27) with 

parameters of: minimum Q-score considered high quality: 20, maximum number of 

consecutive low-quality base calls allowed before truncating: 3, maximum number of N 

characters allowed: 0. All filtered reads had a length of 101 bp. The number of reads per 
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sample ranged from 326,481 to 1,021,473, with a mean of 646,140 and totaling 

48,460,491. Sequence sub-sampling was performed for each sample at the depth of 

300,000 reads/sample. This normalized dataset was used for all the following analysis 

including alpha-diversity analysis, beta-diversity analysis, and imputed metagenomic 

analysis. For mouse fecal pellets, after DNA isolation (MoBio fecal DNA kit), 626 bp 

amplicons spanning 16S variable regions 3-5 (V3-V5) were generated using barcoded 

forward primer (338F, 906R) (107). Samples were sent for pyrosequencing to Duke ISGP 

using the Roche 454 titanium platform. Operational taxonomic units (OTUs) were picked 

against the February 4th, 2011 version of the Greengenes database 

(http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) (26), pre-filtered at 97% identity. For 

quality control, all the singletons were removed. After reference-based OTU picking, 97.5% 

of the total reads were successfully mapped to the reference Greengenes database. 

These steps were performed using QIIME v1.5.0 (27). Alpha rarefaction was performed 

using the number of observed species, Chao1 and phylogenetic diversity. The 

comparison of alpha diversity between two groups at certain sampling depths was 

performed using a two-sided Student t test. Beta diversity of 16S rRNA gene and imputed 

metagenomic datasets was estimated by computing unweighted UniFrac and Bray-Curtis 

distances between samples respectively using QIIME. Ordination of the resulting distance 

matrix was performed using principal coordinate analysis (PCoA). Pair-wise comparisons 

between SeSe, Sese and sese individuals were conducted using the Kruskal-Wallis test 

to identify differentially abundant bacterial phylotypes at phylum and 97% OTU levels. 

Multiple hypothesis tests were adjusted to produce a final Benjamini and Hochberg false 
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discovery rate (108), and significant association was considered below a FDR q-value 

threshold of 0.25. 

Imputation of microbial gene content and metagenomes 

 This study takes advantage of PICRUSt, a program that infers the metagenome of 

a sample from its phylogenetic composition and was recently validated against 

conventional deep-sequencing metagenomics (109). The OTU table including all 75 

samples was used as the input file for metagenome imputation of individual human and 

mouse samples. For the metagenomic profiling of FMCs, the OTU table of the 6 FMCs 

was generated with 1 count for each 97% OTU in a given FMC. The gene content of 

2,590 KEGG (Kyoto Encyclopedia of Genes and Genomes) reference genomes was used 

to infer the approximate gene content of the detected phylotypes using PICRUSt (v0.1) 

(http://picrust.sourceforge.net/) (109). The program output the inferred metagenome 

represented by KEGG Orthology (KO) for each FMC. Taking the PICRUSt KO gene 

abundance inferences as inputs, the metabolic pathways were re-constructed using 

HUMAnN (v0.98) (55). We restricted our analysis to the KEGG pathways that were 

present in at least 90% of the samples. Pair-wise Kruskal-Wallis tests between SeSe, 

Sese and sese individuals were performed to identify imputed KEGG pathways with 

differential relative abundance. Multiple hypothesis tests were adjusted to produce a final 

Benjamini and Hochberg false discovery rate (108), and significant association was 

considered below a FDR q-value threshold of 0.05.  

Mass spectrometry analysis 
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 For metabolomics analysis, each human lavage samples was subjected to solid-

phase extraction to eliminate a polymeric contaminant believed to originate from the 

lubricant used during colonoscopy preparation. The eluate was dried and reconstituted in 

2% acetonitrile in water prior to MS analysis. A 5 μL aliquot of extracted metabolites from 

each sample was injected onto a reverse-phase 50 × 2.1 mm ACQUITY 1.7-μm C18 

column (Waters Corp, Milford, MA) using an ACQUITY UPLC system (Waters Corp, 

Milford, MA). A Waters Q-TOF Premier was operated in negative-ion (ESI-) or positive-

ion (ESI+) electrospray ionization mode with a capillary voltage of 3200 V and a sampling 

cone voltage of 20 V in negative mode and 35 V in positive mode. Data were acquired in 

centroid mode with a mass window of 50 to 850 m/z, and processed using MassLynx 

software (Waters Corp, Milford, MA). To profile the meta-proteome of lavage samples, 

matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF 

MS) was performed using the soluble fraction of samples as previously described in (22). 

The abundances of metabolomic and proteomic peaks were compared using ANOVA to 

identify features associated with FUT2 genotype. Multiple hypothesis tests were adjusted 

to produce a final Benjamini and Hochberg false discovery rate (108), and significant 

association was considered below a FDR q-value threshold of 0.25. The relatively high 

FDR was used to avoid excessively strict filtering of metabolomics and proteomic features.  

 

Results 

Whole-community microbiome ecology differs according to secretor status 
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 To study the host-microbial interaction at the mucosal luminal interface, 75 lavage 

samples were collected from the cecum and sigmoid colons of 39 healthy subjects (Table 

4-1). We assessed differences in overall microbial ecology between secretors (both 

homozygous SeSe and heterozygous Sese for the functional allele) and non-secretors 

(sese). 

 We first examined the microbial composition in these samples, to affirm that the 

present cohort matched previously reported differences between secretors and non-

secretors in microbial composition (40, 103). The microbiota from these samples was 

profiled by multiplex sequencing, and a total of 47,171,132 reads (628,948 ± 130,744 s.d. 

reads per sample) were generated after quality control. 4,074 OTUs were then identified 

by grouping reads at a 97% sequence similarity threshold. Compared with SeSe 

individuals, both Sese and sese individuals exhibited lower alpha-diversity based on the 

number of observed species (t test, P = 0.012 and 0.085 respectively), although the 

difference between SeSe and sese individuals was not statistically significant (Figure 4-

1 A). We also measured other diversity indexes including Chao1 and phylogenetic 

diversity. Compared with SeSe individuals, Sese individuals exhibited significantly lower 

alpha-diversity as indicated by Chao1 and phylogenetic diversity indexes at the depth of 

300,000 reads per sample (t test, P = 0.019 and 0.02 respectively). The same trend was 

observed in sese individuals, although not statistically significant (t test, P = 0.10 for 

Chao1 and 0.18 for phylogenetic diversity) (Figure 4-1 B and C).  

 The beta-diversity measured by unweighted UniFrac distance matrix was 

calculated for each sample to evaluate the similarity between microbial communities. 
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Principal coordinate analysis (PCoA) demonstrated that the phylogenetic compositions of 

SeSe microbiomes were significantly different from those of Sese (Adonis test, P = 0.016), 

but not sese individuals (Adonis test, P = 0.092) (Figure 4-2 A). The significant difference 

in phylotype abundances reported previously, namely the increase in Bacteroidetes 

among nonsecretors, was confirmed at the phylum level (40) (Figure 4-2 B).  

 To analyze at lower taxonomic levels, we filtered out low-abundant 97% OTUs 

based on the criteria of 1) minimum total observation count of 30 across all samples and 

2) being observed in at least 60% of the samples, reducing the number of OTUs from 

4,074 to 419. Among these OTUs, 19 (4.5%) of them were depleted in Sese and sese 

compared to SeSe individuals (Kruskal-Wallis, FDR q < 0.25). In summary, the FUT2 

polymorphism was significantly associated with selected phylotypes of colonic microbiota 

in Sese and sese individuals, and the alterations in Sese individuals resulted in a 

significant shift of microbial composition compared to SeSe. These data revealed the 

gardening effect of FUT2 polymorphism on phylogenetic composition of the colonic 

microbiota.  

Non-secretor associated functional changes revealed by imputed metagenomes 

 We hypothesized that these compositional changes result in selectively 

augmented or deficient functional capabilities that may be relevant to Crohn’s disease 

susceptibility. To test this idea, we inferred the metabolic capacities of mucosal microbiota 

associated with secretor status, using a recently developed bioinformatic pipeline 

centering on the PICRUSt (109) and HUMAnN tools (55). In the ‘gene content inference’ 

step, the gene contents and 16S rRNA gene copy number of the detected phylotype were 
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predicted based on its evolutionary similarity with the 1,119 KEGG (Kyoto Encyclopedia 

of Genes and Genomes) reference genomes. In the subsequent ‘metagenome inference’ 

step, the resulting gene content predictions for all microbial taxa with the relative 

abundance of 16S rRNA genes in each samples are combined, corrected for expected 

16S rRNA gene copy number, to generate the expected abundances of gene families in 

the entire community represented by KEGG Orthology (KOs). The prediction accuracy of 

PICRUSt has been validated using human and mammalian gut microbiome with paired 

16S rRNA gene and metagenome sequencing data (109). The relative abundances of 

KEGG pathways in each sample were then reconstructed by mapping KOs to these 

pathways using HUMAnN. At our routine sampling depth, both Sese and sese individuals 

harbored 15% fewer microbial genes on average than SeSe individuals (Figure 4-3 A), 

which is consistent with the significant lower compositional diversity observed in Sese 

individuals compared to SeSe individuals.  

 The similarity of functional states of the microbiomes from secretors and non-

secretors was evaluated by the composition of imputed metagenomes. Principal 

coordinate analysis (PCoA) using Bray–Curtis distance demonstrated separation of the 

samples from SeSe, Sese and sese individuals along PC1. The clustering of SeSe was 

significant compared to both Sese and sese individuals (Adonis test, P = 0.004 and 0.004 

respectively), suggesting that the variations at metagenomic level were more profound 

than those at the compositional level, and that FUT2 exhibited haploinsufficiency in 

programing the metagenomic functions (Figure 4-3 B). In support of the distinction 

between the phylogenetic and imputed metagenomic datasets, Procrustes analysis of the 
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Bray-Curtis PCoA plots derived from 16S rRNA gene and imputed metagenome datasets 

showed that the clustering of samples across datasets was not significant (P = 0.510). 

Among the 154 imputed metabolic pathways, 23 (14.9%) were differentially abundant 

between SeSe and Sese individuals. The alterations in sese individuals were greater, as 

shown by the changes of abundances of 43 (27.9%) of the imputed pathways compared 

to SeSe individuals (Kruskal-Wallis, FDR q < 0.05).   

 The FUT2-associated changes were more robust at the imputed metagenomic 

versus the phylotypic level. As compared to SeSe individuals, a diverse consortium of 

metabolic functions represented by 27 KEGG pathways were depleted in sese individuals, 

including amino acid metabolism pathways, cofactors and vitamins pathways and genetic 

information processing pathways. A broad-based decrease in amino-acid biosynthesis 

was observed, including lower abundances of lysine (KO00300), valine, leucine and 

isoleucine (KO00290), and phenylalanine, tyrosine and tryptophan (KO00400) 

biosynthesis pathways. Accompanying the depletion, 16 microbial pathways were 

enriched in these individuals, highlighted by aspects of energy metabolism including 

carbohydrate and lipid metabolism, cofactors and vitamins metabolism, and glycan 

biosynthesis and metabolism. These data suggest that FUT2 gene polymorphism acted 

in a haploinsufficient manner to perturb metabolic pathways such as amino acid 

biosynthesis encoded by the gut microbiome at the mucosal interface.  

 To validate these findings, we performed the same analysis on a 16S rRNA gene 

dataset of the fecal samples collected from humanized FUT2-/- mice (germ free FUT2-/- 

mice colonized with human feces from a healthy secretor) (107). Among the 146 
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metabolic pathways reconstructed, 47 (32.2%) of them were differentially abundant 

between the FUT2+/+ and FUT2-/- mice, comparable to our findings with the human 

samples. After cross comparing the two datasets, we identified 13 pathways that were 

consistently enriched or depleted with FUT2 haploinsufficiency (Kruskal-Wallis, FDR q < 

0.05) (Figure 4-3 C). Specifically, the carbohydrate and lipid metabolism and glycan 

biosynthesis related pathways were over-represented in Sese/sese individuals and 

FUT2+/-/FUT2-/- mice, whereas the relative abundances of 5 amino-acid and vitamin 

metabolism related pathways were enriched in SeSe individuals and FUT2+/+ mice (Figure 

4-3 C). These findings suggest that FUT2 genotype had a similar impact on imputed 

microbial metagenomic functions in humans and mice, notably in reduced amino acid 

synthesis capabilities.  

Functional microbial communities associated with non-secretor status 

 It is well-understood that even healthy individuals differ remarkably in their fecal 

and mucosal surface gut microbial composition, especially at the genus and species level. 

Mucosal microbiota can be further assessed for functional relatedness based on their co-

occurrence patterns (50, 110). To determine whether such ecological structures can be 

observed in this dataset, we developed a methodology to infer microbial co-occurrence 

networks. Nodes (OTUs) of these networks were grouped based on their topological 

overlaps using hierarchical clustering. Using this approach, six modules, ranging from 39 

to 97 OTUs, were identified. These modules of OTUs represent putatively key ecological 

features, which we term as functional microbial communities (FMC). Multi-dimensional 

scaling was used to depict module structure and network connections (Figure 4-4 A). 
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Phylogenetically related OTUs were clustered into the same FMC, presumably because 

preferences for ecological niche are more likely to be shared between more closely 

related microbes. However, each FMC also included phylogenetically distinct OTUs from 

different phyla, suggesting that in addition to phylogenetic relatedness, the formation of 

FMC depended upon additional ecological affinities, which could range from syntrophic 

dependences to convergent functionality between distinct phylotypes.  

 The “abundance” of each FMC can be quantitated by defining the OTU abundance 

profiles of each FMC. One can thus correlate the abundance of the FMCs with metadata 

including host genotype, disease phenotype, age, etc. When using an additive genetic 

model, the abundances of turquoise and blue FMCs significantly associated with the copy 

number of the FUT2 loss-function-allele reciprocally (P = 0.04 and 0.05 respectively with 

rs516246 by Pearson correlation) (Figure 4-4 B). This observation was concordant with 

results at the individual OTU level: when examining the membership of the FMCs, we 

found that 12 of the 19 OTUs enriched in SeSe individuals were assigned to the blue 

FMC. Gender was another subject phenotype that significantly associated with microbial 

composition: the turquoise (P = 0.004, Pearson correlation) FMC was enriched in females, 

whereas the blue and red FMCs (P = 0.04 and 0.006 respectively, Pearson correlation) 

were more abundant in males. The gender effect on intestinal microbiome has also been 

reported previously in humans and murine model (111, 112). Due to the difference of 

male/female ratio in SeSe, Sese and sese individuals, the gender effect could potentially 

contribute to the association of turquoise and blue FMCs with FUT2 genotype.  
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 To determine whether these co-occurring microbial communities represented 

distinct functional units at the mucosal surface, we profiled the metabolic capabilities of 

FMCs using the approximate gene contents imputed previously. After aggregating the 

individual inferred genomes according to module membership, the relative abundances 

of metabolic pathways in each FMC were re-constructed. The functional profiles of FMCs 

were highly variable (Figure 4-5). The pathways associated with FUT2 clustered into two 

groups that were overrepresented in the FUT2 loss-of-function allele-associated 

turquoise FMC and functional allele-associated blue FMC respectively. Moreover, the 

pathways enriched in SeSe individuals tended to cluster into amino acid metabolism class 

and cofactors and vitamins metabolism class, whereas the pathways enriched in Sese 

and sese individuals highlighted amino acid metabolism, lipid metabolism and 

biosyntehesis of secondary metabolites (Figure 4-5). These metabolically specialized 

microbial communities were therefore responsible for the imputed metagenomic 

alterations associated with FUT2 polymorphism.  

Non-Secretor Associated Metagenomic Changes Reflected by Metabolomic and 

Proteomic Profiling 

 To determine if the imputed metagenomic alterations associated with FUT2 

polymorphism correlate with changes in metabolic activities of mucosal microbiota, we 

profiled the soluble metabolites of the same lavage samples using Q-TOF MS. The 

analysis generated a rich metabolomic dataset consisting of 649 and 576 spectral 

features in the cecum and sigmoid regions, respectively. Putative IDs were assigned to 

372 ions by comparing their m/z values to those available in online databanks using a 
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predefined mass error window of 20 ppm. The putative IDs were then used to map out 

the ions to various metabolomic pathways in the KEGG dataset. In accord with our 

previous study, ~50% of all metabolites were located at the terminal end of metabolic 

pathways, suggesting enrichment for end-products (3). In the cecum, 48 metabolites were 

mapped to the 13 KEGG pathways associated with non-secretor individuals in the human 

and murine datasets, and were present in more than 90% of the samples. Of these, 13 

(27.1%) were differentially abundant among secretors (SeSe and Sese) and non-

secretors (sese) (ANOVA, FDR q < 0.25). In the sigmoid, 30 metabolites were mapped 

to the non-secretor associated pathways; 4 (13.3%) were differentially abundant (ANOVA, 

FDR q < 0.25) (Figure 4-6 A). A less stringent q value, up to 0.25, was used to avoid 

missing significant associations, as shown in recent comparable study designs (18, 92). 

When using more stringent q-value threshold (FDR q-value < 0.1), these metabolites did 

not show significant association, which is comparable with the results from study with 

similar design (92). Thus, differences in imputed microbial metagenome content 

corresponded to abundances of metabolic end-products directly detected in the same 

samples.  

 To determine how the host reacted to the changes of the functional state of the 

microbiota, we also profiled the proteomic features of the same samples using MALDI-

TOF MS. We focused our analysis on peaks of human origin. Of the 453 peaks included, 

the abundances of 16 (3.5%) were significantly different among secretors and non-

secretors (ANOVA, FDR q < 0.25). Although only 17 (3.8%) molecular features could be 

identified, we found that the expression levels of human neutrophil peptide 1 and 2 (HNP-
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1 and -2) were significantly higher in non-secretors, consistent with a subclinical 

inflammatory state at the mucosal surface (Figure 4-6 B). This difference could be driven 

by one particular sese sample that had high expression of HNP 1 and 2 relative to the 

other samples (Figure 4-6 B). To exclude such possibility, we repeated the analysis 

excluding this sample, and found that the levels of HNP1 and HNP2 were still significantly 

higher in non-secretors based on nominal P values (ANOVA, nominal P = 0.007 and 

0.047 respectively), although FDR q values were higher than 0.25 (FDR q = 0.27 and 

0.49 respectively). Our clinical records did not indicate that this individual had GI 

symptoms or chronic inflammation in the intestine at the time of sampling. These data 

suggest that the non-secretor state of the mucosa, via alteration of the mucosal surface 

ecosystem, changes the inflammatory state of the human intestinal mucosa. 

 

Discussion 

 We combined 16S rRNA gene sequencing, metagenome imputation, meta-

metabolomic, and meta-proteomic profiling, to delineate the integrated landscape of the 

mucosal surface ecosystem. The phylogenetic diversity and composition of intestinal 

mucosal microbiota in non-secretor individuals were significantly different from that of 

secretors. Compared with SeSe, the metabolic functions encoded and expressed by the 

gut microbiome in non-secretors were enriched for carbohydrate and lipid metabolism, 

cofactors and vitamins metabolism, and glycan biosynthesis and metabolism, and 

depleted for 7 pathways related to amino acid metabolism. These alterations in humans 

were highly consistent with analogous changes in the murine genetic counterpart. 
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Changes in the imputed metagenomes were reflected by concordant metabolite pools as 

determined by meta-metabolomic assays, providing validation for certain imputed 

metagenomic changes as functionally consequential. Moreover, these microbial 

functional changes were accompanied by sub-clinical intestinal inflammation. FUT2 

therefore appears to play a role in shaping the functional state of the mucosal surface by 

affecting not only microbial composition, but also the resulting functional state of the 

microbiota at the human intestinal mucosal surface.  

 It was surprising that difference with the SeSe group were in several cases (e.g., 

alpha-diversity) greater in the Sese rather than sese group. This raises two issues. One 

is the extent of glycan difference produced by haploinsufficiency. Since there was a strong 

haploinsufficiency phenotype in all facets of this study, we surmise that a substantial 

glycan change is produced by haploinsufficiency. However, to our knowledge, the glycan 

profile in heterozygous individuals has not been well described in the literature. The other 

issue is why the Sese group had a larger and more significant difference than the sese 

group. One possible explanation is that the inter-individual variation of gut microbial 

phylogenetic composition is inherently large (8, 11). In this context, it is notable that the 

sizes of the test groups were modest (9 for sese, 18 for Sese). It is possible that the 

particularly small size of the sese group made it particularly prone to outliers, and 

potentially underpowered for establishing mean phenotypes and robust statistical 

comparisons (e.g., the 95% confidence interval (CI) for alpha-diversity was larger for the 

sese (4.4) versus the Sese (1.8) group).   
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 The imputed metagenome represents an accurate but approximate inference of 

the reference microbial genomes currently available. Potential bias may result from 

unmappable 16S rRNA gene reads and lack of sufficient reference genomes. After the 

reference-based OTU picking, 97.5% of the total reads were successfully mapped to the 

reference Greengenes database. The 2.5% unmappable 16S rRNA gene reads might 

cause the loss of metagenomic content that can be captured by shot-gun sequencing. 

Also, only the 2,590 microbial genomes that had identifiers in the Greengenes reference 

tree were used as the reference to predict unknown genomes. Despite these bias and 

limitations, PICRUSt predictions usually reach high agreement with metagenomically 

measured gene content (Spearman r = 0.8-0.9) (109). In this study, the findings of 

imputed metagenomic analysis in human subjects were validated by metabolomics and 

proteomic data as well as comparison to an independent 16S rRNA gene dataset from 

humanized FUT2-/- mice. In the future, adding meta-transcriptomic data will further enrich 

our understanding of microbial functional capability at any given time.  

 Inconsistencies of FUT2 associated imputed metagenomic changes were also 

observed between human and murine datasets. In the humanized mouse gut microbiota, 

there are changes of microbial compositions as compared to the donor (113). The fecal 

sample used for humanization was from only one healthy donor, which might cause 

inherent bias due to the limited sample size. Also, taxonomic biases between the two 

different 16S rRNA gene datasets may exist due to different PCR primer sequences, 

amplicon lengths and sequencing technologies (114).  
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 One of the key drivers of gut microbiota composition and function is the type and 

quantity of complex carbohydrates, which are typically derived from either diet or host 

mucus (92, 115). These polysaccharides serve as a primary metabolic input for the 

abundant carbohydrate-fermenting bacteria within the microbiota (116). However, 

different microbes within the gut are differentially endowed with abilities to use specific 

types of glycans (117), and so differences in carbohydrate availability, such as the 

presence or absence of fucose in mucosal glycans, translate into selective and regulatory 

events that result in discrete alterations in the microbiota’s functional properties (107). 

Individual members of the microbiota can alter gene expression to accommodate the 

absence of fucose, while other members may be lost, and others recruited (107). 

Additionally a change in carbohydrate utilization by relatively few members can cascade 

into ecosystem-wide alterations given the interconnectedness of metabolic functions 

within the microbiome. Fucose processing by a gut resident symbiont allows expansion 

of pathogenic species such as Salmonella typhimurium. Similarly increased sialic acid 

release by certain bacterial species (Bacteroides thetaiotaomicron) allows expansion of 

Clostridium difficile (118). Differences in host glycan fucosylation result in distinct 

microbial ecosystems at the mucosal interface, the compositions and metabolic activities 

of which are likely precursors and predictors of ensuing disease phenotypes. This concept 

has been validated by the upstream role of microbial fucose-processing for the expansion 

of the enteric pathogen Salmonella typhimurium (118).  

 Among the phylotypes that are depleted in Sese and sese compared to SeSe 

individuals, Roseburia and Faecalibacterium are both short-chain fatty acid (SCFA) 
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producing bacteria (81, 82), and reported to be anti-inflammatory (79, 119). Moreover, 

depletion of Firmicutes and expansion of Proteobacteria members are also characteristic 

of changes associated with the IBD microbiome (16, 120). Both Sese and sese individuals 

harbored 15% fewer microbial genes on average than SeSe individuals (Figure 4-3 A). 

The lower metagenome diversity is an unfavorable feature for the host, which has also 

been observed in inflammatory bowel disease (9) and obesity (121). Among the pathways 

that were consistently depleted or enriched in Sese and sese individuals, the increase in 

glutathione metabolism and decrease in amino acid biosynthesis (particularly lysine) 

pathways have been reported as a feature of the metagenome in IBD patients (18). These 

data indicated that the non-secretor associated changes of microbial composition and 

imputed metagenomic functions are also characteristics of other chronic inflammatory 

conditions, and therefore are unfavorable for the host.  

 FUT2-/- mice have a marked alteration in gastric mucosa glycosylation, 

characterized by diminished expression of alpha(1,2)fucosylated structures (122). Since 

gut microbes have developed the ability to degrade host derived glycans (101, 123), the 

deprivation of terminal fucosylation may affect the metabolic activity of the gut microbiota 

and thus its fermentation products potentially available to the host. Recent work reported 

that enterohaemorrhagic Escherichia coli encodes a two-component system, termed 

FusKR, which responds to fucose and controls metabolic gene expression (124). The 

imputed metagenomic changes in non-secretors highlighted the depletion of 

indispensable amino acid biosynthesis. This group of metagenomic functions 

complements that encoded by the host genome (9, 125, 126). In the IBD metagenome, 



67 

 

amino acid biosynthesis and carbohydrate metabolism are reduced in favor of nutrient 

uptake (18). Such changes might reflect compensation by the microbiota for the lower 

availability of carbon sources. Amino acid starvation can lead to host stress response and 

the induction of autophagy of intestinal epithelial cells (127), which may increase risk of 

IBD. Although the current imputed metagenomic analysis is limited to the KEGG pathway 

level, further insights could be gained by extending the analysis to individual KEGG 

module or enzyme. It would be helpful to further identify the individual genes or reactions 

that are differentially abundant in these pathways, which would serve as potential 

candidates for therapeutic manipulation. 

 Low richness of gut microbiota is a well-known feature of patients with IBD (17, 

32), and other chronic conditions such as obesity (12) and elderly patients with 

inflammation (91). A recent study defined two groups of individuals that differed by the 

number of gut microbial gene as low gene count (LGC) and high gene count (HGC) (121). 

LGC individuals exhibited an imbalance of pro- and anti-inflammatory bacterial species 

and evidence of low-grade inflammation. We have shown that both Sese and sese 

individuals harbored 15% fewer microbial genes on average than SeSe individuals, and 

therefore exhibited low metagenomic richness. Similarly, in Sese and sese individuals, 

genera associated with LGC individuals, including Faecalibacterium and Coprococcus, 

were also more dominant. Moreover, the subclinical inflammatory state at the mucosal 

surface was reflected by the higher expression levels of HNP-1 and -2 in non-secretors.  

 The data presented here supports the hypothesis that the FUT2 loss-of-function 

allele increased the risk of Crohn’s disease by shaping the functional states of mucosal 
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microbiota. Meta-analysis of genome-wide association studies (GWAS) has increased 

the number of confirmed IBD (both Crohn’s disease and ulcerative colitis) susceptibility 

loci to 167 (20), indicating that IBD is biologically heterogeneous. The analysis presented 

in this study focused on individuals without clinical symptoms. It will be important to extend 

the same analysis to patients with Crohn’s disease to determine to what extent the 

changes we present are recapitulated in the disease setting. In addition to FUT2, other 

risk genes have also been shown to affect the gut microbial composition, such as NOD2 

(128) and several defensin genes (29, 129, 130). It is currently unclear whether the 

microbiota associated with genes of similar functions has the same compositional and 

functional signatures. The stratification of gut microbiome by host genetics is a crucial 

step for elucidating the pathogenic mechanism of IBD as well as the design of 

personalized therapeutic interventions.  

 To achieve unprecedented understanding of the ecological structures and 

biomolecular activities of the gut microbiome, it is necessary to extend the analysis to 

multiple levels of biological organization – genome content, gene expression, protein 

expression, and metabolism (14, 86). In this study, we used multiple ’omic approaches to 

disentangle the complex host-microbial metabolic interplay. Meta-proteomic analysis in 

this case focused on the host side, but metabolomics could be extended to incorporate 

richer microbial analysis in the future. Although only a limited number of integrative 'omics 

profiles of the gut microbiota currently exist (105, 131), multi’omic studies have shown 

great potential in providing a holistic picture of the metabolic status of the gut microbiota 

and the host response to functional changes.   
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Figures and Tables 

Figure 4-1 
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Figure 4-1. Rarefaction curve of microbial diversity for the microbiota from lavage 

samples. Rarefaction curves of (a) observed species, (b) Chao1 and (c) phylogenetic 

diversity for microbiota (mean ± 95% CI) were plotted at different sequencing depths. 
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Figure 4-2 

 

Figure 4-2. Shifts of mucosal microbial composition in secretor and non-secretor 

individuals. (a) Communities clustered using PCoA of the unweighted UniFrac distance 

matrix. Each colored point corresponds to a sample. (b) Phylum level microbial 

compositions of SeSe, Sese and sese individuals (mean ± s.d.). The bacterial community 
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from lavage sample mainly consisted of Bacteroidetes (46.59%), Firmicutes (34.8%), 

Proteobacteria (14.6%), Verrucomicrobia (1.4%) and Tenericutes (1.4%). Only 

predominant phyla with relative abundances higher than 1% were depicted in the bar 

graph. *: Kruskal-Wallis test, FDR-corrected P < 0.25. Shifts at the whole-phylum level 

were observed in SeSe individuals, including decreased relative abundances of 

Bacteroidetes, accompanied by increase of Firmicutes as compared with Sese individuals. 

When compared with sese individuals, SeSe subjects harbored more Firmicutes and 

Fusobacteria. In secretors, the trend of lower abundances of Proteobacteria can also be 

observed.  
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Figure 4-3 
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Figure 4-3. Imputed metagenomes reveal the significant enrichment of KEGG 

pathways in secretors and non-secretor individuals. (a) Distribution of bacterial 

genes in SeSe, Sese, and sese individuals. The proportion of individuals having a given 

number of genes was shown. (b) Communities clustered using PCoA of the Bray-Curtis 

distance matrix. Each colored point corresponds to a sample. The clustering of SeSe 

was significant compared to both Sese and sese individuals (Adonis test, P = 0.004 and 

0.004 respectively). (c) Relative abundance of KEGG metabolic pathways in 

microbiome samples was colored by secretor status. Only the 13 pathways showing 

concordant alterations in both human and murine datasets were plotted.  
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Figure 4-4 

 

Figure 4-4. Functional microbial communities (FMCs) associated with non-

secretor status. (a) Classical multi-dimensional scaling plot in which OTUs in each 

FMC represented by colored dots tend to form distinct clusters. (b) FMC-trait 

correlations and P values. Each cell reports the Pearson correlation coefficient (and P 

value) derived from correlating FMC eigenvectors (rows) to traits (columns). For the 

association with non-secretor status, the SeSe and Sese individuals were group 

together as secretor. For the association with FUT2 genotype (rs516246), additive 

genetic model was used. The table was color-coded by correlation according to the 

color legend.  
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Figure 4-5 

 

Figure 4-5. Variations of KEGG metabolic pathways in the functional microbial 

communities. The heatmap shows the functional profiles of FMCs (columns) based on 

the relative abundance of FUT2 associated metabolic pathways (rows) after z score 
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transformation. The color bar on top shows module membership. The dendrograms 

show the hierarchical clustering of columns and rows respectively using Euclidean 

distance. The two pie-charts show the number of pathways in each functional class for 

the cluster associated with turquoise and blue FMC respectively.  
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Figure 4-6 

 

Figure 4-6. Meta-metabolomic and meta-proteomic features that differentiate 

secretors and non-secretors. Relative abundance of meta-metabolomic (a) and meta-

proteomic (b) features in lavage samples is colored by secretor status.  
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Table 4-1. Demographic information of the cohort 

Metadata of Dataset 

  
SeSe Sese sese 

Total Subject (39) 12 (31%) 18 (46%) 9 (23%) 

Total Sample (75) 23 35 17 

Gender 

Male (24) 9 12 3 

Female (15) 3 6 6 

Age (Average ± s.d.) 63.4 ± 9.7 63.9 ± 13.8 58.9 ± 5.6 

Anatomical 

region 

Cecum (36) 11 17 8 

Sigmoid (39) 12 18 9 
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CHAPTER 5 

Microbial Gardening by FUT2 Gene and Its Link to Crohn’s Disease 
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Abstract 

Background 

 FUT2 non-secretor status (sese), is associated with increased susceptibility to 

Crohn’s disease. Previous study in our group has revealed significant alterations of the 

colonic microbiome associated with healthy non-secretors. The changes are pervasive at 

both the compositional and functional levels, highlighting perturbations of energy 

metabolism including the enrichment of carbohydrate and lipid metabolism and the 

depletion of amino acid biosynthesis and metabolism related pathways in non-secretors. 

Such gardening effect, however, has not been validated in Crohn’s disease (CD) patients.  

Methods 

 To characterize the effect of FUT2 polymorphism on the mucosal ecosystem in 

Crohn’s disease patients, we profiled the microbiome and meta-metabolome of 252 

endoscopic lavage samples from the cecum and sigmoid of 98 healthy subjects (35 SeSe, 

45 Sese and 18 sese) and 33 CD patients (9 SeSe, 14 Sese and 10 sese). To profile the 

phylogenetic composition of microbiota on the intestinal mucosal surface, 16s ribosomal 

DNA (rDNA) extracted from the bacterial pellets were sequenced by Illumina HiSeq 2000. 

The genome contents of the detected 97% OTUs were imputed using (PICRUSt) (v0.1), 

and the metabolic pathways were re-constructed using HUMAnN (v0.98). The soluble 

metabolites of the same samples were analyzed using quadrupole time-of-flight (Q-TOF) 

mass spectrometry.  

Results 
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 The phylogenetic composition of intestinal mucosal microbiota was affected by an 

interaction of Crohn’s disease status and host genetics, specifically FUT2 genotype. 

Decreased abundances of Firmicutes were associated with both CD and FUT2 risk allele. 

At metagenomic level, a distinct signature of amino acid metabolism deficiency was 

identified in CD and non-secretor microbiome. Such changes were also reflected at 

metabolomic level in the proximal gut region.  

Conclusion 

 Our data supported the hypothesis that FUT2 gene increased the risk of Crohn’s 

disease by changing the microbial composition and function to a disease-like state. The 

CD associated perturbation of metagenome and metabolome was driven by the FUT2 

risk allele.  
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Introduction 

 FUT2 encodes for fucosyltransferase 2, which is an enzyme that is responsible for 

the synthesis of the H antigen in body fluids and on the intestinal mucosa. Recent 

genome-wide association studies have identified FUT2 as a Crohn’s disease risk locus 

(20, 96), although the molecular mechanism of the association between non-secretor 

status and CD remains unknown. Dysbiosis, which refers to perturbations of the normally 

stable intestinal microbiota, has been associated with the development and progression 

of many conditions, including inflammatory bowel diseases (IBD) (16-18, 89). The 

phylogenetic composition in non-secretor individuals have been documented in several 

studies recently (40, 103, 104), showing that the FUT2 genotype was associated both 

with deviations of overall community ecology and with altered abundances of specific 

microbes. Thus, one hypothesis is that the FUT2 loss-of-function allele increased the risk 

of Crohn’s disease by shaping the compositional and functional states of mucosal 

microbiota. However, previous studies only characterized the compositional changes 

associated with FUT2, and provided only limited information on the metagenomic 

functional changes and the potential mechanisms of action in IBD risk.  

 Combining multi’omics profiling approaches, we have recently presented a 

comprehensive characterization of different aspects of the microbial ecosystem including 

microbiome composition, imputed function, metabolome and proteome (2). Imputed 

metagenomic analysis revealed perturbations of energy metabolism in the microbiome of 

non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and 

lipid metabolism, cofactor and vitamin metabolism, and glycan biosynthesis and 
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metabolism related pathways; and, the depletion of amino acid biosynthesis and 

metabolism. Similar changes were observed in mice bearing the FUT2-/- genotype. 

Metabolomic analysis of human specimens revealed concordant as well as novel 

changes in the levels of several metabolites. Human metaproteomic analysis indicated 

that these functional changes were accompanied by sub-clinical levels of inflammation in 

the local intestinal mucosa.  

 We presented here the follow-up study of the analysis in healthy individuals, aiming 

to characterize the effect of FUT2 on the functional states of intestinal microbiota in 

Crohn’s disease patients. The composition and diversity of the microbiota were 

characterized by 16S rRNA gene sequencing, and the metagenomic contents were 

imputed using PICRUSt. So far, no metabolic profiling has been done to study the effect 

of FUT2 on intestinal metabolome in CD patients. It allowed us to move from observing 

patterns to understanding mechanisms by combining 16S rRNA gene sequencing and 

metagenomic profiling with metabolomics data.  

 

Materials and Methods 

Subject Cohort and Lavage Sample Collection 

 A subject cohort of 131 individuals (Table 5-1) was recruited from patients 

presenting for screening colonoscopy at Cedars-Sinai Medical Center. Following 

institutional review board approval, subjects were consented and then included in the 

study if colonoscopy did not reveal any mucosal abnormalities. Enrolled subjects were 

prepared for colonoscopy by taking Golytely the day before the procedure. The mucosal 



85 

 

lavage samples representing the mucosal luminal interface were collected from cecum 

and sigmoid colon as described previously (22).  

Genotyping 

 The SNP rs601338 (G > A) defines secretor status in Europeans and Africans 

(106). We used rs516246, which is in strong linkage disequilibrium with rs601338, to infer 

secretor status. Estimate of linkage between rs516246 and rs601338 is 100%. These 2 

SNPs tag each other perfectly as they are in perfect LD with one another, with R-square 

of 1.0 and D-prime of 1.0, according to Hapmap3 release 2, CEU population. The 

individuals with the homozygote A/A genotype are defined as nonsecretors.  

16S rRNA Gene Sequencing and Microbial Composition Analysis 

 Genomic DNA was extracted as previously described (3). The V4 region of 16S 

ribosomal RNA genes were amplified and sequenced on an Illumina HiSeq 2000 as 

previously described (3). HiSeq reads were processed using QIIME v1.5.0 (27) with 

parameters of: minimum Q-score considered high quality: 20, maximum number of 

consecutive low-quality base calls allowed before truncating: 3, maximum number of N 

characters allowed: 0. All filtered reads had a length of 101 bp. The number of reads per 

sample ranged from 304,675 to 1,008,302, with a mean of 591,912. Sequence sub-

sampling was performed for each sample at the depth of 300,000 reads/sample. This 

normalized dataset was used for all the following analysis including alpha-diversity 

analysis, beta-diversity analysis, and imputed metagenomic analysis. Operational 

taxonomic units (OTUs) were picked against the February 4th, 2011 version of the 

Greengenes database (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) (26), pre-filtered 
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at 97% identity. For quality control, all the singletons were removed. After reference-

based OTU picking, 97.5% of the total reads were successfully mapped to the reference 

Greengenes database. These steps were performed using QIIME v1.5.0 (27). Alpha 

rarefaction was performed using phylogenetic diversity. The comparison of alpha diversity 

between two groups at certain sampling depths was performed using a two-sided Student 

t test.  

Imputation of microbial gene content and metagenomes 

 This study takes advantage of PICRUSt, a program that infers the metagenome of 

a sample from its phylogenetic composition and was recently validated against 

conventional deep-sequencing metagenomics (109). The OTU table including all 252 

samples was used as the input file for metagenome imputation of individual human 

samples. The gene content of 2,590 KEGG (Kyoto Encyclopedia of Genes and Genomes) 

reference genomes was used to infer the approximate gene content of the detected 

phylotypes using PICRUSt (v0.1) (http://picrust.sourceforge.net/) (109). Taking the 

PICRUSt KO gene abundance inferences as inputs, the metabolic pathways were re-

constructed using HUMAnN (v0.98) (55). We restricted our analysis to the KEGG 

pathways that were present in all of the samples.  

Bioinformatic and statistical analyses 

 Constrained correspondence analysis (CCA): CCA was performed using the cca 

function in the vegan R package. CCA was performed on the imputed metagenome and 

metabolome with collected subject and sample metadata. Model fitting was performed 

using the envfit function in the vegan R package. The constrained model was defined 
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with anatomical region, gender, ethnicity, FUT2 genotype and CD phenotype as 

constrained variables. The significance of each variable was assessed using permutation 

tests.  

 LDA effect size analysis: LDA effect size analysis was performed using the LEfSe 

tool (http://huttenhower.sph.harvard.edu/galaxy/). Parameters were set as: α for pairwise 

tests: 0.05 for both class normality and subclass tests; threshold on the logarithmic score 

of LDA analysis: 2.0. All LDA scores are determined by bootstrapping over 30 cycles, 

each sampling two-thirds of the data with replacement, with the maximum influence of the 

LDA coefficients in the LDA score of three orders of magnitude.  

 

Results 

Phylogenetic composition of intestinal mucosal microbiota associated with both 

Crohn’s disease phenotype and FUT2 genotype 

 To define the effect of disease phenotype and host genetics on mucosal microbiota, 

we collected 252 lavage samples from the cecum and sigmoid colons of 98 healthy 

subjects and 33 CD patients. (Table 5-1). We assessed shift in overall microbial ecology 

between secretors (both homozygous SeSe and heterozygous Sese for the functional 

allele) and non-secretors (sese) in each subject group respectively. To examine the 

microbial composition in these samples, the microbiota was profiled by multiplex 

sequencing, and on average 591,912 reads per sample were generated after quality 

control. 5,648 OTUs were then identified by grouping reads at a 97% sequence similarity 

threshold.  
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 Dysbiosis of commensal microbes and pathogens is a prominent factor in the 

development of inflammatory bowel disease (1, 16, 39). One of the well-defined feature 

is the reduction in diversity of the colonic mucosa associated bacterial microflora in IBD 

patients. Indeed, compared with healthy individuals, microbiota from CD patient exhibited 

significantly lower alpha diversity as measured by phylogenetic diversity (Figure 5-1) (t-

test, P < 0.001 at the depth of 300,000 reads). Moreover, individuals carrying the loss-of-

function allele of FUT2 (Sese and sese) also showed the trend of decreased microbial 

diversity in both control and CD subjects respectively (Figure 5-1), although only the 

difference between Non-IBD SeSe and Sese individuals was significant (t-test, P < 0.001). 

Such haploinsufficiency effect of FUT2 on microbial composition and function has also 

been observed before in our pilot cohort (2). The effect of FUT2 loss-of-function allele 

was masked by disease status in CD patient. The intermediate low microbial diversity in 

Sese and sese individuals supported the hypothesis that FUT2 gene increased the risk 

of Crohn’s disease by changing the microbial composition to a disease-like state.  

 To evaluate the effect of disease phenotype and FUT2 genotype, we used 

constrained correspondence analysis to evaluate the phylogenetic similarity between 

samples. In constrained ordination, only the variation that can be explained by the 

environmental variables was evaluated and displayed. In this model, we used subject and 

sample metadata including anatomical region, gender, ethnicity, FUT2 genotype and CD 

phenotype as constrained variables. Crohn’s disease phenotype remained to be a strong 

factors that shaped microbial composition (Figure 5-2) (P = 0.001). In addition, subjects 

also clustered by FUT2 genotype in both control and CD groups, with the clustering of 
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SeSe individuals most distinct. The association between microbial composition and FUT2 

genotype was less significant than that with disease status (P = 0.023).  

 To identify the phylotypes that explained the difference between these clusters, we 

applied the linear discriminant analysis (LDA) effect size (LEfSe) analysis to OTUs from 

phylum to genus level (132). Using this method, we identified 72 associations between 

microbial phylotypes and Crohn’s disease at different taxonomic levels in total. The 

changes were even prominent at phylum level, with increased abundances of 

Proteobacteria and decreased abundances of Firmicutes in CD patients (Figure 5-3 A), 

the microbial signature that has been validated in several independent cohorts (1, 30, 31). 

At lower taxonomic level, the Enterobacteriaceae family containing potential pathobiont 

genera such as Escherichia (including adherent-invasive Escherichia coli (77)) and 

Klebsiella genera was enriched in CD patients, whereas the genus including the anti-

inflammatory commensal bacterium Faecalibacterium prausnitzii (79), along with other 

short-chain fatty acid (SCFA) producing bacteria including Eubacterium, Roseburia and 

Coprococcus, were enriched in non-IBD subjects (80, 82). Interestingly, some of these 

phylotypes were also identified to be associated with FUT2 genotype. Using the same 

approach, we identified 15 phylotype at different taxonomic level that were enriched in 

SeSe, Sese or sese individuals (Figure 5-3 B). Among those, the associations between 

Firmicutes, specifically Lachnospiraceae and Veillonellaceae families, and SeSe 

individuals were also observed in our previous healthy-only cohort (2). Taken together, 

these data indicated that the phylogenetic composition of intestinal mucosal microbiota 
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was affected by an interaction of Crohn’s disease status and host genetics, specifically 

FUT2 genotype.  

Inefficiency of amino acid metabolism in CD and non-secretor microbiome 

 As the result of phylogenetic dysbiosis, microbial function was consistently 

perturbed in IBD patients (18). Major shifts in metagenome have been identified, including 

increased oxidative stress pathways, as well as decreased carbohydrate metabolism and 

amino acid biosynthesis in favor of nutrient transport and uptake. To determine if 

consistent changes at metagenomic level can be observed in our dataset, we inferred the 

metabolic capacities of mucosal microbiota associated with secretor status, using a 

recently developed bioinformatic pipeline centering on the PICRUSt (109) and HUMAnN 

tools (55). Among the 152 imputed metabolic pathways that were present in all the 

samples, 62 were differentially abundant between CD and non-IBD control (Figure 5-4). 

There was an evident signature of amino acid metabolism deficiency in CD microbiome, 

as represented by the decreased abundances of lysine biosynthesis (ko00300), valine, 

leucine and isoleucine biosynthesis (ko00290), phenylalanine, tyrosine and tryptophan 

biosynthesis (ko00400) and cysteine and methionine metabolism (ko00270) pathways. 

Similarly, 17 pathways were identified to be associated with FUT2 genotype (Figure 5-5), 

among which cysteine and methionine metabolism (ko00270) and phenylalanine 

metabolism (ko00360) pathways were enriched in SeSe and Sese individuals 

respectively. These data indicated that both CD phenotype and FUT2 genotype played 

important roles in shaping the functional capacity of mucosal microbiome. A consistent 
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pattern of AA metabolism deficiency can be observed in CD patients and individuals with 

loss-of-function allele of FUT2.  

Metabolomic shift associated with both disease phenotype and host genotype 

 Metabolomic analyses enabled direct assessment of the effects of metagenomic 

changes on the metabolic outcomes of gut microbiota. Microbes are syntropic with 

mucosal metabolome composition, and highly influence the colonic luminal and mucosal 

metabolome (3, 15). Previous metabolomics profiling studies in IBD patients have 

identified pathways with differentiating metabolites, including those involved in the 

metabolism and/or synthesis of amino acids, fatty acids, bile acids and arachidonic acid 

(133-135). It is expected then that the perturbation of imputed metagenome associated 

with CD phenotype and FUT2 genotype would also be reflected at metabolomics level. 

Indeed, samples from both cecum and sigmoid regions with same diagnosis and FUT2 

genotype formed distinct clusters based on their metabolomic composition (Figure 5-6 A 

and B). Crohn’s disease remained to be a stronger factor as shown by the separation of 

CD and non-IBD control samples. Interestingly, a strong biogeographic effect of FUT2 

gene on the gut metabolome was observed, as indicated by the clustering of sese 

samples from cecum but not sigmoid region (Figure 5-6 A). These data, combined with 

the findings at the phylogenetic and imputed metagenomic levels, indicated that FUT2 

gene and Crohn’s disease phenotype functioned together to shape the functional states 

of mucosal associated microbiota in human.  
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Discussion 

 IBD has long been known to have genetic risk factors due to the increased risk in 

first-degree relatives of affected individuals. Meta-analysis of genome-wide association 

studies (GWAS) has increased the number of confirmed IBD (both Crohn’s disease and 

ulcerative colitis) susceptibility loci to 167 (20), indicating that IBD is biologically 

heterogeneous. As post-GWAS functional characterization of risk loci in human subjects, 

our data suggests that the CD associated perturbation of metagenome and metabolome 

was driven by the FUT2 risk allele. Among the 167 susceptibility loci, several other genes 

were involved in the genetically impaired immune regulation and epithelial barrier function, 

such as NOD2 in the sensing of bacterial products, JAK2-STAT3 pathway in immune 

responses, and the IL-2-Th17 pathway in microbial defense mechanisms (20, 29, 136). 

Defining the dysbiosis and functional changes in individuals with different genetic risk 

profile will help us formulate the personalized therapeutic interventions with better efficacy.  

 We have previously reported the metabolomic changes concordant with 

metagenomic alterations in healthy non-secretors (2). Similar associations were 

confirmed in healthy individuals, and were also observed in CD patients as well. 

Interestingly, the effect of FUT2 gene on the gut metabolome was only evident in the 

proximal cecum region, but not the distal part. This may in part be explained by the 

different glycosylation landscape in human colonic epithelium, since the availability of 

host fucosylated glycans directly affects the functions that microbiota expresses in the 

distal gut (107). The biogeographic pattern was also observed in FUT2-/- mice, although 

in distal rather than proximal gut (107). Further detailed characterization of glycosylation 
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profile of mucin along human gut will help us explain the differential effect of FUT2 on 

metabolome.  
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Figures and Tables 

Figure 5-1 

 

Figure 5-1. Rarefaction curve of microbial diversity for the microbiota from lavage 

samples. Rarefaction curves of phylogenetic diversity for microbiota (mean ± 95% CI) 

were plotted at different sequencing depths for individuals with different disease 

phenotype and FUT2 genotype.  
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Figure 5-2 

 

Figure 5-2. Shifts of mucosal microbial phylogenetic composition in individuals 

with different disease phenotype and FUT2 genotype. Ordination of samples using 

CCA of disease status and FUT2 genotype, conditioned by environmental factors 

including anatomical region, gender and ethnicity. The centre of gravity for each cluster 

was marked by a rectangle.  
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Figure 5-3 

A                                                                       B  

  

 

Figure 5-3. Cladogram of phylotypes associated with Crohn’s disease and FUT2 

genotype. Phylogenetic taxonomy representation of statistically and biologically 

consistent differences between (A) Crohn’s disease and non-IBD controls, and (B) SeSe, 

Sese, and sese individuals. Differences were represented in the color of the most 

abundant class. Each circle’s diameter is proportional to the taxon’s abundance.  
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Figure 5-4 

 

Figure 5-4. Crohn’s disease associated KEGG metabolic pathways. Histogram of the 

LDA scores computed for metagenomic features differentially abundant between CD (red) 

and non-IBD controls (green) was shown. LEfSe scores can be interpreted as the degree 

of consistent difference in relative abundance between features in the two classes of 

analyzed microbial communities. The histogram thus identifies which pathways among 

all those detected as statistically and biologically differential explain the greatest 

differences between communities.  

  



98 

 

Figure 5-5 

Figure 5-5. FUT2 genotype associated KEGG metabolic pathways. Histogram of the 

LDA scores computed for metagenomic features differentially abundant between SeSe 

(blue), Sese (green) and sese (red) individuals was shown.  
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Figure 5-6 

 A                                                                    B  

 

Figure 5-6. Shifts of mucosal metabolomic composition in individuals with different 

disease phenotype and FUT2 genotype. Ordination of samples from (A) cecum and (B) 

sigmoid using CCA of disease status and FUT2 genotype. The centre of gravity for each 

cluster was marked by a rectangle.  
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Table 5-1. Demographic information of the Crohn’s disease patient cohort 
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CHAPTER 6 

Conclusions 
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Mucosal lavage sampling: a novel way to study host-microbial interaction 

 We developed the novel mucosal lavage sampling approach, which enabled the 

profiling of multi’omic molecular features including microbiome, metaproteome and 

metabolome. Combined with host genomic information, these tools can provide us with 

unprecedented understanding of the dynamics of host–microbial interaction, and help us 

to investigate the pathogenesis of inflammatory bowel diseases. The same framework 

also represents a powerful tool to study the mucosal biology in other chronic inflammatory 

diseases such as HIV infection. 

Functional microbial communities: a new insight into microbial ecology 

 We have developed a novel strategy using an ecologic mucosal microbial 

framework, minimally invasive mucosal sampling, short-read Illumina sequencing, 

network analysis, and imputed metagenomics. This strategy uncovered 5 reproducible 

functional microbial communities (FMCs) detectable in the mucosa of all individuals. The 

quantitative levels of two FMCs were significantly associated with IBD states. Imputed 

metagenome analysis indicated the functional importance of the disease associated 

modules reflected by the enrichment of virulent and pathogenic pathways. Thus, these 

modules appear to define novel microbial communities within the intestinal microbial 

ecology, some of which are commonly and stably modified by the IBD disease state, and 

may be of particular relevance for microbial pathogenesis and intervention.  

 In the meantime, alternative analytical tools have been developed by other 

research groups following the same rationale of microbial co-occurrence network analysis. 

Claesson et al. established co-abundance associations of genera and then clustered 
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correlated genera into six co-abundance groups (CAGs) (91). The distinctive dominances 

of these CAGs accompanied the transition of residence location of elderly subjects and 

the dietary and lifestyle distinctions between African and western population (91, 137). 

An study of the initial Human Microbiome Project (HMP) cohort constructed a global 

network of 3,005 significant co-occurrence and co-exclusion relationships between 197 

clades occurring throughout the human microbiome (50). This network revealed strong 

niche specialization, with most microbial associations occurring within body sites and a 

number of accompanying inter-body site relationships. These tools combined together 

will provide an integrative view of microbial ecology relevant to chronic diseases.  

FUT2 and Crohn’s disease: a better understanding of IBD pathogenesis 

 Using this experimental and bioinformatic framework, we investigated the 

microbial gardening effect of FUT2 gene and its link to Crohn’s disease. In healthy 

individuals, imputed metagenomic analysis revealed perturbations of energy metabolism 

in the microbiome of non-secretor and heterozygote individuals, notably the enrichment 

of carbohydrate and lipid metabolism, cofactor and vitamin metabolism, and glycan 

biosynthesis and metabolism related pathways; and, the depletion of amino acid 

biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2-

/- genotype. Metabolomic analysis of human specimens revealed concordant as well as 

novel changes in the levels of several metabolites. Human metaproteomic analysis 

indicated that these functional changes were accompanied by sub-clinical levels of 

inflammation in the local intestinal mucosa.  
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 In an extended cohort containing both healthy and CD individuals, the phylogenetic 

composition of intestinal mucosal microbiota was affected by an interaction of Crohn’s 

disease status and FUT2 genotype. Decreased abundances of Firmicutes were 

associated with both CD and FUT2 risk allele. At metagenomic level, a distinct signature 

of amino acid metabolism deficiency was identified in CD and non-secretor microbiome. 

Such changes were also reflected at metabolomic level in the proximal gut region. Taken 

together, FUT2 gene increased the risk of Crohn’s disease by changing the microbial 

composition and function to a disease-like state. The CD associated perturbations of 

metagenome and metabolome were driven by the FUT2 risk allele.  

So what’s next? 

 The findings here should be further tested and validated in other human 

microbiome datasets and in mouse models. Based on cross-sectional cohort studies, we 

have identified a set of metagenomic pathways involved in the pathogenesis of IBD. By 

comparing with other IBD microbiome dysfunction study (18), several pathways were 

highlighted that were consistently associated with disease phenotype and IBD risk gene 

in different datasets (Table 6-1). These pathways should be further validated by cross-

comparing with any future IBD or chronic disease microbiome studies. Also, during the 

past several years, there has been a shift from association analysis in human to 

mechanistic study of observed dysbiosis and dysfunction. Such investigation would be 

enabled by longitudinal cohort study or colitis mouse models, which will allow us to 

determine which alterations are causal for IBD.  
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 The metagenomic and metabolomic changes associated with IBD or different 

genetic background serve as promising targets for therapeutic efforts. Intervention 

strategies should be immediately developed to reverse the metagenomic and 

metabolomic changes in patients to alleviate the symptoms, and to prevent onset of 

diseases in individuals with high genetic risk. Combined with genetic testing such as 

Immunochip profiling, these efforts will be the first step towards personalized treatment 

of IBD.  

 The study design and analytic pipelines are transferrable for other IBD risk genes, 

and other chronic diseases with both genetic and microbiome components such as 

metabolic syndrome. IBD has long been known to have genetic risk factors due to the 

increased risk in first-degree relatives of affected individuals. Meta-analysis of genome-

wide association studies (GWAS) has increased the number of confirmed IBD (both 

Crohn’s disease and ulcerative colitis) susceptibility loci to 167 (20), indicating that IBD is 

biologically heterogeneous. The experimental and analytic approaches presented here 

represent a powerful and valuable framework of post-GWAS functional characterization 

of IBD risk loci in human subjects. Among the 167 susceptibility loci, several other genes 

were involved in the genetically impaired immune regulation and epithelial barrier function, 

such as NOD2 in the sensing of bacterial products, JAK2-STAT3 pathway in immune 

responses, and the IL-2-Th17 pathway in microbial defense mechanisms (20, 29, 136). 

Defining the dysbiosis and functional changes in individuals with different genetic risk 

profile will help us formulate the personalized therapeutic interventions with better efficacy.  

  



106 

 

Table 6-1. Meta-analysis of metagenomic pathways associated with IBD activity 

and risk gene 

Note: The associations of each KEGG pathways with IBD activity and risk gene in different 

16S rRNA microbiome datasets are listed. The Morgan et al. (18), MLI (presented in 

Chapter 4) and Tong et al. (1) datasets consisted of IBD patients and control subjects, 

and the associations between pathways and disease phenotype were identified. The 

FUT2 dataset (2) presented the association with protecting or IBD risk allele of FUT2. The 

score counts the number of times that the same pathway was identified in different studies, 

and only the pathways with a score higher than 1 are listed.  

KEGG Pathways 
Morgan 

et al.  
MLI 

Tong 

et al.  
FUT2  Score 

ko00300-Lysine biosynthesis TRUE Control Control Protecting    4 

ko00480-Glutathione metabolism TRUE CD IBD Risk    4 

ko00730-Thiamine metabolism TRUE Control Control Protecting    4 

ko00860-Porphyrin and chlorophyll 

metabolism 
TRUE Control Control Protecting    4 

ko00270-Cysteine and methionine 

metabolism 
TRUE Control Control Protecting    4 

ko00311-Penicillin and cephalosporin 

biosynthesis 
TRUE CD IBD Risk    4 

ko00240-Pyrimidine metabolism  Control Control Protecting    3 

ko00900-Terpenoid backbone 

biosynthesis 
 Control Control Protecting    3 

ko00785-Lipoic acid metabolism  CD IBD Risk    3 

ko00281-Geraniol degradation TRUE CD IBD  3 

ko00430-Taurine and hypotaurine 

metabolism 
 CD IBD Risk    3 
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ko00053-Ascorbate and aldarate 

metabolism 
 CD IBD Risk    3 

ko00130-Ubiquinone and other terpenoid 

quinone biosynthesis 
 CD IBD Risk    3 

ko00540-Lipopolysaccharide 

biosynthesis 
 CD IBD Risk    3 

ko00290-Valine, leucine and isoleucine 

biosynthesis 
 Control Control Protecting    3 

ko00020-Citrate cycle-TCA cycle   CD IBD Risk    3 

ko00280-Valine, leucine and isoleucine 

degradation 
TRUE CD IBD  3 

ko00330-Arginine and proline 

metabolism 
 Control Control Protecting    3 

ko00623-Toluene degradation  CD IBD Risk    3 

ko00140-Steroid hormone biosynthesis TRUE CD  Risk    3 

ko00720-Carbon fixation pathways in 

prokaryotes 
 CD IBD Risk    3 

ko04146-Peroxisome  CD IBD Risk    3 

ko00195-Photosynthesis  Control Control  2 

ko00550-Peptidoglycan biosynthesis  Control  Protecting    2 

ko05120-Epithelial cell signaling in 

Helicobacter pylori infection 
 Control  Protecting    2 

ko03440-Homologous recombination  Control  Protecting    2 

ko03010-Ribosome  Control  Protecting    2 

ko00970-Aminoacyl tRNA biosynthesis  Control  Protecting    2 

ko00471-D Glutamine and D glutamate 

metabolism 
 Control Control  2 

ko03060-Protein export  Control  Protecting    2 

ko00250-Alanine, aspartate and 

glutamate metabolism 
 Control Control  2 

ko00670-One carbon pool by folate  Control  Protecting    2 
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ko00790-Folate biosynthesis  CD IBD  2 

ko03030-DNA replication  Control  Protecting    2 

ko00770-Pantothenate and CoA 

biosynthesis 
 Control  Protecting    2 

ko04112-Cell cycle-Caulobacter  Control  Protecting    2 

ko00030-Pentose phosphate pathway TRUE Control   2 

ko00640-Propanoate metabolism TRUE CD   2 

ko03430-Mismatch repair  Control  Protecting    2 

ko00590-Arachidonic acid metabolism  CD  Risk    2 

ko00400-Phenylalanine, tyrosine and 

tryptophan biosynthesis 
 Control  Protecting    2 

ko04621-NOD like receptor signaling 

pathway 
 Control Control  2 

ko00930-Caprolactam degradation TRUE CD   2 

ko00500-Starch and sucrose metabolism  Control Control  2 

ko04626-Plant pathogen interaction  Control  Protecting    2 

ko00410-beta Alanine metabolism  CD IBD  2 

ko00051-Fructose and mannose 

metabolism 
TRUE Control   2 

ko00361-Chlorocyclohexane and 

chlorobenzene degradation 
 CD IBD  2 

ko00061-Fatty acid biosynthesis  Control Control  2 

ko00780-Biotin metabolism  CD  Risk    2 

ko03013-RNA transport  Control  Protecting    2 

ko00362-Benzoate degradation TRUE  Control  2 

ko00625-Chloroalkane and chloroalkene 

degradation 
TRUE  Control  2 

ko00450-Selenocompound metabolism TRUE  IBD  2 

ko00350-Tyrosine metabolism TRUE   Protecting    2 

ko00230-Purine metabolism TRUE   Protecting    2 
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O-glycan Structure and Intestinal Epithelial Barrier Function 
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Abstract 

Background 

 Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the 

intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired 

expression of intestinal O-glycans has been observed in patients with ulcerative colitis 

(UC), but its role in the etiology of this disease is unknown.  

Methods 

 We generated intestinal epithelial cell–specific C1galt1–/– (IEC C1galt1–/–) mice by 

crossing mice with loxP sites flanking C1galt1 (C1galt1f/f mice) with an intestinal 

epithelium–specific Cre-expressing transgenic line (VillinCre mice). Peripheral 

granulocytes and monocytes in IEC C1galt1–/– mice were analyzed by flow cytometry. 

The infiltration of TNF-producing granulocytes and monocytes/macrophages in 

IEC C1galt1–/– colon tissues was analyzed by immunofluorescent staining.  

Results 

 Mice with intestinal epithelial cell–specific deficiency of core 1–derived O-glycans, 

the predominant form of O-glycans, developed spontaneous colitis that resembled human 

UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in 

these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa 

in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis 

initiation.  

Conclusion 
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 These data indicate a causal role for the loss of core 1–derived O-glycans in colitis. 

Myeloid cells are essential for the initiation of colitis in IEC C1galt1–/– mice.  
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Introduction 

 Ulcerative colitis (UC) is an immune-mediated disorder that results from an 

abnormal interaction between colonic bacteria and mucosal immune cells in a genetically 

susceptible host (6, 138). The mechanisms underlying this interaction remain to be 

defined (6, 138). 

 The colon mucus layer comprises the polymerized mucins, primarily Muc2, that 

are produced by goblet cells (139, 140). Mucins are glycoproteins that carry large 

numbers of O-linked oligosaccharides (O-glycans), which account for up to 80% of the 

mass of the mucin molecules and are responsible for many of the properties of mucins. O-

glycans are synthesized post-translationally in the Golgi apparatus (141-143). All O-

glycans are initiated with a primary structure referred to as Tn antigen (GalNAcα-O-

Ser/Thr), which is normally masked by additional glycosylation to form the main type of O-

glycans, core 1–derived structures (143). The biosynthesis of core 1 is controlled by core 

1 β1,3-galactosyltransferase (C1galt1, also known as T-synthase) (143), for which 

expression requires the specific molecular chaperone C1GALT1C1 in the ER (144). 

 Most UC patients have colitis only in the distal colon (145). Although the reasons 

for this regional variation are unknown, UC patients have deterioration of the mucus layer 

and abnormal mucin expression in the distal colon (138, 146-148). Altered intestinal O-

glycosylation also occurs in patients with UC. However, the nature of the impaired O-

glycosylation in UC patients is unclear (149). Whether abnormal O-glycosylation impairs 

the mucus inner layer and causes spontaneous colitis is unknown.  
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Materials and Methods 

Mice 

 IEC C1galt1–/– mice and TM-IEC C1galt1–/– mice were generated by 

breeding C1galt1f/f mice with VillinCre transgenic mice (Tg[Vil-cre]997Gum; Jackson 

Laboratory) and VillinCre-ERT2 transgenic mice (provided by Sylvie Robine, CNRS–

Institut Curie, Paris, France, and Robert Coffey, Vanderbilt University, Nashville, 

Tennessee, USA), respectively. To induce a postnatal deficiency in intestinal O-glycans, 

6- to 8-week-old TM-IEC C1galt1–/– mice were injected intraperitoneally with 1 mg TM 

(MP Biomedicals) in an ethanol/sunflower seed oil mixture (1:9 [v/v]) for 5 consecutive 

days. Rag1–/– mice (Jackson Laboratory), Tlr4–/– mice, and Myd88–/– mice (originally 

developed by Shizuo Akira, Osaka University, Osaka, Japan) (150) were crossed to 

IEC C1galt1–/– mice to establish mice with combined gene deficiencies. The animal 

studies were conducted with protocols that had been approved by the Institutional Animal 

Care and Use Committee of the Oklahoma Medical Research Foundation and UCLA. 

Mice were raised in a specific pathogen–free barrier facility and genotyped routinely by 

PCR assay on genomic DNA isolated from tail clips. The primers used for genotyping 

include Flox1: 5′-TGACAGCCAGGAATGGAACTTG-3′ and Flox2: 5′-

GCCTCTTCTCGCAACAAAATACTC-3′; CRE1: 5′-AGGTGTAGAGAAGGCACTTAGC-3′ 

and CRE2: 5′-CTAATCGCCATCTTCCAGCAGG-3′. Sex- and age-matched littermates 

were used as controls in all experiments. Unless specified, all mice were on the C57BL/6J 

congenic background. 

Flow cytometry  
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 Single-cell suspensions were obtained by passing the spleen or mesenteric lymph 

node through a 100-μm cell strainer. Red blood cells were lysed by a 15-min incubation 

in ammonium chloride lysing reagent (BD Biosciences). Intestinal intraepithelial 

lymphocytes from colons were isolated as described (151). All antibodies were obtained 

from BD Biosciences unless specified otherwise. For myeloid cell analysis, peripheral 

blood leukocytes that were positive for myeloid marker CD11b but negative for the rest of 

the lineage markers were defined as monocytes. mAb against Ly-6C (AL-21) was used 

to classify monocytes into subsets with either high expression of Ly-6C (Ly-6Chi) or low 

expression of Ly-6C (Ly-6Clo). Cells from indicated compartments were incubated with 

antibodies. Two-color analyses were performed using the FACSCalibur system (BD 

Biosciences).  

Immunofluorescence staining 

 For the detection of infiltrated inflammatory cells, distal colons were dissected from 

mice and fixed in 4% paraformaldehyde at 4°C overnight, followed by cryoprotection in 

20% sucrose, and then embedded in a mixture of OCT compound (Sakura Finetek) and 

tissue freezing medium (Electron Microscopy Sciences). Cryosections (20 μm thick) were 

incubated with rat mAb against murine Ly6G (5 μg/mL, clone 1A8; BD) or rat mAb against 

murine F4/80 (5 μg/mL, clone C1:A3-1; AbD Serotec) combined with rabbit anti–mouse 

TNF (polyclonal; BD) overnight at 4°C, developed with phycoerythrin-labeled goat anti–

rabbit IgG (1:50; Jackson ImmunoResearch Laboratories Inc.) and Alexa Fluor 488–

conjugated donkey anti–rat IgG (1:100; Invitrogen), and mounted with ProLong Gold 

mounting medium with DAPI (Invitrogen). Specimens were analyzed by epifluorescence 
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imaging using a Nikon C1 confocal laser-scanning unit equipped with a 3-laser launcher 

mounted on an Eclipse TE200-U inverted microscope. Species-specific, isotype control 

antibodies were used for negative controls. For each section, 5 different high-powered 

microscopic fields (×20) were chosen randomly to count the TNF+, Ly6G+, and 

TNF+/Ly6G+ cells. DAPI-positive areas were quantified as pixels per high-powered 

microscopic field (×20) using Photoshop (Adobe). The cell numbers were normalized to 

DAPI staining.  

 

Results 

 To establish the role of myeloid cells in incipient disease, we first analyzed 

peripheral granulocytes and monocytes in IEC C1galt1–/– mice by flow cytometry. Notably, 

peripheral blood from IEC C1galt1–/– mice had elevated numbers of peripheral 

granulocytes (Ly6G+CD11b+) at 2 weeks and had a higher level of the inflammatory 

subset of monocytes (Ly-6G–CD11b+Ly-6Chi) at 3 weeks (Figure S1-1 A). Blockage of P- 

and E-selectins, which inhibit myeloid cell transmigration into inflammatory sites, or of 

TNF significantly improved colitis in IEC C1galt1–/– mice as compared with IEC C1galt1–

/– mice treated with control agents (Figure S1-1 B), indicating that myeloid cells and TNF 

are key inflammatory initiators in our mouse model. 

 Further immunostaining revealed substantial infiltration of TNF-producing 

granulocytes and monocytes/macrophages in IEC C1galt1–/– colon tissues (2.5-week-old; 

Figure S1-1 C) but not before the onset of colitis (1 week of age), suggesting that these 

are major cell types that sense the early microbial intrusion and initiate inflammation. We 
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bred IEC C1galt1–/– with mice lacking Myd88, a universal adaptor protein used by most 

TLRs, or TLR4, which recognizes bacterial antigens, and found that neither Myd88 nor 

TLR4 deficiency protected IEC C1galt1–/– mice from developing colitis (Figure S1-2), 

suggesting that TLRs are not essential for recognition of bacterial components in our 

mouse models. 

 

Discussion 

 Activation and recruitment of myeloid cells in colon mucosa are hallmarks of active 

UC and are associated with epithelial injury and clinical disease activity (138). However, 

the significance of myeloid cells in the initiation of colitis and in disease progression 

remains unclear. Our data indicate that myeloid cells are among the major early 

responders to bacterial intrusion when the mucus barrier is breached and contribute 

significantly to tissue damage in the C1galt1–/– colon. In general, microbial recognition is 

achieved through pattern recognition receptors, such as TLR and Nod-like receptors 

(NLRs) (6, 138, 152). The activation of myeloid cells in our models is Myd88 independent, 

which is similar to that in T-bet–deficient mice that exhibit colitis in the background of 

Rag1 deficiency (153), although, unlike in T-bet–deficient mice, spontaneous colitis 

inC1galt1–/– mice is not dependent on the Rag1 deficiency. The underlying mechanism of 

colitis susceptibility in T-bet–deficient mice includes an enteric dysbiosis resulting from 

their host genetic deficiency in mucosal defense, with resultant recruitment and activation 

of proinflammatory myeloid cells. This is different from the mechanism in C1galt1–/– mice. 

In C1galt1–/– mice, increased association of intestinal bacteria with colonic epithelia may 
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result from impaired ability of the O-glycan–dependent mucus barrier to impede 

nonspecific bacterial invasion. Recent work has demonstrated that some symbiotic 

bacteria have developed O-glycan sensing and degradation pathways (154). Based on 

this, it can be anticipated that the changes in the O-glycans will alter the composition of 

the gut microbiota. The ability of bacteria to penetrate the mucus barrier may also 

contribute to the pathogenesis of colitis in our models. Nevertheless, in both models, 

Myd88 independence is a surprising feature, suggesting that the relevant microbial 

sensing in this setting of innate inflammation predominates with Myd88-independent TLR, 

NLR, or other families of pathogen-associated molecular products (138, 152). 
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Figures and Tables 

Figure S1-1 

 

Figure S1-1. Innate immune cells are a critical initiator of colitis in IEC C1galt1–

/– mice. (A) Peripheral myeloid cells analyzed by flow cytometry (mean ± SD, n = 8 

mice/group). Granulocytes are defined as Ly-6G+CD11b+. Ly-6G–CD11b+ monocytes 

were further analyzed for Ly-6C expression. *P < 0.02. (B) Histologic scores of H&E-

stained colon sections of 2.5-week-old IECC1galt1–/– mice treated with etanercept (TNF 

blocker; saline as control, mean ± SD, n = 5 mice/group) or blocking antibodies to mouse 

P- and E-selectin (anti-P/E, rat IgG; isotype IgG used as controls; mean ± SD, n = 6 
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mice/group). **P < 0.002, †P < 0.01. (C) Cryosections of IEC C1galt1–/– colons at different 

ages stained with mAbs to granulocytes (Ly-6G), macrophages (F4/80), and TNF. Insets 

(original magnification, ×400) highlight TNF+ granulocytes and macrophages. Scale bars: 

50 μm. Data are representative of at least 3 experiments.  
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Figure S1-2 

 

 

 

 

 

 

 

 

Figure S1-2. Myd88 and TLR4 are dispensable in the pathogenesis of colitis in O-

glycan-deficient mice. We bred IEC C1galt1–/– with mice lacking Myd88, an universal 

adaptor protein used by most TLRs, or TLR4, which recognizes bacterial antigens, and 

found that neither Myd88 nor TLR4 deficiency protected IEC C1galt1–/– mice from 

developing colitis. H&E-stained representative colonic sections indicate similar colonic 

inflammation in 20-week-old IEC C1galt1–/– mice with or without Myd88 or TLR4 

deficiencies. Scale bar, 100 μm. 
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Abstract 

Background 

 Consistent compositional shifts in the gut microbiota are observed in IBD and other 

chronic intestinal disorders and may contribute to pathogenesis. The identities of 

microbial biomolecular mechanisms and metabolic products responsible for disease 

phenotypes remain to be determined, as do the means by which such microbial functions 

may be therapeutically modified.  

Methods 

 The composition of the microbiota and metabolites in gut microbiome samples in 

47 subjects were determined. Samples were obtained by endoscopic mucosal lavage 

from the cecum and sigmoid colon regions, and each sample was sequenced using the 

16S rRNA gene V4 region (Illumina-HiSeq 2000 platform) and assessed by UPLC mass 

spectroscopy. Spearman correlations were used to identify widespread, statistically 

significant microbial-metabolite relationships.  

Results 

  Procrustes and coinertia analysis indicated that inter-omic syntropy existed 

between mucosal microbiome and metabolome. Such inter-omic relationship was 

stronger in the cecum than in the sigmoid. OTUs from the Firmicutes and Proteobacteria 

clades were particularly influential to the inter-omic relationship. The corresponding 

metabolome analysis indicated metabolites associated with amino acid, porphyrin, and 

chlorophyll metabolism are important to the inter-omic relationship.  

Conclusion 
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 The results suggest that microbes are syntropic with mucosal metabolome 

composition and therefore may be the source of and/or dependent upon gut epithelial 

metabolites. The finding that certain metabolites strongly correlate with microbial 

community structure raises the possibility of targeting metabolites for monitoring and/or 

therapeutically manipulating microbial community function in IBD and other chronic 

diseases. This study represents one of the first successful integrations of different 

microbiome components in the adult colonic mucosa.  
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Introduction 

 The intestinal mucosal surface is the site of a complex orchestration of 

immunologic, metabolic and ecological forces that drive microbial community structure. 

In most cases, these forces balance the composition of the gut microbiota with mucosal 

health, facilitating normal nutrient absorption, local and systemic endocrinology, epithelial 

barrier function, immune development and gut homeostasis (100, 155-157). However, the 

immunological and functional state of the mucosa is influenced by the microbiota, and it 

is therefore susceptible to detrimental interactions with changes in luminal bacteria (35, 

158). The microbial composition is typically well controlled; however, in certain genetically 

and environmentally susceptible individuals, control of microbial composition is 

compromised, leading to (or resulting from) clinical manifestations in immune and 

inflammatory diseases (18, 90, 159, 160).  

 The intestinal mucosal ecosystem harbors an assortment of host factors, 

microbiota, and metabolites. The microbial ecology in the context of this molecular milieu 

is an area of intense study, but to this point it has mainly been probed by the potential 

(versus expressed) functionality represented by the microbial metagenome (8, 10, 23, 92). 

A central goal and methodologic challenge in human-associated microbial ecology is to 

identify dietary, metabolic, and host and microbial factors that drive microbial community 

structure. Recent work by Jansson and colleagues (105, 161) and our group (162) 

indicates that components of the mucosal proteome correlate with certain microbial 

species and reveals intriguing differences between the potential and expressed 

biochemical pathways detected in microbial communities in vivo (105). In twin-pair 
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studies, Crohn’s disease-associated differences in fecal metabolites have been detected 

in parallel with microbial compositional and metagenomic differences in this compartment, 

and represented biomarkers related to disease state, presumably in part as products of 

the disease-associated changes in microbial metagenomic function (28, 133, 163). 

Identification of such relationships is fundamental for interventional strategies to alter 

microbiota composition in the context of dysbiosis, and have been highlights of recent 

landmark studies of environment and diet in human fecal microbial composition (18, 92, 

163). Indeed, direct analysis of metabolic output by and interactions between microbial 

species is a burgeoning investigative field, but challenging methodologically, 

particularly in vivo (14, 15). 

 

Materials and Methods 

Sample collection and pre-processing 

 All enrolled subjects were consented under an approved Institutional Review 

Board (IRB) protocol from Cedars Sinai Medical Center prior to routine colonoscopy. All 

subjects underwent bowel preparation with Miralax® prior to colonoscopy. For each 

sample region, approximately 30mL of sterile water was endoscopically flushed onto the 

mucosal surface and recollected via aspiration. Samples were obtained from the cecum 

and sigmoid colon region of each subject. Samples were kept on ice for the duration of 

the pre-processing that immediately followed sample collection. Samples were 

centrifuged at 4,000 × g for 10 minutes at 4°C. The supernatant was aliquoted into three 

50-mL tubes with equal volumes and frozen at −80°C. The pellets were resuspended in 
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2 mL of RNAprotect Bacteria Reagent (Qiagen, Valencia, CA, USA), aliquoted into three 

separate 15-mL conical tubes, centrifuged at 4,000 × g for 10 minutes at 4°C, separated 

from the supernatant and frozen at −80°C. 

High-throughput 16S analysis 

 DNA was extracted from 93 samples using the PowerSoil DNA Isolation Kit (MO 

BIO Laboratories, Carlsbad, CA, USA), and a 30-second beat-beating step using a Mini-

Beadbeater-16 (BioSpec Products, Bartlesville, OK, USA). High-throughput sequencing 

analysis of bacterial rRNA genes was performed using extracted genomic DNA as the 

templates. One hundred-microliter amplification reactions were performed in an MJ 

Research PTC-200 thermal cycler (Bio-Rad Inc., Hercules, CA, USA) and contained 50 

mM Tris (pH 8.3), 500 μg/mL BSA, 2.5 mM MgCl2, 250 μM of each deoxynucleotide 

triphosphate (dNTP), 400 nM of each primer, 4 μL of DNA template, and 2.5 units 

JumpStart Taq DNA polymerase (Sigma-Aldrich, St. Louis, MO, USA). The PCR primers 

(F515/R806) targeted a portion of the 16S rRNA gene containing the hypervariable V4 

region, with the reverse primers including a 12-bp barcode (164). Thermal cycling 

parameters were 94°C for 5 minutes; 35 cycles of 94°C for 20 seconds, 50°C for 20 

seconds, and 72°C for 30 seconds, and followed by 72°C for 5 minutes. PCR products 

were purified using a MinElute 96 UF PCR Purification Kit (Qiagen). DNA sequencing 

was performed using an Illumina HiSeq 2000 (Illumina, Inc., San Diego, CA, USA). 

Clusters were created using template concentrations of 1.9 pM and PhiX at 65 K/mm2, 

which is recommended by the manufacturer for samples with uneven distributions of A, 

C, G and T. One hundred base-sequencing reads of the 5’ end of the amplicons and 
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seven base barcode reads were obtained using the F515/R806 sequencing primers. De-

multiplexing, quality control, and operational taxonomic unit (OTU) binning were 

performed using quantitative insights into microbial ecology (QIIME) (27). The total initial 

number of sequencing reads was 70,278,364. Low-quality sequences were removed 

using the following parameters: Q20, minimum number of consecutive high-quality base 

calls = 100 bp, maximum number of N characters allowed = 0, maximum number of 

consecutive low-quality base calls allowed before truncating a read = 3. Numbers of 

sequences removed using the aforementioned quality control parameters were: barcode 

errors (5,199,568), reads too short after quality truncation (5,545,570), and too many Ns 

(38,358). Then, 59,494,868 remaining reads were then used to pick OTUs from the 

GreenGenes reference database, which automatically bins OTUs at 97% identity: 

1,536,002 reads were discarded during OTU picking due to alignment failure. After OTU 

picking, 57,958,866 reads remained. 

Solid phase extraction (SPE) 

 Before cecum and sigmoid lavage aliquots were subjected to metabolomic 

analysis, they were cleaned with SPE due to the presence of a polymer presumably 

derived from bowel preparation (bowel preparation often involves polyethylene glycol). 

The SPE protocol was adopted, modified and made compatible for the downstream mass 

spectrometry (MS) analysis. MCX cartridges (Waters Corp. Milford, MA, USA) were 

conditioned with methanol and phosphoric acid prior to use. Each sample was diluted 1:2 

in 2% phosphoric acid and loaded on to the MCX cartridge. Samples were incubated with 

the mix-mod polymer sorbent in the cartridges. The application of vacuum throughout the 
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procedure was kept to the minimum to allow for ample sample/sorbent interaction. The 

sorbent was then washed with 2% formic acid in water and 10 mL of water. The 

metabolites were then eluted off the column by subsequent washes with methanol and 

5% ammonium hydroxide, dried, and reconstituted in 2% acetonitrile in water. 

Mass spectrometry analysis 

 A 5-μL aliquot of extracted metabolites from each sample was injected onto a 

reverse-phase 50 × 2.1 mm ACQUITY 1.7-μm C18 column (Waters Corp.) using an 

ACQUITY UPLC system (Waters Corp.) with a gradient mobile phase consisting of 2% 

acetonitrile in water containing 0.1% formic acid (A) and 2% water in acetonitrile 

containing 0.1% formic acid (B). Each sample was resolved for 10 minutes at a flow rate 

of 0.5 ml/minute. The gradient consisted of 100% A for 0.5 minutes, then a ramp of curve 

6 to 100% B from 0.5 minutes to 10 minutes. The column eluent was introduced directly 

into the mass spectrometer by electrospray. MS was performed on a Q-TOF Premier 

(Waters Corp.) operating in either negative-ion (ESI-) or positive-ion (ESI+) electrospray 

ionization mode with a capillary voltage of 3,200 V, and a sampling cone voltage of 20 V 

in negative mode and 35 V in positive mode. The desolvation gas flow was set to 800 L/h 

and the temperature was set to 350°C. The cone gas flow was 25 L/h, and the source 

temperature was 120°C. Accurate mass was maintained by introduction of LockSpray 

interface of sulfadimethoxine (311.0814 (M+H) + or 309.0658 9M-H)−) at a concentration 

of 250 pg/μL in 50% aqueous acetonitrile and a rate of 150 μL/minute. Data were acquired 

in centroid mode from 50 to 850 m/z in MS scanning. Centroided and integrated MS data 

from the UPLC-TOFMS were processed to generate a multivariate data matrix using 
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MarkerLynx (Waters Corp.). The data were normalized to total protein and processed 

using an array of statistical tools such as R, SIMCA P, and an in-house statistical script. 

The statistically significant metabolites were putatively identified using several online 

databses such as HMDB, MMCD, KEGG, and Lipidmaps. 

Coinertia analysis 

 Coinertia analysis identifies successive axes of covariance between two datasets 

involving the same test subjects. Coinertia analysis was performed using 

the coinertia function from the ade4 R package, applied to eigenvalues of the 

metabolome and microbiome (165). The significance of RV scores, which are indicative 

of global similarity, was estimated using the RV.rtest function, which performs a Monte 

Carlo-based estimation on the sum of eigenvalues from a coinertia analysis. 

Procrustes analysis 

 Procrustes analysis analyzes the congruence of two-dimensional shapes 

produced from superimposition of principal component analyses from two datasets. To 

remain consistent, we performed Procrustes analysis on the Euclidian distances of 

eigenvalues for both the microbiome and metabolome using the Procrustes function in 

the vegan R package (R package version 2.0-4. http://cran.r-

project.org/web/packages/vegan/index.html). 

Putative metabolite identity determination 

 An in-house script called StandAlone BioIdentifier was used to putatively identify 

ions based on their biological relevance via incorporation of four major small molecule 

databases: KEGG, HMDB, LipidMaps, and BioCyc. This metabolomic tool has the unique 
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ability to distinguish mammalian metabolites from those of bacterial and plant origin 

providing an extra degree of confidence in the ions’ putative IDs. This user-friendly script 

allows one to choose from several positive and negative adducts at a user-predefined 

mass tolerance. For our UPLC/MS setup we chose H+ and Na+ adducts for the ESI+ 

mode and H- and Cl- for the ESI- mode at a predefined mass window of 20 ppm. 

 

Results 

 To measure the composition, function and interdependence of the colonic 

microbiome and metabolome, a serial cross-sectional study was performed on human 

subjects undergoing screening colonic endoscopy: 93 mucosal water-lavage samples 

from the sigmoid and cecum regions of 47 subjects between the ages of 20 and 83 years 

(mean 61, SD 14.2) (Figure S2-1, Table  S2-1). For this pilot study, we included forty-two 

healthy subjects and five subjects with clinically quiescent Crohn’s disease. We opted to 

collect mucosal rather than fecal samples, due to the distinct composition and intimate 

relationship of the mucin-associated microbiota with the colonic epithelium (18, 23, 166); 

lavage sampling permitted efficient recovery of extracellular biosynthetic products present 

at the mucosal surface (22). Bacteria were separated from supernatants via centrifugation 

and the two sample components were analyzed separately for 16S microbiome and 

metabolome composition (22, 162). However, contaminating polymer, presumably 

polyethylene glycol from bowel preparation, from metabolic aliquots was removed using 

SPE. Cell-free supernatants were analyzed for metabolic content via UPLC-MS with 

concomitant in silico filtering and thresholding. Cell pellets were analyzed for microbial 
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abundance and composition using the Illumina-HiSeq 2000 platform in combination with 

the QIIME software suite. Microbial OTUs were rarified to 30,000 reads per sample to 

reduce noise in downstream analyses. Phylotypic analysis revealed the relative 

abundance of 2,473 cecum and 2,595 sigmoid GreenGenes reference database-picked 

OTUs binned at 97% sequence similarity, and thresholded on detection in at least two 

samples. Metabolome analysis revealed 649 and 576 metabolite peaks detected in the 

cecum and sigmoid colon, respectively. Stringent comparison of conserved metabolite 

masses and retention times between the cecum and sigmoid datasets revealed 342 

metabolites present in both the cecum and sigmoid datasets. Furthermore, using putative 

metabolic IDs from mass, many putative metabolites observed were located at the 

terminus of metabolic pathways, suggesting enrichment for end products. However, many 

metabolites had more than one possible putative ID, making precise quantification of end 

products difficult. However, previous studies have suggested the colonic microbiota 

contributes to a large representation of metabolic end products (167, 168). Given the 

large number of metabolites observed, we did not attempt to biochemically validate 

molecular identities. Instead, we investigated if any inter-omic syntropy could be detected 

using computational approaches. 

Overview of the measured mucosal microbiome and metabolome 

 To determine whether any inter-omic syntropy existed, we first generated two-

dimensional principal component distribution plots (PC1 and PC2), with either red 

(microbiome) or green (metabolome) spots representing each study participant in each 

data set, and then measured their inter-omic relatedness using Procrustes analysis 



132 

 

(Figure  S2-2). Procrustes analysis superimposes and scales principal component plots 

and allows quantification of non-random congruence between two different 

measurements from a single group of subjects. To simplify comparisons, Euclidean 

distances were used in calculating principal components of the microbiome and 

metabolome constituents. We then performed inter-omic Procrustes analysis on the 

microbiome and metabolome. Inter-omic Procrustes on cecal samples revealed a strong 

similarity (Figure S2-2 C: Monte Carlo P ≤0.007), while the sigmoid microbiome and 

metabolome were less similar, though still significant (Figure S2-2 F: Monte Carlo P 

≤0.045). These findings are consistent with recent studies involving the fecal 

compartment (91, 105). To further confirm this, we also performed coinertia analysis (165). 

The coinertia RV coefficient is a number between 0 and 1; higher numbers are indicative 

of more global similarity between two datasets (and for which significance values can be 

determined). The RV scores and Monte Carlo P-values were 0.67 and 0.01 for the cecum 

data, and 0.6 and 0.07 for the sigmoid data, respectively. Excluding subjects <50 years 

old or subjects with inflammatory bowel disease (IBD) did not increase significance of the 

inter-omic comparisons using Procrustes or co-inertia analysis, suggesting that age and 

disease status were not strong drivers of the inter-omic relationship in this cohort. Thus, 

both Procrustes and coinertia metrics indicated that the inter-omic relationship was 

stronger in the cecum than in the sigmoid. In addition, microbes with the strongest inter-

omic covariance, as predicted by the coinertia analysis, are shown in Figure S2-2 G and 

H. This analysis suggested OTUs from the Firmicutes and Proteobacteria clades were 

particularly influential to the inter-omic relationship. The corresponding metabolome 
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analysis is available in Figure S2-3.  Despite the lack of KEGG assignments for 

metabolites, this analysis indicated metabolites associated with amino acid, porphyrin, 

and chlorophyll metabolism are important to the inter-omic relationship. Overall, these 

results supported our hypothesis that significant inter-omic interdependence existed 

between the metabolome and microbiome. We therefore sought to more clearly define 

this relationship. 

 

Discussion 

 With the advent of next-generation sequencing platforms, a major influx of studies 

have sought to identify microbial composition differences in various habitats. However, 

such studies rarely consider environmental variables, such as metabolites or proteins, 

resulting in incomplete systemic clarity and potentially erroneous assumptions. This study 

represents one of the first successful attempts to integrate components of the adult gut 

mucosal ecosystem. We chose to perform analysis on two distinct colonic regions to 

ensure reproducibility of findings. Notably, all mucosal samples were collected from 

subjects who had undergone bowel preparation. While standard for both clinical and 

research endoscopy, bowel preparation is known to alter microbial alpha and beta 

diversity (169). Accordingly, such depletion of mucosal microbiota is likely to reduce the 

scope of detectable inter-omic relationships. However, we reason that the observed 

relationships are representative of the native mucosa. Also, bowel preparation should 

result in less dietary and enteric secretion input from the proximal intestine, thereby 

increasing biogeographic resolution and decreasing noise from dietary metabolites. 
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Nonetheless, it is possible that bowel preparation introduces metabolic changes in the 

microbial community that elicits non-physiologic inter-omic relationships. Therefore, the 

scope and quality of these inter-omic relationships merit additional assessment in 

undisturbed mucosal sites.  

 A central finding of this study was the rich network of significant correlations 

between the microbiome and metabolome. Such correlation structure likely arises from a 

combination of two general processes: 1) catabolism and anabolism of metabolites by 

microbes, and 2) stimulation and inhibition of microbial growth by metabolites. Indeed, it 

is widely accepted that dietary alteration is accompanied by shifts in gut microbiome 

composition and that microbial composition influences the intestinal metabolome (14, 91, 

92). However, the metabolites and metabolic pathways involved in such processes are 

unknown. Therefore, while it is difficult to conclusively assign cause and effect to 

correlation data, a central goal of this study was to determine whether bioinformatic 

signatures of either process could be detected. 
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Figures and Tables 

Figure S2-1 

 

Figure S2-1. Procedural schematic. Endoscopic lavage samples were collected from 

the cecum and sigmoid colon of each subject. The microbial and metabolic components 

of each sample were analyzed using Illumina-HiSeq 2000 and ultra-performance liquid 

chromatography (UPLC)-mass spectrometry (MS), respectively. The analytic pipeline 

thereafter is shown. See methods for additional details. OTU: operational taxonomic unit; 

PCA, Principal Component Analysis.  
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Figure S2-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2-2. Principal component, Procrustes and coinertia analysis. The first 

column of plots contains microbiome data (red spots) and the second column contains 

metabolome data (green spots). The first row contains cecal data and the second row 

contains sigmoid data. Principal component analysis was performed on the cecum 

microbiome (A), cecum metabolome (B), sigmoid microbiome (D) and sigmoid 

metabolome (E). Inter-omic (C and F) Procrustes analysis was then performed. Longer 

lines on Procrustes plots indicate more within-subject dissimilarity of the microbiome and 

metabolome. Significance values shown were calculated using the protest function from 
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the vegan R package, which performs repeated symmetric Procrustes analysis to 

estimate significance. (G) and (H) show operational taxonomic unit (OTU)-level coinertia 

analysis. Individual OTUs are plotted based on their cointeria-predicted covariance with 

the metabolome from the cecum (A) and sigmoid (B). To reduce noise in this visualization, 

the data were thresholded such that only OTUs measured above background in ≥18% of 

samples are shown. Distance from the center is indicative of the strength of covariance.  

  



138 

 

Figure S2-3 

 

Figure S2-3. Metabolite-level coinertia analysis. Individual metabolites are plotted 

based on their coinertia-predicted covariance with the microbiome from the cecum (A) 

and sigmoid (B). To reduce noise, data were first thresholded such that only metabolites 

measured above background in ≥18% of samples were analyzed. Distance from the 

center is indicative of the strength of covariance. Technical limitations limited assignment 

of putative IDs, and thus Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 

to metabolites, so only a minority of metabolites are labeled.) 
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Table S2-1 

Table S2-1. Samples and subjects used for analysis 

  Men Women Total 

Subjects 

Healthy, number 28 14 42 

Crohn's Disease, number 0 5 5 

Average age, years 62.4 58.7 60.9 

Samples 
Cecum samples, number 27 19 46 

Sigmoid samples, number 28 19 47 
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HIV-Infection Associated Dysbiosis and Functional Changes  
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Abstract 

Background 

 Regardless of infection route, the intestine is the primary site for HIV-1 infection 

establishment and results in significant mucosal CD4+ T lymphocyte depletion, induces 

an inflammatory state that propagates viral dissemination, facilitates microbial 

translocation, and fosters establishment of one of the largest HIV reservoirs. Here we test 

the prediction that HIV infection modifies the composition and function of the mucosal 

commensal microbiota. 

Methods 

 Rectal mucosal microbiota were collected from human subjects using a sponge-

based sampling methodology. Samples were collected from 20 HIV-positive men not 

receiving combination anti-retroviral therapy (cART), 20 HIV-positive men on cART and 

20 healthy, HIV-negative men. Microbial composition of samples was analyzed using 

barcoded 16S Illumina deep sequencing (85,900 reads per sample after processing). 

Microbial metagenomic information for the samples was imputed using the bioinformatic 

tools PICRUST and HUMAnN.  

Results 

 Microbial composition and imputed function in HIV-positive individuals not 

receiving cART was significantly different from HIV-negative individuals. Genera including 

Roseburia, Coprococcus, Ruminococcus, Eubacterium, Alistipes and Lachnospira were 

depleted in HIV-infected subjects not receiving cART, while Fusobacteria, Anaerococcus, 

Peptostreptococcus and Porphyromonas were significantly enriched. HIV-positive 
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subjects receiving cART exhibited similar depletion and enrichment for these genera, but 

were of intermediate magnitude and did not achieve statistical significance. Imputed 

metagenomic functions, including amino acid metabolism, vitamin biosynthesis, and 

siderophore biosynthesis differed significantly between healthy controls and HIV-infected 

subjects not receiving cART. 

Conclusion 

 HIV infection was associated with rectal mucosal changes in microbiota 

composition and imputed function that cART failed to completely reverse. HIV infection 

was associated with depletion of some commensal species and enrichment of a few 

opportunistic pathogens. Many imputed metagenomic functions differed between 

samples from HIV-negative and HIV-positive subjects not receiving cART, possibly 

reflecting mucosal metabolic changes associated with HIV infection. Such functional 

pathways may represent novel interventional targets for HIV therapy if normalizing the 

microbial composition or functional activity of the microbiota proves therapeutically useful.  
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Introduction 

 HIV-1 transmission and replication occur primarily at mucosal sites. There is 

increasing recognition that HIV-1 infection is substantially a mucosal disease with 

systemic manifestations(170). Regardless of infection route, gut-associated lymphoid 

tissue (GALT) is the major site of virus replication early in HIV infection due to local 

retention, enhanced activation states and increased memory immune function of GALT 

CD4+ T lymphocytes as compared to peripheral blood mononuclear cells (PBMCs) (171-

173). Accordingly, acute HIV infection results in massive depletion of GALT CD4+ T 

lymphocytes with slow and only partial reconstitution with combination anti-retroviral 

therapy (cART) (170, 174-177). Other reports have indicated complete intestinal 

reconstitution of CD4+ T cells in subjects receiving cART that have sustained 

undetectable HIV replication for many years (178). In health, lymphocyte-mediated 

inflammatory processes naturally occur, in part, as a response to ongoing luminal 

antigenic stimulation (179) and help shape immune and inflammatory responses (180, 

181). However, HIV-induced immunological imbalance results in pathological 

manifestations including first acute and then chronic mucosal tissue inflammation, 

systemic immunological activation, increased epithelial permeability and systemic 

microbial translocation (182-185). Indeed, local mucosal (and distant, peripheral) 

inflammation has emerged as a key process in HIV infection, dissemination, pathogenesis 

and possibly perpetuation (186). Thus, strategies to reverse or reduce HIV-specific as 

well as more generalized subsequent inflammation could help prevent HIV infection 

sequelae and dissemination.  



144 

 

 One potential source of such inflammation is intestinal bacteria. Commensal 

microbiota have major effects on the biologic state of the host cell types in the mucosal 

compartment. They modulate epithelial processes controlling stem cell replenishment, 

barrier permeability and microbial intrusion (187, 188), mucosal lymphocyte development 

and IL-17- and IL-22- dependent immune surveillance to microbial challenge (187, 189, 

190), and mucosal myeloid (macrophage, dendritic cell, and neutrophil) microbial 

surveillance and immune regulation (191-194). Given that HIV is associated with intestinal 

inflammation and that intestinal microbiota can be altered in inflammatory diseases, 

intestinal microbial compositional aberrations might be expected in HIV-infected 

individuals (18, 90). However, only minor differences in abundance of a few specific 

pathogens have been observed in HIV-infected human feces (195), and larger-scale 

studies of fecal microbiota involving simian immunodeficiency virus (SIV) indicate no 

significant compositional differences from healthy controls (196, 197). The discrepancy 

between expectations and published observations could indicate that: 1) no significant 

changes in microbial composition occur in HIV-infected subjects, and 2) any major 

changes in microbial composition of HIV-infected subjects are minor and/or easily 

masked. The latter might be possible if, for example, mucosal, as opposed to luminal, 

bacteria were differentially abundant in HIV-infected subjects. 

 Therefore, to investigate our hypotheses that HIV infection is associated with 

altered intestinal microbial composition, we utilized a rectal mucosal sampling strategy 

involving small, anally-inserted sponges to absorb mucosal-derived bacteria. These 

samples, collected from three human cohorts, enabled assessment of whether the 
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intestinal mucosal microbiome composition or function varied with HIV infection and 

allowed investigation of the ecologic influence of cART.  

 

Materials and Methods 

Subject recruitment 

 The protocol was designed by the investigators and approved by the UCLA Office 

of the Human Research Protection Program Institutional Review Board (UCLA IRBs #11-

001592 and #10-000750) with all participants providing written informed consent. 

Protocol-based inclusion criteria required that only men age ≥18 years were recruited into 

this pilot study. Subjects were divided into three groups: 20 healthy HIV-negative control 

subjects; 20 healthy HIV-positive subjects on chronic cART; and 20 healthy HIV-positive 

subjects not on cART (cART-naïve or not on cART for ≥3 months). Exclusion criteria 

included: being female; having history of inflammatory bowel disease (IBD); having any 

active inflammatory conditions affecting the rectum; and use of rectally administered 

medications, including over-the-counter enemas, within 48 hours. 

Sample procurement 

 All subjects (as specified above) were seen once in the UCLA Digestive Diseases 

Clinic for sample collection. Following a brief history, physical examination and 

confirmation of inclusion/exclusion criteria, as well as confirmation of subject-reported HIV 

serostatus (PCR and HIV-1 antibody test), subjects received a clinician-applied 

preparatory enema (118-ml saline enema). Subjects were asked to retain the fluid for at 

least 5 minutes and then expel the fluid into a toilet. While this procedure could 
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conceivably disturb mucosal surface contents, it was deemed necessary to eliminate stool 

that might otherwise interfere with sponge placement. Following a 15 minute rest, 

mucosal sampling by sponge collection took place, using previously reported methods 

used for secreted antibodies and cytokines (198, 199). Briefly, two ophthalmic eye spears 

(Beaver Visitec, Waltham, MA, USA) were simultaneously inserted into the rectum via 

anoscope, as previously reported (198, 199), and allowed to absorb mucosal material for 

5 minutes. Samples were immediately placed on ice and transported to the laboratory for 

immediate processing. 

Sample preparation and 16S V4 sequencing analysis 

 Sponges were removed from their plastic stems and individually placed in 0.5-ml 

tubes (Eppendorf, Hauppauge, NY, USA), which had the distal end previously pierced 

using a sterile 18-gauge needle (BD Biosciences, San Jose, CA, USA); each of these 

individual tubes were then placed into 2-ml tubes (Eppendorf, Hauppauge, NY, USA). 

Bacteria were quickly eluted and pelleted by adding 100 μl of 25 mM HEPES, 50 mM 

NaCl, 1% Triton-X, 1 mM DTT, and 5 mM EDTA and centrifuging in an Eppendorf 5415D 

centrifuge (Eppendorf, Hauppauge, NY, USA) for 30 s. This collection step was repeated 

with another 100 μl of the elution buffer above. Supernatant was immediately removed 

and pellets were frozen in a -80° freezer (Model: ELT1786-9-D40, Thermo Scientific, 

Asheville, NC, USA) with a backup phone system, until further processing. 

 Genomic DNA was extracted from the 60 samples using the PowerSoil DNA 

Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA), and a 30-second beat-beating 

step using a Mini-Beadbeater-16 (BioSpec Products, Bartlesville, OK, USA). High-
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throughput sequencing analysis of bacterial rRNA genes was performed using extracted 

genomic DNA as the templates. One hundred microliter amplification reactions were 

performed in an MJ Research PTC-200 thermal cycler (Bio-Rad Inc., Hercules, CA, USA) 

and contained: 50 mM Tris (pH 8.3), 500 μg/ml bovine serum albumin (BSA), 2.5 mM 

MgCl2, 250 μM of each deoxynucleotide triphosphate (dNTP), 400 nM of each primer, 4 

μl of DNA template, and 2.5 units JumpStart Taq DNA polymerase (Sigma-Aldrich, St 

Louis, MO, USA). The PCR primers (F515/R806) targeted a portion of the 16S rRNA gene 

containing the hypervariable V4 region, with the reverse primers including a 12-bp 

barcode (164). Thermal cycling parameters were 94°C for 5 minutes; 35 cycles of 94°C 

for 20 seconds, 50°C for 20 seconds, and 72°C for 30 seconds, followed by 72°C for 5 

minutes. PCR products were purified using a MinElute 96 UF PCR Purification Kit (Qiagen, 

Valencia, CA, USA). DNA sequencing was performed using an Illumina HiSeq 2000 

(Illumina, Inc., San Diego, CA, USA). Clusters were created using template 

concentrations of 1.9 pM and PhiX at 65 K/mm2, (manufacturer’s recommendations for 

samples with uneven distributions of A, C, G and T). One hundred base sequencing reads 

of the 5′ end of the amplicons and seven base barcode reads were obtained. De-

multiplexing, quality control, and operational taxonomic unit (OTU) binning were 

performed using Quantitative Insights into Microbial Ecology (QIIME) (27). 

 The total initial number of sequencing reads was 71,581,480. Low quality 

sequences were removed using the following parameters: Q20, minimum number of 

consecutive high-quality base calls = 100 bp, maximum number of N characters allowed 

= 1, maximum number of consecutive low-quality base calls allowed before truncating a 
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read = 3. Numbers of sequences removed using the aforementioned quality control 

parameters were: barcode not in mapping file (35,296,547), reads too short after quality 

truncation (4,926,462), and too many Ns (5,431). Remaining reads numbered 31,353,040, 

which were then used to pick OTUs from the GreenGenes reference database (May 18, 

2012 database); this database automatically bins OTUs at 97% identity, ensuring the 

resulting data were compatible with phylotypic investigation of communities by 

reconstruction of unobserved states (PICRUSt) analysis. Due to alignment failure, an 

additional 1,511,116 reads were discarded during OTU picking, providing 29,841,924 

reads for downstream analysis. 

Rarefaction and diversity analysis 

 After picking OTUs from the GreenGenes reference database, rarefaction was 

performed to 85,900 (corresponding to the sample with the fewest reads) reads per 

sample using the QIIME software suite (version 1.6) running on an Ubuntu virtual machine 

(27). Alpha diversity metrics used included Phylogenetic Diversity, Chao1, observed 

species and Shannon index. For all sampling depths, each plotted point represents the 

average of ten random samplings. The comparison of alpha diversity between the three 

groups was performed using the two-sided Student t-test. Beta diversity analysis was 

performed in QIIME and utilized unweighted UniFrac distances to estimate sample 

distributions. Adonis significance analysis was performed for each pairwise comparison 

of sample groups using the Adonis function from the vegan R package. 

Taxonomic analyses 
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 Microbial composition at each taxonomic level was defined using the 

summarize_taxa function in QIIME. Prior to all analysis of variance (ANOVA), taxa at each 

taxonomic level were thresholded such that any taxon present in fewer than 20% of 

samples was discarded. 

Statistical analysis 

 All statistical analyses were conducted using R (http://www.r-project.org/). HIV- 

and cART-associated microbial changes were calculated using ANOVA with multiple 

comparison correction using q-values (R package qvalue). Associations between 

imputed metagenomic functions and HIV infection were calculated using Kruskal-Wallis 

ANOVA and corrected for multiple comparisons usingq-values. All taxonomic 

associations reported were significant q <0.15 unless stated otherwise. All metagenomic 

associations reported were significant at q <0.25.  

Metagenomic imputation 

 PICRUSt is a well-documented tool designed to impute metagenomic information 

based on 16S input data (http://picrust.github.io/picrust). Sample metagenomic 

imputation was performed using the default settings of PICRUSt (version 0.9.1). The 

resulting metagenomic data were then entered into the HMP unified metabolic analysis 

network (HUMAnN) pipeline (version 0.98) (55) to sort individual genes into Kyoto 

encyclopedia of genes and genomes (KEGG) pathways representing varying proportions 

of each imputed sample metagenome. Both PICRUSt and HUMAnN analyses were 

performed using the terminal interface of a QIIME virtual machine running the Ubuntu 

operating system. 

http://www.r-project.org/
http://picrust.github.io/picrust
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Results 

Rectal mucosa microbial sampling strategy 

 In place of bowel preparation, all subjects first received a saline enema to void 

solid fecal contents from the rectal vault. Two absorbent ophthalmic sponges were then 

applied, under direct vision via anoscope, to opposing sides of the rectal mucosa 

(Figure S3-1), enabling collection of measureable levels of bacteria, protein and 

metabolites. Despite their small volume, eluate from each sponge allowed recovery of 

approximately 5 × 107 ± 4.4 × SD 107 of bacterial cells and approximately 105 μg ± SD 

75.9 of protein via bacterial hemocytometer and Bradford assay, respectively. To account 

for possible micro-biogeographic variations in microbial composition or abundance, 

material obtained from two sponges from each subject were pooled for further analyses. 

We did not attempt to determine whether this sampling methodology artificially enriched 

or depleted certain microbes, proteins, or metabolites, so we could not eliminate the 

possibility. 

 Samples were collected from 20 healthy controls (HC), 20 healthy HIV-positives 

on cART (cART(+)) and 20 healthy HIV-positive subjects off cART (cART(-)) for at least 

three months (Table S3-1). All collected subject metadata including age, ethnicity, viral 

loads, serum CD4+ T cell counts, durations of infection, and prescribed cART drug 

classes are tabulated in Table S3-1. Importantly, to eliminate the potential influences of 

gender, only men were recruited for this pilot study. Microbial components were lysed 

and analyzed for V4 16S composition using barcoded Illumina-HiSeq 2000 V4 

sequencing. OTUs were then picked at a similarity threshold of 97% using the 
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GreenGenes reference database, such that 497,365 ± SD 119,950 reads were retained 

for each sample. Sequenced reads were then rarified to 85,900 reads per sample, 

yielding a total of 3,281 OTUs. 

HIV infection alters mucosal microbial diversity 

 To determine whether HIV infection altered microbial diversity of the rectal mucosa, 

alpha and beta diversity metrics were analyzed. As groups, the HC and cART(+) subjects 

revealed very similar alpha diversity rarefaction profiles. However, cART(-) subjects 

exhibited significant reduction of alpha diversity using the Chao1 diversity metric, which 

accurately estimates OTU richness for microbial communities, compared with HC, 

indicating HIV infection is associated with a potential collapse in alpha diversity (two 

tailedt-test, P ≤0.05 at all sampling depths >17,188) (Figure S3-2 A). A similar, though 

insignificant trend was observed between cART(+) and cART(-) subjects (two tailed t-

test, P = 0.05, 0.1 for all sampling depths >10). Together, these derivative data suggest 

HIV infection resulted in a slight reduction of alpha diversity in cART(-) subjects that was 

reversed to near equivalence with HC in cART(+) subjects. Beta diversity analysis was 

then performed using the unweighted unifrac distance metric to determine whether HC, 

cART(+) or cART(-) subjects differed in their microbial composition. Adonis analysis of 

the resulting unifrac distance matrix suggested that the microbial compositions of: 1) 

cART(-) subjects were significantly different from HC subjects (P = 0.017); 2) cART(+) 

and cART(-) subjects overlapped but had slightly different trends (P = 0.053); and 3) 

cART(+) subjects were not statistically different from HC subjects (P = 0.1). Principal 

coordinate analysis (PCoA) of the first and fourth principal components of the unweighted 
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unifrac distance matrix allowed visualization of these differences (Figure S3-2 B). The 

variation captured in the first, third and fourth principal components (14%, approximately 

5%, and 4% of total variation, respectively) of the unweighted unifrac analysis varied 

significantly between cART(-) and HC subjects (Kruskal-Wallis, all P ≤0.05). Excluding 

age (Pearson correlation with principle coordinate 1 (PC1), P <0.001), which is known to 

correlate with changes in intestinal microbiota composition (8, 11, 18), no other subject-

reported metadata (including serum CD4 levels, serum viral titers, duration of infection, 

and ethnicity) significantly correlated with any of the first five principal components of the 

combined data. Thus, both alpha and beta diversity analysis suggested that HIV infection 

resulted in ecological changes relative to healthy controls that were partially normalized 

in cART(+) subjects.  

 As an initial confirmation of the beta diversity predicted differences, the microbial 

composition of samples from HIV-infected (both cART(+) and cART(-)) subjects was 

compared with that of HC subjects at the phylum level. Significant phylum level 

differences were corrected for multiple comparisons using a significance cutoff of q <0.15. 

Samples obtained from cART(-) subjects were enriched with Fusobacteria (ANOVA, q = 

0.1) and depleted of Firmicutes (ANOVA, q = 0.058), compared to HC samples (Figure 

S3-2 C). However, cART(+) subjects displayed only intermediate enrichment of 

Fusobacteria (ANOVA, q = 0.27) and depletion of Firmicutes (ANOVA, q = 0.27). 

Therefore, this analysis also suggested microbial composition in cART(-) subjects was 

significantly different from HC and that the composition of cART(+) was partially, though 

incompletely, normalized to that of HC.  
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Imputed metagenomic metabolic functions significantly vary with HIV infection in 

the absence of cART 

 Having identified distinct microbial changes in cART(-) subjects compared to HC 

subjects, concomitant functional metagenomic differences might also be expected. 

Metagenomic composition is traditionally defined using shotgun sequencing. In the 

absence of measured metagenomic sequencing data, PICRUSt 

(http://picrust.github.io/picrust webcite) in combination with HUMAnN was used to 

bioinformatically impute sample metagenomes and determine relative genomic 

abundances of KEGG metabolic pathways from all subjects, respectively. PICRUSt 

allows imputation of most microbial genomes present in each sample based on sequence 

similarity of input GreenGenes sequences to sequenced reference genomes. When 

combined with HUMAnN, a separate bioinformatic tool that organizes metagenomic data 

into relative abundances of KEGG pathways per sample, the resulting data are highly 

comparable to sequenced metagenomic data and observed metabolomic data (3, 18). 

 Using these bioinformatic tools, metagenomic functions were compared between 

cART(-), cART(+) and HC subjects. For these metagenomic analyses, the q-value 

threshold for correcting multiple comparisons was relaxed to include q <0.25 

comparisons in agreement with previous studies using this methodology (18). Like the 

analyses above, no significant differences were observed between cART(+) and HC 

subjects or between cART(+) and cART(-) subjects after correction for multiple 

comparisons. However, 10 KEGG pathways were significantly different between cART(-) 

and HC subjects (Kruskal-Wallis, q <0.25). Plotting these pathways with respect to cART 

http://picrust.github.io/picrust
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status revealed that the distribution of these pathways was similar to the distribution of 

enriched and depleted genera (Figure S3-3); While cART(-) subjects exhibited the most 

enrichment or depletion of each pathway, cART(+) subjects had intermediate levels of 

metagenomic pathway abundance relative to HC (Figure S3-3). Overall, the 

metagenomes of cART(-) subjects tended to be depleted of amino acid production, amino 

acid metabolism, CoA biosynthesis, and fructose/mannose metabolism compared with 

HC subjects. Instead, the microbiota of cART(-) subjects were metagenomically enriched 

for glutathione metabolism, selenocompound metabolism, folate biosynthesis and 

siderophore biosynthetic genes. These results indicate that HIV infection in the absence 

of cART results in significant functional metagenomic differences that are not fully 

restored with cART. Such functional differences may reflect the functions that HIV-

infected mucosa select for and could have downstream implications on vitamin and 

nutrient availability for the host. 

 

Discussion 

 This study represents one of the first attempts to define changes in the mucosal 

microbiota composition in HIV infection and revealed several HIV-dependent changes in 

the mucosal microbiota. Significant functional and compositional differences in rectal 

microbiota were observed between cART(-) and HC subjects; these were incompletely 

normalized by cART in cART(+) subjects. However, an HIV-associated reduction in alpha 

diversity was adequately normalized by cART. The differing imputed metagenomic 
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compositions between cART(-) subjects and HC subjects suggested HIV infection altered 

the rectal ecosystem and selected for different microbial metagenomic functions.  

 This study also revealed several important, imputed metagenomic functional 

pathways that varied in abundance between cART(-) and HC subjects. Although previous 

studies have suggested that intra-subject metagenomic content tends to remain relatively 

stable over time independent of microbial composition, new studies suggest 

metagenomic content can vary in the context of certain diseases (8, 12, 18). These results, 

combined with the observed microbial compositional changes, suggest differing 

metabolic functions arise based on the different microbial communities more pronounced 

in HIV-infected subjects. Genes encoding amino acid biosynthesis and metabolism, CoA 

biosynthesis, selenocompound metabolism, glutathione metabolism and folate 

biosynthesis were compositionally altered in cART(-) subjects. This imbalance might 

indicate that free vitamins and nutrients available to HIV-infected hosts might be altered. 

Interestingly, siderophore biosynthetic genes were enriched in cART(-) subjects. 

Siderophores act as quorum sensing molecules for gram-negative organisms, so the 

enrichment of this pathway could be indicative of increased intra- or inter-species 

communication in cART(-) subjects. cART(-) subjects encoded fewer genes for fructose 

and mannose metabolism, which may be reflective of altered environmental nutrient 

availability or the differing metabolic potential of bacterial species that best adapt to such 

environments. Besides illuminating the metabolic potential of the underlying bacterial 

community, these pathways might be exploitable to help normalize microbial composition 

of HIV-infected subjects if microbial remediation strategies prove warranted. Given the 



156 

 

role of diet in driving microbial composition, one could imagine exploiting such differences 

in metabolic function by dietary optimization to enrich for preferred bacteria (91, 92, 113).   
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Figures and Tables 

Figure S3-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3-1. Schematic of sampling and bioinformatic methodology. Rectal mucosa 

secretions were collected from 60 human subjects as shown and subjected to high-

throughput deep V4 16S sequencing. Alpha and beta diversity analyses were then 

performed, which suggested microbial composition was altered in HIV-infected subjects 

who were not receiving combination anti-retroviral therapy (cART). Microbial differences 

in these subjects were identified and compared with HIV-infected subjects receiving cART. 

In addition, the different classes of cART were analyzed to determine whether any class 
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was significantly associated with differences in microbial composition. Imputed 

metagenomic differences between HIV-infected subjects not receiving cART and healthy 

control subjects were then identified and compared between the three patient cohorts. 

PICRUSt, phylotypic investigation of communities by reconstruction of unobserved states; 

HUMAnN, HMP unified metabolic analysis network.  
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Figure S3-2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3-2. Alpha and beta diversity. (A) Chao1 alpha diversity indicated subjects on 

combination anti-retroviral therapy (cART(-)) had reduced species richness than healthy 

controls (HC) and subjects on (cART(+)), though only the comparison with HC was 

significant (t-test, P ≤0.05 at all sampling depths >17,188). Abundance curves for HC and 

cART(+) subjects were nearly indistinguishable. (B) Beta diversity was analyzed by 

unweighted unifrac analysis using the first and fourth principal components. These 

principal components were selected because principal coordinate 1 (PC1) was 

significantly different between cART(-) and cART(+) subjects (Kruskal-Wallis, P = 0.02) 

and both PC1 and PC4 were significantly different between cART(-) and HC subjects 
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(Kruskal-Wallis, both P <0.05). HC subjects (blue) clustered relatively tightly with cART(+) 

subjects (yellow), whereas cART(-) subjects (red) were more diffusely scattered along 

PC1 and PC4 (Adonis, for cART(+) vs cART(-) P = 0.06, and for cART(-) versus HC P = 

0.02). (C) Phylum level composition of each subject was sorted based on HIV and cART 

status. The abundance of Firmicutes was significantly reduced in cART(-) subjects 

compared with healthy subjects (analysis of variance (ANOVA), q = 0.06) while 

Fusobacteria were significantly enriched (ANOVA, q = 0.11).  
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Figure S3-3 

 

 

 

 

 

 

 

 

 

 

 

Figure S3-3. Imputed metagenomic differences between subjects not on 

combination anti-retroviral therapy (cART(-)) and healthy control (HC) 

subjects. The relative abundance of metabolic pathways encoded in each imputed 

sample metagenome was analyzed by HIV infection status of each subject using box 

plots. From these box plots, clear differences are observed between the relative 

abundance of several imputed metagenomic functions between cART(-) subjects and HC. 

Significance of each comparison was determined using Kruskal-Wallis one way analysis 

of variance. Box plots of subjects on cART (cART (+)) are included to provide context for 

each comparison. Vertical black bars represent group averages. The x-axis represents 
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the percent abundance of pathways for each imputed sample metagenome. Whiskers 

represent the interquartile ranges multiplied by 1.5; *q <0.25 relative to HC.  
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Table S3-1 

Table S3-1. Human subject metadata 

 cART(-) cART(+) HC  

n 20 20 20  

Gender All male All male All male 

Subject 

metadata 

Age, years 40.9 (± 11.4) 46.3 (± 9.2) 48.6 (±12) 

Viral Loads 158,147 (± 366,197) 3,563 (± 14,333) N/A 

Years infected 8.9 (± 8.8) 14.2 (± 6.5) N/A 

Serum CD4 

levels 
439.6 (± 271.8) 534 (± 246) NT 

Hispanic 4 1 5 

Ethnicity 
Black 13 14 9 

Caucasian 3 5 5 

Other 0 0 1 

NNRTI N/A 9 N/A 

cART drugs 

prescribed 

NRTI N/A 18 N/A 

PI N/A 12 N/A 

II (raltegravir) - 4 - 

 

Note: Results are presented as number or mean (± SD). (cART(-), healthy HIV-positive 

men off combination anti-retroviral therapy (cART) for at least three months; cART(+), 

healthy HIV-positive men on (cART); HC, healthy controls; NT, not tested; N/A, not 
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applicable; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside 

reverse transcriptase inhibitor; PI; protease inhibitor; II, integrase inhibitor. 
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SUPPLEMENTAL CHAPTER 4 

HIV-Infection Associated Perturbation of Cervical Vaginal Microbiome 
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Abstract 

Background 

 HIV infection is associated with bacterial vaginosis, but the relationship between 

HIV, the vaginal microbiome and mucosal immunity is unclear.  

Methods 

 We profiled the cervicovaginal lavage from 21 HIV-positive and 20 -negative 

women for microbial composition and imputed metagenomic functions. Microbial 

composition of samples was analyzed using barcoded 16S Illumina deep sequencing 

(996,727 ± 193,037 SD reads after processing). Microbial metagenomic information for 

the samples was imputed using the bioinformatic tools PICRUST and HUMAnN.  

Results 

 Significant differences in alpha and beta diversity were observed between HIV-

negative and HIV-positive women, with the latter enriched of organisms associated with 

bacterial vaginosis and depleted of Lactobacilli. These ecologic changes occurred 

concomitantly with significant metagenomic and immunologic differences.  

Conclusion 

 These results demonstrate that HIV infection results in a dysregulated mucosal 

ecosystem where Lactobacilli are replaced or outcompeted by other organisms. 
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Introduction 

 Compared with the microbiome of other human anatomic habitats, the vaginal 

microbiome is highly unique in diversity, structure, and function (8, 200, 201). Unlike most 

habitats, vaginal microbial communities are highly modular in structure, and women are 

separated into distinct groups based on the abundance or absence of certain 

Lactobacillus species (110, 200). Five vaginal microbial communities have been 

documented; four are characterized by their composition of specific Lactobacillus species, 

while the fifth is notably lacking a dominant Lactobacillus species and is instead defined 

by its high species diversity (200). The functional significance of these communities is 

incompletely understood, though community composition is significantly correlated with 

vaginal pH and bacterial vaginosis (BV), as defined by the Nugent score (200). Low 

vaginal pH (3.5 - 4.5), commonly observed in women colonized by Lactobacillus-dominant 

communities, is thought to originate from microbial production of organic acid, particularly 

lactic acid, and is believed to contribute to regional homeostasis by inhibiting growth of 

pathobionts (202, 203). Lactobacillus predominance is associated with bactericidal 

activity of genital tract secretions against E. coli ex vivo (204-206). While higher vaginal 

pH (>4.5) does not preclude health, it is correlated with microbial communities that lack a 

dominant Lactobacillus species and thus may respond differently to environmental stimuli 

and pathogen invasion (207). Host factors, ranging from pregnancy to ethnicity, appear 

to play important roles in defining vaginal microbial community structure (200, 208, 209). 

Indeed, as many as 40% of US Black and Hispanic women are colonized by microbial 

communities lacking a dominant Lactobacillus species (200). 
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 Despite technological and bioinformatic improvements facilitated by high-

throughput sequencing, the definition of a “healthy” vaginal microbiota has actually 

become less clear. For example, BV is a malodorous condition that afflicts millions of 

women in the US, yet its etiological agent(s) remain uncertain despite numerous 

correlated species of bacteria (207, 210, 211). Instead, evidence suggests that BV results 

from, or is potentially caused by, disruption of mucosal homeostasis that allows 

subsequent enrichment for specific phylotypes (207, 211). Such disruptions likely have 

relevance in shaping systemic health, as susceptibility to HIV infection has been linked 

with BV (212) and prevalence of asymptomatic BV is higher in HIV-positive subjects (213, 

214). 

 While a few studies have explored the vaginal microbiome composition in the 

context of HIV infection, much remains unknown regarding its effects on the vaginal 

ecosystem (215-217). Microbiome composition of several anatomical habitats 

(particularly the gut) has been shown to vary with HIV-infection, suggesting commensal 

microbiome composition is generally altered during HIV infection (5, 218-222).  

 

Materials and Methods 

Subject Recruitment 

 The protocol was designed by the investigators and approved by the Offices of the 

Human Research Protection Program Institutional Review Board (Einstein IRB #07-469 

and 09-547, UCLA IRB #10-000750) with all participants providing written informed 

consent. Cervicovaginal lavage (CVL) samples were obtained from 21 healthy, HIV-
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negative women who enrolled in a microbicide safety study and 20 HIV-positive women 

who participated in a mucosal immunology study. Subjects were ≥ 18 years of age and 

were excluded for pregnancy, breastfeeding, and active genitourinary infection, including 

symptomatic BV diagnosed by Amsel’s criteria at the time of genital tract sampling.  

Sample Procurement 

 Vaginal pH was measured from a swab of the lateral vaginal wall (Whatman pH 

paper, pH 3.8–5.5). CVL was performed by washing the cervix and posterior fornix with 

10mL of normal saline (pH,5.0). The samples were transported on ice to the laboratory, 

centrifuged at 700g for 10 minutes and the supernatants divided into aliquots and stored 

at -80°C.   

Sample Preparation and 16S V4 Sequencing Analysis 

 Bacterial portions of CVL samples were separated from supernatants by 

centrifugation and frozen in a -80 freezer (Model: ELT1786-9-D40, Thermo Scientific, 

Asheville, NC, USA) with a back-up phone system until further processing.  

 Genomic DNA was extracted from the 41 samples using the PowerSoil DNA 

Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA), and a 30-second vortexing step 

using a vortex Genie-2 adapter (MO BIO Laboratories, Carlsbad, CA, USA). High 

throughput sequencing analysis of bacterial rRNA genes was performed using extracted 

genomic DNA as the templates. Thirty microliter amplification reactions were performed 

in triplicate in an GeneAmp PCR System 9700 (Applied Biosystems, Grand Island, NY, 

USA) and contained: 50 mM Tris (pH 8.3), 2.5 mM MgCl2, 250 µM of each 

deoxynucleotide triphosphate (dNTP), 400 nM of each primer, 1 µL of DNA template, and 
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1 unit JumpStart Taq DNA polymerase (Sigma-Aldrich, St. Louis, MO, USA). The PCR 

primers (F515/R806) targeted a portion of the 16S rRNA gene containing the 

hypervariable V4 region, with the reverse primers including a 12-bp barcode (164). 

Thermal cycling parameters were 94°C for 5 minutes; 35 cycles of 94°C for 20 seconds, 

50°C for 20 seconds, and 72°C for 30 seconds, followed by 72°C for 5 minutes. Triplicate 

PCR reactions were then combined and products were purified using a Qiagen PCR 

Purification Kit (Qiagen, Valencia, CA, USA). DNA sequencing was performed using an 

Illumina HiSeq 2000 (Illumina, Inc., San Diego, CA) at the UCLA Clinical Microarray Core. 

One hundred base sequencing reads of the 5’ end of the amplicons were obtained. De-

multiplexing, quality control, and OTU binning were performed using QIIME (27).  

 The total initial number of sequencing reads was 62,836,169. Low quality 

sequences were removed using the default parameters of split_libraries_fastq.py in 

QIIME. Numbers of sequences removed using these quality control parameters were: 

reads too short after quality truncation (194,156) and too many Ns (81,011). 40,865,824 

reads remained and were then used to pick OTUs from the GreenGenes reference 

database (May 18, 2012 database) at 97% identity, ensuring the resulting data was 

compatible with PICRUSt analysis. Due to alignment failure, an additional 3,688,289 

reads were discarded during OTU picking resulting in 37,177,535 reads for downstream 

analysis. 

Bioinformatic analyses 

 Rarefaction and Diversity Analysis: After picking OTUs from the GreenGenes 

reference database, rarefaction was performed to 500,000 reads per sample, resulting in 
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2,547 OTUs using the QIIME software suite (version 1.6) running on an Ubuntu virtual 

machine (27). All analyses involving the microbiome were based on this rarified data.  

 Metagenomic Imputation: PICRUSt is a well-documented tool designed to impute 

metagenomic information based on 16S input data 

(http://PICRUSt.github.com/PICRUSt/). Sample metagenomic imputation was performed 

using the default settings of PICRUSt (version 0.9.1). The resulting metagenomic data 

was then input into the HUMAnN pipeline (version 0.98) (55) to sort individual genes into 

KEGG pathways representing varying proportions of each imputed sample metagenome. 

Both PICRUSt and HUMAnN analyses were performed using the terminal interface of a 

QIIME virtual machine running the Ubuntu operating system. 

 Canonical Correspondence Analysis (CCA): CCA was performed using the cca 

function in the vegan R package. CCA was performed on the microbiome, imputed 

metagenome, and proteome with collected subject and sample metadata. 

 Principal Coordinate Analysis (PCoA): Principal coordinate analysis for the 

imputed metagenome, microbiome and proteome was performed in R (ape software 

package (223)) to estimate sample distributions using Bray-Curtis distance matrices. 

Microbial beta diversity analysis was also performed using weighted UniFrac distances 

to estimate sample distributions in QIIME. Adonis significance analysis (vegan R package) 

was utilized to compare subject distribution patterns of HIV-negative and HIV infected 

subjects. 

 Iterative analysis of enriched and depleted genera: Microbial composition at the 

genus level was first defined using the “summarize_taxa” function in QIIME. Genera were 
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then thresholded such that any genus present in less than 20% of all samples was 

discarded. Iterative ANOVA analysis (which simplified to Student’s T-test) was then 

performed on all genera with respect to HIV-infection status. Multiple comparisons were 

corrected for using q values. Only comparisons with q values <0.05 were retained and 

reported. 

 Iterative analysis of imputed metagenomic functions: Metagenomic functions were 

defined using PICRUSt and HUMAnN as described above. Pathways not represented in 

any samples were discarded prior to analysis leaving a total of 179 pathways, down from 

186. Iterative Kruskal-Wallis analysis (which simplified to Mann–Whitney U test) was then 

performed on all pathways with respect to HIV-infection status. Multiple comparisons 

were corrected for using q values. Only comparisons with q values <0.02 were retained 

and reported.  

 

Results 

 To begin to dissect the host and environmental factors that drive systemic function 

and microbial representation, CVL was examined from 21 HIV-positive and 20 HIV-

negative women who were screened for participation in studies of genital tract mucosal 

immunity. Multiple physiologic and contextual parameters were measured on women and 

collected samples, respectively. Subject characteristics, CVL immune mediator and anti-

HSV and anti-E. coli activity data are summarized in Table S4-1.  

 Bacteria and soluble protein were separated by centrifugation and analyzed for 

bacterial composition using barcoded Illumina-HiSeq 2000 V4 16S sequencing. 
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Operational Taxonomic Units (OTUs) were then picked at a similarity threshold of 97% 

using the GreenGenes reference database such that 996,727 ± 193,037 SD reads were 

retained for each sample. Sequenced reads were then rarified to 500,000 reads per 

sample, yielding a total of 2,547 OTUs. Despite the deep sequencing depth, attempts to 

define vaginal microbial community structure using methods described by Koren et al. 

were unsuccessful, likely due to the relatively small number of samples collected 

compared with the large cohorts used in studies defining such structure (110).  

Dysbiosis of the cervical vaginal microbiome associated with HIV infection 

 To help determine whether microbiota composition co-varied with host factors, 

including HIV-infection, canonical correspondence analysis (CCA) was performed. As 

shown in Figure S4-1 A, microbial composition seemed to vary with HIV-infection, vaginal 

wall pH, and the abundances of IL-1α, IL-1ra, IL-1β, and lactoferrin. Notably, microbial 

composition also appeared to vary with CVL inhibitory activity of HSV and E. coli in the 

opposite direction of HIV-infection, suggesting HIV infection negatively correlated with 

these activities; ANOVA analysis supported this observation (E. coli inhibition p=2.1*10-8, 

HSV inhibition p=2*10-4). Despite the numerous strong dependencies indicated by Figure 

S4-1 A, only HIV infection and IL-1ra significantly co-varied with the microbiome using 

permutation based significance analysis (Table S4-2). 

 To define the extent of vaginal microbial composition variation between HIV-

positive and HIV-negative women, principal coordinate analysis (PCoA) was performed 

on a weighted unifrac distance matrix. The resulting plot, shown in Figure S4-1 B, 

revealed a striking separation of HIV-positive from HIV-negative women. Similar, yet 
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slightly less dramatic results were obtained using the Bray-Curtis distance metric, which 

does not consider phylogenetic information when calculating distances. However, Adonis 

analysis of the significance of separation between groups was significant at p≤1*10-4 for 

both distance metrics. Summarized, these results indicate that HIV infection was 

concomitant with drastic shifts in vaginal microbial composition. 

 To visualize the genera that were most differentially abundant between the groups, 

relative abundance bar plots were generated for all subjects containing genera that were 

present at ≥5% in ≥1 subject (Figure S4-1 C). As expected, Lactobacillus dominated the 

composition of most HIV-negative women, while 10% of women were colonized by a 

diverse group of organisms that would place them into the diverse “group IV” vaginal 

community defined by Ravel et al. (200). In contrast, Lactobacillus dominated the 

composition of 28% of HIV-positive women, with most women having variants of “group 

IV” vaginal microbial communities, potentially reflecting the increased prevalence of 

subclinical BV in HIV-positive women (213, 214). Indeed, many of the organisms that 

dominated the vaginal microbiome of HIV-positive women were correlated with BV, 

including Gardnerella, Atopobium, and Prevotella (211). To define differences that were 

statistically significant, iterative Kruskal–Wallis analysis was performed with respect to 

HIV infection on microbiota that had been binned by genus. Predictably, highly and semi-

abundant genera, including Gardnerella, Prevotella, Atopobium, and Adlercreutzia, were 

enriched in HIV-positive women whereas Lactobacillus species were depleted. In contrast, 

with the exception of Bacteroides and an unclassified Bifidobacteriaceae, genera at low 

and very low abundance tended to be enriched in HIV-negative subjects compared with 



175 

 

HIV-positive subjects, suggesting a potential collapse in alpha diversity of rare species in 

HIV-positive subjects despite the increased diversity of “group IV” communities that 

predominated in HIV-positive women.  

 Combined, these analyses suggest strong shifts in microbiome composition 

accompanying HIV-infection. We therefore determined whether these shifts were 

concomitant with changes in the vaginal habitat and metabolic functionality of the 

microbial communities. 

Imputed metagenomic function of the microbiome strongly varies with HIV 

infection 

 To obtain imputed metagenomic information from the collected 16S phylotypic data, 

a new bioinformatic tool called PICRUSt was used. PICRUSt aligns GreenGenes 16S 

sequences to >1,000 available reference genomes to reconstruct highly representative, 

albeit imputed, sample metagenomes (http://picrust.github.io/picrust/). To reduce noise, 

resulting data was then sorted into KEGG metabolic pathways using the bioinformatic tool 

HUMAnN. 

 To identify the specific functional metagenomic differences between the two 

cohorts, iterative Kruskal-Wallis analysis was performed on all metagenomic functions 

with respect to HIV infection, which was then corrected for multiple comparisons. 

Eliminating all comparisons with q values ≥0.05 indicated that 106, or 60% of all analyzed 

metagenomic pathways were significantly different between the two cohorts. Therefore, 

to reduce potential noise associated with imputation, a more stringent threshold of q<0.02 

was selected such that only 80, or 45% of all included metagenomic pathways were 
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considered significantly different (Figure S4-2). Notably, imputed microbial metagenomes 

of HIV-negative subjects were enriched for pathways involved in xenobiotics 

biodegradation and metabolism, lipid metabolism and glycan biosynthesis and 

metabolism. Meanwhile, imputed microbial metagenomes of HIV-positive subjects were 

enriched for amino acid metabolism, cofactors and vitamins metabolism, and fatty acid 

metabolism (Figure S4-2). This figure revealed the potential key difference that microbial 

metagenomes from HIV-positive subjects tended to be relatively enriched for organic acid 

metabolism, whereas metagenomes derived from HIV-negative subjects tended to be 

enriched for pathways that biosynthesize organic acids. This was concordant with 

observed vaginal pH differences of HIV-positive and HIV-negative subjects, with HIV-

positive subjects having significantly (before correction for multiple metadata 

comparisons) higher vaginal pH measurements (Table S4-1). 

 

Discussion 

 Differences in vaginal microbiome in HIV infected and uninfected women have 

been described in several small studies. The present study is an important advance, by 

defining the scope of HIV-associated microbial compositional and metagenomic change, 

and how it is integrated with host physiologic conditions, and mucosal functional state. 

Combined, these analyses reveal an integrated network of interactions between the 

microbiome and host mucosal state in HIV-negative subjects that is disrupted with HIV 

infection even in the context of ongoing anti-retroviral therapy.  
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 While microbial metagenomic function would be suspected to vary between 

women with different microbial community structure, the dramatic differences observed 

between HIV-negative and HIV-positive subjects was surprising. Indeed, despite wide 

variations in community composition, metagenomic functions of most human anatomic 

microbial communities remain relatively static when viewed cross-sectionally (8, 207, 

224). In contrast, increased metagenomic diversity has been reported in vaginal 

communities with lower Lactobacillus representation, suggesting variation of 

metagenomic content might be more common in vaginal communities (8). In this study, 

analysis of metabolic pathway representation appeared to reflect opposing tendencies for 

organic acid production. This divergence correlated with the difference in Lactobacillus 

representation between the two cohorts. However, it is notable that organic acid 

production is not simply related to Lactobacillus composition in normal individuals (200, 

208, 209). Thus, future studies should seek to confirm the imputed metagenomic changes, 

and their association with measured metabolite changes in the mucosal lumen.  
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Figures and Tables 

Figure S4-1 

    

 

 

 

 

 

 

 

 

 

 

 

Figure S4-1. Canonical correspondence, principal coordinate, and compositional 

analysis of the vaginal microbiome. (A) CCA analysis was performed on OTUs with 

respect to HIV infection, HSV inhibition, E. coli inhibition, age, vaginal wall pH, and the 

abundance of several cytokines: IL-1α, IL-1β, IL-1ra, lactoferrin, IL-6, IL-8, and RANTES. 

Red spots represent individual OTUs. Arrows point in the direction of OTUs that most co-

vary with the labeled factor and arrow length is indicative of the correlation strength 

between the ordination and factor tested. The data qualitatively indicates that IL-1ra, IL-

1α, HIV infection, vaginal wall pH, HSV inhibition and E. coli inhibition co-vary with 
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microbiome composition. (B) Principal Coordinate analysis of the microbiome using the 

weighted unifrac distance metric revealed distinct clusters of HIV-positive and HIV-

negative individuals. Adonis significance analysis was performed on the weighted unifrac 

distance matrix and the resulting p value is shown on the plot to simplify interpretation. 

(C) Genus-level abundances of vaginal microbiota are shown for all subjects separated 

by HIV infection status. A clear depletion of Lactobacillus is apparent in HIV-positive 

versus HIV-negative subjects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



180 

 

Figure S4-2 

 

Figure S4-2. Metabolic heatmap highlighting metagenomic KEGG functions 

enriched or depleted in HIV-positive women. All functional metagenomic features that 

were significantly associated with HIV infection status are shown on the heatmap based 

on their relative abundance after z score transformation. The color bar on the left shows 
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HIV positive and negative. The stacked column chart shows the number of pathways in 

each functional class for the enriched and depleted pathways. 
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Table S4-1 

Table S4-1. Subject characteristics, CVL immune mediator and antimicrobial 

activity data 

 

HIV-negative 

(n=20)  

HIV-positive  

(n=21) 

p value 

Age (mean ± standard deviation (SD)) 29.5 ± 7.2 39.3 ± 13.7 0.007 

Race (number, %)   0.23 

    White 5 (25) 1 (5)  

    Black 8 (40) 8 (38)  

    Hispanic 5 (25) 10 (48)  

    Other 2 (10) 2 (9)  

Postmenopausal (number, %) 0 6 (29) 0.02 

Current cigarette smoker (number, %) 2 (10) 11 (52) 0.006 

Receiving antiretroviral therapy 

(number, %) 
0 17 (81) 

 

CD4 count in cells/mm3 (median, 

range) 
 500 (25-1555) 

 

Plasma HIV-1 RNA in copies/mL 

(median, range) 
 

40 (40-

50,359) 

 

CVL HIV-1 RNA in copies/mL (median, 

range) 
 

40 (40-

25,924) 

 



183 

 

History of douching (number, %) 4 (20) 12 (57) 0.02 

HSV seropositivity (number, %)    

    HSV-1 seropositive 9 (45) 14 (67) 0.21 

    HSV-2 seropositive 3 (15) 8 (38) 0.16 

Vaginal pH (median, interquartile 

range (IQR)) 
4.9 (4.5-5) 5.2 (4.5-5.5) 

0.02 

CVL pH 4.5 (4.5-5) 5.0 (4.7-5.2) 0.001 

E. coli inhibition (%) 61 (50-89) 22 (4-42) <0.0001 

HSV inhibition (%) 37 (25-63) 10 (-4-18) <0.0001 

Total protein (μg/mL) 248 (161-388) 272 (181-522) 0.11 

IL-1α (pg/mL) 42 (23-79) 103 (20-413) 0.07 

IL-1β (pg/mL) 3 (1-15) 4 (1-23) 0.44 

IL-1ra (ng/mL) 8 (6-9) 8 (6-10) 0.64 

Lactoferrin (ng/mL) 499 (96-824) 918 (552-

2165) 

0.01 

IL-6 (pg/mL) 11 (2-17) 4 (0.5-11) 0.13 

IL-8 (pg/mL) 
224 (93-926) 

359 (196-

1798) 

0.28 

RANTES (pg/mL) 3.6 (2-5) 3 (0.5-11) 0.95 

MIP-1α (pg/mL) 9 (4-16) 6 (4-14) 0.56 

MIP-1β (pg/mL) 6 (3-15) 11 (2-11) 0.16 
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IgG (pg/mL) 14 (6-33) 6 (3-19) 0.06 

IgA (pg/mL) 1 (0.4-3) 2 (0.6-4) 0.32 

HNP1-3 (ng/mL) 81 (8-402) 112 (25-382) 0.31 

SLPI (ng/mL) 240 (104-331) 144 (60-360) 0.51 

Lysozyme (ng/mL) 104 (82-484) 215 (53-451) 0.74 



185 

 

Table S4-2 

Table S4-2. CCA p values for each metadata category 

 Microbiome Metagenome 

HIV infection 0.005 0.005 

HSV inhibition 0.125 0.075 

E. coli inhibition 0.125 0.255 

IL.1ra 0.005 0.005 

IL.1a 0.095 0.07 

IL.1b 0.085 0.185 

IL6 0.255 0.555 

IL8 0.325 0.59 

RANTES 0.925 0.93 

Vaginal wall pH 0.105 0.005 

Lactoferrin 0.135 0.455 

Age 0.09 0.025 

Post menopausal 0.785 0.685 

Plasma viral load 0.32 0.7 
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