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A resource of lipidomics and 
metabolomics data from individuals 
with undiagnosed diseases
Jennifer E. Kyle   1, Kelly G. Stratton   2, Erika M. Zink   1, Young-Mo Kim   1, 
Kent J. Bloodsworth   1, Matthew E. Monroe   1, Undiagnosed Diseases Network*, 
Katrina M. Waters   1, Bobbie-Jo M. Webb-Robertson   1, David M. Koeller   3 ✉ & 
Thomas O. Metz   1 ✉

Every year individuals experience symptoms that remain undiagnosed by healthcare providers. In 
the United States, these rare diseases are defined as a condition that affects fewer than 200,000 
individuals. However, there are an estimated 7000 rare diseases, and there are an estimated 25–30 
million Americans in total (7.6–9.2% of the population as of 2018) affected by such disorders. The NIH 
Common Fund Undiagnosed Diseases Network (UDN) seeks to provide diagnoses for individuals with 
undiagnosed disease. Mass spectrometry-based metabolomics and lipidomics analyses could advance 
the collective understanding of individual symptoms and advance diagnoses for individuals with 
heretofore undiagnosed disease. Here, we report the mass spectrometry-based metabolomics and 
lipidomics analyses of blood plasma, urine, and cerebrospinal fluid from 148 patients within the UDN and 
their families, as well as from a reference population of over 100 individuals with no known metabolic 
diseases. The raw and processed data are available to the research community so that they might be 
useful in the diagnoses of current or future patients suffering from undiagnosed disorders.

Background & Summary
Metabolites and lipids can be responsive to both genetic and environmental influences. Variations may occur 
due to host genes, disease states, lifestyle, diet, medications and the interaction with the gut microbiome1. Many 
rare diseases have genetic origins, but their symptoms can also be impacted by non-inherited causes such as 
infections, cancers, and other acquired conditions. Metabolomics and lipidomics analyses have been helpful in 
identifying inborn errors of metabolism, and in characterizing acquired metabolic conditions such as diabetes 
and metabolic syndrome2,3. These conditions are typically associated with a small number of metabolites and/or 
lipids that are significant outliers, and easily identified as abnormal.

In contrast, the metabolic changes in rare and undiagnosed diseases may be more subtle, consisting of com-
plex patterns of minor changes of a large number of analytes rather than a few significant outliers. Due to the rare 
nature of these disorders, the number of individuals with a given phenotype is usually limited to one or just a few, 
precluding the use of the balanced study designs typically used in metabolomics. For these reasons the use of 
metabolomics and lipidomics analyses in the evaluation of rare and undiagnosed diseases presents many unique 
challenges.

The NIH Common Fund’s Undiagnosed Diseases Network (UDN) was established to accelerate the diagnosis 
and clinical management of rare or previously unrecognized diseases, and to advance research in disease mech-
anisms4. The UDN is composed of multiple clinical sites around the United States, and multiple research cores 
including DNA sequencing (whole exome and whole genome), model organisms (e.g., drosophila and zebrafish) 
and metabolomics4,5. As the Metabolomics Core for Phase I of the UDN, our role was to provide comprehensive 
untargeted measurements to identify qualitative and quantitative changes of metabolites (metabolomics) and 
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lipids (lipidomics) in biofluids from probands (i.e. individuals with an undiagnosed disease accepted into the 
UDN) to assist in the evaluation and/or identification of the causes of rare and undiagnosed diseases. Here, 
we describe in detail the raw and processed metabolomics and lipidomics data from analyses of UDN patient 
samples and make the data available to the research community so that it might be useful in the diagnoses of cur-
rent or future patients suffering from undiagnosed disorders. Our previous publication (Webb-Robertson et al.6)  
described the detailed statistical approach used for processing this same underlying data set, and so we refer 
readers to that work for more details on the statistical analyses employed.

Methods
Study design.  The identification of metabolite and lipid outliers via metabolomics evaluation of individual 
probands by untargeted metabolomics required a normal or reference population for comparison. A reference 
dataset against which metabolomics data from UDN probands and their relatives could be compared was gen-
erated by metabolomics analysis of plasma, urine, and CSF from individuals with no known metabolic disease 
(Fig. 1). Approval for the study of the individuals in the UDN was provided by the National Institutes of Health 
under protocol number 15-HG-0130. The UDN is registered at ClinicalTrials.gov under identifier NCT02450851.

UDN probands suffer from undiagnosed diseases and thus are typically represented as a sample size of one; 
therefore, understanding normal variation within a proband’s condition is not possible. To address this issue, we 
performed power analyses of historical plasma and urine data from the Pacific Northwest National Laboratory 
(PNNL), assuming an uneven study design (e.g. n = 1 for probands and n = ≥(10–150) for healthy controls)6. 
This analysis determined that data from 80–120 healthy individuals would be required to perform a well-powered 
statistical analysis of the data from a UDN proband. This reference dataset is used to understand normal metabo-
lome variation in a population of similar demographics to the UDN population, which is essential for evaluating 
the metabolome and lipidome data from individual UDN probands and characterizing the pathophysiology and 
etiology of their undiagnosed disease.

Reference population.  The composition of the reference population (approximately 50% children (<18 
years of age) and approximately 50% female) was selected to represent the demographics of the participants 
enrolled in the Undiagnosed Diseases Program, an NIH intramural program upon which the UDN is based7. 
Biofluids for the reference population included samples collected from the Oregon Clinical & Translational 
Research Institute Biolibrary (adult plasma and urine), the Oregon Health & Science University Layton Aging 
and Alzheimer’s Research Center (adult CSF), the Vanderbilt University Metabolic Screening Laboratory (pae-
diatric plasma), the Mayo Clinic Biochemical Genetics Laboratory (paediatric and young adult urine and CSF), 
and BioIVT (adult CSF)6 (Table 1; figshare8 (‘Demographic information for reference population’)). The indi-
viduals composing the reference dataset also consented to sample collection under Institutional Review Boards 
(IRB) at the respective institutions.

Fig. 1  Overview of the study design. Biofluid samples were collected from probands at the UDN clinical sites 
and then extracted for metabolomics (urine, plasma, CSF) and lipidomics (plasma and CSF) analyses using 
chromatography coupled to mass spectrometry (GC-MS for metabolomics and LC-MS/MS for lipidomics). 
Data were pre-processed, including data quality checks, normalized, and compared against data from the 
reference population of healthy individuals. Metabolomics and lipidomics results in the form of Z-score, log2 
fold change and p-value per metabolite and lipid of the proband (and associated family members, if applicable) 
were reported back to the respective UDN Clinical Site for diagnostic assistance.
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For the paediatric and young adult CSF, due to the limited volumes available (100 µl), samples were pooled 
to reach the required volume of 200 µl for metabolomics analysis. Each CSF paediatric and adolescent reference 
sample is thus composed of two individuals of the same sex and similar age (e.g., 2 years old combined with 3 
months old, and 14 years old combined with 16 years old).

Biofluid collection for UDN participants and sample management.  Biofluids were collected from 
UDN probands by the UDN clinical site at which the individual was evaluated. Written consent from all UDN 
participants and/or legal guardians was provided prior to sample collection and approved IRB. For each sample, 
the collection time, fasting state and duration, symptoms, diet supplements, and medications were documented. 
(figshare8 (‘Listing of metabolomics and lipidomics raw data files’). To assist in determination of potential 
genetic and environmental influences on the metabolomics findings, when it was possible samples were also 
collected from unaffected family members. Metabolomics and lipidomics analyses were conducted on 281 UDN 
participants, including 148 probands and 133 family members (101 unaffected, 25 affected, 7 unknown) (figshare8 
(‘Listing of metabolomics and lipidomics raw data files’). This comprised 540 biofluid samples for analysis (295 
plasma, 239 urine, and 6 CSF) (Table 2). Combining the reference population and the UDN participants, mass 
spectrometry analyses were conducted on 2781 biofluid samples. UDN probands with diagnoses are available 
(figshare8 (‘UDN probands with available diagnoses’)).

Blood samples for plasma were collected in purple top EDTA Vacutainer® tubes. The blood was centrifuged at 
10 000 × g for 10 minutes at 4 °C. Three 50 µl aliquots of plasma were transferred into 0.5 mL Sarstedt Biosphere® 
SC Micro Tubes. Samples were flash frozen in liquid nitrogen or quick frozen in dry ice/ethanol prior to storage in 
either a −80 °C or liquid nitrogen freezer with appropriate labels (ID, sample type, and collection date).

Urine samples were requested to be the first morning void and were collected in a polypropylene container. 
The urine was centrifuged at 1000 × g for 5 minutes at 4 °C to remove any cells and particulates. Three 100 µl 
aliquots were transferred into 0.5 mL Sarstedt Biosphere® SC Micro Tubes and flash frozen in liquid nitrogen 
or quick frozen in dry ice/ethanol prior to storage in either a −80 °C or liquid nitrogen freezer with appropriate 
labels (ID, sample type, and collection date).

CSF was collected by lumbar puncture in the L3/L4 or the L4/L5 inter-space. If the samples were not blood 
contaminated, the sample tubes were placed on ice (or dry ice if available), and then transferred to a −80 °C 
freezer. If the samples were blood contaminated, the samples were centrifuged immediately (prior to freezing) 
and the clear CSF transferred to new tubes. Three 200 µl aliquots were transferred into 0.5 mL Sarstedt Biosphere® 
SC Micro Tubes and flash frozen in liquid nitrogen or quick frozen in dry ice or ethanol prior to storage in a 
−80 °C freezer with appropriate labels (ID, sample type, and collection date)

All biofluid samples were shipped to the Pacific Northwest National Laboratory on dry ice and stored in 
−70 °C freezers until sample processing for mass spectrometry (MS) analysis.

Plasma (n = 136) Urine (n = 102) CSF (n = 149)

Sex

Female 67 (49%) 55 (54%) 79 (53%)

Male 69 (51%) 47 (46%) 70 (47%)

Age group (years)

0–0.5 0 (0%) 12 (12%) 16 (11%)

0.6–1.9 23 (17%) 4 (4%) 4 (3%)

2–10 53 (39%) 26 (25%) 25 (17%)

11–17 6 (4%) 8 (8%) 11 (7%)

18–30 23 (17%) 21 (21%) 4 (3%)

31–60 22 (16%) 22 (22%) 29 (19%)

>60 9 (7%) 9 (9%) 60 (40%)

Table 1.  Demographics of reference population per biofluid type.

MS analysis Plasma Urine CSF

Reference

Metabolite (GC-MS) 136 102 149

Lipid (LC-MS/MS) 272 204 298

UDN

Metabolite (GC-MS) 295 239 6

Lipid (LC-MS/MS) 590 478 12

Total biofluid MS analyses 1293 1023 465

Table 2.  Summary of mass spectrometry (MS) sample analyses per biofluid for the reference population and 
UDN cohort.

https://doi.org/10.1038/s41597-021-00894-y
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Quality control samples.  The NIST SRM 1950 was used as a plasma QC9,10. The NIST QC is composed of 
100 healthy individuals between 40–50 years old, an equal number of men and women, and a race distribution 
representative of the US population. The NIST QC is a commercially available reference material (certified until 
year 2023) and was chosen due to the multi-year nature of this study. For urine and CSF, as no commercially avail-
able reference materials were identified, pools were generated from the reference population for each respective 
biofluid and used as QCs.

Sample batches.  Sample batches were formed based on the number of analyses that could be performed 
in approximately one day (~33 analyses). Randomized run orders were generated based on sex, age, ethnicity (if 
provided), family association, and clinical site (if samples from more than 1 clinical site were available at the time 
of batching) (see Technical Validation section) prior to extraction, sample preparation, chemical derivatization of 
metabolites, and instrument analysis runs.

The instrument run order included a batch structure that enabled data normalization via Quality Control 
(QC)-based Robust Locally Estimated Scatterplot Smoothing (LOESS) Signal Correction (QC-RLSC)11 to specif-
ically account for batches of samples that were not analysed back to back but dispersed over a longer timeframe6 
(Table 3). The Pilot batches were the initial batches to be analysed and were used to confirm the normalization 
approach. Both Pilot and Project batches were processed using the same methodologies. This normalization 
method required a batch structure with specific placement of QC samples. For GC-MS analyses, the batch began 
with 2 blanks, 1 fatty acid methyl ester (FAME), 1 blank, 3 QCs, samples with evenly dispersed single QCs, and 
ending with 2 QCs. LC-MS/MS batches were similar except there was no FAME and a blank was run after the first 
3 QCs, the middle QC, and at the very end to assess carryover6.

Extraction of metabolites and lipids from plasma and CSF.  For plasma and CSF, 50 μL and 200 μL, 
respectively, were used for metabolite and lipid extraction using a modified Folch extraction12, the MPLEx pro-
tocol13. Prior to extraction, samples were transferred to MμlTI SafeSeal Sorenson microcentrifuge tubes. To 
the plasma, 50 μL of GC-MS internal standards (malonic acid-d4, succinic acid-d4, glycine-d5, citric acid-d4, 
fructose 13C6, L-tryptophan-d5, lysine-d4, alanine-d7, stearic acid-d35, benzoic acid-d5, octanoic acid-d15 at a 
final concentration of 1 μg/μL each)11 and 10 μL of LC-MS internal standards (SPLASH™ Lipidomix® Mass Spec 
Standard, Avanti Polar Lipids, Inc.) were added. To the CSF, 50 μL of GC-MS internal standards (fructose 13C6, 
L-tryptophan-d5, lysine-d4, alanine-d7, stearic acid-d35, benzoic acid-d5, octanoic acid-d15 at a final concen-
tration of 1 μg/μL each) and 10 μL of LC-internal standards ((PC(17:0/14:1) at 1 μg/μL, LPC(19:0) at 0.01 μg/μL, 
and TG(17:0/17:1/17:0)-d5 at 0.01 μg/μL) were added. Cold (−20 °C) chloroform/methanol (2:1, v/v) was added 
in a 4-fold excess to the sample volume. Samples were vortexed for 10 seconds to facilitate mixing of samples 
and solvent, allowed to sit on ice for 5 minutes, and then vortexed again for 10 seconds. Then, the samples were 
centrifuged to facilitate separation of a top hydrophilic layer containing polar metabolites and a bottom hydro-
phobic layer containing lipids. The hydrophilic layers were transferred into new 2.0 mL glass autosampler vials, 
evaporated to dryness in vacuo, and stored dry at −20 °C until chemical derivatization (see below). The lower 
hydrophobic layers containing the total lipid extract (TLE) were transferred into new 1.7 mL glass autosampler 
vials, evaporated to dryness in vacuo, and stored at −20 °C in 500 μL of chloroform/methanol (2:1, v/v) until 
instrument analysis.

Extraction of metabolites from urine.  For urine, 100 μL was used for metabolite extraction, as previ-
ously described14. Samples were transferred to MμlTI SafeSeal Sorenson microcentrifuge tubes to which 50 μL 
of GC-MS internal standards (malonic acid-d4, fructose 13C6, L-tryptophan-d5, lysine-d4, alanine-d7, stearic 

Analysis Batch

Metabolomics (GC-MS) Lipidomics (LC-MS/MS)

Plasma Urine CSF Plasma CSF

Reference_population 06-Jun-16 07-Dec-16 31-Jan-17 22-Sept-16 03-Mar-17

UDN_Pilot1 22-Jun-16 — — 03-Oct-16 —

UDN_Pilot2 05-Oct-16 — — 04-Oct-16 —

UDN_Project01 01-Dec-16 21-Dec-16 26-Sep-17 08-Dec-16 10-Oct-17

UDN_Project02 27-Feb-17 22-Dec-16 — 27-Mar-17 —

UDN_Project03 27-Sep-17 02-Oct-17 — 06-Oct-17 —

UDN_Project04 20-Sep-17 03-Oct-17 — 07-Oct-17 —

UDN_Project05 29-Sep-17 04-Oct-17 — 08-Oct-17 —

UDN_Project06 21-Sep-17 05-Oct-17 — 09-Oct-17 —

UDN_Project07 24-Oct-17 25-Oct-17 — 24-Oct-17 —

UDN_Project08 12-Dec-17 21-Feb-18 — 11-Dec-17 —

UDN_Project09 20-Feb-18 16-May-18 — 03-Feb-18 —

UDN_Project10 14-May-18 17-May-18 — 21-May-18 —

UDN_Project11 15-May-18 01-Oct-18 — 22-May-18 —

UDN_Project12 02-Oct-18 — — 18-Oct-18 —

Table 3.  Batch start date for the mass spectrometry analysis of the reference population and subsequent UDN 
participant samples per instrument type and biofluid.
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acid-d35, benzoic acid-d5, octanoic acid-d15 at a final concentration of 1 μg/μL each) and 100 μL of a 1 mg/mL 
solution of urease prepared in water were added. The samples were incubated for 30 minutes at 37 °C with mild 
shaking to deplete urea. Metabolites were then extracted with concomitant protein precipitation by addition of 
1 mL of cold (−20 °C) methanol. Samples were vortexed for 30 seconds and precipitated proteins were isolated by 
centrifugation. The supernatants were transferred to glass autosampler vials and then dried in vacuo. Metabolite 
extracts were stored dry at −20 °C until chemical derivatization (see below).

Chemical derivatization of metabolites.  Polar metabolites were chemically derivatized prior to metabo-
lomics analysis. Two post-extraction standards (pentadecanoic acid-d3 and 3-hydroxymyristic acid-d5 at 1 μg/μL 
final concentration) were added to monitor instrument performance. Chemical derivatization of metabolites was 
previously detailed14. To protect carbonyl groups and reduce the number of tautomeric isomers, 20 μL of meth-
oxyamine in pyridine (30 mg/mL) was added to each sample, followed by vortexing for 30 seconds and incubation 
at 37 °C with generous shaking for 90 minutes. To derivatize hydroxyl and amine groups to trimethylsilylated 
(TMS) forms, 80 μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane 
(TMCS) was added to each vial, followed by vortexing for 10 seconds and incubation at 37 °C with shaking for 
30 minutes. The samples were allowed to cool to room temperature and were analysed the same day.

GC-MS analysis.  An Agilent GC 7890 A coupled with a single quadrupole MSD 5975 C was used to analyze 
chemically derivatized metabolites. GC-MS analysis was previously detailed14. Briefly, 1 μL of each sample was 
injected onto a HP-5MS column (30 m × 0.25 mm × 0.25 μm; Agilent Technologies, Inc). The injection port tem-
perature was held at 250 °C throughout the analysis. The GC oven was held at 60 °C for 1 minute after injection 
then increased to 325 °C by 10 °C/min, followed by a 5-minute hold at 325 °C. Total analysis time was 34 minutes 
per injection. The helium gas flow rates were determined by the Agilent Retention Time Locking function based 
on analysis of deuterated myristic acid. Data were collected over the mass range 50–550 m/z. A mixture of fatty 
acid methyl esters (C8-C28) was analysed once per day at the beginning of each batch together with the samples 
for retention index alignment purposes during subsequent data analysis.

LC-MS analysis.  Stored plasma TLEs were dried in vacuo (30 min) and reconstituted in 200 μL of methanol 
containing post-extraction internal standards (PE(17:0/14:1) and PI(17:0/14:1) at a final amount of 0.05 μg and 
0.01 μg, respectively). Stored CSF TLEs were dried in vacuo and reconstituted in 50 μL of methanol containing 
the same post-extraction internal standards at a final amount of 0.02 μg each. The TLEs were analysed as outlined 
in Kyle et al.15. A Waters Acquity UPLC H class system interfaced with a Velos-ETD Orbitrap mass spectrometer 
was used for LC-ESI-MS/MS analyses. 10 μl of reconstituted sample was injected onto a Waters CSH column 
(3.0 mm × 150 mm x 1.7 μm particle size) and separated over a 34-minute gradient (mobile phase A: ACN/H2O 
(40:60) containing 10 mM ammonium acetate; mobile phase B: ACN/IPA (10:90) containing 10 mM ammonium 
acetate) at a flow rate of 250 μl/minute. Eluting lipids were introduced to the MS via electrospray ionization in 
both positive and negative modes, and lipids were fragmented using higher-energy collision dissociation (HCD) 
and collision-induced dissociation (CID).

Metabolite identification and data processing.  Metabolite identifications and data processing were 
conducted as previously detailed14. GC-MS raw data files were processed using the Metabolite Detector soft-
ware, version 2.0.6 beta16. Retention indices (RI) of detected metabolites were calculated based on the analysis 
of the FAMEs mixture, followed by their chromatographic alignment across all analyses after deconvolution. 
Metabolites were identified by matching experimental spectra to an augmented version of the Agilent Fiehn 
Metabolomics Retention Time Locked (RTL) Library17, containing spectra and validated retention indices. All 
metabolite identifications were manually validated. The NIST 08 GC-MS library was also used to cross validate 
the spectral matching scores obtained using the Agilent library and to provide identifications for metabolites that 
were initially unidentified. The three most abundant fragment ions in the spectra of each identified metabolite 
were automatically determined by Metabolite Detector, and their summed abundances were integrated across the 
GC elution profile. A matrix of identified metabolites, unidentified metabolite features, and their corresponding 
abundances for each sample in the batch were exported for statistics.

Processing the data from the analyses of the reference population resulted in the identification of 81 plasma 
polar metabolites (across 16 super classes and 27 classes as categorized in the Human Metabolome Database18,19, 
116 urine metabolites (across 17 super classes and 28 classes), and 82 CSF metabolites (across 14 super classes 
and 26 classes) (Table 4)

Lipid identification and data processing.  LC-MS/MS lipidomics data were analyzed using LIQUID 
(Lipid Informed Quantitation and Identification)15. Analysis parameters included an initial precursor mass error 
tolerance of 20 ppm (i.e. ±10 ppm), and fragment mass error tolerances of 20 ppm (±10 ppm) and 500 ppm (±250 
ppm) for HCD and CID MS/MS events, respectively. Confident identifications were selected by manually evaluat-
ing the MS/MS spectra for diagnostic and corresponding acyl chain fragments of the identified lipid. In addition, 
the precursor isotopic profile, extracted ion chromatogram, and mass measurement error along with the elution 
time were evaluated. For certain lipids, multiple LC peaks having nearly identical MS/MS spectra were observed, 
suggesting the presence of lipid stereoisomers. In these cases, the stereochemistry of the lipid isomers could not 
be completely determined based on the LC-MS/MS data alone, and so these isomers are annotated with “_A”, 
“_B” or “_C” at the end of the lipid name. Typically, the mass measurement error of confidently identified lipids 
was within ± 2.5 ppm. Given the time-consuming nature of manual validation of each identified lipid, a library 
of confident lipid identifications was generated from the reference dataset and select UDN participants (3 NIST  
QCs, 6 pooled plasma of reference population, 2 reference individuals, and 3 UDN participant). All LC-MS/
MS data were aligned and gap-filled to this target database for feature identification using the identified lipid 
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name, observed m/z, and the retention time using MZmine 220 (see figshare8 (‘Parameters used for MZmine2 
processing of lipidomics data’)). Data from each ionization type were aligned and gap-filled separately. Aligned 
features were manually verified and peak apex intensity values were exported for statistical analysis. All subse-
quent batches were aligned to this library of confident lipid identifications.

To correct for batch retention time (RT) shifts for alignment to the reference library, an in-house tool to 
correct for linear RT shifts was used. The instrument files were converted into.mzXML files using MSConvert21. 
Each file was associated with a target list containing the name, RT, and m/z of the internal standards within a 
batch and was imported into MZmine. As the internal standards alone did not elute across the entire gradient, 
two lipids that were present in all samples in positive mode (carnitine(10:1) and CE(18:1)) and one in negative 
mode (HexCer(d18:1/24:0) were included in the target list as they eluted near the start and end of the gradient. 
The peak alignment of each target was manually validated, and corrected if needed, and the RT of each target lipid 
was exported. These targets acted as anchor points for the RT correction. Using the RT anchors for each target, 
all instrument files within a batch were shifted and aligned to the reference and new.mzXML were generated for 

HMDB Metabolite Class Plasma Urine CSF

Alcohols and Polyols 2 1 2

Alkylamines 1 — —

Amines — 1 1

Amino Acids and Derivatives 19 25 15

Anhydrohexose 1 — 1

Benzenoids — 9 —

Benzoic Acid and Derivatives 1 — —

Carboxylic Acids and Derivatives 6 10 4

Cyclic Alcohols and Derivatives — 1 —

Diazines 1 — —

Disaccharides 2 6 1

Fatty Acids and Conjugates 4 1 5

Furans — 1 —

Glycerolipids 2 — —

Glycerophospholipids — 1 1

Glycosyl Compounds — 1 1

Hydroxy Acids and Derivatives 6 15 11

Imidazolidines — 1 —

Imidazopyrimidines 2 3 —

Indoles and derivatives 1 — —

Keto acids and derivatives 5 1 1

Keto-Acids and Derivatives 1 1 2

Lactams 1 1 1

Lactones — — 2

Monosaccharides 6 12 11

Non-metal Oxoanionic Compounds 1 1 1

Organic carbonic acids and derivatives — — 1

Organic nitrogen compound 1 1 1

Organic Phosphoric Acids and Derivatives 1 — —

Organooxygen compound — — 1

Phenols 1 — —

Phenylpropanoids and polyketides — 1 —

Piperidines — — 1

Purine Nucleosides and Analogues — 3 —

Purine Nucleotides 1 — —

Pyridines and derivatives 2 3 1

Pyrimidines and pyrimidine derivatives — 1 1

Steroids and Steroid Derivatives 1 — —

Sugar Acids and Derivatives 3 6 4

Sugar alcohols 4 7 8

Tetrapyrroles and Derivatives 1 1 1

Unclassified 4 1 3

Total 81 116 82

Table 4.  Number of metabolites identified in the reference population biofluids by metabolite class.
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subsequent alignment in MZmine. For all batches aligned to the reference list, lipid identifications were randomly 
selected (approximately 30 lipids) and verified using LIQUID to ensure that identification in the reference and 
sample batches matched.

Processing the data from the analyses of the reference population resulted in the identification of 462 plasma 
lipids across 6 lipid categories and 23 lipid subclasses (as categorized by LipidMaps)22–24, and 208 CSF lipids across 
6 lipid categories and 17 lipid subclasses (Table 5).

Statistical analysis.  We have previously described in detail the statistical approach used for processing the 
data6, and briefly summarize this below. To facilitate the identification of potentially disease-associated analyte 
profiles of UDN participants, a reference population of individuals with no known metabolic diseases was estab-
lished as described above. Batches of samples from UDN participants were analysed and compared to this refer-
ence population as outlined in Webb-Robertson et al.6. Briefly, quality control (QC) processing of the reference 
dataset includes log2 transformation and the removal of any identified or unidentified features not present in at 
least 10% of the samples. Samples with missing or low abundance values and an uncorrelated pattern of expres-
sion by Pearson correlation and rMd-PAV25 were assessed to determine whether the seemingly poor behaviour 
was most likely due to biological or to technical/sample preparation issues. If biological issues appeared to be 
the cause, the sample was retained in the current batch for further analysis; if technical issues appeared to be the 
cause, the sample was omitted from further analyses. QC processing for the participant samples included the 
same steps as for the reference samples; however, participant samples required stronger evidence before removal 
than reference samples.

Normalization of the reference data and the participant data was performed in two steps6. First, QC-RLSC 
accounted for batch effects, and was performed on a per-batch basis11. This required identical QC samples to be 
run in every batch of samples (for reference samples and UDN samples alike), as described above. Quality con-
trol–based robust LOESS signal correction (QC-RLSC) was implemented using the parameter values described 
previously11. Namely, a missingness threshold requiring the observation of a molecule in at least half of the QC 
samples, filtering of molecules with RSD above 30 percent, and possible polynomial degrees of first and second 
order. To account for differences in the amount of sample material analysed by GC-MS or LC-MS, QC-RLSC 
was followed by global median centering of each sample, where each log2 biomolecule value within a sample was 
normalized via subtraction of the corresponding sample median (also on the log2 scale)..

LipidMaps Lipid Subclass Plasma CSF

Carnitine Esters 4 —

NAE 2 1

CE 6 4

Ubiquinone 1 —

Cer 15 1

SM 35 26

HexCer 5 5

Hex2Cer 1 —

LPC 23 16

PC 88 52

LPCO 2 —

PCO 18 11

PCP 13 9

LPE 7 3

PE 26 13

PEO 6 4

PEP 40 9

LPI 2 —

PI 24 8

PS 1 —

DG 6 7

TG 137 39

Total 462 208

Table 5.  Number of lipids identified in the reference population biofluids, by lipid subclass. 
NAE = N-acylethanalamine; Cer = ceramide; SM = sphingomyelin; HexCer = Hexosylceramide; 
LacCer = Dihexosylceramide; LPC = monoacylglycerophosphocholine; PC = diacylglycerophosphocholine; 
LPCO = Monoalkylglycerophosphocholine; PCO = alkyl, acylglycerophosphocholine; 
PCP = 1Z-alkenyl acylglycerophosphocholine LPE = monoacylglycerophosphoethanolmine; 
PE = diacylglycerophosphoethanolmine; PEO = alkyl acylglycerophospho-ethanolamine; 
PEP = plasmalogen PE; LPI = PI = monoacylglycerophosphoinositol; PI = diacylglycerophosphoinositol; 
PS = diacylglycerophosphoserine; DG = diacylglyceride; TG = triacylglyceride.
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To identify unique features in the analyte profiles of participants, results were compared to those from the 
reference dataset6. A univariate approach was applied that compared the feature values of the participants to the 
mean and standard deviation of the feature values in the reference dataset using z-scores26. An absolute value 
z-score threshold was used to obtain a list of metabolites and/or lipids with outlying z-scores that may have 
potential diagnostic significance. Additionally, for a given participant and biomolecule, log2 fold changes relative 
to the reference data were computed as the difference between the participant’s log2 value and the median log2 
value of the reference population.

Data Records
The raw LC-MS and GC-MS data files in .raw and.D format, and converted files in .mzML format, and.CDF 
format, respectively were deposited and are publicly available at the MassIVE repository (MSV00008471727, 
MSV00008550628, MSV00008550829). The normalized values for all identified lipids and metabolites for the 
UDN individuals and reference population are also available in MassIVE. The evidence supporting the molecular 
identifications (e.g. fragment ion m/z, retention times) are provided (figshare8 (‘The evidence supporting the 
molecular identifications (e.g. fragment ion m/z, retention times)’)). The deposited data also contains the 
post-processed data including the log2 fold change, Z-score, and p-value for each lipid and metabolite per UDN 
individual in .csv format. For the lipid results, the identifications made in positive and negative ionization mode 
were consolidated into a single file. Family member data is included in the associated proband files. In addition, 
for the UDN probands that have been diagnosed, the diagnosis name and relevant gene information are provided 
(figshare8 (‘UDN probands with available diagnoses’)).

The data deposited to MassIVE contains up to three directories: peak, quant, and raw. Each biofluid data 
repository also contains automatically generated subdirectories prefixed with “ccms”. Users of the data should 
obtain data from the peak, quant, and raw directories listed above and detailed below:

peak/ → Peak_List_Files/

	 1.	 Reference_pop_(biofluid)_lipid/ = LC-MS/MS instrument files in .mzXML format for the reference 
population

	 2.	 Reference_pop_(biofluid)_metab/ = GC-MS instrument files in .cdf format for the reference population
	 3.	 UDN_(biofluid)_lipid/ = LC-MS/MS instrument files in .mzXML format for the UDN participant
	 4.	 UDN_(biofluid)_metab/ = GC-MS instrument files in .cdf format for the UDN participant

quant/ → Quantification_Results/

	 1.	 UDN_(biofluid)_lipid_normalized_data/ = normalized data files for the associated biofluid per lipidomics 
batch analysis for lipids identified in both positive (POS) and negative (NEG) ionization mode

	 2.	 UDN_(biofluid)_lipid_results/ = The lipidomics result file containing the log2 fold change, Zscore, and 
p-value for each identified lipid per UND participant (and relatives, if applicable)

	 3.	 UDN_(biofluid)_metab_normalized_data/ = normalized data files for the associated the biofluid per 
metabolomics batch analysis for the identified metabolites

	 4.	 UDN_(biofluid)_metab_results/ = The metabolomics result file containing the log2 fold change, Zscore, 
and p-value for each identified metabolite per UND participant (and relatives, if applicable)

raw/ → Raw_Spectrum_Files/

	 1.	 Reference_pop_(biofluid)_lipid/ = LC-MS/MS Thermo instrument files in .raw format for the reference 
population

	 2.	 Reference_pop_(biofluid)_metab/ = GC-MS Agilent instrument files in .D format for the reference 
population

	 3.	 UDN_(biofluid)_lipid/ = LC-MS/MS Thermo instrument files in .raw format for the UDN participant
	 4.	 UDN_(biofluid)_metab/ = GC-MS Agilent instrument files in .D format for the UDN participant

updates/ → 2020-03-10_alchemistmatt_b439c281 → quant → Quantification_Results →
UDN_urine_metab_normalized_data/ = normalized data file for the reference population for urine metabolites.

Technical Validation
To ensure unbiased data production, randomization orders were created and followed for sample extraction, 
GC-MS derivatization, and MS run orders. Family units, meaning probands and their relatives, were analysed 
within the same batch. Batch sizes were limited to the number of samples that could be analysed by GC-MS in 
approximately one day due to the stability of the chemically derivatized metabolites. Approximately 33 samples 
composed a batch. Samples were randomized based on sex, age, ethnicity (if provided), family association, and 
clinical site (if samples from more than 1 clinical site were available at the time of batching). Randomization 
orders were created as sufficient samples accumulated to make up a new batch over the 2.5 years of the study. To 
monitor data quality, the QC samples (across all molecules) were evaluated with prior batches collected to verify 
removal of batch effects via normalization. In addition, on a batch-by-batch basis, data quality was monitored by 
visual inspection of the log2 internal standard values across all samples within a batch.

To evaluate the consistency of the data collection process the coefficient of variation (CV) was utilized. The 
CV is defined as the standard deviation divided by the mean and lower values signify lower variability. Using data 
from the reference population, QC samples per platform and biofluid, the median CV along with the first and 

https://doi.org/10.1038/s41597-021-00894-y


9Scientific Data |           (2021) 8:114  | https://doi.org/10.1038/s41597-021-00894-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

third quartile are shown in Table 6. The median CV of the lipid negative mode CSF is the greatest, possibility due 
to the lower number of samples available and lipids identified.

To evaluate the reproducibility of the results, we assessed the lipidomics results from one UDN proband from 
whom we had 9 samples collected over a period of 9 months. The samples were analysed in 3 different batches, 
separated by up to 1 year (Fig. 2). The proband’s mother had 3 samples analysed in two batches at time intervals 
coinciding with the proband’s samples. As shown in Fig. 2, the Z-score pattern of both the proband’s and the 
mother’s samples remain consistent between batches across the one-year timespan between the collection and 
analysis of the first and last set of samples (October 2016 to October 2017).

Code availability
Statistical processing and analyses were performed in R version 3.4.0. Quality control and median normalization 
were performed using the R package pmartR version 0.9.0, freely available on GitHub (https://github.com/
pmartR/pmartR)30. Default parameter values for pmartR function calls were used. QC-RLSC and the calculation 
of log2 fold changes and z-scores were carried out using in-house R functions and are available on Github (https://
github.com/pmartR/qcrlsc).

Received: 6 January 2020; Accepted: 9 March 2021;
Published: xx xx xxxx

Platform & Biofluid Min. 1st Qu. Median Mean 3rd Qu. Max

Metabolite Urine 12.61 16.4 18.22 23.52 22.38 195.9

Metabolite Plasma 16.93 24.61 30.38 41.23 44.17 189.6

Metabolite CSF 12.68 23.53 30.27 41.89 49.80 201.4

Lipid POS Plasma 9.73 13.32 14.91 17.56 16.91 179.3

Lipid NEG Plasma 20.64 24.20 27.68 30.84 32.36 96.25

Lipid POS CSF 13.62 24.32 26.16 33.05 32.00 103.30

Lipid NEG CSF 25.16 32.08 46.34 45.16 51.22 87.42

Table 6.  The coefficient of variation (CV) per platform and biofluid for the reference population QC 
samples calculated from raw values. Min = minimum CV, 1st Qu. = first quartile, 3rd Qu. = third quartile, 
Max. = maximum CV, POS = positive mode ionization, NEG = negative mode ionization.

Fig. 2  Z-score map of plasma lipidomics data for all UDN individuals (n = 294). One proband (P) and her 
mother (M) had samples analysed in multiple batches over the course of one year. The proband’s samples were 
collected at different times for each batch and analysed on the MS in October 2016 (2 batches, 2 samples per 
batch) and October 2017 (1 batch, 5 samples). The proband’s lipid profile remained very similar between each 
analysis batch. Top coloured bar indicates the different batches over time.
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