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ABSTRACT OF THE DISSERTATION

A functional, behavioral, and model-based investigation of human visual memory

By

Derek James Huffman

Doctor of Philosophy in Biological Sciences

University of California, Irvine, 2016

Professor Craig E.L. Stark, Chair

Our ability to remember the events of our lives relies upon the formation of associations

among the “what”, “where”, and “when” components of the event. Decades of research have

focused on elucidating the contributions of subregions of the medial temporal lobe to memory

for events. The results of this work converged on the notion that it would be fruitful to

investigate the representation of information within subregions of the medial temporal lobe.

Specifically, there is consensus that the hippocampus sits at the apex of a cortical circuit,

which gives it unparalleled access to all aspects of event processing. In contrast, subregions of

the adjacent medial temporal lobe cortex—namely, perirhinal and parahippocampal cortex—

are hypothesized to be involved in the representation of object (“what”) and contextual

(“where”) aspects of events, respectively. Recent studies have suggested that retrosplenial

cortex, a region that has been largely absent from memory models, is also necessary for

memory for events and that it is functionally related to parahippocampal cortex.

In four functional magnetic resonance imaging experiments, we investigated the hypothesis

that parahippocampal cortex and retrosplenial cortex are preferentially involved in the rep-

resentation of contextual information and that perirhinal cortex is preferentially involved in

the representation of object information. Overall, the results of our experiments support

our hypothesis; however, our results are incompatible with a simple functional dissociation

xiv



between these regions. Furthermore, our results provide evidence for the influence of low-

level stimulus features in the representation of contexual information, suggesting that future

research should aim to further investigate invariant context representation.

In a behavioral and model-based experiment, we investigated how memory changes as a

result of healthy aging. Previous research has suggested that healthy aging is accompanied

by an impaired ability to form stimulus-stimulus associations (e.g., “what-where”) with a

relative sparing of familiarity for the “what” component of events. An alternative, but not

mutually exclusive, hypothesis is that healthy aging is accompanied by an impaired ability

to encode stimulus features. Our results support the latter hypothesis, thus providing an

alternative framework for the investigation of cognitive aging.
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INTRODUCTION

Decades of research have converged on the notion that the medial temporal lobes are critically

important for declarative memory—e.g., memory for the events of our lives—and that there

is at least some degree of functional specialization between subregions of the medial temporal

lobe. Specifically, many theories suggest that parahippocampal cortex is involved in mem-

ory for and the representation of contextual and spatial aspects of events (e.g., “where”),

perirhinal cortex is involved in memory for and in the representation of items (e.g., “what”),

and the hippocampus is involved in memory for all aspects of an event (e.g., “what-where-

when”). Additionally, beyond the medial temporal lobe, recent theories are beginning to

suggest that retrosplenial cortex, a subregion of posterior cingulate cortex, is involved in

memory for and in the representation of context and spatial information. We performed

four functional magnetic resonance imaging studies to investigate the information contained

within patterns of activity in the medial temporal lobe and retrosplenial cortex.

Aim 1: Investigate whether parahippocampal cortex and retrosplenial cortex are

preferentially involved in processing scene information. In two functional magnetic

resonance imaging experiments, we investigated representations in response to different cat-

egories of images. In a between-subject design, participants viewed pictures of faces and

objects or faces and scenes. We used multivariate pattern analysis to show that patterns

of activity in perirhinal cortex, parahippocampal cortex, and retrosplenial cortex could be

used to classify individual trials on which participants viewed faces versus objects and faces

versus scenes. Consistent with our predictions, both parahippocampal cortex and retrosple-

nial cortex exhibited significantly better classification performance for faces versus scenes

than for faces versus objects. Additionally, our results suggest that patterns of activity in

parahippocampal cortex and retrosplenial cortex contain similar information on a trial-by-

trial basis in our experiment with faces and scenes but not our experiment with faces and

objects. These results are consistent with a role for parahippocampal cortex and retrosplenial
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cortex in scene representation. Furthermore, these results suggest that these regions share

information in a stimulus-dependent manner. Critically, however, the finding of significant

classification accuracy in parahippocampal cortex and retrosplenial cortex for faces versus

objects suggests that these regions are not tuned solely for context or scene processing.

Aim 2: Investigate the representation of individual items and contexts in the

medial temporal lobe and retrosplenial cortex. Additionally, investigate whether

representations are stable across different versions of the same items and con-

texts. The context-guided object association task (e.g., McKenzie et al., 2014) has provided

a useful task to investigate the representation of events within subregions of the rodent me-

dial temporal lobe. We created two human versions of the context-guided object association

task for use in functional magnetic resonance imaging experiments. In our first experiment,

we used distinct items and contexts similar to the rodent task. We provide evidence for the

representation of context in the medial temporal lobe and retrosplenial cortex; however, we

found similar results in primary visual cortex, suggesting that our results could be influenced

by low-level visual features. In our second experiment, we tested whether representations in

the medial temporal lobe and retrosplenial cortex would exhibit invariance across different

versions of the same items and contexts. Our results provide little evidence for invariant

context representation in the medial temporal lobe and retrosplenial cortex, suggesting that

the results of our first experiment were highly-dependent upon low-level visual differences

between stimuli. In contrast, our results provide novel evidence for invariant object represen-

tation in perirhinal cortex. The results of our experiments should constrain the experimental

designs of future studies that aim to investigate the representation of context.

Aim 3: Investigate performance on a forced-choice version of a Mnemonic Sim-

ilarity Task in healthy younger adults and the changes that occur as a result of

healthy aging. Additionally, use computational models to provide a potential

mechanistic account of the empirical results. Previous research from our laboratory

2



has shown that healthy older adults are impaired on tasks that require discriminating be-

tween previously viewed images and similar lure images. We extended previous results from

the old/new and the old/similar/new test formats to the forced-choice format. Addition-

ally, we used a class of models from mathematical psychology—global matching models—to

show that impaired encoding provides a possible mechanistic explanation for the observed

impairments in healthy older adults. Altogether, these results advance our understanding

of the memory changes associated with healthy aging and the modeling results provide an

alternative framework for interpreting performance on the Mnemonic Similarity Task.
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Chapter 1

Background and Significance

Our memories provide us with a sense of personal history, thus governing the connections

that we feel with our loved ones. Accordingly, our memories are at the core of who we are.

Sadly, there are neurodegenerative diseases that rob individuals of their memories. The loss

of one’s personal history is devastating not only for patients but also for their loved ones.

Therefore, the study of human memory is relevant both in healthy individuals and in patients

with memory impairments. If we can increase our understanding of how memory works at a

behavioral, computational, or implementational (i.e., brain) level, then we will move one step

closer to understanding how to fix memory in patients with memory impairments. The goal

of this dissertation was to investigate human visual memory and perception using functional

neuroimaging, behavioral experiments, and computational modeling in an effort to further

our understanding of memory in healthy younger adults and the changes to memory that

occur as a result of healthy aging. In this chapter, I provide relevant background material

before discussing the experiments in this dissertation in subsequent chapters.
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1.1 An Introduction to Memory Systems

1.1.1 Declarative versus Nondeclarative Memory

In 1957, Scoville and Milner published a paper that is arguably the most influential pa-

per ever published on the neurobiology of learning and memory. William Scoville removed

portions of the hippocampus, amygdala, and adjacent medial temporal lobe (MTL) cor-

tex in several patients with intractable epilepsy, including the famous patient, H.M. They

reported devastating memory impairments following MTL damage. Subsequent work by

Milner revealed that H.M. was only impaired on certain types of memory tasks, thus provid-

ing neurobiological evidence that memory is not a single entity (Milner, 1962; Milner et al.,

1968). For example, his overall intelligence remained intact, and he performed as well as

controls on a mirror-tracing task, in which participants were instructed to draw between two

lines while looking in a mirror (Milner, 1962). The number of errors (an error was recorded

when participant drew outside the lines) provided an index of memory performance. Par-

ticipants performed the same experiment across multiple days, thus allowing testing both of

learning rate and memory retention. Milner found that H.M. performed as well as controls

on the task, including across-session retention; however, he had no memory that he had pre-

viously performed the task. These findings provided evidence for a single dissociation—that

is, impaired performance on one type of task with spared performance on another type of

task following localized lesions—thus providing neurobiological evidence for the hypothesis

of multiple memory systems. Following Milner’s reports (Milner, 1962; Milner et al., 1968),

researchers focused on further characterizing memory systems.

Cohen and Squire (1980) aimed to further uncover spared memory ability in patients with

amnesia. They had participants perform a task in which they read words in a mirror. With

training, participants increased the rate at which they could read the words. Interestingly,

patients with amnesia showed a similar rate of learning, and they retained their memories
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for at least three months. In contrast, they found that patients with amnesia were severely

impaired at learning word pairs. Taken together, Cohen and Squire (1980) argued that there

were at least two forms of memory: 1) “declarative” or memory for “data-based material”,

2) “procedural” memory. They also posited that their results extended previous research

by showing that the spared memory function was not limited to motor tasks (e.g., mirror-

drawing task; Milner, 1962; Milner et al., 1968).

Packard and McGaugh (1996) used temporary inactivation techniques in rodents to provide

strong neurobiological evidence for the existence of multiple memory systems. They utilized

a cross-maze in which they closed one of the arms of the maze, effectively creating a modified

T-maze (the “testing” arm was closed during training, and the “training” arm was closed

during testing; see Figure 1.1). They trained rats that one of the arms of the maze contained

a reward. There were two strategies that the rats could use to learn the task: 1) “place”

(e.g., the East arm is rewarded), 2) “response” (e.g., turn right). During the test phase,

the rats started in the arm opposite the training arm, thus allowing testing of the learning

strategy used by the rats.

Training

Testing

R

PlaceResponse

Figure 1.1: Diagram of the cross-maze
paradigm (R=Reward).

After 8 days of training, the majority of saline-

infused control rats used the “place” strategy. In-

activation of the hippocampus resulted in chance

performance (half of the rats turned left and half

of the rats turned right); whereas inactivation

of the caudate resulted in behavior that was in-

distinguishable from the saline-infused controls.

After 16 days of training, the majority of saline-

infused control rats used the “response” strategy,

thus suggesting a strategy shift with increased

training. Hippocampal inactivation resulted in
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performance that was indistinguishable from saline infused controls; however, the major-

ity of the caudate-inactivated animals used the “place” strategy. These results suggest

that after 8 days of training the rats use a hippocampal-dependent “place” strategy, and

that after 16 days of training the rats use a caudate-dependent “response” strategy. The

behavior of the caudate-inactivated animals (after 16 days of training) suggests that the

hippocampal-dependent “place” strategy is still available but that it is in competition with

the caudate-dependent “response” strategy. These findings provide evidence for a double

dissociation between the hippocampus and the caudate, thus providing stronger evidence for

dissociable memory systems.

Taken together, researchers leveraged the findings from studies of animals and patients with

amnesia to suggest that there is a dissociation between declarative (or relational) memory and

nondeclarative memory (e.g., Cohen and Squire, 1980; Squire, 1992; Squire and Zola, 1996;

Eichenbaum, 2000). These examples suggest that the MTL is critical for declarative memory

but not for nondeclarative memory. There are several subtypes of nondeclarative memory,

but detailed discussion of nondeclarative memory is beyond the scope of this chapter. Sherry

and Schacter (1987) suggested that the brain evolved multiple memory systems that operate

to serve “functionally incompatible” goals. They postulated that nondeclarative and declar-

ative memory systems—in their words, “System I” and “System II”, respectively—are two

such systems. For example, they argued that System I would benefit from “invariance” over

repeated experiences, whereas System II would benefit from maintaining “variance” over

repeated experiences. Invariance would allow an organism to extract statistical regularities

of the world while variance would allow an organism to form unique memories for individual

events. Given this opposition, they hypothesized that these systems rely on independent

brain regions. Sherry and Schacter (1987) thus provide one possible explanation for the se-

lective declarative memory impairment following MTL damage. Subsequent research aimed

to further parcel the unique contributions of subregions of the MTL—namely, the MTL

cortex and the hippocampus—to declarative memory. Before discussing these studies, I will
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provide a brief background of the anatomy of the MTL.

1.1.2 Anatomy of the Medial Temporal Lobe

The MTL is composed of several subregions: parahippocampal cortex (PHC; called postrhi-

nal cortex in rodents), perirhinal cortex (PRC), entorhinal cortex (EC), and the hippocampal

region. The hippocampal region is made up of the dentate gyrus (DG), cornu ammonis fields

(CA1–4; research has focused on CA1 and CA3), and the subiculum. The EC is the major

input and output structure of the hippocampus, and it receives projections from PHC and

PRC. Research has suggested that PRC and PHC receive the majority of their anatomical

projections from the “ventral visual stream” and the “dorsal visual stream,” respectively

(see Figure 1.2; Suzuki and Amaral, 1994; Ungerleider, 1995; Squire and Zola, 1996; Buffalo

et al., 2006; Diana et al., 2007; Eichenbaum et al., 2007; Ranganath and Ritchey, 2012).

The ventral visual stream is implicated in playing a role in “item” or “what” processing. It

has been suggested that the primary visual cortex represents relatively simple features (i.e.,

lines), and that the information coded along the ventral visual stream becomes progressively

more conjunctive (Ungerleider, 1995; Cowell et al., 2010b). The inferior temporal cortex (IT)

is hypothesized to be involved in the representation of objects. PRC receives the majority

of its inputs from IT and other regions in the anterior temporal cortex (Suzuki and Amaral,

1994; Eichenbaum et al., 2007; Ranganath and Ritchey, 2012). The dorsal visual stream is

implicated in playing a role in “where” (Ungerleider, 1995) or “how” (Goodale and Milner,

1992) processing. PHC receives strong projections from posterior cingulate cortex (PCC)

and retrosplenial cortex (RSC; Suzuki and Amaral, 1994; Buffalo et al., 2006). RSC sits

at the interface between the “dorsal visual stream” and the MTL. Interestingly, RSC and

PCC have only very weak projections to PRC (Suzuki and Amaral, 1994). Taken together,

these results have led recent theoretical accounts to suggest that these regions differ in terms
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to guide future evaluations. Collectively, the AT sys-
tem could facilitate the ability to use past experiences 
to infer features about objects, such as whether they 
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of knowledge about people, so that past experiences 
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Figure 1.2: PHC is part of a broader posterior medial (PM; represented in blue) sys-
tem involved in the memory of context while PRC is part of a broader anterior tempo-
ral (AT; represented in red) system involved in memory of items. RSC=retrosplenial cor-
tex, PHC=parahippocampal cortex, PRC=perirhinal cortex. Figure from (Ranganath and
Ritchey, 2012).

of the information that they represent—namely, PRC is hypothesized to be preferentially

tuned for “item” (or object) memory while PHC is hypothesized to be preferentially tuned

for context or scene memory (e.g., Diana et al., 2007; Eichenbaum et al., 2007; Ranganath

and Ritchey, 2012).

PRC and PHC differ in terms of their connectivity with EC. Specifically, anatomical studies

in the rodent and monkey have shown that PRC has stronger projections to lateral entorhinal

cortex while PHC has stronger projections to medial entorhinal cortex. Accordingly, it

has been suggested that lateral and medial EC are differentially involved in memory for

items and spatial contexts, respectively (e.g., Knierim et al., 2006; Ranganath and Ritchey,

2012; Ritchey et al., 2015). However, recent theoretical accounts have suggested that the

classic “what” and “where” dissociations between MTL cortical regions are too simplistic.

Specifically, functional and anatomical investigations have shown interconnectivity between
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MTL cortical regions (e.g., there are projections between PHC and PRC; Lavenex and

Amaral, 2000; Buffalo et al., 2006) and MTL cortical regions have been shown to contain

information about spatial (e.g., in perirhinal and lateral EC) and non-spatial (e.g., in medial

EC and PHC) aspects of the task (e.g., Knierim et al., 2013; McKenzie et al., 2015; Keene

et al., 2016). These are relatively recent views, however, so further discussion is beyond the

scope of this chapter (for a more thorough discussion see Chapter 3 and Chapter 5).

The hippocampus receives highly processed information from every sensory modality, which

has led some researchers to suggest that the hippocampus is involved in memory because it is

a site of the brain where information is combined into a unique representation (Squire, 1992;

Ungerleider, 1995; O’Reilly and Munakata, 2000, Chapter 9; Diana et al., 2007; Eichenbaum

et al., 2007; Ranganath and Ritchey, 2012). That is, the hippocampus is able to form mul-

timodal conjunctive representations. In fact, some theories suggest that the hippocampus is

specialized for the formation of conjunctive item-in-context representations, thus subserving

a selective role in associative memory performance (Eichenbaum et al., 2007; Ranganath,

2010; Ranganath and Ritchey, 2012; Ritchey et al., 2015). An alternative hypothesis, also

based on anatomical considerations, is that the hippocampus can reinstate cortical patterns

of activity in distributed regions throughout the brain (Teyler and DiScenna, 1986; Teyler

and Rudy, 2007).

The major anatomical projection from EC to the hippocampus is the perforant path, which

projects from EC layer II to DG and CA3 (see Figure 1.3; Amaral, 1993; Wilson et al., 2006).

The DG is roughly 5 times larger than the EC, which leads to sparser representations in

the DG via “expansion” (McNaughton and Morris, 1987). The DG projects to CA3 via the

mossy fibers (Amaral, 1993; Wilson et al., 2006), which are often referred to as “detonator

synapses” (McNaughton and Morris, 1987) because they are extremely strong. More than

95% of the synapses in CA3 are from the auto-associative fibers (i.e., self-projections; Wilson

et al., 2006). Taken together, CA3 is uniquely situated to either form unique patterns of
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Figure 1.3: A simplified schematic of connectivity of the MTL (figure modified from Wilson
et al., 2006; courtesy of J.W. Lacy). PRC=perirhinal cortex, PHC=parahippocampal cortex,
ERC=entorhinal cortex, PP=perforant path, SC=Schaffer collaterals, DG=dentate gyrus.

activity—via mossy fiber input—or to complete partially degraded input patterns—via the

auto-associative fibers (e.g., O’Reilly and McClelland, 1994). CA1 receives input from both

CA3—via the Schaffer collaterals—and EC layer III (Amaral, 1993; Wilson et al., 2006).

Theoretical accounts have suggested that these anatomical properties allow CA1 to act a

as a comparator of the patterns of activity between EC and CA3 (Hasselmo et al., 1995).

The subiculum is thought to be a major output structure—from CA1 to EC layer IV-VI—of

the hippocampus (Amaral, 1993; Wilson et al., 2006). The function of subregions of the

hippocampus will be further explored later.

Recent theories have suggested that we need to expand our view of the declarative memory

system to include regions outside of the MTL (e.g., Vann et al., 2009; Aggleton, 2010;

Ranganath and Ritchey, 2012; Bucci and Robinson, 2014; Ritchey et al., 2015). For example,

as mentioned above, RSC is anatomically situated to be involved in context processing (based

on its connectivity with the dorsal processing stream) and in declarative memory (based

on its connectivity with the MTL). RSC is reciprocally connected to the hippocampus,

PHC, and anterior thalamic nuclei, which are critically important for declarative memory

(Vann et al., 2009; Aggleton, 2010). Indeed, lesions to RSC have been shown to result
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in “retrosplenial amnesia” (Valenstein et al., 1987) and RSC atrophy as been observed in

patients with Alzheimer’s disease (Buckner et al., 2005; Fennema-Notestine et al., 2009;

Tan et al., 2013). Moreover, RSC hypometabolism has been observed in the early stages of

Alzheimer’s disease (Minoshima et al., 1997; Buckner et al., 2005; Villain et al., 2008) and

there is evidence to suggest that the degree of memory decline is associated with the degree of

RSC hypometabolism (Desgranges et al., 2002; Buckner et al., 2005). Furthermore, a recent

model suggests that RSC is critical for the formation of stimulus-stimulus associations, a

function traditionally ascribed to the hippocampus (Bucci and Robinson, 2014). Thus, a

more complete understanding of the contribution of structures beyond the MTL, especially

RSC, to declarative memory is of keen interest. I will later expand on this argument (see

Chapter 2, Chapter 3, Chapter 5), but for now I will discuss theories that have attempted

to understand the differential involvement of the hippocampus and MTL cortex in declarative

memory, beginning with studies of recollection and familiarity which dominated the field in

the 1990s and the early 2000s.

1.1.3 Recollection and Familiarity

Recognition memory tasks have received much attention over the past 40 years, and they

have recently been used to suggest that the hippocampus and PRC play complementary

roles in memory formation. Recognition memory tasks test participants’ ability to discrim-

inate between stimuli that they have and have not previously encountered. For example,

participants might study a list of words followed by a test on which they indicate whether

each word is “old” or “new.” Dual-process models of recognition memory (Mandler, 1980;

Yonelinas, 1994, 1997, 2002) posit that recognition memory judgments can be made using

two processes: recollection and familiarity. Recollection is defined as the process of recalling

details about the study event. For example, when a participant studies the item “apple,”

they might imagine visiting an apple orchard. When tested on the item “apple,” the par-
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ticipant might recall that they imagined visiting an apple orchard. Thus the participant

would respond “old,” based on recollection. On the other hand, the participant might have

a strong sense of familiarity for the word “table,” but not be able to recall anything about

studying the word. The Yonelinas model (Yonelinas, 1994, 1997, 2002) posits that whenever

a participant recalls something about the studied item, they make their decision based solely

on recall; whereas, if they cannot recall anything about the studied item, then they make

their decision based solely on familiarity.

Following the development of dual-process theories of recognition memory, researchers have

used lesion techniques, electrophysiological recordings, human neuroimaging, and studies of

patients with selective brain damage in an attempt to provide evidence for functional differ-

ences between PRC and the hippocampus. A prominent theory that emerged from the efforts

of these studies suggested that the PRC is specialized for familiarity while the hippocampus

is specialized for recollection (for reviews see: Aggleton and Brown, 1999; Brown and Aggle-

ton, 2001; Yonelinas, 2002; Diana et al., 2007; Eichenbaum et al., 2007; Ranganath, 2010;

Yonelinas et al., 2010; Brown et al., 2010; Ranganath and Ritchey, 2012). These theories

also note a role for the hippocampus in the formation of associative memories (e.g., “what-

what”, “what-where”, “what-where-when”), while perirhinal cortex is hypothesized to play

a larger role in item memory (e.g., “what”). However, other studies have provided evidence

to suggest that the hippocampus is involved in recollection, familiarity, and associative and

single item memory (e.g., Stark and Squire, 2003; Bayley et al., 2008; Kirwan et al., 2008;

Jeneson et al., 2010; Wais et al., 2010; Wixted et al., 2010). Accordingly, other theories

suggest that the hippocampus and MTL cortical regions are broadly involved in declarative

memory, including a role for the hippocampus in familiarity (e.g., Squire et al., 2007; Wixted

et al., 2010; Wixted and Squire, 2011).

The issue of recollection and familiarity differences between the hippocampus and PRC has

been the source of a fierce debate in the literature; however, there are points of agreement
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between competing theories. For example, proponents of both theories have suggested that

anatomical connections in the hippocampal-cortical network may give rise to differences

in the information processed in different subregions of the MTL. For example, both the

Binding of Item in Context model (Eichenbaum et al., 2007; Diana et al., 2007) and the

Attributes of Memory model (Wixted and Squire, 2011), suggest that PHC may be relatively

specialized for memory for context, spatial, or scene information, PRC may be relatively

specialized for memory for item or object information (however, some models suggest that

PRC is involved in processing of both scene and object information; Buffalo et al., 2006;

Wixted and Squire, 2011), and the hippocampus is important for memory across domains.

Taken together, both of these models suggest that it would be fruitful to investigate the

representation of information within the MTL. The consensus of these views inspired us to

investigate representations in the MTL (see Chapter 2 and Chapter 3). As I will discuss

in subsequent sections, computational theories provide a mechanistic account of differences

between regions, which may provide clearer explanation than reliance on psychological theory

(Rumelhart et al., 1986; O’Reilly and Munakata, 2000; O’Reilly and Norman, 2002; Norman

and O’Reilly, 2003; Norman, 2010; Cowell et al., 2012). For example, it has been argued

that the terms “recollection” and “familiarity” should be replaced by terms that precisely

describe mechanistic—rather than psychological—processes (Norman, 2010).

1.2 An Introduction to Computational Theory

1.2.1 Global Matching Models

Researchers in the field of mathematical psychology have used a combination of modeling and

behavioral experiments to investigate the nature of memory representations. For example,

global matching models have been used extensively to investigate recognition memory (e.g.,
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Hintzman, 1984, 1988, 2001; Murdock, 1982, 1995; for review see: Clark and Gronlund,

1996). Global matching models assume that participants calculate a global match between a

test item and the stored contents of memory. If the global match is strong enough, then the

participant responds “old,” otherwise they respond “new.” These models are referred to as

“familiarity-only” models because they are single-process models that make decisions based

on match of a test item to the contents of memory. Accordingly, global matching models are

related to the signal detection theory framework (cf. Clark and Gronlund, 1996). However,

rather than assuming differences in memory strength per se, global matching models assume

that the global match (i.e., a memory strength signal) is determined by the similarity of a

test item to the contents of memory (cf. Kahana, 2012, Chapter 3). There are many versions

of global matching models, however the main difference between the models is whether they

assume that memories are stored as independent traces (i.e., multiple-trace or exemplar-

based models) or as a distributed trace (i.e., a single, composite memory or a prototype). We

investigated whether global matching models could account for the performance of younger

adults and healthy older adults on an item recognition memory test with targets and similar

lures (see Chapter 4). Global matching models are abstract, meaning that they attempt

to model latent cognitive representations without taking into account the neural machinery

behind such computations. Other researchers have advocated for using knowledge of brain

connectivity and function to guide development of computational models. In the next two

sections, I will discuss biologically-inspired computational theories of the brain.

1.2.2 Psychological Similarity

Researchers have been studying “psychological similarity” for over 50 years (Rothkopf, 1957;

Shepard and Chipman, 1970; Shepard, 1987; Cutzu and Edelman, 1998; Edelman, 1998,

2012). Psychological similarity is a broad concept that encompasses perceptual, conceptual,

and semantic similarity. For example, Rothkopf (1957) investigated the effects of psycholog-
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ical similarity on paired-associate learning. Participants performed a task in which stimulus

pairs were presented sequentially with a brief delay between them, and they were instructed

to indicate whether or not the two stimuli were the same. The number of between-stimulus

errors (e.g., “same” response when presented with A and B) provided an index of psychologi-

cal similarity. Due to the complex relationship between physical similarity and psychological

similarity, Rothkopf (1957) noted that investigation of the relationship between memory and

stimulus similarity should utilize measures of psychological similarity rather than measures

of physical similarity. He showed that there was a relationship between difficulty of paired

associates learning and psychological similarity.

Shepard and Chipman (1970) developed a hypothetical solution for mapping between phys-

ical and psychological space. Cognitive psychologists use the term “space” to refer to the

dimensions of stimulus representation. Stimuli can vary across several dimensions (e.g., size,

color, shape), and the dimensions make up the axes of the space. Representation of a stim-

ulus can be thought of as a point in multidimensional space, where similar stimuli occupy

nearby regions of space. Shepard and Chipman (1970) suggested that the relationship be-

tween physical and psychological space should adhere to a “second order isomorphism.” A

second order isomorphism states that the similarity between two stimuli in psychological

space should be related to the similarity of the stimuli in physical space. For example, the

representation of a face in psychological space (or in brain space) need not actually look

like a face—in fact, if it did, such a representation would be referred to as a “first order

isomorphism.” Instead, the representational similarity between two images of faces should

be greater than between either face image and an image of a scene. In this framework,

generalization is permitted via the similarity of the stimuli in psychological space. Behav-

ioral methods such as those used by (Rothkopf, 1957) can be used to test the second order

isomorphism. The framework of the second order isomorphism was subsequently applied to

representations in neural-network models.
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Theoretical approaches have suggested that there are several ways that neurons can respond

to stimuli. Taken together, these theories refer to how neurons—and, more broadly, brain

regions—represent information. One view of representations suggests that neurons use rate

coding, which refers to the idea that neurons code information based on changes in firing

rate (Dayan and Abbott, 2005). Localist views of representation suggest that localized units

represent specific features of stimuli (from the example in the previous paragraph: size,

color, shape; in this example, the mapping between the coordinates of physical space and

“neural” space would be one-to-one; Rumelhart et al., 1986, Chapter 3). Other theorists

suggested that the brain utilizes “coarse-coded” distributed representations (e.g., Hinton,

1981; Churchland, 1986; Rumelhart et al., 1986, Chapter 3), also referred to as “population

coding” (Dayan and Abbott, 2005). The basic idea of coarse coding is that each unit is

broadly tuned and thus participates in the representation of several features. I will use the

term “distributed representations” as a shorthand of referring to coarse-coded distributed

representations. Distributed representations exhibit several advantages over localist repre-

sentations: they are more efficient, they naturally represent the similarity structure of their

environments and are able to generalize knowledge to novel stimuli, they are more accurate,

and they exhibit graceful degradation (Hinton, 1981; Rumelhart et al., 1986, Chapters 3, 4,

12; O’Reilly and Munakata, 2000)

Rumelhart and Todd (1993) suggested that neural-networks could capture many properties

of semantic cognition. They trained neural-networks to learn several facts about different

animals. For example, they taught the networks that a canary is a bird, that it can fly, that

it has feathers. After training the networks on several categories of stimuli—trees, flowers,

birds, and fish—they tested how well the networks could represent novel exemplars from

these categories. For example, after training the networks that a new stimulus was a bird,

the networks correctly predicted that the new bird could fly and that it had wings and

feathers. Similarly, the networks correctly predicted that the new bird did not contain non-

bird features (e.g., gills). This highlights one utility of distributed representations, namely
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generalization via proximity in “psychological” space.

In summary, distributed representations give rise to emergent properties, such as general-

ization (Rumelhart et al., 1986, Chapter 3). Distributed representations are not necessarily

at odds with specialization of function—that is, it is possible that the brain is composed

of relatively specialized regions (e.g., object processing regions), and that within each of

these specialized regions, neurons make use of distributed representations (Rumelhart et al.,

1986, Chapter 3). While generalization and representation of similarity are beneficial for

rapidly predicting the world around us, being able to uniquely represent past experiences is

a defining feature of episodic memory (Tulving, 1985). In the next section, I will discuss a

computational theory for how the brain decreases interference, potentially allowing unique

memory traces to be formed.

1.2.3 Pattern Separation

Figure 1.4: Pattern separation and pattern
completion transform the similarity structure
among input patterns.

Pattern separation is a computational pro-

cess that decreases the similarity of over-

lapping input patterns (e.g., O’Reilly and

McClelland, 1994; McClelland et al., 1995;

Norman and O’Reilly, 2003; Norman, 2010).

For example, if two binary input patterns

share 60% of the same active units (i.e., 40%

change in input between the two patterns),

then pattern separation would transform the

patterns to share fewer than 60% of same the

active units (i.e., greater than 40% change in

output; blue region in Figure 1.4), pattern
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completion would transform the patterns to share more than 60% of the same active units

(i.e., less than 40% change in output; gray region in Figure 1.4), and the process of linearly

tracking the change in input patterns would result in no transformation to the similarity

between the input patterns (i.e., 40% change in output; tan line in Figure 1.4). Pattern

separation decreases the similarity among input patterns and thus could serve as a compu-

tational mechanism for reducing similarity among related experiences. Pattern completion

increases the similarity among input patterns, and could thus allow retrieval of a partially

degraded input (Marr, 1971; McNaughton and Morris, 1987; O’Reilly and McClelland, 1994;

Hasselmo et al., 1996). This section will focus on biologically-inspired computational mod-

eling studies that have been used to advance the notion that the hippocampus is involved

in pattern separation.

Before discussing computational models of the hippocampus, an example will be given to

illustrate the computational trade-off between generalization and specificity. McCloskey and

Cohen (1989) examined the performance of simple neural-networks—like those discussed in

the previous section—on a memory interference task, the AB-AC list learning task. In this

task, participants learn word pairs on two separate lists. Both lists consist of one of the same

words (i.e., A) with a repaired second word (i.e., AB is learned on the first list, followed by AC

on the second list). Behavioral studies in humans indicated that learning the AC list resulted

in retroactive interference (i.e., worse performance when tested on the AB list); however,

learning the AC list did not completely interfere with the memory of the AB pairs (Barnes

and Underwood, 1959). In contrast, the neural-networks exhibited complete retroactive

interference, a pattern of results that they referred to as “catastrophic interference.” They

argued—because the neural-network results did not match human behavior—that simple

neural-networks were not appropriate models of the brain.

In contrast to the arguments advanced by McCloskey and Cohen (1989), McClelland et al.

(1995) suggested that the combination of useful properties of neural-networks (e.g., the
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ability to generalize to novel stimuli; Rumelhart and Todd, 1993) and the observation of

catastrophic interference in a memory interference task suggests that the brain evolved com-

plementary learning systems that operate under competing computational principles. For

example, in an attempt to overcome catastrophic interference in neural-networks, French

(1991) used sparser representations; however, while these networks exhibited lower levels of

retroactive interference, they performed worse at generalizing and representing the similarity

structure of their environments. McClelland et al. (1995) argued that generalization requires

distributed representations and gradual learning, and that the formation of arbitrary associ-

ations requires the rapid formation of non-overlapping memories. Accordingly, McClelland

et al. (1995) suggested that the brain makes use of complementary learning systems: 1) the

neocortex, which utilizes a slow learning rate, 2) the hippocampus, which allows conjunctive,

associative learning.

There are several properties of the hippocampus that make it functionally suited for pattern

separation. First, physiological investigation suggested that the hippocampus has much

Figure 1.5: An illustration of distributed represen-
tations in the cortex and sparse-coded, pattern-
separated representations in the hippocampus (fig-
ure from O’Reilly and Rudy, 2001). A and B repre-
sent patterns of activity in response to two stimuli.

sparser activation than the neocortex

(e.g., Barnes et al., 1990). In particular,

the DG exhibits very sparse activity (≈

0.5%; O’Reilly and McClelland, 1994;

O’Reilly and Munakata, 2000, Chapter

9; Chawla et al., 2005). Mathemati-

cally, the lower the probability that a

neuron is active, the lower the proba-

bility that it will be active in response

to two stimuli (see Figure 1.5; O’Reilly

and McClelland, 1994; O’Reilly and

Munakata, 2000, Chapter 9; O’Reilly

and Rudy, 2001). Second, DG contains
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roughly 5 times as many neurons as EC, which serves to decrease the similarity of overlap-

ping input patterns through the process of “expansion” (McNaughton and Morris, 1987).

Third, the mossy fibers sparsely project from DG to CA3 and they provide very strong

input (“detonator synapses”; McNaughton and Morris, 1987), thus allowing further pattern

separation (O’Reilly and McClelland, 1994). Fourth, the hippocampus (in contrast to the

neocortex) uses a fast learning rate, which allows rapid formation of novel, pattern-separated

representations (O’Reilly and Norman, 2002). Computational modeling studies of the hip-

pocampus have shown that these properties serve to reduce the overlap of similar input

patterns, thus serving as a potential mechanism for reducing interference between similar

experiences (Treves and Rolls, 1992, 1994; O’Reilly and McClelland, 1994; Hasselmo et al.,

1996; Hasselmo and Wyble, 1997; O’Reilly and Munakata, 2000, Chapter 9; Norman and

O’Reilly, 2003; Norman, 2010).

Computational models have been used to suggest that network dynamics differ between en-

coding and retrieval modes (Treves and Rolls, 1992, 1994; O’Reilly and McClelland, 1994;

Hasselmo et al., 1996; Hasselmo and Wyble, 1997). It has been suggested that DG is im-

portant for encoding but not for retrieval, due to its is bias toward forming unique patterns

of activity even for similar stimuli. Additionally, the very strong mossy fiber synapses from

DG to CA3 could drive CA3 into a pattern separation mode. In contrast, without DG input,

CA3 can exhibit pattern completion tendencies due to its auto-associative connectivity. In

fact, 95% of the synapses in CA3 are auto-associative connections (Wilson et al., 2006).

Previous modeling studies have suggested that interactions between the hippocampus and

the cholinergic system can serve to shift the hippocampus between encoding and retrieval

modes (Hasselmo et al., 1996; Hasselmo and Wyble, 1997). For example, under high levels of

acetlycholine, CA3 attractor dynamics are inhibited, thus biasing the hippocampal network

toward pattern separation or encoding mode. In contrast, under low levels of acetlycholine,

CA3 attractor dynamics are promoted, thus biasing CA3 into pattern completion or retrieval

mode. Taken together, widespread interactions may play a role in shifting hippocampal pro-
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cessing between pattern separation and pattern completion.

Computational models can provide mechanistic insight into functional differences between

brain regions. For example, previous studies have investigated the computational differences

between the MTL cortex and the hippocampus (Norman and O’Reilly, 2003; Norman, 2010).

These investigations suggested that, due to its use of distributed representations, patterns of

activity in the MTL cortex could be used to track the global similarity or summed similarity

between a test item and studied items. Accordingly, their models of the MTL cortex are in

fact an instantiation of a global matching model. In contrast, due its bias toward pattern

separation, patterns of activity in the hippocampus were largely non-overlapping in response

to studied and unstudied items; therefore, activity in the hippocampus cannot track the

summed similarity between a test item and studied items. Norman (2010) argued that

in testing the functional differences between the hippocampus and MTL cortex, the terms

“recollection” and “familiarity” should be replaced with the predicted mechanistic differences

between these regions. That is, future research should test the hypothesis that the MTL

cortex can compute summed similarity while the hippocampus cannot because of differences

in the degree of pattern separation in the MTL cortex and the hippocampus. One aim

of the research in this dissertation was to provide empirical support for these mechanistic

predictions (see Chapter 2).

1.2.4 Application of the Theory: Empirical Investigations of Hip-

pocampal Pattern Separation

Lesion Studies

The lesion method has been used to assess the necessity of the hippocampus in performance

of tasks that were designed to provide a behavioral assay of pattern separation. Taken to-
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gether, these tasks will be referred to as “mnemonic similarity tasks” (cf. Stark et al., 2015).

Pattern separation is a computational process—i.e., a process that decreases the overlap of

input patterns—while discriminating between similar memories is a psychological process,

which could arise from mechanistic processes other than pattern separation. Therefore, the

studies discussed in this section will provide evidence for the necessity of the hippocampus

in pattern separation only to the extent that discriminating between similar memories ac-

curately assesses pattern separation. Lesion studies in rodents and human patients have

provided converging evidence for a role of the hippocampus in performance on mnemonic

similarity tasks (i.e., targets and similar lures) but not traditional item recognition memory

tasks (i.e., targets and unrelated foils).

There is evidence that lesions of the rat dentate gyrus cause impaired discrimination be-

tween close—but not distant—locations in spatial memory tasks (Gilbert et al., 1998, 2001;

Morris et al., 2012). Similarly, a recent study of a patient with selective hippocampal dam-

age revealed impaired precision of spatial memory judgments on a virtual water maze task

(Kolarik et al., 2016). Talpos et al. (2010) reported that hippocampal damage causes im-

paired mnemonic discrimination of very similar spatial patterns in a “trial unique, delayed

nonmatching-to-location” task in rodents. Importantly, studies have shown that hippocam-

pal damage does not impair perceptual discrimination of similar items, which has been used

to suggest that the observed behavioral changes following damage to hippocampus are re-

lated to its role in declarative memory rather than the result of a simple perceptual deficit

(Suzuki, 2009; but see Saksida and Bussey, 2010; Burke et al., 2012).

The complementary learning systems (CLS) model predicts that hippocampal damage would

cause impaired on performance on “old”/“new” memory tests that include targets and similar

lures while sparing performance on “old”/“new” memory tests that include targets and

unrelated foils (Norman and O’Reilly, 2003). This occurs because the neocortex (e.g., PRC)

assigns similar representations to similar items, which results in a greater probability of
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incorrectly responding “old” to related lures (compared to the hippocampus). As predicted

by the CLS model, Holdstock et al. (2002) showed that a patient with selective hippocampal

damage was impaired on an “old”/“new” memory test that included targets and similar

lures but not on an “old”/“new” memory test with targets and unrelated foils.

Kirwan et al. (2012) used a similar approach to investigate three patients with relatively

selective hippocampal damage. Participants performed a memory test in which they viewed

targets, similar lures, and unrelated foils. Participants were instructed to indicate whether

items were “old” (i.e., exact repetition), “similar” (i.e., similar to—but not exactly the same

as—a previously viewed image), or “new.” They found that the patients were indistin-

guishable from controls in their ability to discriminate between previously viewed items and

unrelated foil items. In contrast, the patients were impaired relative to controls at correctly

responding “similar” to similar lures, supporting the findings from the patient in Holdstock

et al. (2002). Duff et al. (2012) showed that patients with hippocampal lesions were im-

paired on a memory task when the stimuli were similar but performed as well as controls

when the stimuli were dissimilar. Taken together, these results suggest that hippocampal

damage impairs performance on tasks that require fine-grained discrimination between pre-

viously viewed stimuli, while sparing the ability to discriminate between previously viewed

stimuli and unrelated foils. Altogether, these studies support the CLS models’ predicted

effects of hippocampal damage on recognition memory performance (Norman and O’Reilly,

2003; Norman, 2010).

Molecular Imaging and Electrophysiological Studies

Recent molecular imaging and electrophysiological studies have provided support for the

role of the rodent hippocampus in pattern separation. For example, the immediate early

gene, Arc, was sparsely activated in the DG following exposure to both novel and familiar

environments (Chawla et al., 2005). Non-overlapping cells were activated in the DG when
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rats were exposed to two different environments; however, the same cells were activated when

rats were exposed twice to the same environment. Taken together, these results are consistent

with pattern separation in the DG. Vazdarjanova and Guzowski (2004) investigated the

overlap patterns of Arc activation in the CA3 and CA1 following exposure to contexts with

varying degrees of similarity. Patterns of activity in CA1 linearly tracked the degree of

change between environments. In contrast, the patterns of activity in CA3 were similar in

response to very similar environments but were non-overlapping in response to two different

environments. These results provide support for the prediction from computational models

that suggest that CA3 contributes to pattern separation and pattern completion (e.g., Treves

and Rolls, 1992, 1994; O’Reilly and McClelland, 1994; Hasselmo et al., 1996; Hasselmo and

Wyble, 1997).

Leutgeb et al. (2004) used electrophysiology to investigate differences in patterns of activity in

CA3 and CA1 as rats were exposed to environments that contained a varying degree of shared

features. Similar to the immediate early gene study by Vazdarjanova and Guzowski (2004),

the active cells in CA1 overlapped to the degree that the environments shared features.

The active cells in CA3 were distinct across all of the environments, but the patterns of

activity were very similar when an animal was re-exposed to the same environment. Taken

together, these results support the role of CA3 in pattern separation. Leutgeb et al. (2007)

recorded from the DG and CA3 as rats explored environments that were gradually morphed

from a circular to a square enclosure (and vice versa). In the DG, the similarity between

patterns of activity in response to two identical environments was significantly greater than

the similarity between patterns of activity in response to two highly similar environments

(i.e., r(A,A) > r(A,A′)). In contrast, CA3 required a greater change in the shape of the

environment before exhibiting different patterns of activity. Importantly, in EC, the patterns

of activity were similar across the morphed environments, suggesting that the differences in

patterns of activity in the DG were driven by local computations, rather than within DG

afferents. These results suggest that both the DG and CA3 contribute to pattern separation,
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but that the DG is more sensitive to small changes in the environment.

To investigate pattern separation in the DG and pattern completion in CA3, Neunuebel

and Knierim (2014) incrementally rotated a circular maze. They found that small rota-

tions were sufficient to elicit significantly different patterns of activity in the DG, whereas a

larger rotation was required to significantly change patterns of activity in CA3. Therefore,

the authors suggested that their results support the hypothesis that the DG performs pat-

tern separation—i.e., small changes to the environment elicited reliably different patterns

of activity—and that CA3 can perform pattern completion—i.e., stable patterns of activ-

ity across small changes to the environment). Taken together, there is evidence to suggest

that the rodent hippocampus—in particular, the DG—plays a role in pattern separation.

An important finding in these studies was the high degree of similarity between patterns

of activity within the hippocampus (even the DG) in response to the same environments,

suggesting that representations are stable in response to the same stimuli but that neurons

in the hippocampus readily detect small changes to the environment.

Functional Magnetic Resonance Imaging Studies

Previous functional magnetic resonance imaging (fMRI) research has supported the hypothe-

sized role of the human hippocampus in pattern separation (Kirwan and Stark, 2007; Bakker

et al., 2008; Lacy et al., 2011; Motley and Kirwan, 2012). Before discussing these studies, a

brief methodological background will be provided. Previous research has shown that several

regions of the brain respond with a significant difference in blood-oxygen-level dependent

(BOLD) activity in response to repeated presentations of an item compared to a first pre-

sentation of an item—an effect referred to as “repetition suppression.” Technically, the way

that it is defined here is agnostic to the direction of change, and the strict definition would

be greater activity to first presentations than to repeated presentations; however, there is

evidence that the direction of BOLD signal change might not always be the same as the di-
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type. Cross-participant alignment was performed using Region
of Interest-Advanced Normalization Tools (ROI-ANTS) (Avants
et al. 2008; Klein et al. 2009; Yassa et al. 2010) based on regional
alignment methods developed in our laboratory (Miller et al.
2005; Yassa and Stark 2009). For details
on these methods see Supplemental
material and Supplemental Table 1.

Group analysis beganwith a t-test to
identify repetition-sensitive voxels (first
vs. repeat condition: P, 0.05, 20 con-
tiguous voxels), using our alignment
model to localize activity to specific
subregions within the hippocampus.
The choice of a somewhat liberal statisti-
cal threshold for voxel selection reduces
voxel selection biases for this initial fil-
tering step (Baker et al. 2007). While
repetition-sensitive voxels were found
throughout the MTL (CA1, CA3/DG,
subiculum, entorhinal, perirhinal, and
parahippocampal cortices), we focus here
on the CA1 and CA3/DG to address the
specific hypotheses about their transfer
functions. Following voxel selection
and classification, mean beta coefficients

for each trial type of interest, each region,
and each participant were calculated.
Completion-like activity was defined as
activity during lures being significantly
different from the activity of first pre-
sentations, but not significantly differ-
ent from the activity of repetitions.
Separation-like activity was defined as
activity during lures being significantly
different from the activity of repetitions,
but not significantly different from the
activity of first presentations.

Consistent with Bakker et al. (2008),
we found regions in right CA1 that were
consistent with pattern completion
and regions in bilateral CA3/DG that
were consistent with pattern separation
(Fig. 1B). Three regions in both CA1 and
CA3/DG differed between first presen-
tations and repetitions. Within right
CA1, two regions were consistent with
completion-like activity as defined above
(first vs. lures, t(17) ¼ 2.27, P, 0.05 and
t(17) ¼ 3.54, P, 0.01; repetitions vs.
lures, t(17) ¼ 0.52, n.s. and t17 ¼ 1.00,
n.s.) ambiguous region in left CA1 had
lure activity that did not differ from first
presentations or repetitions (first vs.
lures, t(17) ¼ 1.48; repetitions vs. lures,
t(17) ¼ 2.01). Within bilateral CA3/DG,
two regions were consistent with
separation-like activity as defined above
(first vs. lures, left t(17) ¼ 0.60, n.s. and
right t(17) ¼ 0.83, n.s.; repetitions vs.
lures, left t(17) ¼ 2.21, P, 0.05 and right
t(17) ¼ 3.31, P, 0.01). One ambiguous
region in the right CA3/DG had lure
activity that was significantly different
from both first presentations and repeti-
tions (first vs. lures, t(17) ¼ 2.43, P, 0.05;
repetitions vs. lures, t(17) ¼ 2.33,P, 0.05).

We next asked whether CA1 and CA3/DG responded differ-
ently to the amount of change in input (mnemonic similarity).
We split the lure stimuli at themedian of theirmnemonic similar-
ity (see Supplemental material) and analyzed these two sets of

Figure 1. Mean activity (summed beta coefficients) of each trial condition from regions of interest in
Bakker et al. (2008) (A) and the current study (B) as described in the text. A model segmentation of hip-
pocampal subfields is overlaid on each brain slice to indicate the location of the subiculum (green), CA1
(blue), and CA3/DG (red). Regions of activity within the hippocampus are shown in white and labeled
within each slice in the bottom-right corner. Distance of each slice from the anterior commissure (y ¼ 0
in Talairach coordinates) is indicated for each slice in the bottom-left corner.

Figure 2. Examples of stimuli and their lures. Stimuli with high mnemonic similarity are shown at the
far left and stimuli with low mnemonic similarity are shown at the far right.

FMRI of pattern separation in CA3/DG and CA1
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CA1, two regions were consistent with
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(first vs. lures, t(17) ¼ 2.27, P, 0.05 and
t(17) ¼ 3.54, P, 0.01; repetitions vs.
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Figure 1. Mean activity (summed beta coefficients) of each trial condition from regions of interest in
Bakker et al. (2008) (A) and the current study (B) as described in the text. A model segmentation of hip-
pocampal subfields is overlaid on each brain slice to indicate the location of the subiculum (green), CA1
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FMRI of pattern separation in CA3/DG and CA1
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Figure 1.6: Pattern-separation-like activity in the human hippocampus (figure from Lacy
et al., 2011). Repetition-sensitive voxels within the left and right DG/CA3 exhibited ac-
tivity to related lures that was more similar to first presentations than it was to repeat
presentations. Figure A shows results from Bakker et al. 2008 while Figure B shows replica-
tion in a novel dataset in Lacy et al. 2011.

rection of the local field potential change, which is an electrophysiological measure of neural

activity (Hargreaves et al., 2012). Furthermore, there is no reason to assume that decreases

in activity are less meaningful to the brain than increases in activity; hence, the preferred

definition of repetition suppression is agnostic to the direction of change.

Bakker et al. (2008) scanned participants while they performed an incidental memory task.

There were three trial conditions: 1) first presentations, 2) repeat presentations (“Repeat”),

and 3) related lure presentations (“Lure”). A “First” versus “Repeat” contrast was used

to select repetition-sensitive voxels within the MTL. Then the activity of “Lure” trials was

compared to “First” and “Repeat” presentations. The criteria for pattern-separation-like

activity were: 1) activity to “Lure” presentations that was significantly different than “Re-

peat” presentations, 2) activity to “Lure” presentations that was not significantly different

than “First” presentations. The logic was that regions that respond with novel-like activity

to related lures were treating these images as novel.

As predicted by rodent studies and computational modeling theories, Bakker et al. (2008)

and Lacy et al. (2011) reported pattern-separation-like activity in the human DG/CA3 (see

Figure 1.6). The results of Bakker et al. (2008) provided the first fMRI support of the role

of the human hippocampus in pattern separation. An important limitation of the study by
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unchanged). In addition, different representations could be
observed when the environmental changes were larger (e.g.
moving to a different room). In the DG, a distinct code was
present in the same cells that were previously active, where-
as in the CA3 a distinct population of cells was recruited.
Figure 1b is a schematic representation that describes the
computational dynamics in DG, CA3, and CA1 based on
results from [25–27,29].

Human functional magnetic resonance imaging (fMRI)
studies
The first empirical evidence for pattern separation in the
human hippocampus was reported in a high-resolution
fMRI study [30]. The study used an incidental encoding
task with pictures of objects that were either presented
once or repeated at a later time. On some trials, similar but
not identical versions of the pictures were presented dur-
ing the second time (lures). Blood oxygen level-dependent
(BOLD) fMRI activity often changes with repetition, per-
haps due to adaptation effects (e.g. [31]). The study
exploited this repetition-suppression effect, suggesting
that if activity in a region was altered in any way by
repetition (be it suppression or enhancement), one could
use the activity level for the similar lures to infer whether a
region was exhibiting pattern separation or pattern com-
pletion. If a region was treating this distortion as a repeti-
tion (i.e. pattern completion), then activity should
demonstrate the same adaptation. However, if it was
treating the distortion as a new stimulus (i.e. pattern
separation), the activity should resemble that of an initial
presentation (i.e. no adaptation).

Only the DG/CA3 regions showed activity consistent
with strong pattern separation (i.e. activity for lures was
highly similar to activity for first presentations and not
repetitions). By contrast, other regions (including CA1)
showed activity consistent with pattern completion or a
mix of signals. To show that hippocampal computations
were indeed demonstrating different transfer functions
[32,33], the mnemonic similarity of the stimuli was varied
[34] akin to the environment morphing used in [35], such
that the appropriate input/output functions could be
mapped. A highly discontinuous response was observed
in the DG/CA3 whereas a smooth linear trend was ob-
served in the CA1 (Figure 4), demonstrating that both have
access to the necessary sensory information, but have
different transfer functions in response to changes in
input, as predicted in [28].

Separation and completion are not synonymous with
remapping and stability
Place cell remapping is typically defined as place cells
having distinct firing patterns in different environments.
There are at least two different kinds of remapping, rate
remapping (substantial changes in firing rate in the pres-
ence of a stable place map, such that the new pattern of
activity is largely orthogonal to the previous pattern of
activity) and global remapping (complete reorganization of
the place code such that both rate and place are statisti-
cally independent). By contrast, stability is typically de-
fined as place cells having the same firing patterns in the
same environment.

Stability and remapping are terms that have often been
associated with pattern separation and pattern comple-
tion, but it is important to recognize that they do not
always reflect those computations. The crucial issue is
whether remapping or stability involves differentially
transforming similar but not identical input patterns
(e.g. cues or environments). Thus, remapping can be char-
acterized as pattern separation insofar as it involves a
transformation of an overlapping input pattern into a non-
overlapping output (Figure 1). By the same token, stability
can be characterized as pattern completion insofar as it
involves a transformation of an overlapping input pattern
into an even more overlapping output. This stresses the
crucial need for understanding and characterizing the
input to any network before claims can be made about
its role in separation or completion. Separation and com-
pletion are operationally defined as deviations from the
linear transformation (i.e. change in input = change in
output; Figure 1). Thus, although recording data can be
taken as evidence for regions exhibiting separated or
completed signals, conclusions regarding which region
actually performed the computation can only be made
when recording from upstream regions demonstrates that
there is indeed a transformation of upstream input.

Separation and completion outside the hippocampus
It is important to note that pattern separation and pattern
completion are not unique to the hippocampus, although
this is where they have been most studied (and where they
could be most domain agnostic). Similar phenomena also
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Figure 4. Pattern separation in the human DG/CA3 as measured by BOLD fMRI. In
an incidental encoding paradigm in which participants were asked to indicate
whether each picture was of an ‘indoor’ or an ‘outdoor’ item, BOLD fMRI activity
was used to track the similarity of objects [34] (HiSim = high similarity,
LoSim = low similarity). CA3/DG activity showed evidence of pattern separation,
as evidenced by a rapid nonlinear response to even small changes in input (N.B.
two regions within CA3/DG exhibited activity consistent with pattern separation
and one was ambiguous; only data from the clusters showing pattern separation
were averaged to produce this curve. Data from all three are shown in [34]). By
contrast, CA1 activity showed evidence for incremental (linear) changes consistent
with the pattern predicted by the model shown in the inset. Because CA3 and DG
cannot be dissociated in fMRI studies, even at high resolution, the prediction of the
model was produced by extrapolating a combined function for the DG and CA3
(Figure 1 for more details).
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Figure 1.7: The DG/CA3 exhibited greater
pattern-separation-like activity than region CA1 in
response to highly similar lures (figure from Yassa
and Stark, 2011).

Bakker et al. (2008) was that the au-

thors did not manipulate the degree of

similarity of the lure pairs. To ad-

dress this limitation, Lacy et al. (2011)

used a behavioral experiment to clas-

sify the lure pairs into high similarity

and low similarity pairs. As discussed

previously (see Figure 1.4), regions per-

forming pattern separation would re-

sult in non-linear changes (i.e., greater

than linear changes) to the output (see

also “Model predictions” inset of Fig-

ure 1.7). Lacy et al. (2011) reported

that DG/CA3 exhibited greater pattern-separation-like activity than CA1 in response to

high similarity lures, while DG/CA3 and CA1 responded similarly in response to low sim-

ilarity lures (see Figure 1.7; Yassa and Stark, 2011 reanalyzed the data from Lacy et al.,

2011). These findings support the hypothesis that the DG and CA3 are more biased to-

ward pattern separation than CA1. Furthermore, these results are concordant with the

hypothesis that the DG creates unique memory traces, even for similar stimuli (Marr, 1971;

McNaughton and Morris, 1987; Treves and Rolls, 1992, 1994; O’Reilly and McClelland, 1994;

Norman and O’Reilly, 2003; Yassa and Stark, 2011). These findings extend the results from

the rodent hippocampus (Leutgeb et al., 2004, 2007; Vazdarjanova and Guzowski, 2004;

Chawla et al., 2005; Neunuebel and Knierim, 2014) to the human hippocampus. Other au-

thors have suggested that multivariate pattern analysis could provide more direct evidence

for hippocampal pattern separation than activation analysis (Kumaran and Maguire, 2009;

Bonnici et al., 2012), which I will discuss after providing a more thorough introduction to

analytic techniques for fMRI.
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1.3 An Introduction to Functional Magnetic

Resonance Imaging

1.3.1 Activation Analysis

Early fMRI studies attempted to validate findings from neuropsychology—i.e., researchers

used activation analysis in an effort to localize cognitive processes. In activation analysis,

activation maps are compared between conditions (for an early example see: Petersen et al.,

1988), thus revealing regions that show differences in activity for one condition compared

to another. Activation analysis is typically a two-step process. First, univariate analysis

is performed on every voxel—which is a box of fMRI data—in each participant indepen-

dently. Second, the resultant statistical maps are warped to a common template to perform

group-level analysis. This type of analysis makes two assumptions about cross-participant

alignment: 1) the alignment to template space provides reasonable structural alignment, 2)

the functional topography is similar. The first assumption is largely an empirical question

(e.g., Yassa and Stark, 2009), and anatomical alignment techniques have become increasingly

more accurate in recent years (e.g., Avants et al., 2008). The second assumption is largely

theoretical and is more difficult to empirically validate. For example, it is possible that the

hippocampus responds with greater activity to stimuli that will later be recollected than to

those that will not. However, it is possible—perhaps likely—that the locus of activity will

vary across participants. Most applications of activation analysis would not allow for this

possibility. Region of interest (ROI) analysis—in which activity is averaged across the entire

ROI—could detect activation regardless of location within the ROI as long as there were

enough voxels with differential between-condition activity. However, as will be covered in

the next section, ROI-based activation techniques could fail to detect between-condition dif-

ferences in regions that represented information via distributed representations rather than

overall differences in activity (e.g., Figure 1.8).
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1.3.2 Multivariate Pattern Analysis

Activation analysis, such as the subtraction method (Petersen et al., 1988; Friston et al.,

1996), is used by researchers that are attempting to find areas of the brain that are more

active for one task or condition than another. It is certainly possible that brain regions

operate by increasing their activation for certain tasks, however this is a relatively constrained

view of brain function. If the brain is composed of regions of localized function, then it would

make sense that localized regions would become active when their functions are occurring.

As mentioned above, activation analysis was the dominant analytic framework in early fMRI

studies. For example, Kanwisher and colleagues argued that there were face-selective regions

and scene-selective regions of the brain—namely, the fusiform face frea (FFA; Kanwisher

et al., 1997, 1999) and the parahippocampal place area (PPA; Epstein and Kanwisher, 1998;

Epstein et al., 1999), respectively. They found that FFA responded maximally to faces and

that PPA responding maximally to scenes.

As an alternative to the localization framework, it has been suggested that the brain repre-

sents information via distributed patterns of activity, similar to the concepts of psychological

similarity and distributed representations discussed above. For example, extending Shepard’s

“second order isomorphism” hypothesis (Shepard and Chipman, 1970) from psychological

space to the brain, the similarity between the patterns of brain activity in response to two

stimuli should be similar to the psychological similarity between the two stimuli. For exam-

ple, one should be able to find regions of the brain that represent—via distributed patterns

of activity—two images of faces as more similar than an image of a face and an image of a

scene, regardless of the overall activity in those regions (See Figure 1.8). In contrast, the

localization framework attempts to find locations of the brain in which virtually all of the

voxels are “on” (or show greater activity) to one stimulus category. Accordingly, the analysis

of distributed patterns of activity can theoretically uncover more fine-grained information

than activation analysis.
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Figure 1.8: Representationally categorical patterns of activity. Each square represents a
unit, and white indicates that a unit is “on.” The patterns of activity across the units to
the images of faces are very similar while the patterns of activity between either face image
and the scene image are dissimilar. The patterns need not be non-overlapping between
categories, e.g., the second unit is active to all three images. Activation-based analysis
would fail in this example because the number of active units is similar between the two
categories. Conversely, multivariate methods allow fine-grained patterns, such as the ones
shown here, to be discovered.

Cutzu and Edelman (1998) used computational models to demonstrate that object and face

representation could be achieved by coarsely-tuned overlapping patterns of activity, in line

with the second order isomorphism hypothesis. Units in their models responded to several

features, and the distributed pattern of activity across the units coded differences in the

input patterns. The important theoretical distinction to the prevailing theory of the time

(e.g., Kanwisher et al., 1997, 1999; Epstein and Kanwisher, 1998; Epstein et al., 1999) was

that these models did not require distinct object or face processing units. Instead, object

and face representation were achieved based on the similarity of activity across the units.

Edelman’s computational models were similar to some of the previously mentioned models

(e.g., Rumelhart and Todd, 1993). Edelman et al. (1998) validated their computational

models by studying distributed patterns of activity in the human brain. They performed an

fMRI experiment in which participants viewed stimuli from several categories. They selected

object-responsive voxels—greater activation to objects than baseline—in the ventral visual

stream. Then, they calculated the Euclidean distance between patterns of activity across the

selected voxels to several categories of objects, which provided an index of similarity between

the patterns of activity in response to different stimuli, such that stimuli that elicited similar
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patterns of activity—i.e., smaller Euclidean distances between patterns of activity—were

inferred to have been represented similarly. The results from their analysis showed that

stimuli that were deemed to be behaviorally similar were represented similarly in the brain.

Their paper was important for three reasons. First, it was the first fMRI paper to investigate

psychological and representational similarity—i.e., it was the first paper to test the second

order isomorphism hypothesis in the human brain. Second, it was the first paper to use fMRI

data to compare distributed representations in computational models and brain activity, thus

providing a link between computational theory and neuroimaging analysis. Third, it was the

first neuroimaging multivariate pattern analysis paper, which was a fundamentally different

approach to thinking about how the brain represents information.

Haxby et al. (2001) is often cited as the first multivariate pattern analysis (MVPA) study

(cf. Haxby, 2012). Haxby et al. (2001) analyzed patterns of activity in the ventral temporal

lobe in response to 8 categories of visual stimuli. Using a correlational classifier, they showed

successful between-category classification accuracy. They found that even when removing

the most activation-based responsive voxels (i.e., the PPA and FFA), there still was signifi-

cant category representation of all 8 categories. They also found that when they investigated

category representation within regions that responded maximally to one category (e.g., the

FFA for faces), there was significant between-category classification for the other 7 cate-

gories. This suggests that while the FFA and PPA may respond maximally to one category,

these regions also carry information about other stimulus categories. The definition of a

category-selective region is that it responds maximally to one stimulus category and does

not differentiate between other stimulus categories; hence, the FFA and PPA are perhaps

preferentially tuned to processing faces and scenes, respectively, but they are not, in fact,

category selective. The results of Haxby et al. (2001) are theoretically important because

they suggest that brain regions can represent stimuli differently without changing overall

levels of activation, thus obviating the need for object and face processing modules. Instead,

their results suggest that the brain represents categories by the similarity of the resultant
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patterns of activity; hence, theoretically unlimited categories could be represented without

the need for unlimited modules.

The second order isomorphism framework can be extended to between-participant differences

in representations. It is possible that all participants have a pattern of activity that is more

face-like or more scene-like, but the actual activity pattern is unique to each participant.

Rather than assuming functional alignment across participants as does activation-based anal-

ysis, the majority of MVPA studies analyze activity in individual participants. Measures

such as classification accuracy can then be compared across participants, thus only assuming

that the representation of stimuli is similar across participants in the studied regions.

Kriegeskorte et al. (2008a) used similar techniques to Edelman to create a subcategory of

MVPA called Representational Similarity Analysis (RSA). While Edelman et al. (1998) used

Euclidean distance as a measure of distance between patterns of activity, Kriegeskorte has

used Pearson’s correlation coefficient for a measure of similarity or correlation distance (1-

Pearson’s correlation coefficient) as a measure of distance. Pairwise correlations are entered

into a correlation matrix, in which each entry in the matrix represents the similarity between

patterns of activity in response to two different stimuli. Kriegeskorte has argued that the

correlation matrix allows abstraction away from the data itself into a similarity space, thus

RSA provides a framework for easily comparing representations across individuals, across

species, and across computational models (Kriegeskorte et al., 2008a,b; Kriegeskorte, 2009).

For example, the between-species comparison of representational similarity matrices sug-

gested that the representation of objects in the inferior temporal cortex was very similar

in monkeys and humans (Kriegeskorte et al., 2008b). Interestingly, the human data were

acquired using high-resolution fMRI while the monkey data were acquired using intracra-

nial electrophysiology. Furthermore, group-level power can be obtained by combining RSA

matrices, without assuming functional alignment across subjects (Kriegeskorte et al., 2008a).

Another highlight of RSA is that it does not assume a pre-defined representational struc-
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ture (Kriegeskorte et al., 2008a; Kriegeskorte, 2009). For example, many studies employing

classification analysis use stimuli that come from distinct categories (e.g., faces and objects).

Then researchers typically investigate whether patterns of activity within brain regions can

successfully classify between the stimulus categories. This provides valuable information

as to whether the investigated brain regions exhibit category representation; however, it

does not provide information about within-category representation. Within-category simi-

larity provides useful information—i.e., it could be the case that the within-category sim-

ilarity differs across brain regions without affecting the overall between-category similarity

(Kriegeskorte et al., 2008a; Kriegeskorte, 2009). For example, a brain region could exhibit

significant classification accuracy for faces versus objects with relatively similar patterns of

activity to pictures of faces and relatively dissimilar patterns of activity between pictures of

objects. Thus, investigation of within-category similarity provides additional information,

and RSA naturally allows such representations to be uncovered (Kriegeskorte et al., 2008a;

Kriegeskorte, 2009).

Kriegeskorte et al. (2008a) described a novel analytic technique, representational connectiv-

ity, which allows comparison of representations across ROIs. Representational connectivity

is particularly interesting for areas that are anatomically connected as it can provide insight

into the computations that may take place in different regions of the brain by examining

transformations of representations. Representational connectivity provides a static mea-

sure of the similarity of representations across different regions. In contrast, Coutanche

and Thompson-Schill (2013) described a novel analytic technique, informational connectiv-

ity, which investigates time courses of representation across different regions. Informational

connectivity provides the link between functional connectivity and static representational

connectivity (Kriegeskorte et al., 2008a) by considering how representations correlate with

each other over time across different brain regions.

Classification analysis has also been used to investigate the similarity structure of representa-
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tions (e.g., Walther et al., 2009, 2012). Confusion matrices can be generated when performing

classification analysis. Confusion matrices provide information about the between-stimulus

similarity (based on classification errors). In the case of perfect classification, the confusion

matrix would be the identity matrix (1’s in the diagonal and 0’s everywhere else). In the case

of imperfect classification, off-diagonal values represent classification errors. Theoretically,

stimuli that are represented similarly should result in a higher number of classification errors

between those stimuli. For example, in a study that contains categorical images, a higher

number of within-category classification errors would be predicted (because similar items

are more confusable). Behavioral experiments have been used for decades to investigate

the psychological similarity of stimuli. More recently, studies have used confusion matrices

derived from behavior and patterns of activity in the brain to find regions that show signif-

icant similarity between behavioral and neural representation and thus could theoretically

be involved in behavioral decisions (Walther et al., 2009, 2012).

Classifier-based confusion matrices are theoretically identical to the correlation matrices of

RSA; however, one benefit of classification techniques, such as linear support vector machines

(SVM), is that they typically contain regularization techniques (Davis and Poldrack, 2013),

whereas RSA does not. Accordingly, SVM analysis has been shown to perform well under

conditions with many voxels, including many uninformative voxels (Etzel et al., 2009). In

effect, SVM can account for uninformative voxels by assigning them very low weights. Taken

together, investigation of SVM-based confusion matrices can partially correct for between-

region differences in noise and the number of uninformative voxels across regions, and hence

might be more robust than RSA (cf. Davis and Poldrack, 2013). However, each stimulus

must be presented several times to obtain reliable within-stimulus classification accuracy. In

any case, RSA and classification analysis provide a principled framework for the investigation

of representation.

A theoretical problem for MVPA is whether decoded brain patterns are actually used by
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the brain or the animal in a behaviorally meaningful manner. Pais-Vieira et al. (2013) used

related techniques to analyze electrophysiological data in rodents. They discovered that

decoded patterns of activity are behaviorally meaningful. Additionally, they elicited task-

relevant behavior upon stimulating the brain with the patterns of activity that were decoded

during the performance of a cognitive task, suggesting that decoded patterns of activity

may indeed be useful to the brain and behavior. Recent optogenetic experiments in mice

have revealed similar results (Cowansage et al., 2014; Tanaka et al., 2014). Taken together,

animal studies can provide more causal evidence for the involvement of distributed patterns

of activity in behavioral performance. Brain-behavior correlations can also be useful for

examining the involvement of regions in behavioral performance. For example, as mentioned

above, fMRI studies of human participants can investigate whether there is a relationship

between representations in various brain regions and behavioral performance; however, the

results of correlation analysis will not speak to whether regions play a causal or necessary

role. Accordingly, converging evidence from animal and human studies will be necessary to

clarify whether decoded representations are related to behavior.

Summary of Multivariate Pattern Analysis

Taken together, MVPA provides a framework for examining representations across data

acquisition techniques. MVPA provides an excellent platform for constraining computational

models and theories of the brain because it provides a coherent framework for comparing

model and brain representations. MVPA can be used to study representations in the brain as

a whole (whole brain MVPA), representations within regions of interest, and transformations

of representations across anatomically connected regions. Because MVPA does not assume

widespread activity changes, it has the potential to guide new findings of the brain that

are closely related to findings from computational models of brain function, e.g., distributed

representations. In contrast to activation analysis that assumes localized activity changes
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within specific brain regions, MVPA assumes that the brain represents the world by the

similarity (and dissimilarity) of patterns of activity.

1.3.3 Pattern Separation in the Human Hippocampus, Revisited

As mentioned above, previous authors have suggested that MVPA could be used to more

directly test the involvement of the human hippocampus in pattern separation (Kumaran

and Maguire, 2009; Bonnici et al., 2012), and recent studies have used MVPA to investigate

patterns of activity within the MTL. Diana et al. (2008) performed a high-resolution fMRI

experiment aimed at investigating category representation. They showed significant classi-

fication accuracy between images from several categories using patterns of activity in PHC.

Conversely, they found that classification accuracy in the hippocampus was not different

than chance for any of the investigated categories.

In a similar experiment, Liang et al. (2013a) observed significant classification accuracy

between images from several categories in PHC and PRC. They also found significant classi-

fication accuracy for scenes compared to other categories within the posterior hippocampus

but not in the anterior hippocampus. They suggested that it was possible that Diana et al.

(2008) failed to find a difference in classification accuracy between scenes and other categories

within the hippocampus because they did not separate the hippocampus into posterior and

anterior subregions. Given that Diana et al. (2008) used classification techniques that in-

cluded regularization parameters, it would seem that if posterior hippocampus was carrying

information capable of distinguishing between scenes and other categories, then the voxels

in posterior hippocampus would have been weighted strongly while those in the anterior hip-

pocampus would have been weighted very weakly (due to low information in that subregion).

In effect, it would seem that Diana et al. (2008) would have found significant classification

in the hippocampus if posterior hippocampus was carrying information, therefore the fact
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that they did not suggests that there might be minor differences between the two findings.

In any case, Liang et al. (2013a) showed that posterior and anterior hippocampus showed

lower classification accuracy than PHC and PRC.

LaRocque et al. (2013) investigated category representation within PHC, PRC, and the hip-

pocampus using RSA. They provided evidence that the MTL cortical regions—but not the

hippocampus—were representationally categorical. They also observed a significant positive

relationship between traditional recognition memory and within-category similarity in PHC

and PRC, and a negative relationship between traditional recognition memory and within-

category similarity in the hippocampus. These results suggest that higher within-category

similarity in PHC and PRC is beneficial to performance, while lower within-category similar-

ity in the hippocampus is beneficial for performance. The latter result supports the notion

that hippocampal pattern separation plays a role in memory performance. Taken together,

their results provide evidence for behavioral relevance of representations in PHC, PRC, and

the hippocampus.

We recently performed an experiment to investigate representations within the medial tem-

poral lobe (Huffman and Stark, 2014; see Chapter 2). In our report, we coined the term

“representationally agnostic” to refer to brain regions that are not representationally categor-

ical, with the added criterion that they show task-dependent modulation. We hypothesized

that the hippocampus would be more representationally agnostic than MTL cortical regions

due to its pattern-separated representations, and we hypothesized that MTL cortical regions

would be representationally categorical due to their hypothesized ability to compute summed

similarity (Norman and O’Reilly, 2003; Norman, 2010). Pattern separation tends to assign

non-overlapping representations, even in response to similar stimuli. Such a representational

scheme would result in low within-category similarity, which would result in low between-

category classification accuracy (see Figure 1.9; cf. Chadwick et al., 2012). I will refrain

from discussing the results of our experiments until the next chapter, but I will mention
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Figure 1.9: Representationally agnostic patterns of activity. White indicates that a unit
is “on.” Pattern separation would result in representationally agnostic patterns of activity
because it would create unique patterns of activity even for similar stimuli—i.e., the two
images of faces are represented as dissimilarly as the images of faces and the image of a
scene.

that Diana et al. (2008), Liang et al. (2013a), and LaRocque et al. (2013) have provided

indirect support for the role of the human hippocampus in pattern separation by providing

evidence that the hippocampus is more representationally agnostic than MTL cortical re-

gions. Therefore, these studies have extended upon previous results from activation analysis

of fMRI data in the human hippocampus (Kirwan and Stark, 2007; Bakker et al., 2008; Lacy

et al., 2011; Motley and Kirwan, 2012).

More direct evidence of pattern separation in the human hippocampus has been provided

by several recent papers that have used MVPA to investigate patterns of activity in the

hippocampus. Specifically, there have been reports of significant classification accuracy in

the hippocampus between distinct locations in a virtual environment (Hassabis et al., 2009;

but see: Op de Beeck et al., 2013), between memories of highly overlapping video clips

(Chadwick et al., 2010, 2011), and between highly similar images of scenes (Bonnici et al.,

2012). Additionally, these studies reported significantly greater classification accuracy in

the hippocampus than in MTL cortical regions. Taken together, the studies reviewed in

this section provide support for the predictions of the CLS model (Norman and O’Reilly,

2003; Norman, 2010); specifically, MTL cortical regions appear to exhibit similar patterns

of activity in response to similar stimuli while the hippocampus is biased toward pattern
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separation, showing more distinct patterns of activity in response to similar stimuli than the

MTL cortical regions.

1.4 Overall Conclusions

Theoretical accounts have suggested for many years that memory is not a single entity;

however, neurobiological studies were required to provide more direct evidence that mem-

ory systems could be independent. Studies of patient H.M. provided evidence for a single

dissociation, while subsequent animal research provided evidence for a double dissociation.

Altogether, studies of patients with MTL damage and animal investigations suggested a

dissociation between MTL-dependent declarative memory and MTL-independent procedu-

ral memory. Dual-process theories suggested that recollection and familiarity independently

contribute to recognition memory performance. Research employing the lesion method, elec-

trophysiology, and neuroimaging suggested that there these processes differentially rely on

the hippocampus and PRC; however, other theories suggested that regions of the MTL are

more broadly involved in declarative memory. In contrast to differences of opinion regarding

the localization of recollection and familiarity, proponents of both views have hypothesized

that subregions of the MTL differ in terms of the information that they represent. Specifi-

cally, PHC is hypothesized to be important for memory for scenes and contexts while PRC

is important for memory for objects. Moreover, recent theories suggest that retrosplenial

cortex also plays a critical role in declarative memory. We used these frameworks as our

overarching hypothesis for our fMRI experiments.

In this dissertation, we describe the results of four fMRI studies, in which we used mul-

tivariate pattern analysis to investigate the representation of information in the MTL and

retrosplenial cortex. Our first aim was to investigate whether parahippocampal cortex and

retrosplenial cortex are preferentially involved in the processing of scene information (see
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Chapter 2). Additionally, the CLS model predicts that the MTL cortex would be able to

compute the summed similarity of the stimuli while the hippocampus would not due to dif-

ferences in the bias toward pattern separation in these regions (Norman and O’Reilly, 2003;

Norman, 2010). We also tested the summed similarity hypothesis using fMRI and multivari-

ate pattern analysis (see Chapter 2). Our second aim was to investigate the representation

of individual items and contexts in the medial temporal lobes and retrosplenial cortex (see

Chapter 3).

Recent evidence has suggested that healthy older adults show a disproportionate impairment

on tasks that tax associative memory compared to item memory (Craik and McDowd, 1987;

Spencer and Raz, 1995; Naveh-Benjamin, 2000; Naveh-Benjamin et al., 2004; Old and Naveh-

Benjamin, 2008a,b; Danckert and Craik, 2013). An alternative, but not mutually exclusive,

hypothesis is that healthy older adults encode fewer features during learning. We tested the

latter hypothesis using a combined behavioral and model-based approach. Specifically, our

third aim was to investigate memory performance on a forced-choice variant of the Mnemonic

Similarity Task in healthy younger adults and the changes that occur as a result of healthy

aging. Additionally, we used global matching models to provide a potential mechanistic

account of the empirical results (see Chapter 4). In the final chapter of this dissertation, I

discuss the results of our functional, behavioral, and model-based experiments and provide

suggestions for future research (see Chapter 5).
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Chapter 2

Scene representation in parahippocampal

cortex and retrosplenial cortex

The following chapter was previously published in Hippocampus (Huffman and Stark, 2014).

Contemporary theories of the medial temporal lobe (MTL) suggest that there are func-

tional differences between the MTL cortex and the hippocampus. High-resolution func-

tional magnetic resonance imaging and multivariate pattern analysis were utilized to study

whether MTL subregions could classify categories of images, with the hypothesis that the

hippocampus would be less representationally categorical than the MTL cortex. Results

revealed significant classification accuracy for faces versus objects and faces versus scenes in

MTL cortical regions—parahippocampal cortex and perirhinal cortex—with little evidence

for category discrimination in the hippocampus. MTL cortical regions showed significantly

greater classification accuracy than the hippocampus. The hippocampus showed significant

classification accuracy for images compared to a non-mnemonic baseline task, suggesting

that it responded to the images. Classification accuracy in a region of interest encompass-

ing retrosplenial cortex and the posterior cingulate cortex posterior to retrosplenial cortex

(RSC/PCC), showed a similar pattern of results to parahippocampal cortex, supporting

the hypothesis that these regions are functionally related. The results suggest that parahip-
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pocampal cortex, perirhinal cortex, and RSC/PCC are representationally categorical and the

hippocampus is more representationally agnostic, which is concordant with the hypothesis

of the role of the hippocampus in pattern separation.

2.1 Introduction

The Complementary Learning Systems (CLS) neural-network model posits that fundamental

computational trade-offs have led the brain to develop multiple memory systems. In partic-

ular, it advances the notion that one system—or set of systems—is specialized for extracting

statistical regularities of the world through gradual, interleaved learning and another is spe-

cialized for rapid, arbitrary associative learning via pattern separation (McClelland et al.,

1995; O’Reilly and Rudy, 2000; O’Reilly and Norman, 2002; Norman and O’Reilly, 2003;

Norman, 2010). Pattern separation transforms overlapping input patterns into more dissim-

ilar patterns, and hence could theoretically allow rapid learning of novel information without

high levels of interference to existing, potentially similar memories. Using the CLS frame-

work, Norman (2010) posited that patterns of activity in the MTL cortex (MTLC) allow

computation of summed similarity (i.e., similar stimuli elicit similar patterns of activity)

while the hippocampus cannot compute summed similarity due to its pattern-separated rep-

resentations (i.e., similar stimuli elicit unique patterns of activity). Neither form of learning

or representation alone would provide an adaptive memory system, leading to the need for

multiple memory systems operating under different computational principles.

Rodent studies provided neural (Leutgeb et al., 2005, 2007; Leutgeb and Leutgeb, 2007)

and behavioral (Gilbert et al., 1998; Potvin et al., 2009; Talpos et al., 2010; Morris et al.,

2012) evidence supporting the hippocampus’ role in pattern separation. Supporting the

CLS model’s predictions of behavioral changes caused by hippocampal lesions (Norman and

O’Reilly, 2003; Norman, 2010), investigations of patients with selective hippocampal damage
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revealed deficits in behavioral pattern separation tasks, with relative sparing of traditional

recognition memory (Holdstock et al., 2002, 2005; Mayes et al., 2002; Duff et al., 2012; Kir-

wan et al., 2012; but see Reed and Squire, 1997; Stark and Squire, 2003; Bayley et al., 2008).

Additionally, recent functional magnetic resonance imaging (fMRI) studies have shown ac-

tivity signals consistent with pattern separation in the human hippocampus (e.g., Bakker

et al., 2008; Lacy et al., 2011; Motley and Kirwan, 2012; for across-species review of pattern

separation see Yassa and Stark, 2011). These studies leveraged the repetition-suppression

effect, in which different levels of brain activity are observed to a first presentation of a

stimulus compared to a repeated presentation of a stimulus, to assess whether activity in

different regions was consistent with pattern separation. The hippocampus exhibited first-

presentation-like activity levels in response to related lures, suggesting that the hippocampus

treated related lures as novel images, thus supporting the hypothesized role of the human

hippocampus in pattern separation.

Multivariate pattern analysis (MVPA; for reviews see Haynes and Rees, 2006; Norman et al.,

2006) investigates spatial patterns of activity across voxels. Depending on experimental de-

sign, MVPA can be used to analyze patterns of activity at the individual trial level (e.g.,

slow event-related design) or at the level of several within-category stimuli (e.g., blocked

design). Patterns of activity can be subjected to machine learning classification analysis

to uncover whether a brain region—or brain regions—exhibits different patterns of activity

in response to different categories of stimuli. Pattern separation is defined computationally

as the formation of output patterns of activity that are less similar than input patterns of

activity. Because MVPA investigates patterns of activity, it can be used to more directly test

the hypothesis of hippocampal pattern separation than univariate techniques (cf. Chadwick

et al., 2012). For example, recent studies have shown greater classification accuracy between

similar stimuli in the hippocampus than the MTLC, thus suggesting that the hippocam-

pus forms more distinct representations of similar stimuli (Hassabis et al., 2009; Chadwick

et al., 2010, 2011; Bonnici et al., 2012). MVPA has also been used to investigate category
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representation in the MTL (Diana et al., 2008; Liang et al., 2013a; LaRocque et al., 2013).

We refer to brain regions that show significant classification accuracy between categories

of images as being representationally categorical, and we coin the term representationally

agnostic to refer to brain regions that are not representationally categorical. Providing evi-

dence that the MTLC is representationally categorical would support its hypothesized ability

to compute summed similarity because it would suggest that similar items (items within a

category) are represented similarly (with distinct representations across categories), while

providing evidence that the hippocampus is far more representationally agnostic (i.e., cate-

gory classification accuracy that is consistently at or near chance) would support its hypoth-

esized role in pattern separation. Accordingly, MVPA can be used to test the hypothesis

that the MTLC can compute summed similarity while the hippocampus cannot.

Previous studies suggested that the MTLC is more representationally categorical than the

hippocampus (Diana et al., 2008; Liang et al., 2013a; LaRocque et al., 2013). Two of these

studies used blocked designs (Diana et al., 2008; Liang et al., 2013a), thus precluding the

study of representations of individual stimuli. LaRocque et al. (2013) used a rapid event-

related design, presenting the same stimuli in each run, thus allowing use of the general

linear model to extract stimulus-specific estimates of activity. Here we report the results of

two experiments in which we used a slow event-related design to allow for the extraction

of patterns of activity at the level of individual trials. Using MVPA, we aimed to replicate

previous results using individual trial patterns of activity and to rule out the possibility

that the hippocampus is more representationally agnostic than the MTLC due to: 1) lack

of responsiveness to the stimuli, 2) differing numbers of voxels across the MTLC and the

hippocampus, or 3) noisier data.

In addition to testing this central hypothesis, we examined category representation within a

region of interest encompassing retrosplenial cortex (RSC; traditionally defined as Brodmann

areas 29 and 30; Vann et al., 2009) and the posterior cingulate cortex (PCC) posterior to
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RSC. Recent accounts have suggested that RSC should be considered as part of the network

of regions involved in memory (Vann et al., 2009; Ranganath and Ritchey, 2012). Specifi-

cally, Ranganath and Ritchey (2012) posited that there are two cortical systems involved in

memory—one in the anterior temporal lobe that includes PRC, and another in the poste-

rior cortex that includes PHC, RSC, and PCC. Several recent accounts have suggested that

PHC, RSC, and PCC are anatomically situated to be involved in representing contextual

information, including scenes or spatial information (Buffalo et al., 2006; Vann et al., 2009;

Wixted and Squire, 2011; Ranganath and Ritchey, 2012). We predicted that RSC/PCC

would show a similar pattern of classification results to those in PHC. Finally, we performed

a variant of informational connectivity (Coutanche and Thompson-Schill, 2013) in which we

investigated the correlation between the trial-by-trial multivariate pattern discriminability

in PHC and RSC/PCC. Given the predicted role of these regions in scene and spatial rep-

resentation, we hypothesized that the multivariate pattern discriminability in these regions

would be correlated during an experiment that contained images of scenes.

2.2 Methods and Materials

2.2.1 Participants

A total of 29 participants (12 males, 17 females) underwent MRI scanning. Three were ex-

cluded because half or fewer of the total functional runs were obtained, one was excluded for

sleeping during functional scans, and one was excluded due to excessive motion; therefore,

24 participants were used for analysis, with 12 in each of two experiments. Participants

consented to the procedures in accordance with the Institutional Review Board of the Uni-

versity of California, Irvine and received $25 for their first hour of participation and $5 for

each additional 20 minutes.
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2.2.2 Stimuli

In Experiment 1, stimuli consisted of face and object images (12 each per run, totaling 192

each over 16 runs). In Experiment 2, stimuli consisted of face and scene images (8 each per

run, totaling 128 each over 16 runs). Face images in both experiments included the hair and

neck of the depicted individual. Half of the stimuli in each run were novel images, one quarter

were repeated images, and the remaining quarter were related lure images. The novel versus

repeated status of images was irrelevant for the present experiment. Participants viewed

images and were asked to indicate, using an MRI-compatible button box, whether they

found the picture to be pleasant or unpleasant. Each picture was displayed for 4 seconds,

followed by an 8 second interstimulus interval (ISI). To discourage mind wandering during

the ISI, subjects performed an engaging perceptual but non-mnemonic arrows task (Stark

and Squire, 2001), in which they indicated the direction (left or right) in which arrows were

pointing on the screen (6 trials per ISI; the ISI was modeled after Kuhl et al., 2011, 2012).

In Experiment 2, subjects also performed an engaging, but non-mnemonic perceptual base-

line (PB) task (Law et al., 2005; Mattfeld and Stark, 2010, 2011; Hargreaves et al., 2012;

8 per run, totaling 128 for 16 runs). In the current version, subjects made two subsequent

judgments (totaling 4 seconds) about which of two boxes was brighter (on a random static

background), followed by the arrows task during the 8 second ISI. To keep the perceptual

baseline task challenging, the difference in brightness of the boxes was continuously titrated

to keep subjects between 50 and 70 percent accurate.

2.2.3 Image Acquisition

Data were collected using a 3.0-T Philips scanner using a sensitivity encoding (SENSE) head

coil at the Research Imaging Center at University of California, Irvine. A whole-brain 1.0 mm

isotropic 3D magnetization-prepared rapid gradient echo (MP-RAGE) structural scan was
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collected. Functional data were acquired using a T2*-weighted echo planar imaging sequence

(TE=26 ms, TR=2400 ms, 32 slices, 1.5 mm isotropic voxels). To allow for magnetic field

stabilization, the first 5 TRs of each run were immediately discarded. One hundred and

twenty volumes were collected in each functional run. The full experiment consisted of 16

runs; however, for technical reasons data were obtained (or processed) for fewer than 16 runs

for 4 subjects (mean number of runs=15.8, minimum=14).

2.2.4 Preprocessing

Functional data were aligned to the subjects MP-RAGE using AFNIs align epi anat.py script

(Saad et al., 2009). Data were quadratically detrended, high-pass filtered (f > 0.01 Hz),

and minimally smoothed by a 2 mm FWHM Gaussian kernel, using AFNI (Cox, 1996).

Data were then z-scored and three TRs (beginning at 2.4, 4.8, and 7.2 seconds after stimulus

onset) were averaged to form individual trial activity patterns, using PyMVPA (Hanke et al.,

2009).

2.2.5 Regions of Interest

Anatomical regions of interest (ROI) for hippocampus, parahippocampal cortex (PHC), and

perirhinal cortex (PRC) were manually segmented on a model template (see Figure 2.1A).

PRC was labeled according to landmarks described by Insausti et al. (1998), and PHC

was defined as the portion of the parahippocampal gyrus caudal to the perirhinal cortex and

rostral to the splenium of the corpus callosum, as in our previous research (Stark and Okado,

2003; Kirwan and Stark, 2004; Law et al., 2005; Okado and Stark, 2005). Each participant’s

MP-RAGE was aligned to the model template, using Advanced Normalization Tools (ANTs;

Avants et al., 2008), allowing the model template ROIs to be warped to each subjects

original space using the inverse warp vectors. We utilized Freesurfer’s isthmus cingulate
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Figure 2.1: ROI locations. (A) Hippocampus (red), parahippocampal cortex (green), and
perirhinal cortex (purple) within model space. (B) For visualization, RSC/PCC participant
masks were warped to template space to create an overlap map of the ROI across participants
(24 participants total).

label (Desikan et al., 2006)—which encompasses RSC (traditionally defined as Brodmann’s

areas 29 and 30; Vann et al., 2009) and PCC posterior to RSC—for our RSC/PCC ROI. The

data were collected using a partial brain coverage acquisition box, resulting in slightly limited

coverage of the superior aspect of RSC/PCC (see Figure 2.1B). Each participant’s ROIs were

resampled to functional resolution and masked to contain only completely sampled voxels

(mean number of voxels: hippocampus=1803, PHC=1270, PRC=1888, RSC/PCC = 655).

2.2.6 Multivariate Pattern Analysis

Classification analysis was performed using PyMVPA (Hanke et al., 2009) and custom-

written Python code (python.org), using the NeuroDebian package repository for Linux

(Hanke and Halchenko, 2012). Linear support vector machine (SVM) analysis was carried out

in each subjects original space, using individual trial patterns of activity within each ROI (see

Figure 2.1). The classification accuracy across each N-fold-leave-one-run-out cross validation

was averaged to generate an average classification accuracy for each participant for each ROI.

Two-tailed one sample t-tests of group data were used to assess significance of classification
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accuracy (compared to chance) and two-tailed paired t-tests were used to assess classification

accuracy differences between ROIs. Resultant p-values were Bonferroni corrected for six

comparisons (three ROIs and three comparisons between ROIs). Welch’s t-tests, which can

account for unequal variance between samples, were used to assess significance of differences

between experiments. R (cran.r-project.org) was used to perform t-tests and to plot

figures.

To test the hypothesis that RSC/PCC was representationally similar to PHC, we performed

a variant of informational connectivity (Coutanche and Thompson-Schill, 2013). The original

instantiation of informational connectivity utilized a correlational classifier to calculate the

within minus between category similarity to create a vector of multivariate pattern discrim-

inability on a TR-by-TR basis. Then the Spearman rank correlation between multivariate

pattern discriminability in different regions (in their case a seed region and a spherical search-

light region) was calculated. Here we utilized SVM decision values (referred to as estimates

in PyMVPA) on a trial-by-trial basis to test whether the multivariate pattern discriminabil-

ity was correlated between PHC and RSC/PCC. To maximize similarity to the previously

described method (Coutanche and Thompson-Schill, 2013), the value of multivariate pat-

tern discriminability was set to be greater than zero when the classifier’s prediction was

correct and less than zero the classification prediction was incorrect. Spearman’s rank corre-

lation was calculated between the multivariate pattern discriminability vectors in PHC and

RSC/PCC. Resultant values were Fisher’s r to z transformed (z[r]).

2.3 Results

Linear SVM classification analysis was performed using individual trial patterns of activity

from all of the voxels within each ROI. The stimulus set contained novel as well as non-novel

images within each run (see Methods). The same pattern of results was obtained when using
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Figure 2.2: Linear SVM classification results. Each dot represents the average classification
accuracy for one participant and each line represents the group ROI mean. (A) Experiment
1—faces versus objects. (B) Experiment 2—faces versus scenes. Classification accuracy was
significantly greater than chance in MTLC but not in hippocampus, and was significantly
greater in MTLC than in hippocampus. Classification accuracy for faces versus scenes was
greater in PHC than PRC, and PHC classification accuracy was greater for faces versus
scenes than faces versus objects.

the full stimulus set as when using the novel-only stimulus set, and paired t-tests revealed no

significant differences between the two stimulus sets (all MTLC and hippocampal t11 < 1.4,

uncorrected p > 0.19); therefore, we limit our discussion to the results obtained from the

full stimulus set because it contained more stimuli.

In Experiment 1, one sample t-tests revealed significant classification accuracy for faces

versus objects in PHC and PRC (mean classification accuracy: PHC = 61.1%, PRC =

64.9%; both t11 > 6.9, corrected p < 0.001) but not in the hippocampus (mean classification

accuracy = 51.4%; t11 = 1.41, uncorrected p = 0.19, see Figure 2.2A). Paired t-tests revealed

significantly greater classification accuracy for faces versus objects in PHC and PRC than

in the hippocampus (both t11 > 4.9, corrected p < 0.005), with no significant difference

between PHC and PRC (t11 = 1.86 uncorrected p = 0.09, corrected p = 0.53).

In Experiment 2, one sample t-tests revealed significant classification accuracy for faces versus

scenes in PHC and PRC (mean classification accuracy: PHC = 77.7%, PRC = 62.3%; both

t11 > 9, corrected p < 0.001) with little evidence for above-chance category discrimination in

the hippocampus (mean classification accuracy = 52.7%; t11 = 2.11, uncorrected p = 0.06,
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Figure 2.3: Linear SVM classification results of images versus the perceptual baseline task
(Experiment 2). The hippocampus significantly classified faces versus perceptual baseline
and scenes versus perceptual baseline.

corrected p = 0.35, see Figure 2.2B). Paired t-tests revealed significantly greater classification

accuracy for faces versus scenes in PHC and PRC than in the hippocampus (both t11 > 7,

corrected p < 0.005) and in PHC than PRC (t11 = 5.8, corrected p < 0.001). In contrast

to classification results between the image categories, one-sample t-tests revealed significant

classification accuracy for images versus the perceptual baseline task in the hippocampus

(mean classification accuracy: faces vs PB = 53.9%, scenes vs PB = 57.1%; both t11 > 3,

p < 0.05, corrected for 6 comparisons for consistency with the previous analyses; see Figure

2.3).

Bonferroni corrected (for 3 comparisons), two-tailed Welchs two sample t-tests were used to

compare the classification accuracy results obtained from Experiment 1 and 2. This revealed

significantly greater classification accuracy in PHC for faces versus scenes than faces versus

objects (t = 6.75, corrected p < 0.001). Classification accuracy within PRC and within

the hippocampus was not significantly different between Experiment 1 and 2 (both t < 1.1,

uncorrected p > 0.3).

To rule out the possibility that the previous results were driven by differing numbers of

voxels across ROIs (or due to a differing number of noisy voxels), voxel-wise signal to noise
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(SNR; mean intensity/standard deviation) distributions were inspected and voxel selection

was performed. The median SNR was similar across ROIs (Experiment 1: hippocampus =

15.08, PHC = 14.63, PRC = 15.05; Experiment 2: hippocampus = 16.47, PHC = 16.01,

PRC = 15.97; see Table 1). While the SNR distributions suggested that the data acquisition

quality in each region was similar, SNR does not provide information about the functional

relevance of each voxel nor does it match the number of voxels across ROIs. To that end,

the 200 voxels with the largest ANOVA F-scores of activation differences between the two

stimulus categories were selected from the training data prior to classification analysis. A

similar pattern of results emerged as the full-ROI method—paired t-tests revealed no signif-

icant differences between the results obtained from full-ROI and voxel selection methods (all

t11 < 1.1, uncorrected p > 0.3). In Experiment 1, one sample t-tests revealed significant clas-

sification accuracy for faces versus objects in PHC and PRC (mean classification accuracy:

PHC = 59.1%, PRC = 64.9%; both t11 > 7, corrected p < 0.001) but not in the hippocam-

pus (mean classification accuracy = 50.2%, t11 = 0.16, uncorrected p = 0.88; see Table 1).

Paired t-tests revealed significantly greater classification accuracy for faces versus objects in

PHC and PRC than the hippocampus (both t11 > 5, corrected p < 0.005). In contrast to

the full-ROI method, a paired t-test revealed marginally significantly greater classification

accuracy for faces versus objects in PRC than PHC (t11 = 3.14, corrected p = 0.056). In

Experiment 2, one sample t-tests revealed significant classification accuracy for faces versus

scenes in PHC and PRC (mean classification accuracy: PHC=78.1%; PRC=61.6%; both

t11 > 8.5, corrected p < 0.001) with little evidence for category discrimination in the hip-

pocampus (mean classification accuracy=52.0%, t11 = 2.17, uncorrected p = 0.053, corrected

p = 0.32; see Table 1). Paired t-tests revealed significantly greater classification accuracy

for faces versus scenes in PHC and PRC than the hippocampus (both t11 > 5.5, corrected

p < 0.005) and in PHC than PRC (t11 = 6.58, corrected p < 0.001).

To rule out the possibility that the hippocampus was representationally categorical but
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Region SNR Standard Voxel selection Run averaged

Experiment 1:
Faces vs objects

Hippocampus 15.08 51.4 50.2 52.1
PHC 14.63 61.1a 59.1a 82.0a

PRC 15.05 64.9a 64.9a 91.4a

Experiment 2:
Faces vs scenes

Hippocampus 16.47 52.7 52.0 56.3
PHC 16.01 77.7a,b 78.1a,b 97.1a,b

PRC 15.97 62.3a 61.6a 81.1a

Table 2.1: Results of Control Analyses. Abbreviations: SNR, median signal to noise ratio;
a, Significant classification accuracy comparted to chance at p < 0.001, corrected and sig-
nificantly greater classification accuracy than the hippocampus at p < 0.005, corrected; b,
Significantly greater classification accuracy than PRC at p < 0.001, corrected.

was not showing significant classification accuracy due to noisier individual trial patterns of

activity compared to MTLC, we generated run averaged patterns of activity by averaging

all of the individual trial patterns of activity within a category for each run. The results

obtained from this analysis can be thought of as being similar those obtained from a block

design. A similar pattern of results was observed, with significantly greater classification

accuracy in the MTLC using run averaged patterns of activity compared to individual trial

patterns of activity for faces versus objects (both t11 > 8, corrected p < 0.001; but not

in the hippocampus, t11 = 0.16, uncorrected p = 0.87) and for faces versus scenes (both

t11 > 8, corrected p < 0.001; but not in the hippocampus, t11 = 1.26, uncorrected p =

0.23). In Experiment 1, one sample t-tests revealed significant classification accuracy of

faces versus objects in PHC and PRC (mean classification accuracy: PHC = 82.0%, PRC =

91.4%; both t11 > 8.5, corrected p < 0.001) but not in the hippocampus (mean classification

accuracy = 52.1.%, t11 = 0.47, uncorrected p = 0.65; see Table 1). Paired t-tests revealed

significantly greater classification accuracy for faces versus objects in PHC and PRC than

the hippocampus (both t11 > 4.54, corrected p < 0.005). In contrast to the full-ROI method

using individual trial patterns of activity—but supporting the voxel selection method using

individual trial patterns of activity—a paired t-test revealed marginally significantly greater

classification accuracy for faces versus objects in PRC than PHC (t11 = 3.17, corrected

p = 0.053). In Experiment 2, one sample t-tests revealed significant classification accuracy
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for faces versus scenes in PHC and PRC (mean classification accuracy PHC = 97.1%, PRC

= 81.1%; both t11 > 15, corrected p < 0.001) with little evidence for category discrimination

in the hippocampus (mean classification accuracy = 56.3%, t11 = 2.13, uncorrected p = 0.06,

corrected p = 0.34; see Table 1). Paired t-tests revealed significantly greater classification

accuracy for faces versus scenes in PHC and PRC than the hippocampus (both t11 > 6.5,

corrected p < 0.001) and significantly greater classification accuracy in PHC than PRC

(t11 = 7.11, corrected p < 0.001).

To investigate whether there were differences between anterior and posterior hippocampus

that might have been obscured by the overall poor classification performance, separate anal-

yses were run on each region. The most posterior slice of anterior hippocampus was labeled

as the most posterior coronal slice in which the uncal apex was visible (Poppenk and Moscov-

itch, 2011). A one-sample t-test revealed that classification accuracy for faces versus objects

was not significantly different than chance in either region (average classification accuracy:

anterior hippocampus = 49.3%, t11 = 0.85, uncorrected p = 0.42; posterior hippocampus

= 51.4%, t11 = 1.26, uncorrected p = 0.23) and a paired t-test revealed that classification

accuracy in posterior and anterior hippocampus were not significantly different (t11 = 1.42,

uncorrected p = 0.18). A one-sample t-test revealed that classification accuracy for faces

versus scenes was not significantly different than chance in either region (average classifica-

tion accuracy: anterior hippocampus = 51.8%, t11 = 1.08, uncorrected p = 0.30, posterior

hippocampus = 51.5%, t11 = 1.05, uncorrected p = 0.31) and a paired t-test revealed that

classification accuracy in posterior and anterior hippocampus were not significantly different

(t11 = 0.13, uncorrected p = 0.90).

To test the hypothesis that RSC/PCC is representationally similar to PHC, we performed

classification analysis as well as a variant of informational connectivity. In Experiment 1,

a one-sample t-test revealed significant classification accuracy for faces versus objects in

RSC/PCC (mean classification accuracy = 55.9%, t11 > 4, p < 0.005, see Figure 2.4A).
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Figure 2.4: (A) Linear SVM classification results in RSC/PCC revealed a similar pattern of
results to PHC: significant classification accuracy for both faces versus objects and faces ver-
sus scenes, with greater accuracy for faces versus scenes. The white squares represent mean
classification results in PHC. (B) Significant informational connectivity between RSC/PCC
and PHC was observed in Experiment 2 (faces versus scenes) but not Experiment 1 (faces
versus objects).

In Experiment 2, a one-sample t-test revealed significant classification accuracy for faces

versus scenes in RSC/PCC (mean classification accuracy = 69.3%, t11 > 7, p < 0.001,

see Figure 2.4A). Similar to the results in PHC, a two-tailed Welchs two sample t-test

revealed significantly greater classification accuracy for faces versus scenes than faces versus

objects (t > 4, p < 0.001). We used trial-by-trial variability in the SVM decision value

to investigate the correlation between multivariate pattern discriminability in PHC and

RSC/PCC (see Methods). Two-tailed one sample t-tests revealed a significant Fisher’s r to

z transformed Spearman’s rank correlation between the multivariate pattern discriminability

in these regions for faces versus scenes (mean = 0.36, t11 = 8.2, p < 0.001, see Figure 2.4B)

but not for faces versus objects (mean = 0.045, t11 = 1.7, p = 0.12). A two-tailed Welchs

two sample t-test revealed significantly greater Fisher’s r to z transformed Spearman’s rank

correlation between PHC and RSC/PCC for faces versus scenes than for faces versus objects

(t = 6.13, p < 0.001).

To further validate our informational connectivity analysis, we conducted two control anal-

yses. First, we simulated data and confirmed that our implementation of informational

connectivity is sensitive to continuous distance from the decision boundary. In fact, it is
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only sensitive to binary face/non-face information to the degree that the two regions have

similar trial-by-trial correct/incorrect decisions. Our simulations revealed that regions that

exhibited roughly 75% classification accuracy (similar to our results for faces versus scenes

in PHC and RSC/PCC) would not necessarily exhibit significant informational connectivity;

in fact, the mean z[r] Spearman’s rank correlation of 10,000 simulations was 0.0003, with an

approximately Gaussian distribution. Next, we ran single-subject-level permutation analy-

sis, in which we permuted the RSC/PCC vector 10,000 times and calculated the Spearman’s

rank correlation between each of the permuted vectors and the intact PHC vector. We then

calculated the non-parametric two-tailed p-value using the following equation (see Ernst,

2004):

p =
1 +

∑10,000
i=1 I(|ti − t̄| ≥ |t∗ − t̄|)

1 + 10, 000
(2.1)

where I(·) is the indicator function which sets the value to 1 if the statement is true and to 0

otherwise, ti represents the ith value of the permutation vector, t̄ represents the mean value of

the permutation vector, and t∗ represents the empirical mean. In other words, we calculated

the probability that a null value was at least as far (in both directions) from the mean of

the null distribution as the empirical value. This procedure was run on each participant

independently. For faces versus objects, Spearman’s rank correlation was significantly (p <

0.05, uncorrected) greater than the mean permutation value for 3 of 12 participants and was

significantly less than the mean permutation value for 1 of 12 participants (all other p > 0.05,

uncorrected). For faces versus scenes, Spearman’s rank correlation was significantly greater

than the mean permutation value for 11 of 12 participants, and the 12th participant’s p-

value was 0.065. Taken together, the simulation and permutation analyses suggest that

informational connectivity provides further information about the functional relatedness of

PHC and RSC/PCC. Furthermore, this information cannot be explained by a simple binary

difference in the level of classification accuracy.
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2.4 Discussion

Using biologically-motivated computational models of the MTL, Norman (2010) suggested

that the MTLC can compute summed similarity while the hippocampus cannot—a pattern

of results caused by differences in the degree of pattern separation in the MTLC and the

hippocampus. To test the summed similarity hypothesis, we used high resolution fMRI

and MVPA to study whether the MTLC was more representationally categorical than the

hippocampus. If the MTLC was more representationally categorical than the hippocampus,

it would provide support for the hypothesis that the MTLC is more functionally specialized

for computing summed similarity than the hippocampus. Consistent with the hypothesis,

linear SVM analysis revealed significant classification accuracy of faces versus objects and

faces versus scenes in PHC and PRC with limited evidence at best for category discrimination

in the hippocampus. Additionally, greater classification accuracy was observed in PHC

and PRC than the hippocampus. These results support the hypothesis that MTLC can

compute summed similarity because stimuli within a category (i.e., similar stimuli) elicited

similar patterns of activity (with distinct patterns of activity across image categories), while

suggesting that the hippocampus cannot.

We utilized voxel selection to control for differing numbers of voxels across ROIs, as well

as differing numbers of noisy voxels across ROIs. A similar pattern of results emerged,

suggesting that the results were not driven by differing numbers of voxels between MTLC

and hippocampus. Further, SNR was similar between ROIs, suggesting that differences in

classification accuracy between the MTLC and hippocampus were not driven by differences

in the quality of data acquisition. We used run averaged patterns of activity to control for

differences in the noisiness of single trial patterns of activity across ROIs. Once again, a

similar pattern of results emerged, suggesting that the results were not driven by noisier

single trial patterns of activity within the hippocampus. Taken together our results provide

novel evidence that the hippocampus is more representationally agnostic than MTLC, a
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pattern of results that is not completely driven by non-responsiveness, number of voxels, or

noisier individual trial patterns of activity. These results are concordant with the hypothesis

that the hippocampus is involved in pattern separation (McClelland et al., 1995; O’Reilly

and Munakata, 2000; O’Reilly and Norman, 2002; Norman and O’Reilly, 2003; Norman,

2010) as well as theories that suggest that the hippocampus plays a domain general role in

memory formation (Eichenbaum and Cohen, 2001; Davachi, 2006; Azab et al., 2014).

Our results are in agreement with recent studies using MVPA to investigate representations

in PHC, PRC, and the hippocampus (Diana et al., 2008; Liang et al., 2013a; LaRocque

et al., 2013), which all found greater category representation in the MTLC than the hip-

pocampus. As mentioned in the Introduction, we hypothesize that a core function of the

hippocampus is to perform pattern separation and amplify the dissimilarity across represen-

tations, which would result in more representationally agnostic patterns of activity than the

MTLC. We expect that under certain conditions, above chance classification accuracy for

categories could be observed in the hippocampus; however, we posit that even under these

conditions the hippocampus would be more representationally agnostic than the MTLC. In

fact, Liang et al. (2013a) found evidence that posterior hippocampus was representationally

categorical for scenes, while anterior hippocampus was more representationally agnostic. We

did not observe significant classification accuracy in posterior (or anterior) hippocampus for

faces versus scenes (or faces versus objects), suggesting that our hippocampal results were

not driven by differences between these subregions. Overall, however, the results of Liang

et al. (2013a) support our conclusions because they found that the hippocampus—including

posterior hippocampus—was more representationally agnostic than the MTLC.

Two of the previously mentioned studies also found differences in category representation

between PHC and PRC (Liang et al., 2013a; LaRocque et al., 2013). Consistent with previous

results, in Experiment 2, greater classification accuracy for faces versus scenes was observed

in PHC than PRC. Comparing the results from Experiment 1 and 2, PHC showed greater
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classification accuracy for faces versus scenes than faces versus objects. Taken together, these

results suggest that PHC may be preferentially tuned for representation of scenes; however,

the significant classification of faces versus objects in the PHC suggests that it is not involved

solely in representation of scenes. We found marginally significantly greater classification

accuracy in PRC than PHC for faces versus objects when using voxel selection of individual

patterns of activity and when using run averaged patterns of activity, suggesting that PRC

may be relatively specialized for representing object or face stimuli. Taken together, our

findings support the binding of item and context model (Eichenbaum et al., 2007; Diana et al.,

2007), which posits that PHC is relatively specialized for representing contexts (including

spatial and non-spatial contextual information, as well as scenes, based on anatomical input

from neocortical structures in the where pathway) and PRC is relatively specialized for

representing items (e.g., objects, based on anatomical input from neocortical structures in

the what pathway). Furthermore, our findings add to studies implicating PHC’s role in scene

representation (Litman et al., 2009; Liang et al., 2013a; see Davachi, 2006, for a review of

studies using univariate analysis of fMRI to investigate domain specificity in PHC, PRC,

and the hippocampus).

Recent theories suggest that RSC should be included as part of a larger MTL-cortical memory

network (Vann et al., 2009; Ranganath and Ritchey, 2012). Expanding on the binding of item

and context model, Ranganath and Ritchey (2012) hypothesized that PHC, RSC, and PCC

are part of a posterior memory network involved in contextual representation. Consistent

with our hypothesis that PHC and RSC/PCC are representationally similar, we observed

a similar pattern of results in RSC/PCC to PHC: significant classification of faces versus

objects and faces versus scenes, with significantly greater classification for faces versus scenes

than faces versus objects. Similar to our conclusions of PHC, these findings suggest that

RSC/PCC might be preferentially tuned for scene or spatial representation; however, the

significant classification of faces versus objects in RSC/PCC suggests that it is not tuned

solely for the representation of scenes or spatial information. The fact that RSC/PCC
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showed significant classification in both experiments further highlights the distinctness of

the representationally agnostic results observed in the hippocampus.

A variant of informational connectivity (Coutanche and Thompson-Schill, 2013) was used

to investigate the correlation between trial-by-trial multivariate pattern discriminability in

PHC and RSC/PCC. As discussed previously (Coutanche and Thompson-Schill, 2013), in-

formational connectivity provides novel insight into the functional synchrony between brain

regions by measuring the relatedness in multivariate pattern discriminability over time. In-

formational connectivity is sensitive both to the trial-by-trial decision (e.g., face or non-face)

as well as the continuous distance from the decision boundary. Importantly, similar classifica-

tion accuracy between regions does not ensure significant informational connectivity, there-

fore informational connectivity can provide further information about whether brain regions

are representationally similar. Consistent with the hypothesis that PHC and RSC/PCC are

functionally related and involved in representing scenes or spatial information, we observed

a significant correlation between the multivariate pattern discriminability on a trial-by-trial

basis in these regions for an experiment with face and scene stimuli but not an experiment

with face and object stimuli. These findings suggest that there may be a stimulus-dependent

modulation in the correlation between multivariate pattern discriminability across these re-

gions. Further, these results suggest that PHC and RSC/PCC contain similar trial-by-trial

information in the task with faces and scenes.

The hippocampus showed little evidence for classification accuracy for faces versus objects

and faces versus scenes, suggesting that the hippocampus is not representationally cate-

gorical for these categories. As suggested by Diana et al., 2008, the lack of evidence for

category representation in the hippocampus does not rule out the possibility that it is repre-

sentationally categorical at a more fine-grained scale than our fMRI resolution. However, the

significant classification accuracy for images (faces and scenes) compared to perceptual base-

line suggests that the hippocampus responded to the images. Furthermore, in contrast to the
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relative lack of evidence of category representation in the human hippocampus (Diana et al.,

2008; LaRocque et al., 2013; but see Liang et al., 2013a), recent evidence using linear SVM

analysis showed successful classification between distinct locations in a virtual environment

(Hassabis et al., 2009), between memories of highly overlapping video clips (Chadwick et al.,

2010, 2011), and between highly similar scene images (Bonnici et al., 2012). Additionally,

these studies observed significantly higher classification accuracy in the hippocampus than

the MTLC. These results provide evidence for the role of the human hippocampus in pattern

separation, thus suggesting that the hippocampus may exhibit unique patterns of activity

in response to each individual stimulus, thus resulting in a lack of category representation

(cf. Chadwick et al., 2012). Notably, the aforementioned studies used 1.5 mm isotropic vox-

els, thus suggesting that linear SVM classification analysis is sufficient to reveal patterns of

activity within the hippocampus using the same resolution as we did in our experiments.

These findings address the concern that the hippocampus contains patterns of activity that

are present at a level of resolution that is too fine-grained to observe in our current data set.

The behavioral task in our experiment was an incidental memory task, which raises the

concern that participants were not required to memorize the stimuli. Theoretical accounts

(e.g., Martin, 1999; O’Reilly and Rudy, 2001) and empirical evidence (e.g., Rugg et al., 1997;

Otten et al., 2001; Stark and Okado, 2003) have suggested that the hippocampus encodes in-

formation regardless of task demands. Furthermore, as previously mentioned, the significant

classification accuracy for images compared to the perceptual baseline task in the hippocam-

pus suggests that it was responding to the images. LaRocque et al. (2013) used an incidental

encoding task to provide support for behavioral relevance of the differences in representa-

tions in the MTL cortex and hippocampus. Their results revealed a positive relationship

between subsequent memory and within-category similarity in PHC and PRC and a negative

relationship between subsequent memory and within-category similarity in the hippocam-

pus. Taken together, it appears that there may be a double dissociation between the MTLC

and the hippocampus, such that the MTLC is specialized for computing summed similarity
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and the hippocampus is specialized for pattern separation, thus supporting computational

theories of the MTL (Norman, 2010).
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Chapter 3

What’s in a context? The influence of

low-level stimulus features on representations

in the human medial temporal lobe and

retrosplenial cortex.

Our ability to remember the events of our lives critically relies upon the formation of associa-

tions among the “what”, “where”, and “when” components of the event. The context-guided

object association task (e.g., McKenzie et al., 2014) has provided a useful task to investigate

the representation of events within subregions of the rodent medial temporal lobe, regions

which are known to be necessary for declarative memory. We created two human versions of

the context-guided object association task for use in functional magnetic resonance imaging

experiments. In the first experiment, we used distinct items and distinct contexts, similar

to the rodent task. The results of our first experiment largely replicate previous work in the

rodent and extend their findings to human participants and to other brain regions. Specifi-

cally, the results provide evidence which is consistent with the representation of context in

the hippocampus, parahippocampal cortex, and retrosplenial cortex. The results also pro-
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vide evidence which is consistent with the conjunctive representation of items-in-context and

with a relationship to behavior in retrosplenial cortex. However, we also found similar rela-

tionships in primary visual cortex, suggesting that low-level differences between the stimuli

could be influencing representations in the MTL and retrosplenial cortex. In the second ex-

periment, we used stimulus filtering and model testing to investigate whether the results from

our first experiment would maintain in the absence of low-level differences between stimuli.

The results of our second experiment provide little evidence for invariant context represen-

tation in the hippocampus, parahippocampal cortex, and retrosplenial cortex, suggesting

that the results from our first experiment were influenced by the low-level visual differences

between stimuli. In contrast, our results provide novel evidence for the role of perirhinal

cortex in invariant object representation. The results from our experiments provide insight

into the types of experiments that should be used to investigate the representation of items

and contexts; accordingly, we will conclude by discussing possible experimental designs for

future studies.

3.1 Introduction

Following the discovery that removal of structures within the human medial temporal lobe

(MTL) causes amnesia (Scoville and Milner, 1957), decades of research have focused on elu-

cidating the contributions of subregions of the MTL to declarative memory. Separately, the

discovery of place cells in the rodent hippocampus (O’Keefe and Dostrovsky, 1971) initiated

a line of research which has focused on the contributions of MTL subregions to spatial pro-

cessing (for reviews on merging these frameworks see: Eichenbaum and Cohen, 2014; Schiller

et al., 2015). While there is still debate over the precise nature of the division of labor within

the MTL, there is consensus that the hippocampus sits at the apex of a cortical circuit that

allows unparalleled it access to the what, where, and when components of events and that it,
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in some way, is crucial for binding or associating these aspects (Mishkin et al., 1997; Cohen

et al., 1999; Lavenex and Amaral, 2000; Davachi, 2006; Diana et al., 2007; Eichenbaum et al.,

2007; Wixted and Squire, 2011; Ranganath and Ritchey, 2012). Converging evidence suggests

that adjacent MTL cortical regions are also necessary for declarative memory, albeit perhaps

in a more domain-specific manner (Mishkin et al., 1997; Davachi, 2006; Diana et al., 2007;

Eichenbaum et al., 2007; Wixted and Squire, 2011; Ranganath and Ritchey, 2012). Many

theoretical accounts note a role for parahippocampal cortex (PHC; called postrhinal cortex

in rodents) and medial entorhinal cortex in memory for and in the representation of context

and spatial information (Burwell, 2000; Davachi, 2006; Knierim et al., 2006; Diana et al.,

2007; Eichenbaum et al., 2007; Wixted and Squire, 2011; Ranganath and Ritchey, 2012). On

the other hand, perirhinal cortex (PRC) and lateral entorhinal cortex are hypothesized to

be involved in memory for and in the representation of objects.

In a series of groundbreaking studies, Eichenbaum and colleagues developed a context-guided

object association task to study associative memory in rodents. Briefly, animals learn item-

reward contingencies that differ based on the context (operationally defined as visually and

tactilely distinct chambers). The results of their experiments have firmly established the in-

volvement of the hippocampus (Rajji et al., 2006; Komorowski et al., 2009, 2013; Navawongse

and Eichenbaum, 2013; Tort et al., 2013; McKenzie et al., 2014), medial temporal lobe cor-

tical regions (Keene et al., 2016), and orbitofrontal cortex (Farovik et al., 2015) in different

aspects of task performance (for review see: McKenzie et al., 2015). Impaired context-guided

object association learning has been shown in rats with hippocampal lesions (Komorowski

et al., 2013) and in mice with impaired NMDA receptor function (Rajji et al., 2006), thus

establishing a necessary role for the hippocampus in task performance. Neurophysiologi-

cal investigations (Komorowski et al., 2009, 2013; Navawongse and Eichenbaum, 2013; Tort

et al., 2013; McKenzie et al., 2014) have indicated that the hippocampus represents not

only spatial aspects of the task (i.e., context, location) but also non-spatial components of

the task (i.e., valence, item). Moreover, McKenzie et al. (2014) found that the hippocam-
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pus contains hierarchically-organized representations, such that patterns of activity differ in

a graded manner based on differences in the stimuli that comprise an event (ranked from

most dissimilar to most similar): 1) events that take place in different contexts, 2) events

that take place at different locations, 3) events with a different valence (i.e., rewarded or

unrewarded), 4) events that contain different items, 5) events with all of the same stimuli.

Collectively, these results strongly support the notion that the hippocampus has access to

multiple features of task performance (e.g., what, where), corroborating relational theories

of hippocampal processing (e.g., Eichenbaum et al., 2007).

A recent study that used the context-guided object association task suggested that medial

entorhinal cortex represents not only spatial aspects but also non-spatial aspects of the task,

similar to the results from the hippocampus (Keene et al., 2016). Additionally, their results

suggested that PRC and lateral entorhinal cortex represent not only item information but

also represent spatial aspects of the task. Interestingly, however, representational similarity

analysis demonstrated that patterns of activity in medial entorhinal cortex were more dis-

similar in response to events that took place in different locations than events that contained

different items. Conversely, patterns of activity in PRC and lateral entorhinal cortex were

more dissimilar in response to events that contained different items than events that took

place in different locations. Taken together, Keene et al. (2016) argue that their results

challenge theories that propose a simple dissociation between medial entorhinal cortex and

lateral entorhinal cortex and PRC but that their results suggest that there are representa-

tional differences between these regions (cf. Knierim et al., 2013).

In the present report, we developed a human version of the context-guided object association

task for functional magnetic resonance imaging (fMRI). In addition to investigating subre-

gions of the MTL, we sought to investigate other regions that have been hypothesized to be

involved in memory and context processing. For example, human neuroimaging studies (Bar

and Aminoff, 2003; Park and Chun, 2009; Walther et al., 2009; Auger and Maguire, 2013;
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Auger et al., 2015; Wing et al., 2015) and lesion and neurophysiological studies in the rodent

(Ennaceur et al., 1997; Vann and Aggleton, 2002; Parron and Save, 2004; Chen et al., 1994;

Cho and Sharp, 2001; Alexander and Nitz, 2015) suggest that retrosplenial cortex (RSC), a

subregion of the posterior cingulate cortex (PCC), is involved in processing scenes, context,

and spatial information. Additionally, RSC is reciprocally connected to the hippocampus,

PHC, and anterior thalamic nuclei, which are critically important for declarative memory

(Vann et al., 2009; Aggleton, 2010). Indeed, RSC lesions are accompanied by “retrosplenial

amnesia” (Valenstein et al., 1987) and recent accounts postulate that RSC should be thought

of as a part of the MTL-declarative memory system (Ranganath and Ritchey, 2012; Vann

et al., 2009; Aggleton, 2010). Furthermore, a recent model suggests that RSC is critical

for the formation of stimulus-stimulus associations (Bucci and Robinson, 2014), a function

traditionally ascribed to the hippocampus. Thus, a more complete understanding of the

contribution of structures beyond the MTL, especially RSC, to declarative memory is of

keen interest. We also tested the hypothesis that, similar to findings in medial entorhinal

cortex (Keene et al., 2016), representations in RSC would not only carry information about

context but also about other aspects of the task.

In the context-guided object association task, the contexts and items are composed of distinct

elements (i.e., different visual, olfactory, and tactile cues). An unaddressed question is the

extent to which the neural representations are influenced by the low-level differences between

stimuli. The use of distinct contexts and items allows animals (e.g., rats, humans) to rapidly

discriminate between them (cf. Bulkin et al., 2016); however, as we discovered in the course

of the present report, it is virtually inevitable that representational differences will also be

present in the relevant primary sensory regions. We propose that the cognitive representation

of a context should theoretically be stable across different versions of the same context so long

as the context signals a reliable behavioral outcome (e.g., Context A + Item X = Response 1).

Given the previous finding that patterns of activity in the hippocampus and MTL cortex were

maximally dissimilar for events that took place in a different context (McKenzie et al., 2014;
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Keene et al., 2016), the second aim of this study was to examine whether representations

of context in the MTL and RSC are dependent on low-level differences between contexts or

whether such representations would exhibit invariance.

In Experiment 1, we used distinct stimuli for our contexts (time lapse videos) and objects

(images of objects). In Experiment 2, we used a computational approach to match the

low-level visual features of our stimulus set in order to test for invariant context and object

representation. Similar to previous findings in the rodent (McKenzie et al., 2014; Keene

et al., 2016), the results of Experiment 1 provide evidence for the representation of context

within subregions of the MTL. Additionally, our results suggest that RSC carries context

and conjunctive item-in-context information and such representations are related to behav-

ioral performance. We also observed evidence for context and conjunctive item-in-context

information in other scene processing regions, parahippocampal place area and retrosplenial

complex (e.g., Epstein and Kanwisher, 1998; Epstein et al., 2007; Julian et al., 2012; Vass

and Epstein, 2013, 2016; Marchette et al., 2014, 2015). However, we observed similar rela-

tionships in primary visual cortex. In contrast, the results of Experiment 2 provide little

evidence for invariant context representation within the same regions, suggesting that the

results from Experiment 1 were influenced by low-level stimulus features. Moreover, these

results highlight the potential for low-level stimulus features to masquerade as contextual

information, thus providing clear boundary conditions for the investigation of context rep-

resentation. These results also raise interesting questions about how to define a context.

For example, while the context-guided object association task has defined contexts by phys-

ically distinct chambers, other studies have advocated for the use of more psychological

or behavioral-based contexts (Smith and Mizumori, 2006a; Smith and Bulkin, 2014). In

contrast to the relatively null results of invariant context representation, the results of Ex-

periment 2 provide novel evidence that PRC is involved in the invariant representation of

objects. We conclude by providing suggestions for future experiments that aim to investigate

context and object representation in the absence of low-level confounds.
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3.2 Materials and Methods

3.2.1 Participants

Thirty-five participants were recruited from the community at the University of California,

Irvine. Participants were between 18 and 31 years of age, were right handed, and screened

negative for neurological and psychiatric disease. Five participants were excluded due to

excessive motion. Twenty participants were included in the analysis in Experiment 1 (10

females, 10 males) and ten in Experiment 2 (5 females, 5 males). Participants consented

to the procedures in accordance with the Institutional Review Board of the University of

California, Irvine, and received monetary compensation for their participation.

3.2.2 Stimuli

Experiment 1: Distinct stimulus set

In Experiment 1, the stimulus set consisted of two time-lapse videos (clips from Timestorm

Films: https://vimeo.com/93003441; played full screen; monitor resolution: 1280 × 1024

pixels) and two object pairs (150 × 150 pixels; Fig. 3.1A).

Experiment 2: Low-level image matching

In Experiment 2, the two contexts consisted of grayscale images (600 × 600 pixels) of Saint

Peter’s Basilica and the U.S. Capitol Building and the objects consisted of grayscale im-

ages (256 × 256 pixels) of car and house keys. We used a combined approach of image

manipulation and model testing to diminish the presence of category information from the

low-level visual features. First, we used the SHINE toolbox (Willenbockel et al., 2010) to
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Figure 3.1: Experiment 1 stimuli, event design, and model matrices. A) The task stimuli and
an example event. The stimulus set consisted of two time-lapse videos (clips from Timestorm
Films: https://vimeo.com/93003441) and two object pairs. Each event began with a 2000
ms presentation of a time-lapse video (depicted by the scene), then an object was displayed
at the center of the video for 500 ms (depicted by the object on the left), which was then
replaced by a second object which was displayed for 500 ms (depicted by the object on
the right). Participants learned event-location associations the day prior to scanning, and
were tested on the associations during scanning. B) Model matrices for our representational
similarity analysis.
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equate luminance histograms across all of the scene stimuli and across all of the object stim-

uli (Fig. 3.2A). Second, we used a modeling approach to select images that were devoid of

low-level category features.

For our scene images, similar to Marchette et al. (2015), we used pixel-wise correlation,

the GIST computational model (Oliva and Torralba, 2001), and the HMAX computational

model (two variants, one which used all images from the Fifteen Scene Categories dataset

[Lazebnik et al., 2006] as prototypes and one which used a superset of our scene images

as prototypes; we used the model from: Theriault et al., 2011). Additionally, similar to

Kriegeskorte et al. (2008a), we used two models of V1 (one which included both simple and

complex cells from HMAX and another that included only complex cells; Theriault et al.,

2011), low-pass pixel-wise correlation (low frequency image features), high-pass pixel-wise

correlation (high frequency image features), and Radon transform. We iteratively looped

over a superset of our scene images and selected images for which all nine models showed

no sign of a relationship between the scene images and the context matrix for both the

selected stimulus set (40× 40 matrix with 780 unique entries) and across the odd/even split

(20× 20 matrix with 400 unique entries; −0.012 < Spearman’s rank correlation < 0.011, all

p’s > 0.77). As a final control, we simulated an object being presented on top of each scene

image by placing a black square (256 × 256 pixels) at the center of the image; importantly,

similar results were obtained using this method.

For the object images, we used the same nine models as well as binary-silhouette correlation

(similar to Kriegeskorte et al., 2008a). Similar to the analysis of the scene images, we used

two versions of the HMAX model (one which used all images from the 256 Object Categories

dataset [Griffin et al., 2007] as prototypes and one which used a superset of our object images

as prototypes; Theriault et al., 2011). We iteratively looped over a superset of our object

images and selected images for which all ten models showed no sign of a relationship to the

object matrix for both the selected stimulus set (40 × 40 matrix with 780 unique entries)
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and across the odd/even split (20×20 matrix with 400 unique entries; −0.016 ≤ Spearman’s

rank correlation ≤ 0.014, all p’s > 0.74).

3.2.3 Behavioral task

Experiment 1: Pre-scan training task

Participants were trained on an associative memory task one day prior to their scan session.

The behavioral task was created using custom-written code and the Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997). Each event began with a 2000 ms presentation of a time-lapse

video. An object was then displayed at the center of the video for 500 ms, which was replaced

by a second object which was displayed for 500 ms, resulting in a 3 second event duration.

One difference from the rodent task was that rather than using reward per se, participants

learned stimulus-location associations through trial and error learning (Fig. 3.1A), similar

to previous experiments in our laboratory (Law et al., 2005). In Experiment 1, the correct

location was unique based on: 1) the video that was displayed, 2) the objects that were

displayed, and 3) the order in which the objects were presented. Thus, the task required

participants to make distinct responses for events that contain overlapping features. Partic-

ipants responded using the 4 fingers on their right hand, and the event-location contingency

was balanced across the two contexts. We used a response window of 800 ms, followed

by 700 ms of feedback (“Yes!”, “No!”, or “?” = no response). The interstimulus interval

consisted of a 400 ms fixation cross, a 700 ms arrow presentation (to which participants

were instructed to indicate via button press whether it was pointing to the left or the right,

which served as a non-mnemonic component of the interstimulus interval), and a 400 ms

fixation cross, resulting in a trial length of 6 seconds (event duration = 3 seconds, response

and feedback = 1.5 seconds, and interstimulus interval = 1.5 seconds). We also included

self-paced perceptual baseline trials (5.6 second blocks followed by a 400 ms fixation cross)
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in which participants were instructed to indicate as quickly and as accurately as possible

which of four static noise boxes was the brightest (Law et al., 2005). The brightness of the

target box was continuously titrated to maintain performance between 40 and 60% correct.

At the beginning of the experiment, two events were presented. After a participant learned an

event-location association to criterion—correct responses on 5 out of the last 6 responses—a

new event was added to the unlearned queue, and the learned event was moved into the

learned queue. Events in the learned queue were presented with p = 0.3, while events in the

unlearned queue were presented with p = 0.7. Thus, participants continued to be tested on

“learned” event-location pairs. We counterbalanced the order in which events were added

to the unlearned queue. The session terminated after participants learned all 8 events to

criterion.

Experiment 2: Pre-scan training tasks

To ensure that participants could readily discriminate between the the “context” images that

we used in the associative learning task, they were first trained on a category discrimination

task for the 40 scene images. On each trial an image of either Saint Peter’s Basilica or the

U.S. Capitol Building was displayed for 1000 ms. Then, the image was removed and two

boxes were displayed with text labels above each box (“St. Peter’s Basilica” and “U.S. Capitol

Building”; the left/right assignment of the text labels was random on each trial). We used

Figure 3.2: Experiment 2 stimuli, event design, and model matrices. A) Task stimuli and
an example event. The stimulus set consisted of 20 images of Saint Peter’s Basilica, 20
images of the U.S. Capitol Building, 20 images of car keys, and 20 images of house keys.
The odd numbered rows were used in odd runs of the task while the even numbered rows
were used in even runs of the task. Each event began with a 2000 ms presentation of a
context image, then an object was displayed at the center of the scene image of 500 ms. B)
Model matrices for the representational similarity analysis. E1 = St. Peter’s Basilica + Car
Key; E2 = St. Peter’s Basilica + House Key; E3 = U.S. Capitol Building + Car Key; E4 =
U.S. Capitol Building + House Key.
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a 1300 ms response window, followed by 700 ms of feedback. The task terminated after

participants learned each of the 40 scene images to criterion (correct responses on 5 out

of the last 6 responses). In contrast to the associative memory task, only unlearned items

were presented. Next, to ensure that participants could readily discriminate between the

“object” images that we used in the associative learning task, participants performed an

object discrimination task for the car and house key images. The task was identical to the

scene task, except the text labels were “car” and “house.”

After participants learned both the scene categories and the object categories to criterion,

they learned object-location associations. The event structure was similar to Experiment 1,

with the exception that we used only one object per event, resulting in a stimulus duration

of 2500 ms. Additionally, events were mapped to two responses (left versus right) and

participants used their index finger to respond. Given the 500 ms reduction of stimulus

presentation, we extended the response window from 800 ms to 1300 ms. Finally, we reduced

the perceptual baseline task to contain two boxes, and performance was titrated to maintain

performance between 60 and 70% correct.

Experiment 1: fMRI task

Participants returned for their functional magnetic resonance imaging (fMRI) scan session

one day after the training phase. During acquisition of structural scans, participants per-

formed a warm-up phase, in which they were re-exposed to the associative memory task. The

warm-up phase was included to attenuate novelty effects during the initial presentations of

each event (Law et al., 2005). Once again, participants were initially tested on two event-

location pairs. After participants learned an event-location association to criterion—two

correct responses in a row—a new event was added to the unlearned queue and the learned

event was added to the learned queue. As in the initial learning phase, items in the learned

queue were presented with p = 0.3, and the warm-up phase terminated after participants
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relearned all 8 events to criterion.

We designed the training and imaging paradigm to be similar to that used by (McKenzie

et al., 2014), in which they trained rats to criterion prior to neural recording. Thus, both

studies investigated well-learned representations. During functional runs, participants were

repeatedly tested on the event-location association task. Functional runs consisted of 4

presentations of each event as well as 5 self-paced perceptual baseline trials. We randomized

the order of events within each run, with the exception that every run ended with one

perceptual baseline trial to allow the hemodynamic response of the 2nd to last trial of the

run to approach baseline prior to run completion. Participants completed 16 runs, resulting

in 64 presentations of each event during functional scanning.

Experiment 2: fMRI task

There were a few minor differences between the fMRI task in Experiment 1 and Experiment

2. First, participants were given a reminder session for the stimulus categories (i.e., Saint

Peter’s Basilica, U.S. Capitol Building, car keys, house keys). Participants viewed a text

label of the stimulus category, followed by a one second presentation of every image from

the category (1 second presentation, 500 ms interstimulus interval). Participants saw each

category two times. Second, functional runs consisted of 5 presentations of each event as well

as 6 self-paced perceptual baseline trials. Third, de Bruijn sequences were used for stimulus

ordering (Aguirre et al., 2011). A unique sequence was used for each run (randomized

across subjects), and we selected sequences that ended with perceptual baseline trials in

order to allow the hemodynamic response of the 2nd to last trial of the run to approach

baseline prior to run completion. Carry-over sequences, such as de Bruijn sequences, match

the number of times that each stimulus precedes every other stimulus, thus controlling for

stimulus carry-over effects and theoretically increasing the detection power in between-run

pattern analysis (Aguirre, 2007; Aguirre et al., 2011). The length of carry-over sequences
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was prohibitively large for Experiment 1, but the reduction of stimulus conditions allowed an

entire de Bruijn sequence to be presented within a short run (for an argument for using short

runs for pattern analysis see: Coutanche and Thompson-Schill, 2012). Finally, participants

completed 12 runs, resulting in 60 presentations of each event during functional scanning.

3.2.4 MRI data acquisition

Data were acquired from a 3.0-T Philips scanner, using a 32 channel sensitivity encoding

(SENSE) coil at the Neuroscience Imaging Center at University of California, Irvine. A

high-resolution 3D magnetization-prepared rapid gradient echo (MP-RAGE) structural scan

(0.75 mm3) was acquired for each participant. Functional MRI scans consisted of a T2*-

weighted echo planar imaging sequence using blood-oxygenation-level-dependent contrast

(BOLD; repetition time [TR]=2500 ms, echo time=26 ms, flip angle=70 degrees, 46 slices,

2.5 × 2.5 mm in plane resolution, 2.3 mm slice thickness with a 0.2 mm gap). Each functional

run was padded with an initial 4 “dummy” dynamics, which were immediately discarded

to ensure T1 stabilization. In Experiment 1, 90 dynamics were collected per run and 16

functional runs were collected for each participant; however, the 16th run for one participant

was not analyzed due to large between-run motion. In Experiment 2, 64 dynamics were

collected per run and 12 functional runs were collected for each participant.

3.2.5 fMRI data preprocessing

Data were preprocessed using Analysis of Functional NeuroImages (AFNI; Cox, 1996). Func-

tional MRI data were motion corrected using rigid-body transformation using the function

align epi anat.py (Saad et al., 2009). Data were quadratically detrended and high pass fil-

tered (f > 0.01 Hz), using the 3dBandpass function. To preserve fine-grained information,

the data were left unsmoothed. We manually defined the hippocampus, parahippocampal
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cortex (PHC), and perirhinal cortex (PRC) on a custom template brain according to previ-

ously defined landmarks (for more details see: Law et al., 2005; Huffman and Stark, 2014).

We used Advanced Normalization Tools (ANTs; Avants et al., 2008) to warp each individ-

ual participant’s MP-RAGE structural scan into our custom template space. The inverse

warp vectors were used to create masks for the hippocampus, PHC, and PRC within each

participant’s original space (Huffman and Stark, 2014). Freesurfer’s isthmus cingulate label

(Desikan et al., 2006) was used to define RSC/PCC. The isthmus cingulate mask contains

voxels from RSC (traditionally defined as Brodmann’s areas 29 and 30; Vann et al., 2009)

and a portion of PCC caudal to RSC. Control regions, left primary motor cortex and bi-

lateral V1, were generated using Freesurfer’s precentral gyrus label (Destrieux et al., 2010)

and Freesufer’s V1 atlas (Hinds et al., 2008), respectively. Masks were resampled to 2.5

mm isotropic (the fMRI grid) and further masked to contain completely-sampled voxels.

We used a combined anatomical and functional approach to define parahippocampal place

area (PPA) and retrosplenial complex (RS-Complex; Julian et al., 2012). We warped the

anatomical masks to each subject’s native space and selected the 100 most active voxels (all

events versus perceptual baseline) in each anatomical mask in each hemisphere and merged

the resultant files to create bilateral masks for each ROI (Marchette et al., 2015; Vass and

Epstein, 2016).

3.2.6 Representational similarity analysis

Data were analyzed using AFNI, custom-written code in python and R, and PyMVPA (Hanke

et al., 2009) on a GNU/Linux platform using the NeuroDebian package repository (Hanke

and Halchenko, 2012). The fMRI data were split in half—odd and even runs—and a block-

based general linear model (GLM; AFNI’s 3dREMLfit function; block length = 3 seconds—

i.e., the length of the event presentations) was used to generate beta values in each voxel.

During volume registration, 6 motion parameters were generated (3 translation parameters
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and 3 rotation parameters). Framewise displacement is defined as the sum of the absolute

value of the difference between each of the 6 motion parameters between successive frames

(Power et al., 2012). Frames with framewise displacement exceeding 0.5 mm and 1 frame

before and 2 frames after were censored from the analysis (for a similar approach to func-

tional connectivity analysis see: Power et al., 2012). Within each split, the mean pattern of

activity across all events was subtracted from each event-specific beta vector (Haxby et al.,

2001). Pearson’s correlation coefficient was calculated between each event-specific beta vec-

tor across the split-halves, resulting in non-symmetrical representational similarity matrices.

Hypothesis-driven analysis was conducted by calculating Spearman’s rank correlation coeffi-

cient between each participant’s representational similarity matrix and pre-defined matrices

(Figs. 3.1B, 3.2B).

We performed an iterative approach in our correlation analysis between each subject’s rep-

resentational similarity matrix and our model matrices. We chose this approach for two

reasons: 1) the model matrices were correlated with each other, thus precluding analysis

within a single model, 2) correlation analysis is not sensitive to the magnitude of the values

within the similarity matrix (as opposed to comparing whether within-category correlations

were numerically larger than between-category correlations), thus allowing us to examine the

pattern of similarity regardless of the magnitude of the values (Kriegeskorte et al., 2008a).

In Experiment 1, we began with the model matrix on the left side of Fig. 3.1B (i.e., the

context matrix) and proceeded rightwards only for matrices that were significantly related

to the model matrix in the present step (i.e., we terminated analysis for an ROI when the

relationship between the ROI matrix and model matrix failed to reach significance). A pre-

vious study (Kriegeskorte et al., 2008b) investigated the cross-species correlation between

portions of representational similarity matrices, which is similar to our approach of compar-

ing portions of representational similarity matrices to model matrices. We used Spearman’s

rank correlation, rather than Pearson’s correlation coefficient, because it is better suited for

investigating the relationship between ordinal models and representational similarity ma-
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trices (Kriegeskorte et al., 2008a). Figures were generated using R (built-in packages and

the heatmap.2 package within gplots), and we used GNU Image Manipulation Program

(http://www.gimp.org) to format our figures.

3.2.7 Permutation analysis

Previous reports have suggested that nonparametric methods are preferable to classical sta-

tistical tests for analyzing the significance of the relationship between representational sim-

ilarity matrices (Kriegeskorte et al., 2008a,b); therefore, we used a two-step permutation

method to determine statistical significance (for related approaches to classification analy-

sis see: Chen et al., 2011; Liang et al., 2013b; Stelzer et al., 2013; Etzel, 2015). For each

participant, the empirical similarity matrix was randomly shuffled and we calculated Spear-

man’s rank correlation between the resultant matrix and the intact model matrix. The

resultant value was then Fisher’s r-to-z transformed (z[r]), using the inverse hyperbolic tan-

gent function. We performed this process 10,000 times for each participant to generate null

distributions at the subject level. To maintain similarity to the empirical analysis, we used

the same permutation of the labels across participants (Etzel, 2015). In the current data set

this approach was more conservative than using a different permutation of the labels across

participants. The null distributions were averaged across participants to generate a null

mean z[r] Spearman’s rank correlation. Two-tailed nonparametric p value were calculated

using the following equation (Ernst, 2004):

p =
1 +

∑10,000
i=1 I(|ti − t̄| ≥ |t∗ − t̄|)

1 + 10, 000
(3.1)

where I(·) is the indicator function which sets the value to 1 if the statement is true and

to 0 otherwise, ti represents the ith value of the permutation vector, t̄ represents the mean

value of the permutation vector and t∗ represents the empirical mean. This calculates the
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probability that a null value was at least as far (in both directions) from the mean of the

null distribution as the empirical value. In order to maximize the degree of similarity to a

full permutation approach, 1 is added to both the numerator and the denominator of the

equation (i.e., in a full permutation the stimulus labels would be in the correct order exactly

once, hence the lowest p-value attainable is 1 divided by the number of combinations). For

Experiment 2, the full permutations were tractable, thus p values were calculated using the

following equation (Ernst, 2004):

p =

∑M
i=1 I(|ti − t̄| ≥ |t∗ − t̄|)

M
(3.2)

where M is the total number of combinations. In Experiment 2, we performed nonparametric

difference tests by subtracting permutation matrices from each other across ROIs. The

resultant permutation difference matrices were averaged across participants and significance

was assessed using Equation 2, where the t’s represent difference values.

3.2.8 Informational correlativity analysis

In Experiment 1, we tested the hypothesis that the hippocampus, PHC, and RSC/PCC

contain similar information about context on a trial-by-trial basis, using a variant of “infor-

mational connectivity” (Coutanche and Thompson-Schill, 2013; Huffman and Stark, 2014),

which we refer to here as informational correlativity. We used an extension of the LS2

procedure (Turner et al., 2012) to obtain individual trial estimates of activity. Briefly, for

each trial, we ran a block-based GLM analysis (using AFNI’s 3dDeconvolve function) that

included an individual trial regressor and 8 event-specific regressors that coded for every

other trial. We then performed 512 iterations of this procedure (i.e., 8 events × 64 presen-

tations of each event). Each iteration of the GLM incorporated the same censor vectors as

before (i.e., framewise displacement > 0.5 mm); additionally, to mitigate the adverse effect
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of noisy individual trial estimates from subsequent analysis, we removed trials that had a

motion event within approximately 15 seconds of the onset of the trial (the exact duration

was variable because the image acquisition was not time-locked to the trial presentation).

To maintain similarity to the initial analysis, we used a split-halves approach in this pro-

cedure. Similarly, we subtracted the mean pattern of activity across all events from each

event-specific beta vector, separately within each split. We then averaged the patterns of

activity within each context (i.e., E1, E2, E5, and E6 were averaged to create an average

“context 1” pattern of activity and E3, E4, E7, and E8 were averaged to create an average

“context 2” pattern of activity) separately within each split. For each trial, we calculated

z[r] Pearson’s correlation coefficient between the pattern of activity on that trial and the

average context 1 and context 2 patterns of activity from the other split. The value for

each trial was set to the correlation to the same context minus the correlation to the other

context (Coutanche and Thompson-Schill, 2013). Thus, values greater than 0 denote correct

“neural discrimination” between the two contexts and the distance from 0 provides an index

of discriminability on that trial. We refer to the trial-by-trial vector of such values to as the

multivariate pattern discriminability trial-series (for a related approach to functional connec-

tivity see: Rissman et al., 2004). For each participant, we calculated z[r] Spearman’s rank

correlation between the multivariate pattern discriminability trial-series in the hippocampus,

PHC, and RSC/PCC. We averaged the resultant values to obtain the empirical group mean

z[r] Spearman’s rank correlations. To assess significance, we used a permutation approach

in which we randomized the order of one of the ROI’s multivariate pattern discriminability

trial-series within each run. We used within-run permutations, rather than permuting the

entire trial-series, to mitigate the possibility that between-run differences would artificially

reduce the permuted correlations. We then calculated z[r] Spearman’s rank correlation be-

tween the randomized ROI’s vector and the intact ROI’s vector. This procedure was carried

out 10,000 times per subject. Group-level permutation analysis was conducted by averaging

the permuted distributions across subjects, and p values were obtained using Equation 1. In
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this application, the permutations were independent across subjects because the trial order

was independent across subjects.

3.2.9 Multidimensional scaling analysis

To further investigate whether RSC/PCC carries information about items in context in Ex-

periment 1, we performed multidimensional scaling, which is a data-driven, data-reduction

approach that allows visualization of the major components of similarity matrices (Kriegesko-

rte et al., 2008a,b). We first generated a symmetrical representational similarity matrix by

averaging values across the diagonal of the matrix (i.e., the same pairs of events across splits).

We then converted the matrix to correlation distance (1-z[r]). We extracted the lower tri-

angle of the correlation distance matrix and performed multidimensional scaling using the

criterion of metric stress (Kriegeskorte et al., 2008a,b) using package cmdscale in R. We used

custom-written code to place the center of the object pairs at the coordinates calculated by

the multidimensional scaling procedure. The pictures of the videos were placed on opposite

sides of Dimension 1 for visual purposes—i.e., the locations of the videos are arbitrary.

3.2.10 Relationship between representations and behavioral per-

formance on the associative memory task

In Experiment 1, we investigated the relationship between representations and behavioral

performance. For each participant, we defined model fit as the z[r] Spearman’s rank cor-

relation between their similarity matrix and our proposed model. We calculated the pro-

portion of correct responses during functional scanning within each participant, excluding

trials in which the participant did not respond within the response window. We calculated

Spearman’s rank correlation coefficient between model fit and proportion correct. We used
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Spearman’s rank correlation because it does not require the assumption that the two vari-

ables are normally distributed (as opposed to Pearson’s correlation). To assess significance,

we calculated the t statistic using the following equation (Krzanowski, 2000):

t = r

√
k − 1

1− r2
(3.3)

where r is Spearman’s rank correlation, and k is equal to n− 1. We obtained a p value from

Student’s t distribution with k − 1 degrees of freedom (20-1-1=18).

To mitigate the possibility of a spurious effect of motion (Power et al., 2012) on the ob-

served relationship between behavioral performance and model fit, we performed a follow-up

analysis using a partial correlation approach. Specifically, we examined the relationship be-

tween model fit and behavioral performance while holding the effect of head motion constant.

Previous reports have used mean motion—defined as the mean amount of motion between

successive frames based on the sum of the 3 translation parameters—as a measure of head

motion (Van Dijk et al., 2012). Mean motion has previously been shown to be strongly cor-

related with the total number of motion events and it has been shown to be a reliable index

of subject-specific head motion (Van Dijk et al., 2012). We used a related measure, mean

framewise displacement, as our measure of head motion. As mentioned above, framewise

displacement is the sum of motion across all 6 alignment parameters (3 translation and 3

rotation parameters) between successive frames (Power et al., 2012). To calculate the partial

Spearman’s rank correlation between the model fit and the proportion correct while holding

the effect of head motion constant, we used the following equation (Krzanowski, 2000):

rxy.z =
rxy − rxzryz√

(1− r2xz)(1− r2yz)
(3.4)

where x represents the model fit array, y represents the proportion correct array, and z rep-

resents the mean framewise displacement array. In our application, r represents Spearman’s
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rank correlation. The t statistic was calculated using Equation 3. With one variable held

constant (i.e., z), k = n− 1− 1. Therefore, the statistical test for partial correlation is the

same as in typical correlation analysis with fewer degrees of freedom (Krzanowski, 2000).

3.3 Results

3.3.1 Experiment 1

Investigation of the representation of context

To test the hypothesis that the hippocampus, RSC/PCC, and PHC are involved in context

representation, we generated a context matrix, which contains uniformly large values for

events that shared the same context and uniformly small values for events that contain dif-

ferent contexts (Fig. 3.1B). We calculated Spearman’s rank correlation coefficient between

each participant’s similarity matrix and the context matrix, and we Fisher’s r-to-z trans-

formed (z[r]) the resultant value. We used group-level two-tailed nonparametric p values

Figure 3.3: Investigation of representations in the hippocampus, PHC, and RSC/PCC. A)
Average correlation matrices. B) Permutation analysis revealed a significant relationship
between the context matrix and the PHC and RSC/PCC similarity matrices (p’s < 0.0001)
but the relationship failed to reach significance for the hippocampus similarity matrix (p =
0.71). C) A searchlight analysis within the hippocampus revealed a significant cluster in
the left posterior hippocampus. D) Informational correlativity analysis revealed a significant
relationship between all three regions (all p’s < 0.0001; sl-HIPP = hippocampus searchlight
analysis cluster). E) Permutation analysis revealed a significant relationship between the
RSC/PCC similarity matrix and the item-in-context matrix. F) Multidimensional scaling
(MDS) analysis provided further evidence for item-in-context representations in RSC/PCC.
The locations of the video images are arbitrary other than the left/right assignment while the
center of the object pairs are placed at the coordinates determined by the MDS procedure.
G) Proposed model of RSC/PCC representations. H) There was a significant relationship
between model fit in RSC/PCC and performance on the task (Spearman’s rank correlation
= 0.51, t18 = 2.51, p < 0.05).
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(Ernst, 2004) to assess significance (for related one-tailed approaches to classification anal-

ysis see: Chen et al., 2011; Liang et al., 2013b; Stelzer et al., 2013; Etzel, 2015). The PHC

and RSC/PCC similarity matrices were significantly related to the context matrix (PHC:

M = 0.15; RSC/PCC: M = 0.81; both p < 0.0001; Fig. 3.3A and 3B) while the relationship

failed to reach significance for the hippocampus similarity matrix (M = 0.012, p = 0.71).
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We also tested the hypothesis that PRC carries object information; however, the relationship

between the PRC similarity matrix and both the object matrix and the context matrix failed

to reach significance (object: M = 0.032, p = 0.30; context: M = 0.032, p = 0.32).

We next performed a searchlight analysis within the hippocampus to investigate whether

there was a relationship to the context matrix in a portion of the hippocampus, which

may have been obscured by uninformative voxels. We used a searchlight radius of 3 voxels

within the sphere searchlight function in PyMVPA. A significant cluster was observed in

the left posterior hippocampus (33 voxel cluster, parametric voxel-wise threshold p < 0.05;

Fig. 3.3C). A follow-up analysis, in which we warped the searchlight cluster mask to each

participant’s native space and ran an ROI analysis similar to the main analysis, indicated

that the cluster itself was significantly related to the context matrix (p = 0.017; see Etzel et

al., 2013). As discussed by Etzel et al. (2013), the follow-up analysis is circular, however it is

required in order to conclude that the cluster itself is informative; therefore, the significant

effects from this analysis bolster the claim that the hippocampal cluster is significantly

related to the context matrix.

To eliminate the possibility that the results in PHC and RSC/PCC were driven solely by

strong relationships between an event and “itself”—i.e., because the identity matrix is weakly

correlated to the context matrix—we performed a control analysis in which we excluded the

entries from the main diagonal of the matrix. The results maintained in both PHC and

RSC/PCC (PHC: M = 0.15; RSC/PCC: M = 0.78; both p < 0.0001) and in the hippocam-

pal searchlight cluster (p < 0.01). Conversely, the similarity matrix in a control region—the

left precentral gyrus (primary motor cortex)—failed to exhibit any sign of a relationship

(M = 0.0072; p = 0.85); instead, it was significantly related to the correct response ma-

trix (M = 0.26, p < 0.0001; Fig. 3.4). In contrast, the relationship between the PHC and

RSC/PCC similarity matrices and the correct response matrix failed to reach significance

(PHC: M = −0.0055, p = 0.86; RSC/PCC: M = 0.029, p = 0.73; Fig. 3.4). These results
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Figure 3.4: Investigation of the relationship to the correct response matrix. Permutation
analysis revealed a significant relationship between the left precentral gyrus (lPCG) similarity
matrix and the correct response matrix (M = 0.26, p < 0.0001). There was no sign of a
relationship between the correct response matrix and the RSC/PCC and PHC similarity
matrices (RSC/PCC: M = 0.029, p = 0.73; PHC: M = −0.0055, p = 0.86).

eliminate the possibility that: 1) the relationship between the similarity matrices and the

context matrix was driven by correlations between patterns of activity in response to an event

and “itself”, 2) all cortical regions contain information about context, 3) the relationships

to the context matrix were confounded by key-press differences between events in opposing

contexts.

We next tested the hypothesis that PHC, RSC/PCC, and the hippocampal searchlight cluster

(sl-HIPP) contain similar representations of context on a trial-by-trial basis and thus are

related in their processing of contextual information. To address this question, we performed

a variant of “informational connectivity” (Coutanche and Thompson-Schill, 2013; Huffman
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and Stark, 2014), which we refer to here as informational correlativity. Briefly, we first

extracted individual trial estimates of activity (Turner et al., 2012). We then calculated how

much like both contexts the pattern of activity was on each trial. We then created a trial-

by-trial time-series (for related approaches see: Rissman et al., 2004; Huffman and Stark,

2014), in which the value for each trial was set to the correlation to the same context minus

the correlation to the other context (Coutanche and Thompson-Schill, 2013). There was a

significant relationship, as measured by Spearman’s rank correlation, between trial-by-trial

context representation in PHC and RSC/PCC (M = 0.34, p < 0.0001) and both cortical

regions and the hippocampus (both M = 0.085, p < 0.0001; Fig. 3.3D).

Investigation of the representation of items in context

To test the hypothesis that PHC and RSC/PCC contain item-in-context information, we

calculated z[r] Spearman’s rank correlation between each participant’s similarity matrix and

the item-in-context matrix. The RSC/PCC similarity matrix was significantly related to the

item-in-context matrix (M = 0.14, p < 0.01; Fig. 3.3E) but the relationship failed to reach

significance for the PHC similarity matrix (M = 0.012, p = 0.76). To investigate whether

the RSC/PCC similarity matrix carried information about items irrespective of context, we

generated an item-out-of-context matrix which contains uniformly large values for events

which shared the same items but different contexts and uniformly small values for events

which contain different items and different contexts. The relationship between the RSC/PCC

similarity matrix and the item-out-of-context matrix failed to reach significance (M = 0.047,

p = 0.32), suggesting that RSC/PCC contains conjunctive representations of items in con-

text. To further investigate whether RSC/PCC contains item-in-context information, we per-

formed multidimensional scaling. Multidimensional scaling reduces high-dimensional data

to a few dimensions, providing a straightforward method to visualize relationships within

similarity matrices (Kriegeskorte et al., 2008a,b). The first two dimensions captured by mul-
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tidimensional scaling were: 1) context, 2) items (Fig. 3.3F). Taken together, these results

suggest that RSC/PCC contains conjunctive representations of items bound to the context

in which they occur.

Investigation of the relationship between RSC/PCC representations and behav-

ior on the associative memory task

Our results (Fig. 3.3B,E-F) revealed a clear relationship (i.e., p < 0.01) between the similarity

matrix in RSC/PCC and both the context matrix and the item-in-context matrix. Therefore,

we generated a proposed model of representations in RSC/PCC (Fig. 3.3G), which is ranked

in descending order of similarity: 1) events that shared the same context and items, 2)

events with the same context but different items, 3) events with different contexts. There

was a significant relationship between model fit (z[r] Spearman’s rank correlation between the

RSC/PCC similarity matrix and our proposed model) and proportion correct (Spearman’s

rank correlation = 0.51, t18 = 2.51, p < 0.05; Fig. 3.3H), which maintained when controlling

for the effect of head motion (partial Spearman’s rank correlation = 0.47, t17 = 2.18, p <

0.05), suggesting that the relationship between the model fit of the RSC/PCC similarity

matrix and behavioral performance was not influenced by head motion.

Investigation of representations in parahippocampal place area and retrosplenial

complex

There has been extensive evidence of scene and context processing in the parahippocampal

place area (PPA) and the retrosplenial complex (RS-Complex; e.g., Epstein and Kanwisher,

1998; Epstein et al., 2007; Julian et al., 2012; Vass and Epstein, 2013, 2016; Marchette et al.,

2014, 2015). These regions are in close anatomical proximity to the PHC and RSC/PCC

ROIs, however the ROIs are largely non-overlapping. Specifically, PPA tends to be located
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Figure 3.5: Investigation of representations in parahippocampal place area (PPA) and retro-
splenial complex (RS-Complex, also called “RS-C” in mask images). A) Average correlation
matrices and ROI masks relative to PHC and RSC/PCC (LH = left hemisphere; RH = right
hemisphere). B) Permutation analysis revealed a significant relationship between the context
matrix and the PPA and RS-Complex similarity matrices (PPA: M = 0.61, p < 0.0001; RS-
Complex: M = 1.03, p < 0.0001). C) Permutation analysis revealed a significant relationship
between the item-in-context matrix and the PPA and RS-Complex similarity matrices (PPA:
M = 0.15, p < 0.005; RS-Complex: M = 0.13, p < 0.01).

posterior to PHC (i.e., along the parahippocampal gyrus, but posterior to the landmarks like

the splenium of the corpus callosum) and retrosplenial complex tends to be located posterior

to RSC/PCC (anatomical boundaries are shown in Fig. 3.5A). Within the anatomical masks

for PPA and RS-Complex, we selected the 100 most active voxels from each hemisphere

using a contrast of events greater than perceptual baseline. We combined the masks into

bilateral PPA and RS-Complex. Similar to the results in RSC/PCC, the PPA and RS-

Complex similarity matrices were significantly related to the context matrix (PPA:M = 0.61,

p < 0.0001; RS-Complex: M = 1.04, p < 0.0001; Fig. 3.5B) and the item-in-context matrix

(PPA: M = 0.15, p < 0.005; RS-Complex: M = 0.13, p < 0.01; Fig. 3.5C).
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Figure 3.6: Investigation of representations in V1. A) Average correlation matrix. B)
Permutation analysis revealed a significant relationship between the V1 similarity matrix
and the context matrix (M = 1.23, p < 0.0001), the item-in-context matrix (M = 0.16,
p < 0.01), and the item-in-order-in-context matrix (M = 0.21, p < 0.005). C) V1 mask.
D) Proposed model of V1 representations. E) There was a significant relationship between
model fit and performance on the task (Spearman’s rank correlation = 0.58, t17 = 2.97,
p < 0.01).

Investigation of representation in a control visual region: V1

Given that we used visual stimuli, we aimed to determine whether the above findings were

limited to classically-defined scene and context regions or whether we would find similar

effects in early visual areas. We ran the same analysis using V1 as an ROI. We found a

similar pattern of results to RSC/PCC, PPA, and RS-Complex, including a relationship to

both the context matrix (M = 1.23, p < 0.0001) and the item-in-context matrix (M = 0.16,

p < 0.01). Similar to the findings in RSC/PCC, the relationship to the item-out-of-context
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matrix failed to reach significance (M = 0.014, p = 0.81). Notably, we also found evidence

for a relationship to the item-in-order-in-context model (M = 0.21, p < 0.005; Fig. 3.6A-

C). We generated a proposed model of representations in V1 (Fig. 3.6D), which is ranked

in descending order of similarity: 1) identical events, 2) events with the same stimuli but

switched order, 3) events with the same context but different items, 4) events with different

contexts. There was a significant relationship between model fit in V1 and proportion correct

(Spearman’s rank correlation = 0.58, t17 = 2.97, p < 0.01; Fig. 3.6E), which maintained

when controlling for the effect of head motion (partial Spearman’s rank correlation = 0.58,

t16 = 2.88, p = 0.01; note, one participant was dropped from the analysis due to low model

fit, however, the effect was stronger, for both approaches, when the participant was included

in the analysis).

Whole-brain searchlight analysis

Finally, we report the results of an exploratory whole-brain searchlight analysis (3 voxel

radius) which was conducted to investigate the prevalence of the relationship to each of

our model matrices. We ran the searchlight in native space and warped the results to our

group template using ANTs. For each contrast, we used a voxel-wise threshold of p < 0.01

(parametric) and a cluster threshold of p < 0.05 (cluster threshold was determined using

Monte Carlo simulation with a simulated blur of 3.75 mm FWHM, i.e., half of the searchlight

radius). First, we investigated the relationship to the context matrix. Next, we masked

the whole-brain searchlight results for the item-in-context matrix to only include regions

that were significantly related to the context matrix. Finally, we masked the whole-brain

searchlight results for the item-in-order-in-context matrix to only include regions that were

significantly related to both the context matrix and the item-in-context matrix. The overlap

map was warped to an inflated brain for visualization using FreeSurfer. The analysis revealed

widespread relationships to the context matrix (Fig. 3.7). Additionally, several regions were
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Figure 3.7: Whole-brain searchlight analysis revealed context clusters in the occipital lobe
(nearly the entire lobe bilaterally), the temporal lobe, the frontal lobe, and the parietal
lobe (shown in red). Additionally, there were distributed clusters that survived the union
of context and item-in-context (shown in orange) as well as the union of context, item-in-
context, and item-in-order-in-context (shown in yellow).

related to both the context matrix and the item-in-context matrix. Finally, several regions

were related to all three matrices. While there were significant clusters in all four lobes, the

most prominent findings were in the occipital lobes, where many voxels were significantly

related to all three matrices.

Interim Summary

The results from Experiment 1 provide clear evidence for a relationship between the con-

text matrix and the similarity matrices in the left posterior hippocampus, parahippocampal

cortex, RSC/PCC, PPA, and RS-Complex—i.e., patterns of activity in these regions could
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be used to discriminate between events that contained different videos (our operationally

defined contexts). However, our results revealed that patterns of activity in V1 could be

used to successfully discriminate between all aspects of events—i.e., the V1 similarity ma-

trix was significantly related to the context matrix, the item-in-context matrix, and the

item-in-order-in-context matrix. Moreover, a whole brain searchlight analysis revealed rela-

tionships to all three matrices throughout the brain, but the most prominent results were

located in the occipital lobes. Taken together, the interpretation of our ROI-based results

could be confounded by the low-level visual differences between our stimuli. Our primary aim

in Experiment 2 was to investigate whether our ROIs would still carry context information

after eliminating low-level differences between our contexts.

3.3.2 Experiment 2

There are many possible approaches to reduce the influence of low-level features, but we chose

to investigate whether our ROIs exhibit invariant representations of context (see Discussion

for other possible approaches). Specifically, we used multiple images to define our contexts

and objects. We also used a combination of stimulus filtering and computational model

testing to attempt to eliminate low-level differences between our contexts and objects. Given

that the nature of the associative memory task was unchanged, we hypothesized that regions

that carry information about contexts and objects—as those terms relate to performance on

the associative memory task—should do so in an invariant manner. Conversely, if our ROI-

based results from Experiment 1 were influenced by low-level stimulus features, then we

should fail to observe a relationship to the context matrix in our ROIs.
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Figure 3.8: The low-level confound was attenuated in Experiment 2. The relationship be-
tween the V1 similarity matrix and both the context matrix and the object matrix failed
to reach significance (context matrix: M = −0.029, p = 0.81; object matrix: M = 0.0025,
p = 0.99). Trialwise analysis revealed a significant relationship between the empirical V1
similarity matrix and the model V1 similarity matrix (M = 0.019, p < 0.0001).

Investigation of representation in V1

First, we investigated whether our stimulus filtering and computational modeling approaches

removed the low-level visual confound that was observed in Experiment 1. Importantly, the

V1 similarity matrix showed no sign of a relationship to either the context matrix (M =

−0.029, p = 0.81) or the object matrix (M = 0.0025, p = 0.99; Fig. 3.8). Next, a positive

control analysis was performed in order to demonstrate a relationship between the empirical

V1 similarity matrix and the model V1 similarity matrix. We conducted a trialwise analysis

which enabled us to model activity in response to both the scene image and the object image

on each trial. Specifically, the V1 model was “shown” the same stimulus sequence as the

participant. On each trial, the V1 model response vectors were extracted in repsonse to the

scene image and in response to the scene and object images. The resultant vectors were

combined using weighted averaging (4/5 of the scene only vector plus 1/5 of the scene plus

object vector). The mean pattern of activity was removed within the odd and even splits, and

correlation matrices were generated by correlating the pattern of activity across all of trials

across the odd and even splits. A similar approach was conducted to generate the empirical

similarity matrix (also see: Informational correlativity analysis). We calculated Spearman’s

rank correlation between the trialwise empirical V1 similarity matrix and the model V1
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Figure 3.9: Investigation of invariant context representation. The relationship between the
context matrix and the PHC, RSC/PCC, PPA, and RS-Complex similarity matrices failed
to reach significance (PHC: M = 0.011, p = 0.80; RSC/PCC: M = 0.033, p = 0.71; PPA:
M = 0.029, p = 0.69; RS-Complex: M = 0.12, p = 0.051).

similarity matrix using the motion censoring steps described for representational correlativity

analysis. Trialwise analysis revealed a significant relationship between the empirical V1

similarity matrix and the model V1 similarity matrix (M = 0.019, p < 0.0001; Fig. 3.8).

Note, the relationship between the two matrices was numerically small but highly reliable,

which was expected given that individual trial estimates of activity were used for the analysis.

We also observed a significant relationship between the V1 similarity matrix and the response

matrix (M = 0.38, p < 0.005), which was likely driven by the hemifield differences of the

selected responses.

Investigation of the representation of context

The results in V1 suggest that the low-level visual confound has been, at the very least,

attenuated in Experiment 2. We next investigated whether the relationship to the context
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matrix maintained in our scene and context processing ROIs. Permutation analysis revealed

a severely diminished relationship between the PHC, RSC/PCC, PPA, and RS-Complex

similarity matrices and the context matrix relative to Experiment 1 (PHC: M = 0.011,

p = 0.80; RSC/PCC: M = 0.033, p = 0.71; PPA: M = 0.029, p = 0.69; RS-Complex:

M = 0.12, p = 0.051; Fig. 3.9). Thus, reducing (or eliminating) the low-level perceptual

differences across contexts markedly decreased the substantial contextual effects that we

observed in Experiment 1.

Activation analysis: Events versus perceptual baseline

To ensure that the data were reliable and that the task was significantly activating our ROIs,

a standard activation analysis (events vs perceptual baseline) was conducted. This revealed

significantly greater BOLD activity for events than the perceptual baseline task in PHC,

RSC/PCC, PPA, and RS-Complex (PHC: t9 = 6.4443, p < 0.0005; RSC/PCC: t9 = 2.9574,

p < 0.02; Left anatomical PPA: t9 = 7.3008, p < 0.0001; Right anatomical PPA: t9 = 6.6446,

p < 0.0001; Left anatomical retrosplenial complex: t9 = 4.5301, p < 0.005; Right anatomical

retrosplenial complex: t9 = 4.2866, p < 0.005). Additionally, a whole-brain analysis revealed

extensive activation throughout the ventral temporal lobe (data not shown). These findings

suggest that all of our scene ROIs responded to the events relative to the baseline task even

though there was little evidence for a relationship to the context matrix.

Investigation of object representation

To test the hypothesis that PRC carries object-level information (even when the low-level

stimulus features have been matched), we generated an object matrix, which contains uni-

formly large values for events that share the same objects and uniformly small values for

events that contain different objects (Fig. 3.2B). Permutation analysis revealed a significant
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relationship between the PRC similarity matrix and the object matrix (M = 0.28, p = 0.002),

while the relationship to the context matrix failed to reach significance (M = −0.022,

p = 0.81; Fig. 3.10A). We next tested the prevalence of the relationship to the object

matrix using a whole-brain searchlight analysis (3 voxel radius). A significant cluster was

observed in left PRC, supporting the ROI-based results (57 voxel cluster, parametric voxel-

wise p < 0.01; Fig. 3.10B). Additionally, two clusters in the right anterior temporal cortex

were observed (53 and 42 voxel clusters; middle and left panels of Fig. 3.10B, respectively).

A follow-up analysis revealed that all three clusters themselves were significantly related to

the object matrix (cluster 1: M = 0.44, p < 0.0005; cluster 2: M = 0.38, p < 0.0005; cluster

3: M = 0.40, p = 0.011, one participant was excluded from the cluster 3 analysis due to

insufficient coverage). As discussed by Etzel et al. (2013), the follow-up analysis is circular,

however it is required in order to conclude that the cluster itself is informative; therefore,

the significant effects from this analysis bolster the claim that the clusters are significantly

related to the object matrix.

Testing for a double-dissociation between V1 and PRC

We next performed trialwise analysis to investigate whether there was a relationship between

PRC and the V1 model. In contrast to V1, the relationship between the PRC similarity

matrix and the model V1 similarity matrix failed to reach significance (M = 0.0025, p = 0.36;

left panel Fig. 3.10C). A nonparametric difference test revealed that the relationship between

the empirical V1 similarity matrix and the model V1 similarity matrix was significantly

stronger than the relationship between PRC similarity matrix and the model V1 similarity

matrix (M = 0.017, p < 0.0001; middle panel Fig. 3.10C). Finally, we observed some evidence

that the relationship between the PRC similarity matrix and the object matrix was stronger

than the relationship between the V1 similarity matrix and the object matrix (M = 0.28,

one-tailed p < 0.05; right panel Fig. 3.10C). We would like to emphasize that we advocate for
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Figure 3.10: Investigation of invariant object representation. A) Permutation analysis re-
vealed a significant relationship between the PRC similarity matrix and the object matrix
(M = 0.28, p = 0.002) but the relationship to the context matrix failed to reach significance
(M = −0.022, p = 0.81). B) A whole-brain searchlight analysis revealed a cluster in the left
PRC as well as two other clusters in the right anterior temporal lobe. C) The relationship
between the trialwise PRC similarity matrix and the trialwise V1 model similarity matrix
failed to reach significance (M = 0.0025, p = 0.36; left panel), the relationship between the
trialwise V1 similarity matrix and the trialwise V1 model similarity matrix was significantly
stronger that the relationship between the trialwise PRC similarity matrix and the trialwise
V1 model similarity matrix (M = 0.017, p < 0.0001; middle panel), and there was evidence
that the relationship between the PRC similarity matrix and the object matrix was stronger
than the relationship between the V1 similarity matrix and the object matrix (M = 0.28,
one-tailed p < 0.05; right panel).
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the use of two-tailed permutation tests (e.g., Equations 1 and 2); however, to demonstrate

feasibility, we report the results of a one-tailed difference test.

3.4 Discussion

Our experiments aimed to investigate whether subregions of the MTL carry information

about context, items, order, and their conjunctions. We built upon a well-designed approach

used in the rodent (Rajji et al., 2006; Komorowski et al., 2009, 2013; Navawongse and

Eichenbaum, 2013; Tort et al., 2013; McKenzie et al., 2014; Farovik et al., 2015; Keene

et al., 2016) and observed many analogous patterns using fMRI in humans. Specifically,

we observed clear evidence of a relationship between the context matrix and the similarity

matrices in the posterior hippocampus, PHC, RSC/PCC, PPA, and RS-Complex, however

such information was also present in V1. Controlling for low-level visual differences across

contexts markedly diminished the relationships to the context matrix. These findings raise

important questions concerning not only how we attempt to understand or define context, but

also how we attempt to decode information from brain regions to infer what they represent.

While our experimental design in Experiment 2 tested for an abstract notion of context—i.e.,

invariant representations across different instances of the context—it need not be the case

that context is defined in such an abstract manner. In fact, there are many other possibilities

for experimental designs that aim to investigate context and object representation. We will

expand upon these issues below.
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3.4.1 Investigation of the representation of distinct contexts and

distinct objects

In Experiment 1, we aimed to create a human version of the context-guided object asso-

ciation task to investigate representations in the hippocampus, PHC, and RSC/PCC. We

showed that both the PHC and the RSC/PCC similarity matrices were significantly related

to the context matrix. The results of a within-hippocampus searchlight analysis revealed a

cluster of voxels that were significantly related to the context matrix in the left posterior

hippocampus, and a follow-up analysis revealed that the cluster itself was significantly re-

lated to the context matrix. Additionally, by showing that the hippocampus cluster, PHC,

and RSC/PCC contain similar representations of context on a trial-by-trial basis, our re-

sults support the hypothesis that the hippocampus, PHC, and RSC/PCC are intimately

related in processing contextual information (Vann et al., 2009; Aggleton, 2010; Ranganath

and Ritchey, 2012; Bucci and Robinson, 2014). These results extend our previous finding of

stimulus-dependent informational correlativity between RSC/PCC and PHC from the rep-

resentation of different categories (e.g., faces and scenes; Huffman and Stark, 2014) to the

representation of individual contexts. There are many reasons to expect that fMRI data will

be noisier than neurophysiological data in the hippocampus. For example, previous reports

have suggested a lack of topographic organization of place cells in the hippocampus (Redish

et al., 2001) and each of our voxels contains thousands of cells. The largest differences in

patterns of activity in the rodent dorsal hippocampus (the homolog of human posterior hip-

pocampus; McKenzie et al., 2014) and medial entorhinal cortex (Keene et al., 2016) were

observed in response to changes to the context; therefore, the observed relationship to the

context matrix in the posterior hippocampus is consistent with the previous reports. More-

over, our findings extend the results from the rodent hippocampus and medial entorhinal

cortex to the human hippocampus, PHC, and RSC/PCC.

We next showed that that in addition to its relationship to the context matrix, the RSC/PCC
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similarity matrix was related to the item-in-context matrix. Multidimensional scaling sug-

gested that the first two dimensions represented within the RSC/PCC similarity matrix were

the event context followed by the event items. These results suggest that RSC/PCC contains

conjunctive item-in-context representations when the item and context stimuli are distinct.

These findings support studies in the rodent that demonstrated that RSC is necessary for

performance on tasks that require the formation of associations between items and locations

(Ennaceur et al., 1997; Vann and Aggleton, 2002; Parron and Save, 2004). Furthermore,

our results extend to human RSC/PCC the finding that the medial entorhinal cortex carries

conjunctive item-in-context information in addition to spatial information (e.g., context) as

rats performed the context-guided object association task (Keene et al., 2016).

Our results provide clear evidence for a relationship between the RSC/PCC similarity matrix

and both the context matrix and the item-in-context matrix. We next asked whether this

relationship is related to task performance. We generated a proposed model in which repre-

sentations are hypothesized to be maximally similar for events that share the same context

and items, second most similar for events that take place in the same context but with differ-

ent items, and least similar for events that take place in a different context (Fig. 3.3G). There

was a significant relationship between RSC/PCC model fit and behavioral performance (as

measured by Spearman’s rank correlation), and the effect maintained when controlling for

the potentially confounding effect of head motion, which is at least consistent with a role for

RSC/PCC in associative memory performance (Ennaceur et al., 1997; Vann and Aggleton,

2002; Parron and Save, 2004; Bucci and Robinson, 2014).

We next investigated representations in PPA and RS-Complex, which have been extensively

studied in human neuroimaging studies of the processing of scenes and spatial information

(e.g., Epstein and Kanwisher, 1998; Epstein et al., 2007; Morgan et al., 2011; Julian et al.,

2012; Vass and Epstein, 2013, 2016; Marchette et al., 2014, 2015). As mentioned above,

PPA and RS-Complex are in close anatomical proximity to PHC and RSC/PCC, respec-
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tively; however, the ROIs are largeley independent (Fig. 3.5A) and PPA and RS-Complex

are functional ROIs whereas PHC and RSC/PCC are anatomical ROIs. The results in

PPA and RS-Complex were similar to our findings in RSC/PCC. Specifically, the similar-

ity matrices in both regions were significantly related to both the context matrix and the

item-in-context matrix. As we will subsequently discuss, a critical question arises about

whether our results are dependent on low-level differences between the stimuli; however,

whether or not the representations in RSC/PCC, PPA, and RS-Complex are influenced by

low-level visual features, our results suggest that these regions carry information not only

about scenes or contexts but also, at least under certain conditions, about item-in-context

information. Similarly, even if previous results in the rodent (Komorowski et al., 2009, 2013;

Navawongse and Eichenbaum, 2013; Tort et al., 2013; McKenzie et al., 2014; Keene et al.,

2016) are dependent on low-level differences between the stimuli, it does not detract from

the conclusion that the hippocampus and MTL cortical regions have access to all of the

necessary components for “what-where” processing. As we will discuss in more detail later,

however, such a finding could hinder the interpretation of the organization of representations

in the MTL.

The V1 similarity matrix was related to the context matrix and the item-in-context matrix,

suggesting that our results in RSC/PCC, PPA, and RS-Complex could have been influenced

by low-level visual differences between the stimuli. The V1 similarity matrix was also related

to the item-in-order-in-context matrix, suggesting that early processing areas can exhibit dis-

tinct patterns of activity in response to a reconfiguration of the same stimuli. Moreover, we

observed a significant relationship between representations in V1 and proportion correct.

We cannot rule out the possible contribution of attention or other task factors, however

we suggest that these results could be interpreted in at least two ways. First, significant

brain-behavior relationships are suggestive but not sufficient to conclude that a given brain

region is involved in mnemonic processing. Second, the significant brain-behavior correla-

tion is at least consistent with the notion that V1 could play a role in associative memory
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(cf. Weinberger, 2004). Future studies which employ pre-training and post-training scanning

in addition to including control stimuli (e.g., identically structured events with an equal num-

ber of exposures but without a learned behavioral response or outcome) will be necessary to

elucidate the possible mnemonic contribution of V1 and RSC/PCC; however, even in these

cases it will be difficult to rule out between-condition differences in attention. Relatedly,

previous findings in the rodent suggest that the hippocampus develops conjunctive item-in-

position neurons over the course of training on the context-guided object association task

(Komorowski et al., 2009; Tort et al., 2013). These results are important because they show

changes to representations in the hippocampus as a result of learning, however it is not

known how learning alters representations in cortical regions nor can it be ruled out that

training causes an animal to form more stereotyped behavior or expectations which could al-

ter representations in regions outside of the MTL. Altogether, the results in V1 highlight the

difficulty of disentangling the role of a brain region in memory versus processing, especially

given that MTL regions, and the hippocampus in particular, receive inputs from all sensory

modalities (e.g., in addition to the well-known modulation of hippocampal firing based on

visual cues, hippocampal neurons have been shown to be modulated by auditory cues: Itskov

et al., 2012; gustatory cues: Ho et al., 2011; olfactory cues: Zhang and Manahan-Vaughan,

2015; and tactile cues: Gener et al., 2013).

We performed an exploratory whole-brain searchlight analysis to investigate the prevalence

of the relationship to each of our matrices. Our results revealed relationships to the context

matrix throughout the brain. Additionally, there were distributed regions that were related

to both the context and the item-in-context matrix as well as to all three matrices. Notably,

the strongest effects were observed in the occipital lobes, where many voxels were related to

not only the context matrix but also the item-in-context matrix and the item-in-order-in-

context matrix. In hindsight this result is not surprising given the visual nature of the events,

but it could provide a challenge to the conclusion that context plays an organizing role for

processing within the MTL (McKenzie et al., 2014, 2015; Farovik et al., 2015; Keene et al.,
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2016). In the rodent context-guided object association task, the contexts differed in terms of

visual and tactile cues and the items differed in terms of the digging media and the olfactory

cues. Because the stimuli were changed so dramatically and in a relatively unconstrained

manner it is difficult to interpret the degree to which regions differed in their responses. In

Experiment 1, we used distinct video clips for our context (full screen display) and distinct

images of objects for our item stimuli (150 by 150 pixels), thus the physical differences

between our contexts were larger than the physical differences between our objects (as was

the case in the degree of differences in the rodent experiments). We suggest that one way to

demonstrate that context plays an organizing role of representations in the MTL would be to

manipulate the contexts and objects to a physically similar degree within the same modality

(e.g., visual features). If the results are similar under these conditions, then it would bolster

the argument that the MTL organizes events into a context-based schema (McKenzie et al.,

2015), largely eliminating the potential concerns raised here.

Previous studies have shown differential place cell firing in the rat hippocampus in response

to the same physical stimuli as a result of behavioral conditions (Wood et al., 2000; Smith

and Mizumori, 2006b) and expectations (Skaggs and McNaughton, 1998; Allen et al., 2016),

suggesting that psychological context can play a dramatic role even within the same phys-

ical environment (for reviews see: Smith and Mizumori, 2006a; Smith and Bulkin, 2014).

A human neuroimaging study used a sequence task to investigate the influence of temporal

context on representations in the hippocampus (Hsieh et al., 2014). They reported signif-

icantly more similar patterns of activity in response to the same item in the correct order

than in response to the same item in a random order, suggesting that temporal context

stabilizes hippocampal representations. A related study in the rodent observed cells in the

hippocampus that carried information about temporal context (Allen et al., 2016). Designs

that manipulate temporal context are interesting because they allow investigation of the in-

fluence of context without manipulating the physical stimulus. These examples suggest that

context undoubtedly plays an important role in the organization of representations in the
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hippocampus, however future experiments should test the degree to which physical versus

psychological factors influence representations in both rats and humans. Notably, studies

that have recorded simultaneously from V1 and the hippocampus have shown “place cell”

activity in V1 (Ji and Wilson, 2007) which was also shown to precede place cell activity in the

hippocampus (Haggerty and Ji, 2015). Thus, a more complete understanding of the sensory

versus cognitive influences on representations in the MTL can be realized by studies that

incorporate simultaneous recordings in sensory cortices and the MTL. Finally, we argue that

developing cross-species memory tasks (as we have attempted here) is vital to furthering our

understanding of the neurobiology of learning and memory, but the present results indicate

that we need to be cautious when designing visual tasks for humans. For example, human

neuroimaging studies have indicated that patterns of activity in early visual cortex can be

used to successfully decode landmark identity (Morgan et al., 2011; Marchette et al., 2015),

view within a city (i.e., images of same location and same facing direction; Vass and Epstein,

2013), and the visual cues that are present in a virtual environment (Op de Beeck et al.,

2013). We suggest that image manipulation and model testing of the stimulus set before

running an experiment can provide one method for avoiding a low-level visual confound. We

provide an example of this approach in Experiment 2.

3.4.2 Investigation of invariant context representation

In Experiment 2, we aimed to test the extent to which the results from Experiment 1 were

influenced by low-level differences between the stimuli. We used a combined approach of

image manipulation (histogram matching) and computational model testing to eliminate

the presence of category information from the low-level visual features. In stark contrast to

the results of Experiment 1, there was no sign of a relationship between the V1 similarity

matrix and both the context matrix and the object matrix. These results suggest that we

adequately reduced the low-level visual confound in this stimulus set. Importantly, two
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control analyses showed that V1 contained task-relevant information. First, a trialwise

analysis revealed a relationship between the empirical V1 similarity matrix and the model

V1 similarity matrix. Second, there was a significant relationship between the V1 similarity

matrix and the response matrix, which likely reflects the hemifield differences based on the

left versus right response (see Fig. 3.2A). The fact that there was a relationship between the

response matrix and the V1 similarity matrix provides further evidence to suggest that the

low-level confound was attenuated—i.e., these results suggest that the image information

was canceled out and that the only statistically reliable visual information at the level of

between run analysis was the filling in of the box in either hemifield. Taken together, the

positive control analyses in V1 establish data quality.

We next investigated whether PHC, RSC/PCC, PPA, and RS-Complex contain invariant

representations of context. We found a severely diminished relationship between the similar-

ity matrices in these regions and the context matrix relative to Experiment 1. However, we

do not want to strongly interpret these relatively null results. While the effect was clearly

diminished, we cannot say it was entirely eliminated or that it would not be observed under

other circumstances. For example, it is possible that our sample size was too small to detect

significant relationships in these regions. Furthermore, it is possible that representations

exist on a more fine-grained level than is afforded in our current fMRI experiment. Future

studies using neurophysiology and fMRI will be useful to help elucidate the conditions under

which these regions exhibit invariant context coding. For example, Marchette et al. (2015)

investigated whether there were stable representations between indoor and outdoor images

of landmarks. They reported invariant representations across indoor and outdoor images of

the same landmark in both PPA and RS-Complex. Moreover, they provided evidence to sug-

gest that such representations might depend on landmark familiarity in PPA. Importantly,

pixelwise correlation, HMAX, GIST, and early visual cortex failed to exhibit invariant rep-

resentations across indoor and outdoor images, suggesting that low-level visual features were

not sufficient for indoor-outdoor generalization. Future studies which manipulate stimulus
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familiarity will be useful for understanding the involvement of the MTL, RSC, PPA, and RS-

Complex in context representation as well as the role of memory in the formation of these

representations. For example, it is possible that our participants did not have real-world

experience with Saint Peter’s Basilica or with the U.S. Capitol Building which led to little

evidence for invariant context representation. Importantly, all of our scene ROIs showed

greater BOLD activation for events compared to the perceptual baseline task, suggesting

that they carried information about events compared to the baseline.

3.4.3 Investigation of invariant object representation

In contrast to the relative lack of findings for invariant context representation, we observed

a significant relationship between the PRC similarity matrix and the object matrix in Ex-

periment 2. These results strongly support the hypothesis that PRC is involved in the

representation of objects. A whole-brain searchlight analysis revealed three significant clus-

ters, the first of which was centered in left PRC and the other two of which were located in

right anterior temporal lobe (one of which was in close proximity to PRC, containing some

overlapping voxels). Importantly, a follow-up analysis revealed that the clusters themselves

were significantly related to the object matrix. These results corroborate the ROI-based

approach and suggest that the relationship to the object matrix is relatively exclusive to the

more anterior portions of the MTL.

We propose that an important next step is to confirm that there is a dissociation between

representations in early visual areas (e.g., V1) and the representations in PRC, which mit-

igates the possibility that representations were inherited from earlier processing regions.

Accordingly, we tested for a double dissociation between representations in V1 and in PRC.

In our analysis, we used nonparametric difference tests to investigate representational differ-

ences between there regions. Specifically, after establishing that PRC was not related to the
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trialwise model V1 similarity matrix, we showed that the relationship between the empirical

V1 similarity matrix and the model V1 similarity matrix was stronger than the relationship

between the PRC similarity matrix and the model V1 similarity matrix. Next, we provided

evidence to suggest that the relationship between the PRC similarity matrix and the object

matrix was stronger than the relationship between the V1 similarity matrix and the object

matrix. These results provide evidence for higher-level representations in PRC than in V1

and suggest that PRC contains invariant car key and house key representations across mul-

tiple exemplars. Future studies could investigate whether these effects are dependent on the

associative memory task.

An alternative to the difference tests that we used in the present report would be to use a

partial correlation approach. For example, Clarke and Tyler (2014) used a partial correla-

tion approach to investigate representations throughout the visual stream. One benefit of

the partial correlation approach is that it is straightforward to implement in experiments

with larger and less constrained stimulus sets than we used in Experiment 2. In fact, Clarke

and Tyler (2014) used a stimulus set of 131 unique objects to investigate object representa-

tion. The results of their partial correlation representational similarity analysis suggest that

PRC represents fine-grained semantic information about individual objects. Importantly,

this effect maintained while holding the effect of a model of V1 representations constant

(among other models). Futhermore, they used a modeling approach to show that BOLD ac-

tivation in PRC was modulated by the confusability of objects. Taken together, their results

suggest a role for PRC in fine-grained semantic representations of objects (for review see:

Clarke and Tyler, 2015). Similarly, research in patient populations has revealed a necessary

role for the anterior temporal cortex, and PRC in particular, in naming highly confusable

objects (Kivisaari et al., 2012; Wright et al., 2015). Our results extend previous findings

by showing invariant representation of subordinate object categories (car keys versus house

keys). The differences in experimental design between our Experiment 2 and the approach

used by Clarke and Tyler (2014) provide converging evidence for the representation of fine-
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grained category information in PRC. These experimental designs can reveal complementary

information, thus we propose that both approaches will be useful for future studies.

3.4.4 Conclusion

The context-guided object association task has played an instrumental role in advancing

our understanding of representations within the MTL. Specifically, previous studies have

shown that the hippocampus (Komorowski et al., 2009, 2013; Navawongse and Eichenbaum,

2013; Tort et al., 2013; McKenzie et al., 2014) and adjacent cortical regions (Keene et al.,

2016) carry information about spatial and non-spatial aspects of events. Given that the MTL

receives inputs from all sensory modalities, an interesting question is the degree to which rep-

resentations in the MTL depend on low-level stimulus features. In Experiment 1, we provide

evidence that the hippocampus, PHC, and RSC/PCC are related to the context matrix. In

Experiment 2, we provide little evidence for invariant context representation, suggesting that

the results from Experiment 1 were largely influenced by low-level stimulus features. Our

results provide novel evidence for invariant object representation in PRC, which supports

the notion that PRC is involved in the representation of fine-grained semantic information.

Future studies should seek to elucidate the influence of physical versus psychological context

on representations in MTL as well as potential differences between rodents and humans.

The results of our experiments provide valuable insight into the types of experiments that

should be conducted to investigate item and context representation in the absence of low-

level confounds. First, future studies could manipulate the context and items to a physically

similar degree and within the same modality. Second, imaging/physiology data could be

collected before and after training, including control stimuli which consist of identically

structured events but without a learned behavioral repsonse or outcome. The inclusion of

control stimuli is important because it can establish the role of associative memory. The
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reverse type of experiment could also be used—i.e., testing whether representations of distinct

contexts become more similar as a result of similar associations across the contexts. Third,

the same stimuli can be used but with a different pre-event cue (e.g., a tone that signals

the context, importantly this signal would terminate well before object sampling). Finally,

future studies could further investigate invariant representation. The motivation for using

multiple images in Experiment 2 was that any time that fixed stimuli are used to define a

context or an object, there will necessarily be low-level differences between different contexts

and objects. Importantly, previous research has revealed interesting results under conditions

in which there were not observable low-level differences between stimuli (e.g., Marchette

et al., 2015), similar to our results in PRC. It will also be interesting to examine the role of

memory in invariant context and object representation.
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Chapter 4

A behavioral and model-based investigation

of human visual memory

Previous studies have indicated that healthy older adults are impaired in their ability to

mnemonically discriminate between previously viewed stimuli and similar lure stimuli. We

used a combined behavioral and model-based approach to test the hypothesis that healthy

aging is accompanied by a deficit in the ability to encode stimulus features. For our be-

havioral approach, we used a forced-choice variant of a mnemonic similarity task. For our

model-based approach, we found that a specific class of models from mathematical psychol-

ogy, global matching models, provide a qualitatively good fit to our empirical data in both

younger and healthy older adults. We found that decreasing the probability of successful

feature encoding in the models resulted in a similar pattern of results to the empirical data.

Collectively, our behavioral results extend to the forced-choice test format the finding that

healthy aging is accompanied by an impaired ability to discriminate between targets and

similar lures, and our modeling results suggest that a diminished probability of encoding

stimulus features is a candidate mechanism for memory changes in healthy aging. We con-

clude by discussing the ability of global matching models to account for findings in other

studies that have used mnemonic similarity tasks.
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4.1 Introduction

Previous research has established that healthy older adults exhibit impaired performance

on tests of associative memory. For example, a meta-analysis revealed that tests of source

memory are impaired to a greater degree than tests of item memory (Spencer and Raz,

1995). More generally, Naveh-Benjamin and colleagues developed and tested an associa-

tive deficit hypothesis to account for memory changes among healthy older adults (e.g.,

Naveh-Benjamin, 2000; Naveh-Benjamin et al., 2004; Old and Naveh-Benjamin, 2008b; for

meta-analysis see: Old and Naveh-Benjamin, 2008a). Specifically, they reported a greater

age-related impairment on tests of associative memory than tests of single item memory.

Other studies have noted a greater impairment on memory recall tests than on traditional

item recognition memory tests (i.e., targets vs unrelated foils; Craik and McDowd, 1987;

Danckert and Craik, 2013). Taken together, there is unequivocal evidence for an age-related

impairment on tasks that tax recollection and associative memory, with a more mild—and

sometimes not statistically significant—deficit on tests of simpler item recognition memory.

Previous studies from our laboratory and others have shown that there are conditions in

which healthy older adults exhibit a clear impairment on item recognition memory tasks. For

example, our laboratory previously developed a Mnemonic Similarity Task, which assesses a

participants’ ability to discriminate between previously viewed objects (i.e., targets), similar

lure objects, and unrelated foil objects (Kirwan and Stark, 2007; Yassa et al., 2011a,b;

Kirwan et al., 2012; Stark et al., 2013, 2015). The ability to discriminate between targets and

similar lures has been shown to be impaired in healthy older adults, with a relative sparing

of their ability to discriminate between targets and unrelated foils (Tonor et al., 2009; Yassa

et al., 2011a,b; Stark et al., 2013, 2015; Bennett et al., 2015). Importantly, working memory

versions of the task have failed to find age-related differences in the ability to discriminate

between targets and similar lures (e.g., Yassa et al., 2011a), suggesting a mnemonic rather

than a perceptual deficit in healthy older adults. Previous studies have used a test format in

115



which participants are instructed to respond “old” to exact repetitions of items seen during

the encoding phase, to respond “similar” to images which are similar to—but not exactly

the same as—a previously viewed image, and to respond “new” to images that they have

not seen in the context of the experiment (Kirwan and Stark, 2007; Tonor et al., 2009; Yassa

et al., 2011a,b; Kirwan et al., 2012; Stark et al., 2013, 2015; Bennett et al., 2015). Stark

et al. (2015) also used a test format that instructed participants to respond “old” only to

exact repetitions and to respond “new” to both similar lures and unrelated foils, including

a version with confidence ratings. The results from these tests have consistently shown an

age-related impairment in the ability to discriminate between targets and similar lures.

An unaddressed question is whether healthy older adults would exhibit impaired performance

on a forced-choice variant of the Mnemonic Similarity Task. In the present study, we used

several versions of the forced-choice procedure, similar to previous reports (Tulving, 1981;

Holdstock et al., 2002; Migo et al., 2009, 2014; Jeneson et al., 2010). One benefit of the

forced-choice test format is that it provides a method to assess memory performance which

is free from the potential confound of between-group differences in response criterion (Green

and Swets, 1966; Stanislaw and Todorov, 1999). In each of the test formats used here, we

displayed one target object and one distractor object and participants were instructed to

choose the exact object that they saw during the encoding phase; thus, we employed a two-

alternative forced-choice procedure. In the first test format, participants were shown a target

object and an unrelated foil, which we refer to as FC (A vs X), where FC is an acronym

for forced-choice. In the second test format, participants were shown a target object and its

corresponding similar lure, which we refer to as FCC (A vs A’), where FCC is an acronym for

forced-choice corresponding (Migo et al., 2009). In the third test format, participants were

shown a target object and a noncorresponding lure (i.e., a lure that is similar to a different

object), which we refer to as FCNC (A vs B’), where FCNC is an acronym for forced-choice

noncorresponding (Migo et al., 2009).
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The dual-process complementary learning systems model has been used to advance the notion

that patients with hippocampal damage will be impaired on the old/new test format with

targets and similar lures and on the FCNC (A vs B’) test format but will be relatively spared

on the FCC (A vs A’) test format, the FC (A vs X) test format, and the old/new test format

with targets and unrelated foils (Norman and O’Reilly, 2003; see also: Holdstock et al.,

2002; Migo et al., 2009, 2014). A study of a single patient with selective hippocampal damage

revealed impaired performance on the old/new test format with targets and similar lures and

intact performance on the FCC (A vs A’) test format, supporting the predictions from the

model (Holdstock et al., 2002). However, other studies with a larger sample of patients with

selective hippocampal damage have shown a similar impairment on both the FCC (A vs A’)

test format and the old/new test format with targets and similar lures (Bayley et al., 2008;

Jeneson et al., 2010). Additionally, Jeneson et al. (2010) revealed that the patients were

equally impaired on the FCC (A vs A’) test format, the FCNC (A vs B’) test format, and

the old/new test format with targets and similar lures. Although the results from patients

with hippocampal damage are equivocal, the forced-choice test format can provide further

insight into the organization of memory in younger adults and can elucidate the nature of

memory changes that occur in the course of healthy aging.

Tulving (1981) used images of scenes to investigate performance across the three forced-

choice test formats used in the present report. In a group of younger adults, Tulving (1981)

revealed that there was an effect of test format, such that participants performed best on the

FC (A vs X) test format, followed by the FCC (A vs A’) test format, followed by the FCNC

(A vs B’) test format. Similarly, previous reports have shown better performance on the FCC

(A vs A’) test format than the FCNC (A vs B’) test format in healthy middle-aged/older

adults (Jeneson et al., 2010), in healthy older adults (Migo et al., 2014), and in patients with

selective hippocampal damage (Jeneson et al., 2010). Hintzman (1988) revealed a similar

superiority for the FCC (A vs A’) test format compared to the FCNC (A vs B’) test format

in a study of word memory. Moreover, Hintzman (1988) showed that a global matching
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model, MINERVA 2, could account for the effect of test format.

While previous studies have shown differences in performance based on the forced-choice

test format, these studies have not investigated differences between younger adults and

healthy older adults. Our primary aim was to investigate whether healthy older adults

would exhibit impaired performance on the forced-choice version of the Mnemonic Similarity

Task. Additionally, previous studies that have reported an effect of test format used images

of scenes (Tulving, 1981), multiple encoding trials of images of objects (black and white

silhouettes: Jeneson et al., 2010; Migo et al., 2014; color images: Jeneson et al., 2010), and

judgments of the number of times that words were presented during the encoding phase

(Hintzman, 1988). Our second aim was to investigate whether younger and older adults

would exhibit an effect of test format in experiments that used images of objects (each target

item of which was viewed once during the encoding phase). To address these questions, we

conducted two behavioral experiments.

In Experiment 1, we included both younger and older adults and we used the three test

formats mentioned above: FC (A vs X), FCC (A vs A’), FCNC (A vs B’). In Experiment 2,

we aimed to replicate our findings from Experiment 1 and to rule out the possibility that the

presence of the FC (A vs X) test format was artificially impairing performance on the FCNC

(A vs B’) test format. In a within-subjects design, participants performed two study-test

cycles (with independent stimulus sets), one that included all three test formats and one

that did not include the FC (A vs X) test format. Our third aim was to investigate whether

a class of models from mathematical psychology—global matching models (e.g., Hintzman,

1984, 1988; Murdock, 1982, 1995)—could account for our empirical results in both younger

and healthy older adults. Specifically, we tested the hypothesis that healthy aging could be

modeled as an impaired ability to encode stimulus features. We conclude by discussing the

application of global matching models to interpret the results of other experiments that have

used the Mnemonic Similarity Task.
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4.2 Materials and Methods

4.2.1 Experiment 1

Participants

Participants were 32 younger adults (18-28 years old) and 27 healthy older adults (64-85

years old). Older adults were screened to ensure that they did not have a memory impair-

ment, similar to previous studies in our laboratory (Stark et al., 2013). Specifically, we

ensured that participants scored in the normal range for their age group on the Mini-Mental

Status Examination (MMSE; Crum et al., 1993) and the Rey Auditory Verbal Learning

Task (RAVLT; Rey, 1941). We excluded 3 older adults because they did not score within 1.5

standard deviations of the mean for their age. Additionally, we excluded one younger adult

due to very poor performance on our behavioral task (proportion correct ≈ 0.5 on all three

test formats; more than 10 standard deviations below the mean of the included participants

on the FC (A vs X) test format). Thus, 31 younger adults (26 female, 5 male) and 24 older

adults (19 female, 5 male) were included in our analysis.

Behavioral tasks

Participants performed an incidental encoding task in which they indicated, via button

press, whether they thought that the object in each picture was more of an “indoor” or an

“outdoor” object (Fig. 4.1A; Stark et al., 2013, 2015). The encoding phase consisted of 140

images, which were displayed for 2000 ms with a 500 ms interstimulus interval. Following

the encoding phase, participants performed a memory test, which contained three forced-

choice test formats (top of Fig. 4.1B): 1) FC (A vs X; i.e., a target and an unrelated foil),

2) FCC (A vs A’; i.e., a target and a corresponding similar lure), 3) FCNC (A vs B’; i.e.,
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a target and a noncorresponding lure [a lure object from a different pair]). On each test

trial, one object was presented on the left side of the screen and one object was presented

on the right side of the screen. Participants were told that on all trials they would view one

image that they saw during the indoor/outdoor task and one new image. Moreover, they

were told that on some trials the new image would be completely different than any of the

images from the indoor/outdoor phase whereas on other trials the image would be similar

to—but not exactly the same as—a previously viewed image from the indoor/outdoor phase.

Participants were instructed to select, via button press, the exact image that they saw during

the indoor/outdoor phase of the experiment. The images were displayed until the participant

made a response or for 4 seconds, at which point the image disappeared and there was an

unlimited response window. The target was randomly assigned to the left and right side of

the screen on a trial-by-trial basis. The test formats were presented in a random, intermixed

order. Participants performed 35 trials of each test format.

Our lab has previously calculated empirical estimates of the mnemonic similarity of the stim-

uli that we used in the present experiment (Lacy et al., 2011; Stark et al., 2013). Briefly, in

over 100 participants, the mean proportion of times that participants responded “old” to a

similar lure object was used as an index of mnemonic similarity (i.e., the higher the proba-

bility of responding “old” in response to a similar lure, the higher its mnemonic similarity).

The stimuli were rank ordered and divided into 5 “lure bins.” In the present experiment,

we balanced the similarity of the stimuli at two levels: 1) the stimulus set: the number of

trials from each lure bin in each test format (7 stimuli per lure bin), 2) the individual trial

level: the lure bin of the target and distractor image. The former ensured that the similarity

of targets and similar lures was balanced across the FCC (A vs A’) and the FCNC (A vs

B’) test formats for every subject. The latter addressed the potential issue of encoding vs

retrieval difficulty of stimuli from different lure bins, which is particularly important for the

FCNC (A vs B’) test format.
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Behavioral data analysis

We calculated the proportion correct for each test format for each participant. To investigate

whether there was an effect of test format, irrespective of age, we performed a separate

one-way analysis of variance (ANOVA) in each age group. We performed planned tests to

investigate whether performance was ranked in the following order: 1) FC (A vs X), 2) FCC

(A vs A’), 3) FCNC (A vs B’). To investigate whether there was an age by test format

interaction, we performed a mixed-design ANOVA (between-subjects variable: Age Group,

within-subjects variable: Test Format). We performed planned tests to investigate whether

performance differed between younger and older adults on the FCC (A vs A’) test format

and on the FCNC (A vs B’) test format.

4.2.2 Experiment 2

Participants

Participants were 21 younger adults (18-33 years old). We excluded one participant due to

very poor performance on our behavioral task (proportion correct ≈ 0.5 on all of the test

formats; more than 10 standard deviations below the mean of the included participants on

the FC (A vs X) test format). Thus, 20 participants (14 female, 6 male) were included in

our analysis.

Behavioral tasks

The behavioral tasks in Experiment 2 were similar to Experiment 1. In Experiment 2,

participants performed two encoding and two testing phases, each with a distinct stimulus

set. Previous research in our laboratory has ensured that the two stimulus sets are perfectly
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matched in terms of similarity (Stark et al., 2015). The encoding phases were identical to

those in Experiment 1. The two test phases differed in the number of test formats used.

The purpose of this manipulation was to address whether the FC (A vs X) test format

was artificially reducing performance on the FCNC (A vs B’) test format. Accordingly, one

version used three test formats, as in Experiment 1, and the other version used two test

formats: 1) FCC (A vs A’), 2) FCNC (A vs B’). In the two test version, participants were

instructed that on each trial they would view one image that was in the indoor/outdoor

task and one image that was similar to—but not exactly the same as—an image from the

indoor/outdoor task. Moreover, they were instructed that on some trials the similar image

would be from the same pair (e.g., if they studied an image of an apple they might see

the exact apple and a similar apple) and on some trials the similar image would be from

a different pair (e.g., if they studied an apple and an orange, they might see the exact

apple and a similar orange). The order in which participants received the three and the

two test format condition was counterbalanced between participants. As in Experiment 1,

participants performed 35 trials of each test format. Thus, the test phase contained 35 fewer

trials in the two test condition.

Behavioral data analysis

A one-way ANOVA was used to test the presence of a main effect of test format in the three

test version. We performed planned tests to investigate whether performance was ranked in

the following order: 1) FC (A vs X), 2) FCC (A vs A’), 3) FCNC (A vs B’). For the two

test version, we performed a planned test to investigate whether performance was better

on the FCC (A vs A’) test format than the FCNC (A vs B’) test format. Additionally, we

investigated whether performance was enhanced on the two test format relative to the three

test format using separate paired t-tests for the FCC (A vs A’) and the FCNC (A vs B’)

test formats.
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4.2.3 Global matching models

MINERVA 2

MINERVA 2 (Hintzman, 1984, 1988) is a member of a class of mathematical psychology

models referred to as global matching models. MINERVA 2 is a multiple-trace or exemplar-

based model, meaning that a new memory trace is added to an existing memory matrix

every time that an item is encoded. In MINERVA 2, items are represented as vectors, each

feature of which is set to -1, 0, or 1 with equal probability (i.e., 1/3). Similar lures were

generated for each target by re-drawing from the original features with probability δ. In the

present report, we used δ = 0.16, meaning that on average 16% of the features were re-drawn

from the original distributions. This resulted in approximately 11% of the features changing

values. During encoding, each feature is encoded with probability of L and not encoded with

probability 1 − L. The encoding phase results in a memory matrix, T, which contains M

rows (i.e., memory traces) and N columns (i.e., features). Our implementation relied on the

equations presented in (Hintzman, 1984, 1988) and our simulations used M = 35, similar

to our empirical test formats. The first equation provides an estimate of the similarity of a

probe (p; i.e., a test item) to a given trace (Ti; i.e., one of the items in memory):

si =

(
p ·Ti

ni

)3

(4.1)

where ni is the number of features that are relevant to the comparison of the probe and a

given trace (a feature is relevant if it is non-zero in either p or Ti). Thus, the portion of the

equation within the parentheses is a normalized dot product. The cubing function causes the

similarity function to be nonlinear, which allows retrieval to be “quite selective” (Hintzman,

1984, 1988). The global match, g, of the trace is given by the summed similarity across all
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stored traces (where there are M traces in the memory matrix):

g =
M∑
i=1

si (4.2)

While MINERVA 2 uses a multiple-trace storage operation, the retrieval operation is the

global match of a probe to all of the contents in memory. Thus, MINERVA 2 is a global

matching model by the nature of its retrieval process. We modeled MINERVA 2 in R.

TODAM

TODAM (Theory of Distributed Associative Memory; Murdock, 1982) is a different global

matching model. In contradistinction to MINERVA 2, which is a multiple-trace or exemplar-

based model, TODAM is a distributed or prototype-based memory model, meaning that

memories are stored in a single, composite memory vector (e.g., a prototype). Thus, while

these models share the assumption that memory retrieval is a global matching process,

the memory storage mechanisms of the models are very different. While most versions of

TODAM have focused on associative memory tasks (e.g., Murdock, 1982), it can also be

used as an item-only model (e.g., Murdock, 1995). Our implementation relied on the version

of TODAM presented in (Murdock, 1995).

As in MINERVA 2, items are represented as vectors. In TODAM, each feature of an item

vector is a random draw from a normal distribution with mean 0 and standard deviation√
1/N , where N is the number of features. Occasionally the numerator is set to a value other

than 1 (this parameter is referred to as P in Murdock, 1982); however, setting the value to

1 causes the vectors to be of approximately unit length which is useful because similarity is

calculated using the dot product (i.e., the dot product between two vectors of unit length is

between -1 and 1, similar to a normalized dot product). The following equation was used to
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generate a similar lure item (fj′) for a given target item (fj; Murdock, 1995):

fj′ = ρfj +
(√

1− ρ2
)
gj (4.3)

where ρ represents the similarity of items to each other and gj represents an independent

random vector. The expected value of the similarity, defined as the dot product, between a

target item and its similar lure is ρ. The memory vector for the item-only version of TODAM

was calculated with the following equation (Kahana, 2012, pg. 105; Murdock, 1995):

mt = αmt−1 + Btft (4.4)

where α is a forgetting parameter (which can also be thought of as a retention parameter

because 0 represents complete erasure of previous memories whereas 1 indicates that the

new memory is added to the memory vector from the previous trial without any forgetting),

mt−1 represents the memory vector from the previous trial, and ft represents the item that

is presented at time t in the encoding phase. Bt is a diagonal matrix with entries drawn

from a Bernoulli distribution with probability p, where p represents the probability that a

feature is encoded (Kahana, 2012, pg. 105)—i.e., each feature is encoded with probability p

and not encoded with probability 1 − p (Murdock, 1995). Accordingly, p is isomorphic to

L in MINERVA 2. As implied by the subscript t, Bt is trial unique. For item memory, the

model has four parameters: 1) α, the forgetting/retention rate, 2) N , the number of features

in each item, 3) p, the probability of encoding a feature, and 4) ρ, the similarity between a

target item and its lure. To preserve similarity to MINERVA 2, α was set to 1. Thus, in our

application, both models have 3 parameters: 1) the number of features, 2) the probability

of encoding a feature, 3) the similarity between targets and similar lures. Additionally, we

used a list length of 35 items as in our MINERVA 2 simulations and in our empirical test

formats. The global match, g, of a probe to the memory vector was calculated with the
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following equation:

g = p ·m (4.5)

where p represents a probe item, and m represents the memory vector. In contrast to MIN-

ERVA 2 (Equation 4.1), the item-only version of TODAM uses a linear similarity function.

Also, because TODAM uses a single, composite memory vector, the global match is simply

defined as the similarity—i.e., the dot product—between the probe and the memory vector.

Thus, TODAM is a global matching model by the nature of both its storage and its retrieval

operations. The standard instantiations of TODAM use closed-form equations to calculate

measures such as d′; however, we were interested in the effect of test format on forced-choice

performance. Thus, we used a computational, rather than a mathematical, approach. We

modeled TODAM in GNU Octave.

Simulation of forced-choice performance

As in our empirical data, we were interested in simulating performance from three different

test formats: 1) FC (A vs X), 2) FCC (A vs A’), 3) FCNC (A vs B’). To simulate the FC (A

vs X) test format, we calculated the proportion of times that the global match, g (Equations

4.2 and 4.5), for a target item (A) exceeded that of an unrelated foil (X), using the following

equation (cf. Hintzman, 1988):

Pr {A > X} =
1

M

M∑
i=1

[I(gAi
> gXi

) + 0.5 · I(gAi
= gXi

)] (4.6)

where M is the list length and I(·) is the indicator function which sets the value to 1 if the

statement is true and to 0 otherwise. The second part of the equation simulates random

guessing if the two items generate the same global match. To simulate the FCC (A vs A’)

test format, we calculated the proportion of times that the global match for a target item (A)
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exceeded that of its lure item (A’) using Equation 4.6. Similarly, to simulate the FCNC (A

vs B’) test format, we calculated the proportion of times that the global match for a target

item (A) exceeded that of a similar lure item from a different pair (B’) using Equation 4.6.

In both models, we simulated 10,000 participants and we determined parameter values that

provided a good fit to the empirical data for the younger adults. To test the hypothesis that

healthy aging is accompanied by impaired encoding, we investigated the effect of decreasing

the encoding parameter in both models (L and p in MINERVA 2 and TODAM, respectively).

4.3 Results

4.3.1 Experiment 1

We first investigated whether there was an effect of test format on performance in both age

groups. Separate one-way ANOVAs revealed a significant main effect of test format in both

younger adults (F = 110.7, p < 0.001) and older adults (F = 100.2, p < 0.001). Planned

comparisons revealed that both age groups performed better on the FC (A vs X) test format

than the FCC (A vs A’) test format (YA: t30 = 8.97, p < 0.001; OA: t23 = 11.36, p < 0.001)

and better on the FCC (A vs A’) test format than the FCNC (A vs B’) test format (YA:

t30 = 6.63, p < 0.001; OA: t23 = 3.58, p < 0.005). These results suggest that there is an

effect of test format in both age groups. Notably, although performance was the worst on

the FCNC (A vs B’) test format, performance was significantly better than chance in both

age groups (YA: t30 = 9.33, p < 0.001; OA: t23 = 9.13, p < 0.001).

We next investigated whether there was an effect of healthy aging on performance. A mixed-

design ANOVA (between-subjects variable: age group, within-subjects variable: test format)

revealed a significant age group by test format interaction (F = 3.51, p = 0.033). Planned

comparisons revealed that younger adults performed significantly better than older adults

127



Figure 4.1: Forced-choice performance. A) The encoding task was an incidental design
in which participants indicated whether each item was an indoor or an outdoor item. B)
The test phase consisted of three test formats (FC: A vs X; FCC: A vs A’; FCNC: A vs
B’). In both age groups, there was a significant effect of test format. A repeated-measures
ANOVA revealed an age by test format interaction, which was driven by better performance
of younger adults on the FCC (A vs A’) test format. Circles represent individual participants
and lines represent the mean proportion correct.

on the FCC (A vs A’) test format (t53 = 2.37, p < 0.025). Conversely, the difference between

younger and older adults failed to reach significance for the FCNC (A vs B’) test format

(t53 = 0.081, p = 0.94; Fig. 4.1). These results extend the previous findings of an age-related

decline in performance on the old/new and the old/similar/new test format with targets and

similar lures (Tonor et al., 2009; Yassa et al., 2011a,b; Stark et al., 2013, 2015; Bennett et al.,

2015) to the FCC (A vs A’) test format.

Previous studies that used the old/similar/new test format reported an age-related impair-
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ment in the ability to discriminate between targets and similar lures with intact discrimi-

nation between targets and unrelated foils (Tonor et al., 2009; Yassa et al., 2011a,b; Stark

et al., 2013, 2015; Bennett et al., 2015). Similarly, there was no evidence to suggest that

younger adults performed better than healthy older adults on the FC (A vs X) test format

(t53 = −0.58, p = 0.57). It is possible that an age-related difference on the FC (A vs X) test

format was obscured by a ceiling effect; however, when we compared the 15 worst performing

younger adults (i.e., median split) and the 12 worst performing older adults (i.e., median

split), the difference still failed to reach significance (t25 = −0.56, p = 0.58). Taken together,

the results provide clear evidence for an effect of test format in both age groups and the

results suggest that healthy older adults are impaired at discriminating between targets and

their similar lures—i.e., the FCC (A vs A’) test format.

4.3.2 Experiment 2

Main results

In Experiment 2, we aimed to replicate the findings in younger adults from Experiment 1

as well as to rule out the possibility that the FC (A vs X) test format artificially reduced

FCNC (A vs B’) test format performance. Specifically, we thought that it was possible that

the FC (A vs X) test format increased the propensity for participants to immediately select

the first item that they viewed in the FCNC (A vs B’) test format. Thus, in Experiment

2, participants performed two study-test cycles (with distinct stimulus sets), one of which

included all three test formats and the other of which included only the FCC (A vs A’) test

format and the FCNC (A vs B’) test format.

In the three test condition, a one-way ANOVA revealed a significant main effect of test

format (F = 73.1, p < 0.001; Fig. 4.2A). Planned comparisons revealed significantly better

performance on the FC (A vs X) test format than the FCC (A vs A’) test format (t19 = 9.36,
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Figure 4.2: Investigation of performance on the three and two test conditions in younger
adults. A) A one-way ANOVA revealed a significant effect of test format on performance
(F = 73.1, p < 0.001). Paired t-tests revealed significantly better performance on the FCC
(A vs A’) condition compared to the FCNC (A vs B’) condition for both the three test
condition (t = 4.38, p < 0.001) and the two test condition (t = 3.05, p < 0.01; see Fig. B).
Paired t-tests revealed no sign of a benefit for the two test format over the three test format
for either the FCC (A vs A’) format (M = 0.0014, t19 = 0.078, p = 0.94) or the FCNC (A
vs B’) format (M = −0.01, t19 = −0.46, p = 0.65).

p < 0.001) and significantly better performance on the FCC (A vs A’) test format than the

FCNC (A vs B’) test format (t19 = 4.38, p < 0.001). In the two test condition, a paired

t-test revealed significantly better performance on the FCC (A vs A’) test format than the

FCNC (A vs B’) test format (t19 = 3.05, p < 0.01; Fig. 4.2B). Finally, paired t-tests revealed

no sign of a benefit for the two test format over the three test format for either the FCC (A

vs A’) test format (M = 0.0014, t19 = 0.078, p = 0.94) or the FCNC (A vs B’) test format

(M = −0.01, t19 = −0.46, p = 0.65). These results replicate the effect of test format that we

observed in Experiment 1. Moreover, these results rule out the possibility that the FC (A

vs X) test format was artificially reducing performance on the FCNC (A vs B’) test format.

Comparison of performance on forced-choice and old/new test formats

The results of Experiment 1 and 2 provide clear evidence to suggest that performance is

better on the FCC (A vs A’) test format than the FCNC (A vs B’) test format. Previous
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reports have suggested that performance on the FCC (A vs A’) test format can rely on

familiarity to a greater degree than performance on the FCNC (A vs B’) test format and the

old/new test format with targets and similar lures (Holdstock et al., 2002; Migo et al., 2009,

2014). Accordingly, we were interested in examining whether performance on the FCC (A

vs A’) test format was better than performance on the old/new test format with targets and

similar lures. Similarly, we were interested in investigating whether performance was better

on the FC (A vs X) test format than performance on the old/new test format with targets

and unrelated foils.

To compare old/new performance with performance on the forced-choice tests from Ex-

periment 2, we reanalyzed data from 20 younger adults from a previous study from our

laboratory (Experiment 4 in Stark et al., 2015). As in Experiment 2, participants performed

two study-test cycles with two unique stimulus sets. The encoding phase consisted of an

indoor/outdoor judgment for each of 128 images of objects. One of the test formats used

“gist” instructions (i.e., participants were instructed to respond “old” to similar lures) while

the other test format used “veridical” instructions (i.e., participants were instructed to re-

spond “new” to similar lures), and the order of the test formats was counterbalanced across

participants. For the present analysis, we used the data from the veridical condition because

the test instructions were equivalent to our instructions for Experiment 2. The test phase

consisted of three probe types: 1) targets (exact repetitions), 2) similar lures, 3) unrelated

foils. Participants were instructed to respond “old” only for exact repetitions and to re-

spond “new” for both similar lures and for novel foils. After making the old/new decision,

participants indicated the confidence of their response (very sure, somewhat sure, somewhat

unsure, very unsure), resulting in 8 confidence bins (ranging from “very sure old” to “very

sure new”). Participants performed 64 trials of each probe type. Three participants were

excluded due to a failure to distribute responses across the confidence bins (which resulted

in poor model fit), thus 17 participants were included in the between-group analysis.
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Figure 4.3: Between-group performance was similar on forced-choice and old/new test for-
mats. A) Az and two-alternative forced-choice performance were similar for targets vs un-
related foils (t35 = −0.76, p = 0.45). B) Az and two-alternative choice performance were
similar for targets vs similar lures (t35 = 1.11, p = 0.28; see Fig. B). In contrast, Az for
targets vs similar lures was significantly greater than performance on the FCNC (A vs B’)
test format (t35 = 3.96, p < 0.001).

The area under the receiver operating characteristic (ROC) curve—calculated from the

old/new test format with confidence ratings—is mathematically equivalent to proportion

correct on the two-alternative forced-choice test format (Green and Moses, 1966; Green and

Swets, 1966; Swets and Pickett, 1982; Stanislaw and Todorov, 1999). The preferred approach

for estimating the area under the ROC curve is to use maximum-likelihood estimation to

fit the z-transformed ROC curve—a measure referred to as Az (Swets and Pickett, 1982;

Stanislaw and Todorov, 1999). Importantly, Az does not assume equal variance of the target

and distractor (e.g., unrelated foil, similar lure) distributions. We used the function rocfit in

Stata to compute Az.

If the FCC (A vs A’) test format enhances a participants ability to rely on familiarity, then

we should observe significantly better performance on the FCC (A vs A’) test format (i.e.,

proportion correct) than on the old/new test format (i.e., Az). Conversely, if performance

on the FCC (A vs A’) test format and the old/new test format rely on similar cognitive
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processes, then we should not observe a difference between proportion correct on the FCC

(A vs A’) format and Az from the old/new format. Similarly, if the FC (A vs X) test format

enhances a participants ability to rely on familiarity, then we should observe significantly

better performance on the FC (A vs X) test format than on the old/new test format.

The difference between Az for targets vs unrelated foils and proportion correct on the FC (A

vs X) test format failed to reach significance (t35 = −0.76, p = 0.45; Fig. 4.3A). Additionally,

the difference between Az for targets vs similar lures and proportion correct on the FCC (A vs

A’) test format failed to reach significance (t35 = 1.11, p = 0.28; Fig. 4.3B). Taken together,

these results suggest that the old/new test format and the forced-choice test format recruit

similar cognitive processes. In contrast, Az for targets vs similar lures was significantly

greater than proportion correct on the FCNC (A vs B’) test format (t35 = 3.96, p < 0.001).

While there were minor differences between the stimulus sets used in these two experiments,

these results are at least consistent with the notion that that the old/new test format with

targets vs similar lures is more closely related to the FCC (A vs A’) test format. Finally, for

comparison to the present experiments, a paired t-test revealed significantly greater Az for

targets vs unrelated foils than Az for targets vs similar lures (t16 = 6.93, p < 0.001).

Summary of the behavioral experiments

In Experiment 1, we found that younger adults performed better than healthy older adults

on the FCC (A vs A’) test format, similar to previous studies that used the old/similar/new

test format with targets and similar lures (Tonor et al., 2009; Yassa et al., 2011a,b; Stark

et al., 2013, 2015; Bennett et al., 2015). In Experiment 1, we provided clear evidence for an

effect of test format in both age groups, such that participants performed best on the FC (A

vs X) test format, followed by the FCC (A vs A’) test format, followed by the FCNC (A vs

B’) test format. In Experiment 2, we replicated the effect of test format in a group of younger

adults. Moreover, we ruled out the possibility that impaired performance on the FCNC (A
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vs B’) test format was driven by the presence of the FC (A vs X) test format. The finding

that performance on the FCNC (A vs B’) test format was reliably worse than performance

on the FCC (A vs A’) test format was initially puzzling; however, previous reports have

shown that global matching models can account for this effect (Hintzman, 1988, 2001, also

see: Clark and Gronlund, 1996). Accordingly, we were interested in investigating whether

global matching models could be used to account for our results in both younger and healthy

older adults.

4.3.3 Global matching models

MINERVA 2

We investigated whether MINERVA 2 could account for our empirical findings of Experiment

1 in both younger and older adults. Specifically, we tested the hypothesis that aging could be

modeled as a decreased probability of encoding stimulus features. We began by finding model

parameters that achieved similar values to the mean values of our empirical data in younger

adults (N = 20, L = 0.65, and δ = 0.16; Fig. 4.4A). We next investigated whether decreasing

the encoding parameter, L, would cause a similar pattern of deficits as we observed in healthy

older adults. Decreasing the encoding parameter from L = 0.65 to L = 0.55 resulted in worse

performance on all 3 test formats; however, the largest change in performance was on the

FCC (A vs A’) format, which was the format with a significant age group difference in the

empirical data (Fig. 4.4B). Thus, at least for certain model parameters, MINERVA 2 can

predict a disproportionate change in performance on the FCC (A vs A’) test format by

simply changing the L parameter. These results support the hypothesis that healthy aging

is accompanied by an impaired ability to encode stimulus features. We next asked whether

a different global matching model, which relies on a very different storage mechanism, would

predict a similar pattern of results.
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Figure 4.4: MINERVA 2 (squares) and TODAM (triangles) were both able to capture the
main pattern of results of the empirical data. Specifically, both models captured the FC (A
vs X) > FCC (A vs A’) > FCNC (A vs B’) effect, and decreasing the encoding parameter
in both models caused the largest change in performance on the FCC (A vs A’) test format.
A) Empirical data and model fit data for younger adults/L = 0.65/p = 0.5. B) Older
adults/L = 0.55/p = 0.35. Black squares represent the mean of the MINERVA 2 data and
black triangles represent the mean of the TODAM data.

TODAM

As in the MINERVA 2 simulation, we began by finding parameters that achieved similar

values to the mean values of our empirical data in younger adults (N = 400, p = 0.5, and

ρ = 0.7; Fig. 4.4A). We next investigated whether decreasing the encoding parameter, p,

would cause a similar pattern of deficits as we observed in healthy older adults. Decreasing

the encoding parameter from p = 0.5 to p = 0.35 resulted in worse performance on all 3

test formats; however, the largest change was on the FCC (A vs A’) format, which was

the format with a significant age group difference in the empirical data (Fig. 4.4B). Thus,

at least for certain model parameters, TODAM can predict a disproportionate change in

performance on the FCC (A vs A’) test format by simply changing the p parameter. Given

that MINERVA 2 and TODAM use very different storage mechanisms, these results provide

additional support for both the global matching framework and for the hypothesis that

healthy aging is accompanied by an impaired ability to encode item features.
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Why do the models predict better performance on the FCC (A vs A’) test format

than the FCNC (A vs B’) test format?

Previous reports showed that both MINERVA 2 and TODAM predict better performance

on the FCC (A vs A’) test format relative to the FCNC (A vs B’) test format (Hintzman,

1988, 2001; Clark and Gronlund, 1996). As discussed by Hintzman (1988, 2001), variabil-

ity increases the overlap between target and distractor (e.g., similar lure, unrelated foil)

distributions in MINERVA 2. One source of variability in MINERVA 2 (and TODAM) is

encoding variability. In the standard version of MINERVA 2, each feature is encoded with

probability L; hence, on average L ×N × 2/3 non-zero features are encoded for each item,

where N is the total number of features and it is multiplied by 2/3 because on average one

third of the features are equal to zero. Because the number of encoded non-zero features is

variable, there are trials where the number of non-zero features that are encoded is greater

than L×N × 2/3 and trials where the number of non-zero features that are encoded is less

than L×N × 2/3.

We hypothesized that removing trial-by-trial encoding variability in MINERVA 2 would

reduce the FCC (A vs A’) test format advantage. We tested this hypothesis by altering the

model to encode a fixed number of features on each trial (note, a similar approach would be

more difficult in TODAM because the features are drawn from a normal distribution rather

than from {-1, 0, 1}). First, we set the number of non-zero features to be equal on each

trial. In this version of the model we increased N from 20 to 21 to allow an equal number

of -1, 0, and 1 features (i.e., 7 each) and we set L = 9/14. We verified that this had no

effect on performance of the model (see “with encoding variability” in Fig. 4.5). Next, we

eliminated encoding variability by forcing the model to encode 9 of the 14 non-zero features.

Thus, the only difference between these two models is the presence of encoding variability.

We observed an increase in proportion correct for all formats, and we observed a reduction

of the FCC (A vs A’) test format advantage over the FCNC (A vs B’) test format (Fig. 4.5).
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Figure 4.5: The removal of encoding variability in MINERVA 2 reduced the magnitude of
the difference between proportion correct on the FCC (A vs A’) format and the FCNC (A
vs B’) format. Data points represent the mean proportion correct.

These results suggest that one possible reason for worse performance on the FCNC (A vs

B’) test format relative to the FCC (A vs A’) test format is that for some trials participants

happen to encode more features for the original B item than the original A item. Because the

lures are correlated with the original target item, this results in greater summed similarity

for the B’ item than the A item. Under the condition in which there is not variability in the

number of features that are encoded for each A and B item, there is less of a difference in

performance between the FCC (A vs A’) test format and the FCNC (A vs B’) test format.

Encoding variability reduced the FCC (A vs A’) test format advantage but it did not elim-

inate the advantage. As discussed by Hintzman (1988, 2001), there are other sources of

variability that contribute to the FCC (A vs A’) test format advantage. For example, within

the stimulus set used for the encoding phase, some stimuli happen to be more similar to

other stimuli, which results in certain trials in which the B item more closely resembles

other items in the encoding set than the A item. Because the model assumes that memory

strength is determined by the match of the test item to all of the contents of memory, this

results in a greater global match of the B’ item than the A item (Hintzman, 1988, 2001).

Interestingly, in our simulations, we found that list length modulated the strength of the
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effect of encoding variability on the FCC (A vs A’) test format advantage. Specifically, for

shorter list lengths (e.g., 4 items), the elimination of encoding variability accounted for more

of the difference between the two test formats than for longer list lengths (e.g., 35 items).

In fact, for short list lengths, the elimination of encoding variability was sufficient to nearly

eliminate the difference between the two test formats, suggesting that as more items are

encoded there is a greater chance of a B’ item providing a better global match than the A

item (due to similarity to other items in the stimulus set). Thus, the models suggest that

there are a number of potential sources of variability that contribute to enhanced FCC (A

vs A’) test format performance compared to the FCNC (A vs B’) test format, including

encoding variability and the similarity between items in the study list.

4.4 Discussion

4.4.1 The effect of test format on performance

We investigated the effect of test format on recognition memory performance in younger

and healthy older adults. In Experiment 1, we used three test formats: 1) FC (A vs X), 2)

FCC (A vs A’), 3) FCNC (A vs B’). There was a significant effect of test format in both

younger and older adults. Specifically, in both age groups, performance was best on the FC

(A vs X) format, followed by the FCC (A vs A’) format, followed by the FCNC (A vs B’)

format. The results from Experiment 2 replicated the results of Experiment 1 and provided

no evidence to suggest that the FC (A vs X) test format artificially reduced performance

on the FCNC (A vs B’) test format. Taken together, we consistently showed significantly

better performance on the FCC (A vs A’) test format than the FCNC (A vs B’) test format.

The findings in younger adults replicate the findings from Tulving (1981). Similarly, other

reports have shown enhanced performance on the FCC (A vs A’) test format compared
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to the FCNC (A vs B’) test format in young adults (Hintzman, 1988; but see: Migo et al.,

2009), healthy middle-aged/older adults (mean age: 61.2 years; Jeneson et al., 2010), healthy

older adults (mean age 71; Migo et al., 2014), and in patients with selective hippocampal

damage (Jeneson et al., 2010). Moreover, performance on the FCC (A vs A’) test format is

consistently better than performance on the FCNC (A vs B’) test format across a variety

of encoding and stimulus conditions: single presentations of images of objects (Experiment

1 and Experiment 2) and of scenes (Tulving, 1981), multiple encoding trials of images of

objects (color images: Jeneson et al., 2010; black and white silhouettes: Jeneson et al., 2010;

Migo et al., 2014; but see: Migo et al., 2009), and judgments of the number of times that

words were presented during the encoding phase (Hintzman, 1988).

Similar to Hintzman (1988, 2001), we showed that MINERVA 2 could account for the ob-

served effect of test format. Moreover, we showed that a different global matching model,

TODAM (Murdock, 1982, 1995), can also account for the observed effect of test format

(cf. Clark and Gronlund, 1996). We used MINERVA 2 to provide a possible explanation of

the FCC (A vs A’) test format advantage (also see: Hintzman, 1988, 2001). Specifically, we

showed that removing trial-by-trial encoding variability reduced the magnitude of the FCC

(A vs A’) test format advantage. Thus, the model suggests that one possible reason for the

FCC (A vs A’) test format advantage is that there are trials on which a participant happens

to encode more details than other trials, which causes certain lures (B’) to contain a stronger

global match than a noncorresponding target item (A)—i.e., the global match for the lures

is shifted along with the global match of the target item due to the similarity between them.

Additionally, we found that the list length contributed to the effect of encoding variability,

such that the elimination of encoding variability had a larger effect for short list lengths.

Specifically, for short lists, the removal of encoding variability nearly eliminated the FCC

(A vs A’) test format advantage. Our simulations with longer list lengths suggested that

there are more trials in which the B item (and by extension the B’ item) is more similar

to other items in the encoding set than the A item. Accordingly, both encoding variability
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and variability in between-item similarity in the encoding list could contribute to better

performance on the FCC (A vs A’) test format than the FCNC (A vs B’) test format.

4.4.2 Forced-choice and old/new test formats reveal a stable age-

related impairment of performance

We next investigated whether the previous reports of an age-related impairment on the

Mnemonic Similarity Task (Tonor et al., 2009; Yassa et al., 2011a,b; Stark et al., 2013, 2015;

Bennett et al., 2015) would extend to the forced-choice test format. Our results revealed a

significant age by test format interaction, which was driven by better performance in younger

adults than healthy older adults on the FCC (A vs A’) test format. These results suggest that

the age-related impairment on the old/similar/new and the old/new test formats with targets

and similar lures extends to the FCC (A vs A’) test format. Similarly, in a group of healthy

older adults, Migo et al. (2014) revealed a significant relationship between age and proportion

correct on the FCC (A vs A’) test format but not between age and proportion correct on the

FCNC (A vs B’) test format. We have previously reported a relationship between age and

mnemonic discrimination performance in a lifespan sample that used the old/similar/new

test format (Stark et al., 2013; Bennett et al., 2015). Taken together, these findings support

the notion that the old/similar/new and FCC (A vs A’) test formats are similarly affected

by aging. We were admittedly surprised that the age difference in performance on the FCNC

(A vs B’) test format failed to reach significance; however, we suggest that the results from

our model-based approach and the results from Experiment 2 provide possible explanations

for the significant age-related difference on the FCC (A vs A’) test format but not on the

FCNC (A vs B’) test format, which we will discuss in turn.

We investigated whether global matching models could account for the empirical changes ob-

served in healthy older adults. As mentioned above, previous studies have shown that global
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matching models can account for the FCC (A vs A’) test format advantage compared to the

FCNC (A vs B’) test format. Global matching models have few parameters; accordingly,

the results of simulations from global matching models are straightforward to interpret. We

started by finding parameters in the models that provided a good fit of the empirical data

in younger adults. We next investigated the effect of decreasing the probability of encod-

ing stimulus features. In MINERVA 2 and TODAM, decreasing the encoding probability

caused the largest change in performance on the FCC (A vs A’) test format, which was the

test format on which we observed an age-related change. It is noteworthy, however, that

both models predicted a change on the other test formats as well, which suggests that the

most sensitive test format for detecting differences in encoding was the FCC (A vs A’) test

format. MINERVA 2 and TODAM rely on a very different set of assumptions regarding

how memories are stored—namely, MINERVA 2 is a multiple-trace model while TODAM

is a distributed memory model. The fact that both models predicted the largest change on

the FCC (A vs A’) test format as a result of decreasing the encoding parameter supports

the global matching framework and suggests that a possible explanation for the observed

age-related changes is a decrease in the probability of encoding stimulus features.

4.4.3 Younger adults perform similarly on old/new and forced-

choice test formats

Performance on two-alternative forced-choice tests is mathematically equivalent to the area

under the ROC curve from old/new tests with confidence ratings (Green and Moses, 1966;

Green and Swets, 1966; Swets and Pickett, 1982; Stanislaw and Todorov, 1999). Swets

and Pickett (1982) and Stanislaw and Todorov (1999) advocated for calculating the area

under the ROC curve using maximum-likelihood estimation to fit the z-transformed ROC

curve—a measure referred to as Az—which does not assume equal variances of the target and

distractor distributions. We reanalyzed published data from our laboratory (Experiment 4
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in Stark et al., 2015) to examine whether there were differences in performance between the

forced-choice test format and the old/new test format with confidence ratings. Specifically,

if the forced-choice test format allowed participants to rely on familiarity to a greater extent

than the old/new test format (Holdstock et al., 2002; Norman and O’Reilly, 2003; Migo

et al., 2009, 2014), then we should observe significantly better performance on the forced

choice test format than Az from the old/new test format. Conversely, if the two test formats

rely on similar mnemonic representations, then we should not observe a difference between

the two test formats.

The difference between Az calculated from the old/new test format for targets vs unrelated

foils and the FC (A vs X) test format failed to reach significance. Similarly, the difference

between Az caluclated from the old/new test format for targets vs similar lures and FCC

(A vs A’) test format failed to reach significance. Moreover, we observed significantly worse

performance on the FCNC (A vs B’) test format than Az from the old/new test format with

targets vs similar lures. Taken together, these results suggest that the forced-choice format

does not improve the discrimination between targets and unrelated foils nor the discrimina-

tion between targets and similar lures. We note that there were minor differences between

the stimulus sets used in these experiments, however the results are at least consistent with

the notion that forced-choice formats rely on the same mnemonic representations and do not

receive familiarity-related enhancements in performance (cf. Khoe et al., 2000; Bayley et al.,

2008; but see: Jeneson et al., 2010). Previous studies have shown similar performance on

the FC (A vs X) test format and the old/new test format with targets and unrelated foils

(Green and Moses, 1966; Khoe et al., 2000; Smith and Duncan, 2004). Bayley et al. (2008)

showed that performance was similar on the FCC (A vs A’) test format and the old/new test

format with targets and similar lures in patients with selective hippocampal damage and in

healthy control participants (but see: Jeneson et al., 2010). Future studies could assess the

relationship between performance on the old/new test format with targets and similar lures

(e.g., using Az) and the FCC (A vs A’) test format in more detail.
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The results from the area under the ROC curve analysis can be brought to bear on our find-

ings in healthy older adults. Specifically, it appears that the old/new discrimination between

targets and similar lures most closely resembles the FCC (A vs A’) test format. Previous

studies from our laboratory and others have revealed an age-related impairment in the dis-

crimination between targets and similar lures across a variety of test formats, including

old/similar/new (Tonor et al., 2009; Yassa et al., 2011a,b; Stark et al., 2013, 2015; Ben-

nett et al., 2015), old/new (Stark et al., 2015), and old/new with confidence ratings (Stark

et al., 2015). Moreover, these effect maintained across a variety of encoding conditions—

e.g., incidental encoding, intentional encoding, continuous recognition (Stark et al., 2015).

Altogether, there is an unequivocal age-related impairment in the ability to discriminate

between targets and similar lures, which we argue is caused by a mnemonic rather than a

decision-based difference between younger and healthy older adults. Indeed, the FCC (A vs

A’) test format eliminates any possible shifts in decision criterion across groups, similar to

our previous report using ROC curves from the old/new test format with confidence ratings

(Stark et al., 2015), thus obviating the concerns raised by Loiotile and Courtney (2015).

4.4.4 Application of global matching models to interpret other

studies that used mnemonic similarity tasks

We also investigated whether global matching models could account for the results of other

studies that have used mnemonic similarity tasks. For example, Reagh and Yassa (2014) used

a variant of the Mnemonic Similarity Task to investigate the effect of stimulus repetition on

memory for images of objects. They reported that stimulus repetition—three presentations

compared to one presentation—improved discrimination between targets and unrelated foils

and increased the false alarm rate to similar lures (using an old/new test format). They

concluded that repetition improves generalization while impairing mnemonic discrimination.

Moreover, they suggested that stimulus repetition can induce competition between memory
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traces which would cause a loss of details from memory. Subsequently, Loiotile and Courtney

(2015) used signal detection theory to show that while repetition increased the false alarm

rate to similar lures, it also enhanced discrimination between targets and similar lures (as

measured by da). They also showed that repetition improved performance on the FCC (A

vs A’) test format. The results from these studies were initially puzzling, and we were

curious whether they could be accounted for within a global matching framework. To test

this possibility, we modeled their tasks using MINERVA 2. Interestingly, our simulations

have been able to account for the data from both studies. Specifically, MINERVA 2 predicts

that repetition will cause: 1) better discrimination between targets and unrelated foils (as

measured by an ROC analysis), 2) an increased false alarm rate to similar lures (cf. Hintzman,

1988, 2001; Hintzman et al., 1992), 3) better discrimination between targets and similar lures

(as measured by an ROC analysis), 4) improved FCC (A vs A’) test format performance.

The key insight from MINERVA 2 is that stimulus repetition increases the global match of

similar lure items by increasing the number of traces that match the similar lure—i.e., three

traces of A will generate a larger global match in response to A’ than only a single trace.

As a corollary, MINERVA 2 predicts that encoding the same exact details of an item three

times would also increase the false alarm rate to a similar lure, suggesting that an increased

false alarm rate to similar lures does not necessarily indicate a loss of details from memory.

Furthermore, while repetition increases the global match of the similar lure distribution,

it also decreases the overlap between the target and similar lure distributions. Therefore,

the model predicts that comparisons between the target distribution and the similar lure

distribution will be more discriminable for items that are presented three times than items

that are presented one time (i.e., based on an ROC analysis or performance on the FCC

(A vs A’) test format). Altogether, the findings from our simulations highlight the notion

that formal models can be used to constrain the interpretation of behavioral results. Thus,

although global matching models have been challenged by a number of findings (for review

see: Clark and Gronlund, 1996), we believe that they provide useful tools for interpreting
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the results of studies that manipulate stimulus similarity.

Conclusion

Previous research has shown that there are clear age-related impairments on tasks that tax

recollection and associative memory with a more mild impairment on tests of simpler item

recognition memory (Craik and McDowd, 1987; Spencer and Raz, 1995; Naveh-Benjamin,

2000; Naveh-Benjamin et al., 2004; Old and Naveh-Benjamin, 2008a,b; Danckert and Craik,

2013). Other studies have shown that healthy older adults reliably exhibit an impairment

on item recognition memory tests that require discriminating between targets and similar

lures (Tonor et al., 2009; Yassa et al., 2011b,a; Stark et al., 2013, 2015; Bennett et al.,

2015). Our results suggest that healthy older adults are similarly impaired on the forced-

choice discrimination between an object and its similar lure. Taken together, there is clear

evidence that memory tests that require a high degree of fidelity are impaired in healthy older

adults. Our modeling results suggest that aging causes an impaired ability to encode stimulus

features, which causes fewer details to be encoded on each trial. These results provide a

potential mechanistic interpretation of previous results that does not emphasize differences

in cognitive processes but instead emphasizes differences in the mnemonic resolution required

to solve the task (cf. Cowell et al., 2010a).

The present empirical and model-based results raise a number of interesting questions for

future studies. First, future studies could use more stimuli in each forced-choice test format.

For example, other reports have used four-alternative forced choice test formats (Migo et al.,

2009, 2014). The four-alternative format provides a greater dynamic range than the two-

alternative format used here. Although performance on the FCNC (A vs B’) test format

was above chance in both younger and older adults, it is possible that the four-alternative

format would be more sensitive to detecting an age-related impairment. Similarly, a four-
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alternative FC (A vs X) test format might be more senstive to detecting age-related changes

in performance. Second, future studies could collect data from both the old/new test format

(with confidence ratings) with targets and similar lures and the two-alternative FCC (A vs

A’) test format to investigate whether there is a significant relationship between Az and

proportion correct (across a pair of distinct but similarity-matched stimulus sets). Finally,

future modeling work could be used to discover conditions in which global matching models

(e.g., Hintzman, 1988; Murdock, 1995) and the dual-process complementary learning systems

model (Norman and O’Reilly, 2003; Norman, 2010) generate disparate predictions, thus

generating new ideas for behavioral tasks that directly test the predictions of the models.
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Chapter 5

Conclusions

The ability to remember the events of our lives critically relies upon formation of associations

among the “what,” “where,” and “when” aspects of the event. Following the discovery

that damage to the hippocampus and adjacent medial temporal lobe cortical areas caused

amnesia in human patients (Scoville and Milner, 1957), decades of research have focused

on elucidating the mnemonic role of the medial temporal lobe (MTL). The results of these

studies suggested that the MTL is necessary for declarative memory, including memory

for facts and events, but that it plays little role in nondeclarative memory (e.g., Cohen

and Squire, 1980; Squire, 1992; Squire and Zola, 1996; Eichenbaum, 2000). Many studies

have investigated whether there are functional differences between the hippocampus and the

adjacent MTL cortical regions.

A prominent theory suggests that the hippocampus is involved in recollection and the for-

mation of associative memories (e.g., “what-where”, “what-where-when”) while the MTL

cortical regions, and perirhinal cortex (PRC) in particular, are involved in familiarity (e.g.,

“what”; Brown and Aggleton, 2001; Yonelinas, 2002; Diana et al., 2007; Eichenbaum et al.,

2007; Ranganath, 2010; Yonelinas et al., 2010). However, other theories suggest that the hip-
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pocampus and MTL cortical regions are broadly involved in declarative memory, including

recollection, familiarity, and associative and item-based memory (e.g., Squire et al., 2007;

Wixted et al., 2010; Wixted and Squire, 2011). While there is disagreement regarding the

localization of recollection (or associative memory) and familiarity (or item-based memory)

to the hippocampus and PRC, respectively, proponents of both accounts have hypothesized

that subregions of the MTL would differ in terms of the information that they represent

(Eichenbaum et al., 2007; Diana et al., 2007; Wixted and Squire, 2011). Specifically, based

on differences in anatomical connectivity between regions of the MTL, theoretical accounts

have suggested that parahippocampal cortex (PHC; called “postrhinal cortex” in rodents) is

involved in memory for contexts and spatial information while PRC is involved in memory

for objects.

Recent theories suggest that the MTL-centered view of declarative memory is too limited

and that we should expand our investigations to consider regions outside of the MTL. For

example, many theories note a role for retrosplenial cortex (RSC) in the representation of

contextual and spatial information, similar to PHC (Vann et al., 2009; Aggleton, 2010; Ran-

ganath and Ritchey, 2012; Bucci and Robinson, 2014; Ritchey et al., 2015). Further, damage

to RSC is known to cause “retrosplenial amnesia” (Valenstein et al., 1987; Aggleton, 2010)

and a recent theory suggests that RSC is important for the formation of stimulus-stimulus

associations (Bucci and Robinson, 2014), a function traditionally ascribed to the hippocam-

pus. Thus, a more complete understanding of the involvement of structures beyond the MTL,

especially RSC, is of keen interest. We were motivated by these theories; accordingly, four

of the experiments in this dissertation were centered around investigating the representation

of information in the MTL and retrosplenial cortex.

Previous research has suggested that healthy aging causes an impaired ability to form

stimulus-stimulus associations (e.g., “what-where”) with a relative sparing of performance

of simpler item recognition memory (e.g., “what”; Craik and McDowd, 1987; Spencer and
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Raz, 1995; Naveh-Benjamin, 2000; Naveh-Benjamin et al., 2004; Old and Naveh-Benjamin,

2008a,b; Danckert and Craik, 2013). Our laboratory has previously shown that healthy

older adults are impaired in their ability to discriminate between previously viewed images

of objects (i.e., targets) and similar lures—a task referred to as the Mnemonic Similarity

Task (Yassa et al., 2011a,b; Stark et al., 2013, 2015; Bennett et al., 2015). Previous studies

have shown that there can be test-format effects on item recognition memory performance.

In particular, the forced-choice test format (e.g., “Did you see object A or object B during

the encoding phase?”) can sometimes yield different results than tests that require old/new

judgments of individual stimuli (e.g., “Did you see this object during the encoding phase?”).

The forced-choice format relies on different assumptions (e.g., decision criteria) than the

old/new test format; hence, converging evidence from these approaches would bolster the

conclusion that healthy aging is accompanied by impaired mnemonic discrimination per-

formance. Additionally, we used a class of models from mathematical psychology, global

matching models, to investigate whether healthy aging could be modeled as an impaired

ability to encode stimulus features. I will discuss these issues in the following sections.

5.1 Investigation of representations in PHC and RSC

In four functional magnetic resonance imaging (fMRI) experiments, we tested the hypothesis

that PHC and RSC are preferentially involved in representing scenes and contextual infor-

mation. We analyzed the data in all four experiments using multivariate pattern analysis

(MVPA). As discussed in Chapter 1, MVPA relies on a different set of assumptions than acti-

vation analysis. Moreover, MVPA allowed us to investigate the representation of information

in the MTL and RSC. In Chapter 2, we investigated the representation of images of faces

and images of objects (Experiment 1) and of images of faces and scenes (Experiment 2). We

tested the hypothesis that PHC and RSC are preferentially involved in the representation of
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scenes, and we investigated whether they share information about scenes on a trial-by-trial

basis. In Chapter 3, we aimed to build upon our findings in Chapter 2. Specifically, in

Experiment 3, we investigated the representation of individual items and contexts. Finally,

in Experiment 4, we investigated whether the representation of contexts was stable across

different versions of the same context.

5.1.1 Investigation of scene representation in parahippocampal

cortex and retrosplenial cortex

In Chapter 2, we discussed the results of two fMRI experiments. In Experiment 1, partic-

ipants viewed images of faces and objects. In Experiment 2, participants viewed images of

faces and scenes. We used a slow-event related design, which allowed us to analyze patterns

of activity at the level of individual trials. We found that patterns of activity in PHC and

RSC could be used to classify trials on which participants viewed images of faces and im-

ages of scenes (Experiment 1) as well as images of faces and images of scenes (Experiment

2). Classification accuracy was significantly better for the experiment with faces and scenes

than the experiment with faces and objects, supporting the hypothesis that these regions

are involved in scene processing. We next investigated whether these regions carried similar

information about scenes on a trial-by-trial basis, which would be consistent with the notion

that these regions share information about scenes.

Previous studies have investigated the similarity of the time-course of activation (and deac-

tivation) of brain regions. These methods are largely referred to as functional connectivity

methods because they attempt to investigate the functional coupling between given brain

regions (based on co-activation; Friston, 1994). Coutanche and Thompson-Schill (2013) de-

veloped a technique, called informational connectivity, which investigates the similarity of

the time-course of information contained within multiple brain regions. We used a trial-by-
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trial variant of informational connectivity, which we refer to as informational correlativity.

In short, our method calculated how “face-like” or how “object-like” (Experiment 1) and

how “face-like” or how “scene-like” (Experiment 2) the patterns of activity were for each

trial—a measure referred to as multivariate pattern discriminability. We then calculated the

similarity of the trial-by-trial multivariate pattern discriminability between PHC and RSC.

We hypothesized that if PHC and RSC share information about scenes, then we should

observe stronger informational correlativity in our experiment with faces and scenes than in

our experiment with faces and objects.

Consistent with our hypothesis, we observed significant informational correlativity between

PHC and RSC in our experiment with faces and scenes but not in our experiment with faces

and objects. Moreover, we observed significantly stronger informational correlativity between

PHC and RSC in our experiment with faces and scenes than in our experiment with faces

and objects. While our informational correlativity analysis was extremely limited in terms

of the number of regions that we investigated, I think that this approach will be valuable for

future studies. For example, Ritchey et al. (2014) applied a similar approach to investigate

interactions in a much more global manner. Taken together, the results of our experiments

support the hypothesis that PHC and RSC are preferentially involved in processing scenes,

and that they share information in a stimulus-dependent manner (i.e., scenes). However,

the finding that patterns of activity in both regions could be used to classify faces vs objects

(i.e., non-scene images), suggests that a simple dissociation of scene or context processing is

not sufficient to explain the information represented by PHC and RSC. In our next set of

experiments, we aimed to further investigate the information processed by PHC and RSC.
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5.1.2 What’s in a context?

In Chapter 3, we discussed the results of Experiments 3 and 4, in which we investigated

the representation of information during an associative memory task. The context-guided

object association task has provided a useful framework to investigate the representations

of events in the rodent (Rajji et al., 2006; Komorowski et al., 2009, 2013; Navawongse and

Eichenbaum, 2013; Tort et al., 2013; McKenzie et al., 2014; Farovik et al., 2015; Keene

et al., 2016; for review see: McKenzie et al., 2015). In this task, animals learn item-reward

contingencies that differ based on the context, which is operationally defined as visually and

tactilely distinct chambers. The results of these studies have firmly established the role of the

hippocampus and MTL cortical regions in the processing of event information. In addition,

these studies have shown that the hippocampus is necessary for task performance and that

it represents not only spatial information (i.e., context, location) but also information about

non-spatial information (i.e., valence, item).

McKenzie et al. (2014) and Keene et al. (2016) used a variant of MVPA, called represen-

tational similarity analysis, to investigate event representation in the rodent MTL. Briefly,

representational similarity analysis calculates the similarity of spatial patterns of activity

in response to different stimuli (see Chapter 1). Their results revealed that the hippocam-

pus and adjacent MTL cortical regions represent information in a hierachically-organized

manner based on differences in the stimuli that comprise an event. Most important for the

present discussion was the finding that events that take place in a different context were

represented by very different patterns of activity in the hippocampus and adjacent MTL

cortex. We created two human versions of the context-guided object association task for use

in fMRI experiments. In Experiment 3, we used distinct contexts (time lapse videos) and

objects (images). A previously unaddressed question regarding the context-guided object

association task is the extent to which the neural representations in the MTL are influenced

by the low-level differences between stimuli in the context-guided object association task.
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We addressed this question in Experiment 4, using a combined approach of stimulus filtering

and model testing to eliminate low-level differences between our “contexts” and “objects.”

Specifically, we investigated whether the representations of contexts and objects are stable

across different versions of the same contexts and objects.

Given the reliable findings of scene processing in PHC and RSC in Experiments 1 and 2, we

aimed to investigate whether we would observe similar effects of context in a human version

of the context-guided object association task. Additionally, given the robust representation

of context in the rodent hippocampus, we aimed to provide evidence for the representation of

context in the human hippocampus (for difficulties in decoding information from the human

hippocampus see: Chapter 2; Diana et al., 2008; LaRocque et al., 2013; Op de Beeck et al.,

2013). We analyzed our data using representational similarity analysis, similar to the studies

in the rodent (McKenzie et al., 2014; Keene et al., 2016). Our results provide evidence that is

consistent with the rodent studies; however, our results appear to be influenced by low-level

differences between the stimuli that comprise the events.

Investigation of the representation of distinct contexts and objects

The results of Experiment 3 (with distinct stimuli) largely supported previous findings in

the rodent. Specifically, our results revealed a significant relationship to the context matrix

in PHC and RSC. A searchlight analysis revealed a significant relationship to the context

matrix within a cluster of voxels in the left posterior hippocampus. Notably, McKenzie et al.

(2014) found significant context representation in the rodent dorsal hippocampus (the rodent

homolog of human posterior hippocampus) during performance of the context-guided object

association task. Additionally, we performed informational correlativity analysis to investi-

gate whether the left posterior hippocampus, PHC, and RSC contained similar representa-

tions of individual contexts on a trial-by-trial basis. We observed significant informational

correlativity between all three regions, supporting the notion that they are part of a network
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of regions involved in processing contextual information. Moreover, these results extend our

previous finding of stimulus-dependent informational correlativity between PHC and RSC

to the representation of individual contexts.

We also found evidence for conjunctive item-in-context representations in RSC, and repre-

sentations in RSC were related to associative memory performance. These findings support

recent theories that note a role for RSC in the formation of stimulus-stimulus associations

(Aggleton, 2010; Bucci and Robinson, 2014). We also observed a clear relationship to the

context matrix in parahippocampal place area and retrosplenial complex, which have both

been extensively studied for their role in scene and context processing (e.g., Epstein and

Kanwisher, 1998; Epstein et al., 2007; Julian et al., 2012; Vass and Epstein, 2013, 2016;

Marchette et al., 2014, 2015). These regions are in close anatomical proximity to parahip-

pocampal cortex and RSC but they are largely non-overlapping (see Fig. 3.5A). We also

observed evidence for conjunctive item-in-context representation in parahippocampal place

area and retrosplenial complex. Taken together, although our results were influenced by

low-level visual features, these results suggest that RSC, parahippocampal place area, and

retrosplenial complex represent information in addition to scenes and contexts. Notably,

other studies have provided evidence for conjunctive representations in retrosplenial com-

plex (e.g., Vass and Epstein, 2013; Marchette et al., 2014, 2015).

We observed clear evidence for a relationship between the V1 similarity matrix and the con-

text matrix. Moreover, the V1 similarity matrix was related to the item-in-context matrix

and the item-in-order-in-context matrix. In hindsight, this result is not surprising given the

visual nature of the task. Interestingly, however, we observed a relationship between repre-

sentations in V1 and associative memory performance. These findings highlight the difficulty

of dissociating mnemonic from processing roles in experiments that use distinct contexts and

objects. In the rodent version of the task, the contexts were comprised of chambers that

differed in terms of visual and tactile cues and the objects differed in terms of visual, tactile,
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and olfactory cues. Thus, it is possible that the results of these studies were also influenced

by differences between the stimuli that comprise an event. However, other studies in the

rodent have shown that more psychological versions of context can modulate place cell firing

in the hippocampus—e.g., behavioral conditions (Wood et al., 2000; Smith and Mizumori,

2006b), expectations (Skaggs and McNaughton, 1998), temporal context (Allen et al., 2016).

These results suggest that psychological context can dramatically influence representations

in the rodent hippocampus even within the same physical environment (Smith and Mizu-

mori, 2006a; Smith and Bulkin, 2014). We suggest, however, that future experiments should

investigate the degree to which low-level features influence representations in the MTL. For

example, studies that have recorded simultaneously from V1 and the hippocampus have

observed “place cell” activity in V1 that has been shown to precede place cell activity in

the hippocampus (Ji and Wilson, 2007; Haggerty and Ji, 2015). Accordingly, simultaneous

recordings from multiple brain regions can elucidate the sensory and mnemonic contribution

of regions of the MTL.

Given that whole-brain coverage is afforded by fMRI, human fMRI studies will be useful

for testing the influence of low-level stimulus features on representations throughout the

brain. However, the fact that we observed a relationship between representations in V1 and

behavior highlights the importance of cross-species approaches. For example, optogenetic

techniques in mice allow researchers to tag cells that are active during encoding and then to

reactivate those cells under experimental control. Cowansage et al. (2014) tagged cells that

were active in RSC during contextual fear conditioning. Similar to numerous reports, they

showed that inactivation of the hippocampus reduced freezing behavior upon re-exposure

to the context. Interestingly, optogenetic reactivation of cells in RSC during hippocampal

inactivation was sufficient to elicit freezing behavior in a neutral context, suggesting that one

role of the hippocampus in memory expression is to reactivate the relevant cortical patterns

of activity (Teyler and DiScenna, 1986; Teyler and Rudy, 2007) in regions such as RSC.

Thus, research in animal participants can provide more causal evidence for brain regions in
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memory performance than the correlation approaches afforded by human neuroimaging.

The results of Experiment 3 should guide the experimental designs of future human neu-

roimaging studies. For example, our results highlight the necessity of investigating whether

there are low-level visual confounds in the stimulus set before running an experiment that

investigates the representation of context. In Experiment 4, we provided one approach for

mitigating the influence of low-level visual features. Specifically, we used stimulus filtering

(histogram matching) and model testing to select images that were devoid of a low-level

visual confound. In Experiment 4, our contexts were multiple images of Saint Peter’s Basil-

ica and the U.S. Capitol Building and our objects were multiple images of car keys and

house keys. We investigated whether the results from Experiment 3 would maintain after

controlling for differences in the low-level visual features.

Investigation of invariant context and object representation

To verify that we adequately reduced the low-level differences between our categories of im-

ages, we first investigated representations in V1. Importantly, we saw no sign of a relationship

between the similarity matrix in V1 and the context matrix and the object matrix. We used

a computational model of V1 to show that there was a relationship between the similarity

matrix from the model of V1 and the empirical V1 similarity matrix. These results serve

as a positive control, establishing the quality of the data. We next investigated representa-

tions within the hippocampus, PHC, RSC, parahippocampal place area, and retrosplenial

complex—regions that showed a large effect of context in Experiment 3. Unfortunately,

the relationship between the invariant context matrix failed to exhibit a significant relation-

ship to the similarity matrices in these regions. Importantly, these regions exhibited greater

blood-oxygen-level dependent activation for events compared to the perceptual baseline task,

suggesting that our regions were responding to the task. Taken together, these findings sug-

gest that our results from Experiment 3 were influenced by the low-level stimulus differences
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among the different events. In contrast to our relatively null findings for the relationship to

the context matrix, Marchette et al. (2015) reported invariant representations across indoor

and outdoor images of the same landmark in both parahippocampal place area and retros-

plenial complex. They also provided evidence that representations in parahippocampal place

area might be influenced by knowledge of the landmarks. These results raise the interesting

possibility that we would have observed context processing in our regions of interest if our

participants had real-world experience with our contexts. Future studies can investigate this

possibility in more detail.

We found a significant relationship between the similarity matrix in PRC and the invariant

object matrix. These results suggest that PRC exhibits similar patterns of activity across

different versions of the same objects. We suggest that an important next step is to provide

evidence for a double dissociation between PRC and V1. We first showed that V1 was

significantly more related to the V1 model than PRC. We next showed that representations

in PRC were significantly more related to the object matrix than V1. These results support

the notion that PRC contains higher-level representations than V1. Moreover, these results

suggest that PRC contains invariant representations of subordinate categories (i.e., car keys

and house keys), supporting previous reports that have suggested that PRC is involved in

processing fine-grained semantic information (Clarke and Tyler, 2014; for review see: Clarke

and Tyler, 2015). Clarke and Tyler (2014) used a partial correlation approach in their

investigation of peririnal cortex, which can be used account for different aspects of stimulus

features. These approaches provide complementary information, thus both approaches will

be useful for future studies that investigate the representation of objects and contexts.
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5.1.3 Moving beyond simple dissociations

We tested the hypothesis that subregions of the MTL would differ in terms of the information

that they represent (e.g., Diana et al., 2007; Eichenbaum et al., 2007; Wixted and Squire,

2011; Ranganath and Ritchey, 2012; Ritchey et al., 2015). The results from our experiments

support the basic distinctions set forth in these theories while also suggesting that there will

not be simple dissociations among these regions. For example, we showed that PRC exhibits

invariant representations of objects. These findings accord with the notion that PRC plays a

role in memory for objects. Additionally, in PHC and RSC, classification accuracy for faces

and scenes was significantly greater than for faces and objects. Moreover, PHC and RSC

shared information in a stimulus-dependent manner (i.e., scenes). We also showed significant

classification of faces vs objects in PHC and RSC, suggesting that PHC and RSC are not

tuned solely for spatial, contextual, or scene processing.

Other recent studies have provided mixed evidence for dissociations among MTL cortical

regions. For example, Keene et al. (2016) showed that medial entorhinal cortex, a region

hypothesized to be involved in spatial processing, carried information about non-spatial

aspects of the context-guided object association task (i.e., object, valence). Additionally,

they showed that PRC and lateral entorhinal cortex, regions hypothesized to be involved in

memory for objects, carried information about non-object aspects of the task (i.e., context,

location). Taken together, Keene et al. (2016) suggested that strong versions of the binding

of items and contexts model (Diana et al., 2007; Eichenbaum et al., 2007) are incomplete. I

share a similar view, and I think that the field of memory research has been too consumed by

quests for dissociations. I am hopeful that future research will shift toward more integrative

analyses to understand how multiple interacting regions give rise to memory. Approaches

that combine MVPA and computational model testing hold great promise for understand-

ing how information is processed in different brain regions. However, the results from our

context-guided object association experiments raise important questions about the types of
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experiments that we should be conducting. In the next section, I will discuss other findings

from the field of visual neuroscience that have revealed that scene processing regions process

low-level visual information to a greater degree than previously thought.

Studies from the field of visual neuroscience have challenged the interpretation

of scene processing in “scene” processing regions

While many studies have investigated the involvement of regions such as parahippocampal

place area and retrosplenial complex in the processing of scenes, few fMRI studies have in-

vestigated whether low-level stimulus properties are related to differences in the responses

of these regions. Recent studies have found evidence for retinotopic processing in parahip-

pocampal place area (Arcaro et al., 2009; Silson et al., 2015). Specifically, these studies

observed that parahippocampal place area preferentially responded to stimuli presented in

the upper contralateral visual field. Additionally, there have been reports that low-level spa-

tial properties of stimuli can preferentially activate scene processing regions. For example,

Rajimehr et al. (2011) showed that parahippocampal place area preferentially responded to

images with high spatial frequencies. Additionally, Nasr and Tootell (2012) observed greater

parahippocampal place area activation in response to stimuli with greater energy at cardinal

orientations (i.e., vertical or horizontal) relative to oblique orientations. Nasr et al. (2014)

developed a technique to measure the rectilinearity of images (i.e., the energy at 90 degree

angles). They showed that scene stimuli from previously published studies had larger values

of rectilinearity than stimuli from other categories. Moreover, they revealed greater parahip-

pocampal place area activation for rectilinear stimuli compared to round stimuli. Finally,

Lescroart et al. (2015) showed that a Fourier power model, which measures the spectral

information of images, accounted for a large amount of variance in parahippocampal place

area and retrosplenial cortex. Taken together, these findings highlight the challenges associ-

ated with concluding that regions play a role in scene or object processing. Moreover, these
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results suggest that “high-level” cortical regions process low-level visual features.

In contrast to our approach for mitigating low-level differences between stimuli (Experiment

4), Lescroart et al. (2015) advocated for the use of very large stimulus sets. Moreover, they

used encoding models to investigate the information that is represented in different voxels of

the brain. Encoding models are relatively new techniques, but they provide a framework for

linking information about stimulus features with the dynamics of activity in a given voxel

(for review see: Naselaris et al., 2011). Specifically, estimates are generated for the features

of each image in the stimulus set. Regression analysis is then used on a voxel-by-voxel

basis to assign weights to the features of the encoding model (similar to activation analysis).

Importantly, these techniques test the reliability of the encoding model using a left-out data

set. These methods allow the investigation of the amount of variance accounted for by the

model, thus providing information about the stimulus features that drive activity in a given

voxel. The difficulty with applying encoding models to regions of the MTL, however, is that

the features that will be represented in these regions are not well established, thus making

it difficult to construct an encoding model. In contrast, the information processed in regions

such as V1 are well established. However, as more data and theories accumulate, encoding

models should be extended to investigate representations in the MTL. In the meantime,

these findings highlight the notion that human fMRI studies that attempt to investigate

category representation (including scenes, objects, and contexts) cannot ignore differences

in low-level visual features between stimuli. A more holistic approach that incorporates the

findings and methods from the field of visual neuroscience can help elucidate the information

that is processed by regions of the MTL.
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5.1.4 Future directions

In addition to the future directions discussed so far in this chapter, we listed several specific

future directions for studies that aim to investigate the representation of context (see Chapter

3). I will reiterate those ideas here. First, rather than defining contexts and objects in an

unconstrained manner, differences between contexts and objects could be manipulated to

the same degree and within the same modality. One caveat, however, is that experiments

that investigate differences in representations between two static stimuli will be virtually

guaranteed to show differences in representations in the relevant sensory areas. However,

changing the context and items to a similar degree would allow testing whether contexts

or objects play a greater role in the representation of information in the MTL. It should

be noted, however, that the objects themselves represent a context—i.e., the context of the

object changes the predicted outcome of a behavioral response. Second, imaging/physiology

data could be collected before and after training. Such studies should include control stimuli

that consist of identically structured events but without a learned behavioral response or

outcome. Third, the reverse type of experiment could also be used. Specifically, studies could

investigate whether representations of distinct contexts become more similar to each other as

a result of similar associations across the contexts; however, careful control will be required

to show that there are not behavioral differences that emerge as a result of learning. Fourth,

experiments could use the same physical stimuli with a different pre-event cue (cf. Skaggs

and McNaughton, 1998; Wood et al., 2000; Smith and Mizumori, 2006a,b; Hsieh et al., 2014;

Allen et al., 2016). Fifth, future studies could further investigate invariant representation,

similar to our approach in Experiment 4. Finally, future studies could investigate the role

of memory in invariant context and object representation.
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5.2 Investigation of the effects of test format on per-

formance of the Mnemonic Similarity Task

In Chapter 4, we investigated the effect of test format on performance of the Mnemonic

Similarity Task in a group of younger adults and healthy older adults. Previous studies

from our laboratory have revealed an age-related impairment in the ability to discriminate

between targets and similar lures on both the old/similar/new test format and the old/new

test format (Yassa et al., 2011a,b; Stark et al., 2013, 2015; Bennett et al., 2015). We tested

the hypothesis that this effect would extend to a forced-choice variant of the Mnemonic

Similarity Task. We used three different forced-choice test formats. In the first test format,

participants were shown one target item and one unrelated foil item (A vs X). In the second

test format, participants were shown one target item and a similar lure to that target item

(A vs A’). In the third test format, participants were shown one target item and a similar

lure item of a different target item (A vs B’).

5.2.1 Forced-choice and old/new test formats reveal a stable age-

related impairment of performance

In both younger and older adults, we observed an effect of test format. Specifically, perfor-

mance was best on the A vs X test format, followed by the A vs A’ test format, followed by

the A vs B’ test format. Moreover healthy older adults exhibited impaired performance on

the A vs A’ test format relative to younger adults. These results suggest that the previous

reports of an age-related impairment in the ability to discriminate between targets and sim-

ilar lures on the old/new and the old/similar/new test formats extends to the A vs A’ test

format. These test formats rely on a different set of assumptions; therefore, the consistent

finding of an age-related impairment in the ability to discriminate between targets and sim-
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ilar lures suggests a memory-based rather than a decision-based difference between the two

groups, mitigating concerns raised by Loiotile and Courtney (2015) about age-related effects

on performance of the Mnemonic Similarity Task.

5.2.2 Application of global matching models to the Mnemonic

Similarity Task

We showed that a class of models from mathematical psychology, global matching models,

provided a good qualitative fit to our empirical results in younger and older adults. The

models predicted a similar effect of test format in both age groups. Performance on the A vs

X test format was predicted to be the easiest due to the very low similarity between a target

item and an unrelated foil. Performance on the A vs A’ test format was predicted to be better

than performance on the A vs B’ test format. Previous studies have been able to account

for this finding using global matching models (Hintzman, 1988, 2001; for review see: Clark

and Gronlund, 1996). Specifically, these studies suggested that the shared variance between

targets and lures on the A vs A’ test format but not the A vs B’ test format caused better

performance on the A vs A’ test format. We further investigated this effect by manipulating

encoding variability.

In standard versions of MINERVA 2, each feature is encoded with a certain probability,

however, there is trial-by-trial variability in the number of features that are encoded. We

found that the removal of encoding variability reduced the A vs A’ test format advantage.

These results suggest that there are certain trials in which a participant happens to encode

more features than others. Accordingly, there are trials on which a participant encodes more

features of the original target of the noncorresponding lure (i.e., B) than of the target item

(i.e., A). Because the similar lures are correlated with the target items, this results in certain

trials where the global match of the B’ item exceeds that of the A item. When the number
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of encoded features is held constant, the model predicts a smaller difference in performance

between the two tasks.

In our initial simulations we found parameters that fit the empirical data in younger adults.

We next showed that reducing the probability of encoding stimulus features resulted in a

similar pattern of results as we observed in older adults. Specifically, the models predicted

that the largest change in performance would be on the A vs A’ test format. Interestingly,

however, the model predicted that there would also be decreases in performance on the A vs

X test format and the A vs B’ test format. Future studies could use more distractor images

in each test format. For example, previous studies have used a four-alternative forced-choice

test format, which has a larger dynamic range than our two-alternative forced-choice test

formats. The use of the four-alternative forced-choice test format might be more sensitive

for detecting age-related differences on both the A vs X test format and the A vs B’ test

format. Future studies could also further investigate the relationship between performance

on old/new and forced-choice test formats. Finally, future studies could further explore

conditions in which global matching models and the dual-process complementary learning

systems model (Norman and O’Reilly, 2003) make disparate predictions about behavior.

In addition to their ability to account for our data, we also showed that global matching

models provided a possible mechanistic account of other studies that have used the Mnemonic

Similarity Task (Reagh and Yassa, 2014; Loiotile and Courtney, 2015; see Chapter 4). In

conclusion, the global matching framework provided a reasonable account of our empirical

findings. Importantly, our use of the global matching models emphasized differences in the

mnemonic resolution required to solve the different test formats rather than differences in

cognitive processes (cf. Cowell et al., 2010a,b). In the final section, I will briefly discuss the

potential for combining functional analysis and cognitive modeling.
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5.2.3 A combined functional and model-based approach

Recent studies have combined cognitive modeling and neuroimaging. For example, Davis

et al. (2014) used a global matching model to analyze fMRI data that were collected as

participants performed a recognition memory task. Their modeling approach was similar

to our approach in Chapter 4. However, instead of using randomly generated vectors to

represent items, they used patterns of activity from the MTL. Interestingly, they showed that

the global match between the pattern of activity of a given target and the patterns of activity

of all of the encoding trials was related to recognition memory performance. These results

directly support the global matching framework by suggesting that recognition memory

decisions are influenced by the global match between a target item and the items in memory.

Other studies have used fMRI to detect latent cognitive processes. For example, Gershman

et al. (2013) used MVPA to support the theory that the reinstatement of a previous context

during new learning was related to source memory errors. Similarly, Polyn et al. (2005)

demonstrated that patterns of activity during the recollection of an item were similar to

patterns of activity during the initial encoding phase, which supports the hypothesis that

recollection reactivates the context in which an item was studied. These types of experiments

are interesting because they use fMRI as a tool to examine cognitive states rather than

attempts to map where in the brain certain cognitive functions take place. Taken together,

the combination of modeling (both computational and cognitive) and MVPA will be a fruitful

framework for future studies.
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