UC Berkeley

Research Reports

Title
Geometry of Vanishing Points and its Application to External Calibration and Realtime Pose
Estimation

Permalink
https://escholarship.org/uc/item/1m71z3t3
Author

Kim, ZuWhan

Publication Date
2006-07-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1m71z3t3
https://escholarship.org
http://www.cdlib.org/

Institute of Transportation Studies
University of California at Berkeley

Geometry of Vanishing Points and its Application to Exter-
nal Calibration and Realtime Pose Estimation

ZuWhan Kim

RESEARCH REPORT
UCB-ITS-RR-2006-5

July 2006
ISSN 0192 4095

Geometry of Vanishing Points and its Application to External Calibration and
Realtime Pose Estimation

ZuWhan Kim
Institute of Transportation Studies
University of California, Berkeley, CA, USA
zuwhan@berkeley.edu

Abstract

Vanishing points of an image contain important information

for camera calibration. Various calibration techniques have
been introduced using the properties of vanishing points to
find intrinsic and extrinsic calibration parameters. This pa-
per revisits the vanishing points geometry and suggests a
simple extrinsic parameter estimation algorithm which uses
a single rectangle. The comparison with the Camera Cali-
bration Toolbox for Matlab® shows that the proposed algo-
rithm is highly competitive. The suggested technique is also
applied to a realtime pose estimation for an unmanned air
vehicle’s navigation in an urban environment. We present a
realtime vanishing point extraction algorithm and a pose
estimation procedure. The experimental result on a real
flight video clip is presented.

1. Introduction

When parallel lines are projected to an image coordinates,
they meet at a single vanishing point. Vanishing points have
useful information for camera calibration. For example,
both intrinsic and extrinsic camera parameters can be recov-
ered using three orthogonal vanishing points on an image.
The image center (or the principal point) is the orthocen-
ter of the triangle formed by the three vanishing points [7].
Various camera calibration techniques have been introduced
based on such properties, [3], [8], [4], and used in practice,
for example, in Calibration Toolbox for Matlab® [1] (the
Toolbox, hereafter) for initial estimation.

Most of the previous vanishing point-based calibration
has been focused on accurately extracting interinsic cali-
bration parameters because, 1) extracting extrinsic calibra-
tion parameters is an easy, solved problem, and 2) the in-
ternal and the external calibrations do not have to be done
separately in many applications. Therefore, a very sim-
ple extrinsic calibration approach presented in this paper
has been overlooked. In many robotics applications (espe-
cially in robotics research), users need to move the camera
mounts quite often, and need to perform the external cam-
era calibration (with respect to another camera for stereo,

or another sensor for sensor fusion) whenever the camera
mount is moved. For example, when a camera is installed
on the wings of an unmanned air vehicle (UAV), it has to
be taken off every time when the UAV is maintained be-
cause the wings need to be taken off. The intrinsic camera
parameters do not need to be extracted in every such prac-
tice. Instead, a simple external calibration algorithm with a
simple calibration grid will be very useful in such cases.

More importantly, such a calibration technique can be
useful for realtime robot navigation in an urban environ-
ment, where many parallel lines are available. While vision-
based robot navigation requires accurate pose (attitude) es-
timates, most sensors are based on a relative acceleration
(open-loop estimation) and the error accumulates over time.
Vanishing points-based estimation is uniquely useful be-
cause it gives absolute pose estimates with respect to the en-
vironment, where the errors are not accumulated over time.

In this paper, we revisit the vanishing point geometry
(Section 2) and compare a simple external calibration al-
gorithm based on it with a state-of-the-art calibration tehch-
nique (Section 3). In Section 4, we present its application to
realtime pose estimation for uban robot navigation, and the
conclusion is presented in Section 5.

2. Revisiting the Vanishing Point Ge-
ometry

We assume that the intrinsic camera parameters are known.
Therefore, we only deal with the coordinate conversion be-
tween the world coordinate (the reference coordinate) and
the camera coordinate systems. Uppercase letters represent
a point or a vector of the reference coordinate system and
lowercase letters for the camera coordinate systems.

Camera geometry for vanishing points are illustrated in
Figure 1. The three orthogonal vanishing points (vx, vx,
and vz in Figure 1b) for the reference coordinate system
in the bottom figure are the intersections of X s 57, and 7
(originated from the principal point ¢) with the image plane
(z = 1). In other words, vx, vy, and vz (with z = 1) are
the axes of the reference coordinate system.

Reference Y X
Coordinate ¢
System
Y
Principal Axis
(2)
i Vz 7/?

(b)

Figure 1: Geometry of vanishing points: (a) camera geome-
try; and (b) geometry on the image plane (z = 1). The three
orthogonal vanishing points (v, vy, and vz) for the refer-
ence coordinate system (shown in the bottom figure) are the
intersections of X, Y, and Z (originated from the principal
point ¢) with the image plane.

In fact, such a derivation loses generality especially
when one or more axes of the reference coordinate system
is parallel to the image plane. For example, when the cam-
era is looking straightly forward, X and Y never intersects
the image plane. Even when it is not perfectly aligned it
can still cause numerical errors (both in the vanishing point
estimation and the coordinate conversion) when an axis is
roughly aligned with the image plane. Therefore, for both
the vanishing point estimation and the coordinate conver-
sion, we consider the following three cases:

Center: When a reference coordinate axis is roughly
aligned with the z axis of the camera coordinate, then
the axis vector is (o, yo, 1)7 in the camera coordinate
system.

Vertical: When a reference coordinate axis is roughly
aligned with the y axis of the camera coordinate, |yo|
can be extremely large. Therefore, we use xg/yo and
1/yo instead of xg and yo. Then, the axis vector is
(0/y0,1,1/yo)T in the camera coordinate system.

Horizontal: When a reference coordinate axis is roughly
aligned with the x axis of the camera coordinate, |z
can be extremely large. Therefore, we use 1/x(and
Yo/ o to represent the vanishing point. Then, the axis
vector is (1,yo/zo,1/22) in the camera coordinate
system.

Given two projected parallel lines x1s + v; and xat +
v2 (v1 and vg are unit vectors), their vanishing point is
estimated by the following equations:

m, = vy -vat,a=(x2—x1)-vyt, and (Mg, my) =
m.x1 + avy, where (z,y)*t = (—y, z).

Center: When |m.| = max(|mgl,|myl,|m.|), z0 =
ma:/mzay() = my/mz~

Vertical: When |m,| = max(|mg|, |myl, |m.]), 1/yo =
m /My, To/Yo = My /My

Horizontal: When |m,| = max(|mgl|,|myl|,|m.|),
/2o = my /My, Yo/To = My /M.

3. Camera Calibration with a Single
Rectangle

The vanishing point geometry described in the previous sec-
tion suggests a very simple external calibration algorithm.
When we know the intrinsic calibration parameters, all we
need to know for the external calibration are the vanishing
points corresponding to any two axes of the reference coor-
dinate system. The other axis is simply the cross-product of
the two.

For example, when we assume that the two orthogonal
vanishing points are vy and vy (Figure 2), vz = vx X vy,
and the rotation matrix

R = (vxvyvz), (D

where
xc = RXw + T, 2)

xc and Xy are the world and the camera coordinates of a
point (homogeneous transform), and T is the translation.
Note that we do not need to know the dimension of the
calibration grid (the rectangle) to find the camera orienta-
tion. The dimension of the rectangle is used to find the
translation. To find the translation, we need to know the
world coordinates of at least two points. Given a point cor-
respondences, Eq 2 gives two linear equations on T and
we have three unknowns for T. That means that we only
need to know either the width or the height of the rectangle.
For example, when we know the width, w, we can simply
set the world coordinates of the upper left corner (0,0, 0)
and the upper right corner (w,0,0). For better estimation,

P

Vy

Figure 2: Camera calibration with a single rectangle. A set
of two orthogonal vanishing points give a camera rotation
matrix.

we can apply a least-square optimization on T given all the
available correspondences:

T =(ATA)" 1A, (3)
where

1 0 —TC1
0 1 —yeu

1 0 —zon
0 1 —Ycn
4)

TC1*ZR1 — TR1
Yc1* ZR1 — YR1

TCn " ZRn — TRn
YCn * ZRn — YRn

and (SCR, YR, ZR)T = RXW

An experimental comparison of this algorithm with the
Toolbox is shown in Figure 3. The experimental datasets
were synthetically generated from a 5 x 5 grid of fixed di-
mensions (no camera distortion was modeled). For each
dataset, ten random rotation and translation matrices were
generated (the translation matrices were carefully selected
that the calibration grids are “visible”), and a set of corre-
sponding image coordinates were calculated. A discretiza-
tion noise (of 1/5 pixel) is added (most of the corner detec-
tors have a good subpixel accuracy of about 1/10 pixel).

For each dataset, the Toolbox is applied to find the in-
trinsic and extrinsic camera parameters. For the proposed
algorithm, only 4 point-correspondences for the upper-left,
the upper-right, the lower-left, and the lower-right corners
were used along with the intrinsic calibration parameters
extracted from the Toolbox. For each image an average re-
projection error is calculated for all 5 x 5 points (for both
of the methods).

0.26 L L L L L
0.24 + Matlab Toolbox —+—
022 ' From a single rectangle 8- L
0.2
0.18
0.16
0.14
0.12
0.1
0.08

0.06

Reprojection Error

Example Images

Figure 3: The vanishing point-based algorithm was com-
pared with the Calibration Toolbox for Matlab®. The Tool-
box used all 5 x 5 points while the proposed approach only
used the 4 corner points. For both of the methods, aver-
age reprojection errors of all 5 x 5 points were calculated.
The graph shows the sorted errors for all the examples. The
Toolbox is slightly better but the difference is very small
compared to the variations of the errors within a single
method.

The result is very promising. Although the Toolbox is
slightly better but the difference is much smaller than the
variation of the errors within a single method. The reason
behind its surprisingly high performance is that the vanish-
ing point position estimate is more affected by the angles
of the lines than by each point’s absolute position, and the
angles of the lines can robustly be estimated in most cases.

4. Realtime Pose Estimation of a UAV

In this section, we present an application of the proposed
calibration algorithm to a realtime pose (attitude) estima-
tion. In an urban environment, two or three orthogonal van-
ishing points (one vertical and one or two parallel to the
ground) are available most of the time, so that the proposed
approach can be useful.

One of the key steps is to find a set of orthogonal vanish-
ing points with a small computation. A line detection proce-
dure is a crucial preprocessing step to robustly find the van-
ishing points. In Section 4.1, our line detection algorithm
is presented. The vanishing point extraction algorithm and
the pose estimation algorithm is presented in Section 4.2.
Finally, the experimental result is shown in Section 4.3.

4.1. Line Detection

An example image from an urban flight video is shown in
Figure 4. An accurate extraction of the line segments is
a crucial step for a reliable detection of vanishing points.

JOIFDOG G

-

Figure 5: Edges extracted by a Canny detector (left) and
lines detected by Guru et al.’s algorithm [5] (right). Guru
et al’s algorithm has two major problems: it does not dis-
connect L-junctions and the performance is degraded when
there is more than one line present in the small eigen value
computation window (7 X 7, in the above example).

Guru et al. [5] introduced a simple and robust line detection
algorithm based on a small eigenvalue analysis. For each
edge pixel (computed by a Canny detector [2]), the small
eigen value, \ of the covariance matrix of S is computed by

A= {611 + cog — \/(011 — C22)? +4C%2])

2
{ ci cia }
C21 C22
is the covariance matrix of the neighbor window. Then,
each pixel is thresholded based on the smallest small eigen
value of the windows it belongs to.

Figure 5 shows the line detection result by Guru et al.’s
algorithm. 7 x 7 windows (the smallest suggested window
size) were applied to compute the small eigen values. Guru
et al.’s algorithm has two major problems. First, it does
not disconnect L-junctions, which causes problems in ac-
curately extracting line segments. In addition, its perfor-
mance is significantly degraded when there is more than one
line present in the small eigen value computation window.
Therefore, we augmented the algorithm:

where

¢ To handle the case of more than one line in a window,
only the edge pixels, which have linear paths to the

Figure 6: Lines detected by the proposed algorithm. Many
more lines are detected and the L-junctions are discon-
nected (see the elarged image to the right).

Figure 7: Fitted lines of 10 pixels or longer.

center point, are used to calculate the small eigen value
(instead of using all the edge pixels in the window).

* To prevent L-junctions from being connected, we use
only the small eigen value of the window where the
target pixel is in the center instead of all the windows
the target pixel belongs to.

¢ In addition, the threshold value was raised (to 0.3) be-
cause the above fixes eliminates many false alarms.

The resulting line pixels are shown in Figure 6. We see
that many more lines are detected while L-junctions are dis-
connected. Once the line pixels are detected, a connected
component analysis is applied to find the line segments. The
resulting line segments of 10 pixels or longer are shown in
Figure 7.

4.2. Vanishing Point Extraction and Pose Esti-
mation

The next step is to extract vanishing points from the line
segments. The vanishing point extraction needs to be fast
and robust. We apply a RANSAC-style algorithm suggested
in [6] to detect vanishing points. For all possible line pairs
of, say, 25 pixels or longer, vanishing point hypotheses are
generated. Each vanishing point hypothesis is tested by
checking its compatibility with all the other line segments.
The number of compatible lines (of one pixel or less errors)
is used to score the hypotheses.

Once a highest scoring vanishing point hypothesis is se-
lected, all the line segments that are compatible with the

MR IR e 00+ 17 D2

Figure 8: Extracted vanishing point pairs (a white line seg-
ment connects the two vanishing points).

hypothesis are removed, and another vanishing point is ex-
tracted from the remaining line segments. A small num-
ber of vanishing point hypotheses (three in our implemen-
tation) is extracted for each frame. For each vanishing point
hypotheses, the corresponding axis vector is calculated (cf.
Section 2). Among all the possible vanishing point pairs,
the most orthogonal one (where the dot-product of the axis
vectors is the smallest) is chosen as a final vanishing point
pair. Example vanishing point pairs are shown in Figure 8.
For each image, the line segment connecting the two vanish-
ing points is drawn, but only one vanishing point is visible.

The final vanishing point pair suggests two of the refer-
ence frame axes. The third axis is estimated by the cross-
product of the two. From the axis vectors, the rotation ma-
trix is estimated by Eq 1.

4.3. Experimental Results

An experiment was performed on a real flight video clip of
total 566 frames (30 fps). In 437 frames of the 566 frames,
two or more orthogonal vanishing points are found. The
total computation was about 50ms per frame on an Intel®
Pentium® M 2GHz processor. Currently, a Pentium® M
processor of up to 1.6GHz is available for embedded com-
puting (PC/104).

Since there is no ground truth available, we rotated the
image to the reference coordinate system for a visual val-
idation of the result. Example rotated images are shown
in Figure 9. Only a few noticeable false alarms and mis-
classification of the axes due to an excessive roll angle (the
third example in the figure) were reported. Out of the 437
frames, only 9 of them were totally misplaced and 5 ~ 10
were roughly correct but noticeably misaligned. Eight of
them had axis misclassification. The rest of them (over 400
frames) were reliably estimated. When we do not count the
axis misclassification case, the detection rate was 73% and
the false alarm rate was only 2 ~ 3%.

5. Summary and Conclusion

We revisited the vanishing point geometry and showed an
experiment of comparing a simple vanishing-point-based
algorithm to a state-of-the-art one which suggested that the

former is highly competitive to the latter. We applied it
to a realtime pose estimation for urban robot navigation.
The experimental result was promising. The vehicle pose
was reliably estimated in realtime for over 70% of the to-
tal video with a small false alarm ratio. The future work is
to combine the vanishing-point-based pose estimates with
those of an ego-motion estimation algorithm or gyroscope
sensor readings for more reliable results.

References

[1] J.-Y. Bouguet. Camera calibration toolbox for Matlab®.
http://www.vision.caltech.edu/bouguetj/calib_doc.

[2] J. Canny. A computational approach to edge detection. /[EEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-698,
1986.

[3] B. Caprile and V. Torre. Using vanishing points for cam-
era calibration. [International Journal of Computer Vision,
4(2):127-140, 1990.

[4] L. Grammatikopoulos, G. Karras, and E. Petsa. Camera cal-
ibration combining images with two vanishing points. Inter-
national Archives of the Photogrammetry, Remote Sensing &
Spatial Information Sciences, 35(5):99-104, 2004.

[5] D. S. Guru, B. H. Shekar, and P. Nagabhushan. A simple
and robust line detection algorithm based on small eigenvalue
analysis. Pattern Recognition Letter, 25(1):1-13, 2004.

[6] Z.Kim. Realtime road detection by learning from one exam-
ple. In IEEE Workshop on Applications of Computer Vision,
pages 455-460, 2005.

[7] E. L. Merritt. Analytical Photogrammetry. Pitman Publ. Co.,
New York, 1958.

[8] L.-L. Wang and W.-H. Tsai. Camera calibration by vanishing
lines for 3-d computer vision. /EEE Trans. Pattern Analysis
and Machine Intelligence, 13(4):370-376, 1991.

Figure 9: Example results. The images were rotated to the
reference coordinate system for visual validation.

