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ABSTRACT 

 

Assessment of decarbonizing rapidly-growing technological systems with a life-cycle 

perspective 

 

by 

 

Jiajia Zheng 

 

Climate change is one of the crucial challenges facing mankind. It is imperative to 

transition to a low-carbon economy and rapidly reduce anthropogenic greenhouse gas 

(GHG) emissions. Some technologies that have been growing exponentially in recent 

decades can be climate-friendly if managed well, but the sheer volume, rapid growth and 

mismanagement of them could pose great threats to climate change mitigation efforts. In this 

dissertation, I evaluate the opportunities to decarbonize three rapidly-growing technological 

systems, namely plastics, data centers and residential solar-plus-storage systems.  

Current research is often fragmented in scope and there is a lack of systematic, life-cycle 

and prospective approaches in assessing the climate impacts of rapidly-growing 

technologies. By integrating life-cycle GHG emissions accounting and scenario analysis, I 

assess the GHG emissions mitigation potential of different strategies and interventions to 

decarbonize these technological systems. I also incorporate cost analysis and optimization 

methods into my models to assess the economic feasibility and mitigation potential of 

various decarbonization strategies. 
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In Chapter II, I quantify the global carbon footprint of plastics to be 1.7 Gigaton (Gt) 

CO2 equivalent (CO2e) in 2015. A low-carbon plastics economy requires demand reduction, 

adoption of renewable energy, renewable feedstocks and recycling. By combining these 

strategies, we can keep the global carbon footprint of plastics below the 2015 level in future 

decades. Among the strategies, renewable energy has the most potential, but sources such as 

solar and wind are variable in space and time. To successfully integrate them, data centers 

can play an important role in providing demand response by migrating workloads across 

regions. In Chapter III, I show that by using load migration, existing data centers in 

California could have reduced up to 62% yearly renewable curtailment in 2019 and 239 

ktCO2e of GHG emissions with negative abatement cost, and additional data centers could 

reduce them further with the emissions from non-operational phases taken into account. 

Energy storage is another key solution for renewable energy integration. In Chapter IV, I 

assess the life-cycle GHG emissions and cost implications of residential solar-plus-storage 

systems in California. While PV reduces both emissions and cost, adding battery storage to a 

PV system increases life-cycle costs with mixed impact on emissions, depending on tariff 

structure and marginal emission factors. Emissions reduction from residential solar-plus-

storage would decrease as the grid increasingly decarbonizes, but there could potentially be 

cost savings as storage cost declines. A marginal emissions-aligned tariff design, rapid 

reduction of the capital cost and embodied emissions of battery storage are critical.  

This dissertation is a significant contribution to the systematic sustainability assessment 

of technological systems using a life-cycle approach. It serves as a solid scientific reference 

for policy-makers in deploying and managing rapidly-growing technologies in a way to 

minimize system-level GHG emissions and contribute to global decarbonization efforts.   
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I. Introduction 

A. Background  

Over the last few decades, climate change has caused adverse impacts on natural 

systems and human health across continents, such as extreme weather events and rising sea 

levels1. To avoid further damages from climate change, the total amount of future 

greenhouse gas (GHG) emissions has to be kept below a certain level, which is referred to as 

“carbon budget”. The remaining carbon budget from 2018 onwards globally has a central 

estimate of around 600 gigaton (Gt) and 1,500 Gt CO2 for a 1.5 °C and a 2.0 °C goal of 

temperature rise, respectively2. The required cuts of GHG emissions from 2020 are now 

more than 7% per year on average to keep the global temperature rise below 1.5 °C, and 

close to 3% per year for a goal of 2 °C limit3. Therefore, a rapid transition towards a low-

carbon economy is urgently needed worldwide.  

Some technologies and products that have emerged in recent decades have brought 

convenience, efficiency and productivity to the modern economy, and can play a positive 

role in reducing global GHG emissions if well managed. For example, plastics, the large-

scale production of which dates back to the 1950s, have significantly lower carbon 

footprints than their substitutes such as paper and glass in packaging applications on a per 

unit basis4. The fast development of digitalization technologies such as Cyber-Physical 

Systems and artificial intelligence can help accelerate the low-carbon transition of energy 

systems and achieve the Sustainable Development Goals in many categories5,6. Battery 

storage is believed to be one key solution to overcome the inherent variability of solar and 
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wind energy, improve their economic values, expedite the clean energy transition and 

contribute to climate change mitigation7,8.  

Nevertheless, the sheer volume and rapid growth of these technologies are becoming an 

increasing concern facing the global decarbonization efforts. The massive production and 

consumption of them often translates to high demands for energy and materials inputs and 

thus more GHG emissions throughout their life cycles. Plastics and data represent the most 

fundamental and ubiquitous material in society, in physical and non-physical form, 

respectively, that have grown exponentially in the last few decades9,10, but their climate 

change impacts have only recently been brought to attention. It is projected that plastics’ 

share of global oil consumption would go up to 20% and their share of carbon budget would 

increase to 15% by 205011. Some researchers have raised concerns about the amount of 

electricity consumed by rapidly-growing data center capacities12. Battery storage, due to its 

round-trip efficiency loss, as well as the tendency to induce fossil fuel generation through 

cost arbitrage, can often lead to higher energy consumption and GHG emissions13,14. 

Strategies therefore must be identified and evaluated to decarbonize these technologies as 

they continue to expand in the future, and make sure that they serve the economy and 

society in a way that poses minimal impacts on the climate. 

Large-scale adoption of low-carbon energy resources is a pivotal strategy for 

decarbonizing end-use sectors. Electricity and heat production represents the largest portion 

of global total GHG emissions (25%), most of which is to serve the industrial and residential 

sectors15. Other GHG mitigation measures include improving energy efficiency, emissions 

efficiency, material efficiency and demand-side management. This dissertation starts with an 

assessment of a combination of different mitigation strategies to reduce the global carbon 
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footprint of plastics and concludes that large-scale uptake of renewable energy is the most 

effective strategy along with demand reduction. But there is an intermittency challenge 

facing renewable energy, and the dissertation then moves on to evaluate the potential of 

workloads migration between data centers and residential solar-plus-storage systems in 

integrating renewable energy and reducing GHG emissions.  

A life-cycle approach is used throughout this dissertation, combined with scenario 

analysis. Life cycle assessment (LCA) is a scientific method used to quantify the 

environmental impacts of a product, service or technology across its life cycle16. Using a 

life-cycle perspective, a full picture covering the entire life cycle of the technology from 

material extraction, production, use and end-of-life management can be captured. In 

assessing the decarbonization opportunities of rapidly-growing technological systems, it is 

critical to use a holistic approach to avoid overlooking potential impacts and thus develop 

effective policy recommendations. In this dissertation, I use life-cycle GHG emissions 

accounting, considering the life cycles of the technological systems, covering both the 

embodied GHG emissions due to upstream production and the emissions generated during 

the use or operation phase, as well as emissions from end-of-life phase when data is 

available. Scenario analysis is often employed in prospective LCA studies to explore the 

environmental impacts of industrial or technological systems. Different technical and market 

assumptions are made in a range of future or counterfactual scenarios17,18, which can provide 

useful insights for evaluating and developing mitigation strategies prior to large-scale 

deployment of technologies. 
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B. Objectives and significance 

The main objective of this PhD dissertation is to identify and assess the decarbonization 

opportunities for the rapidly-growing technological systems aforementioned, using a life-

cycle approach. To achieve the objective, the following chapters address below research 

questions: (1) what is the magnitude of global carbon footprint of plastics, what major 

mitigation strategies are available and how much potential does each strategy have? (2) how 

to utilize excess renewable energy production and reduce GHG emissions through load 

migration between data centers, how much potential does it provide and at what cost? (3) 

what are the life-cycle costs and GHG emissions implications of residential solar-plus-

storage systems in California currently and in a more decarbonized future, and what 

strategies are critical to minimize them? Throughout the dissertation, I use life cycle GHG 

emissions accounting under multiple scenarios designed to explore the mitigation potential 

of different strategies or different configurations of the technological systems. 

In Chapter II, I conducted a global assessment of the life-cycle GHG emissions from 

plastics and evaluated four mitigation strategies, namely use of renewable energy, demand 

reduction, use of renewable feedstock and recycling. Plastics are the most-consumed basic 

materials that the global economy increasingly depends upon9. However, the magnitude of 

the GHG emissions that emanates from the production, manufacturing and disposal of 

plastics at a global scale has not been quantified, and the mitigation strategies have not been 

evaluated in a systematical manner. In this chapter, I built a life-cycle GHG emissions 

accounting model for major plastic types at a global level and explored the potentials of the 

mitigation strategies in different future scenarios. Among the strategies, large-scale adoption 
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of renewable energy is identified as the most effective strategy to decarbonize plastics’ life 

cycles along with demand reduction.  

In Chapter III, I moved on to examine the potential of using workloads migration 

between data centers in reducing renewable curtailment and GHG emissions through a case 

study of two large grid operators in the U.S. As discussed, the inherent variability is a major 

challenge for renewable energy integration, and there is an increasing amount of curtailed 

electricity in high-renewable-penetration areas like California. With the digitalization of the 

world economy, the total amount of data generated and processed is growing at an 

exponential rate. The global data center industry currently consumes approximately 200 

terawatt-hours (TWh) electricity per year10. Data centers can be used as flexible resources 

for demand response to utilize excess renewable electricity. In this chapter, I quantified the 

potential of load migration between data centers to absorb excess renewable electricity and 

reduce GHG emissions in a range of counterfactual scenarios, considering the life-cycle 

emissions of the data centers. The cost of implementing load migration and the resulting net 

abatement cost per unit of GHG emissions reduction were also evaluated.    

In Chapter IV, I examined the life-cycle cost and GHG emissions implications of 

residential solar-plus-storage systems in California. In recent years, a rapid expansion of 

rooftop solar photovoltaic (PV) in households has been observed, coupled with increasing 

battery storage installments19. Existing studies which reported that residential battery storage 

would increase the total system emissions are usually retrospective, used marginal emissions 

factors that did not include renewables and cover only the operational stage. In comparison, 

I built an optimization model to simulate the energy dispatching of residential solar-plus-

storage systems and calculated the life-cycle costs and GHG emissions in current (2020) and 
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future (2040) scenarios, respectively, using long-run marginal emissions data that consider 

all generation technologies and capture the structure changes of grid infrastructure. The roles 

of Time-of-Use tariffs design, capital cost and embodied emissions of battery storage and 

carbon price were examined in reducing the life-cycle costs and GHG emissions of 

residential solar-plus-storage systems. 

This dissertation presents an important contribution in the sustainability assessment of 

energy and technological systems by integrating life-cycle approach, scenario analysis and 

other quantitative methods such as life-cycle cost analysis and optimization. Specifically, 

Chapter II fills the gap in the sustainability assessment of plastics by uncovering their 

carbon footprint at a global level and quantifying the mitigation potentials of four key 

strategies. Chapter III highlights the over-looked potential of data centers in mitigating the 

renewable curtailment problem and reducing system-level GHG emissions in a cost-

effective manner, through migrating load between different geographical locations. Chapter 

IV identifies the important factors that determine the life-cycle GHG emissions and costs of 

residential solar-plus-storage systems under an increasingly decarbonized electric grid and 

proposed multiple solutions for such systems to effectively reduce the cost and emissions. In 

each chapter, mitigation strategies, policy recommendations and potential challenges are 

discussed in detail based on the analysis. This dissertation offers scientific evidence and 

guidance to policy-makers, industries, general public and other stakeholders with regard to 

how to produce, deploy and manage rapidly-growing technological systems in a way that 

minimizes their climate change impacts. 
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II. Strategies to reduce the global carbon footprint of plastics 

Material from:  

Zheng, J., Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. 

Chang. 9, 374–378 (2019). https://doi.org/10.1038/s41558-019-0459-z 

Copyright © 2019, The Author(s), under exclusive license to Springer Nature Limited. 

 

Abstract. Over the last four decades, global plastics production has quadrupled9. Continuing 

this trend, the greenhouse gas (GHG) emissions from plastics would reach 15% of the global 

carbon budget by 205011. Strategies to mitigate the life cycle GHG emissions of plastics, 

however, have not been evaluated on a global scale. Here, I compile a new dataset covering 

ten conventional and five bio-based plastics and their life cycle GHG emissions under 

various mitigation strategies. Our results show that the global life cycle GHG emissions of 

conventional plastics was 1.7 Gt CO2e in 2015, which would grow to 6.5 Gt CO2e by 2050 

under the current trajectory. However, an aggressive application of renewable energy, 

recycling, and demand management strategies in concert has the potential to keep the 2050 

emissions comparable to the 2015 level. In addition, replacing fossil feedstock by biomass 

can further reduce the emissions to achieve an absolute reduction from the current level. Our 

study demonstrates the need for integrating energy, materials, recycling, and demand 

management strategies to curb the growing life cycle GHG emissions from plastics. 

A. Introduction 

Global production of plastics grew from 2 Mt to 380 Mt between 1950 and 2015, at a 

compound annual growth rate (CAGR) of 8.4%9. Globally, 58% of plastic waste was 
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discarded or landfilled, and only 18% was recycled in 20159. It is estimated that 4.8-12.7 Mt 

plastic waste generated by coastal countries entered the ocean in 201020. Growing along the 

volume of global production and consumption of plastics are the diverse concerns on their 

impacts to the ecosystem and human health21–24. However, relatively little attention has been 

paid to their contributions to climate change. While the chemical industry as a whole is 

responsible for about 15% of global anthropogenic greenhouse gas (GHG) emissions25, the 

magnitude of global life-cycle GHG emissions from plastics has yet to be quantified.  

Various strategies to reduce GHG emissions from plastics have been discussed in the 

literature. Replacing fossil-based plastics by bio-based plastics, for example, is one of 

them26–28. Bio-based plastics generally show lower life-cycle GHG emissions compared to 

fossil-based counterparts29. Substituting 65.8% of the world’s conventional plastics with 

bio-based plastics is estimated to avoid 241 to 316 Mt CO2e per year30. Both biodegradable 

and non-biodegradable forms of bio-based plastics are available in the market31. Bio-based 

non-biodegradable polymers such as Bio-Polyethylene (Bio-PE) and Bio-Polyethylene 

Terephthalate (Bio-PET), also referred to “drop-in” polymers, offer virtually identical 

properties with their fossil-based counterparts. While bio-based biodegradable polymers, 

such as Polylactic Acid (PLA), Polyhydroxyalkanoates (PHAs) and Thermoplastic Starch 

(TPS) display somewhat different mechanical and chemical properties29. Strategies to 

promote bio-based plastics have been initiated by the European Commission and other 

countries including Japan, Korea and Thailand32,33. In 2017, the total global production of 

bio-based plastics reached 2.05 Mt, and is projected to grow by 20% over the next five 

years34. 
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Low-carbon energy is another strategy to reduce life-cycle GHG emissions of plastics. 

Under a 100% renewable energy, the GHG emissions from the United States plastics 

production could be reduced by 50-75%35. Another strategy to reduce GHG emissions of 

plastics is recycling, which reduces, in part, carbon-intensive virgin polymer production36 

while preventing GHG emissions from some end-of-life (EoL) processes such as 

incineration37. 

However, the literature to date has focused on a subset of plastic types, mitigation 

options, or geographical locations in isolation35,38. Here, I develop a new dataset that covers 

GHG emissions from resin production, conversion, and EoL of ten fossil-based and five bio-

based plastics. I then integrate the dataset with global plastics demand projections and GHG 

mitigation strategies. I evaluate the following mitigation strategies and their combinations: 

(1) Bio-based plastics: fossil-based plastics are gradually substituted by bio-based 

plastics until a complete phase-out of fossil-based plastics by 2050. While bio-based plastics 

can be derived from a variety of feedstock, modelled here are corn and sugarcane given their 

dominance in current market28. (2) Renewable energy: the energy mix of plastics supply 

chain is gradually decarbonized and reaches 100% renewables (i.e., wind power and biogas) 

by 2050. Emissions under the current energy mix are modelled as comparison. (3) 

Recycling: recycling rates of EoL plastics gradually increase and reach 100% by 2050. In 

comparison, I also model the emissions under a projected EoL management mix scenario 

and a 100% incineration/composting scenario. (4) Reducing demand growth: the current 

annual growth rate of global plastics demand, which is 4%, is reduced to 2%. 

I examine these strategies as illustrative scenarios, rather than as realistic projections of 

future trajectories, with the purpose of envisioning their potentials for GHG mitigation. I 
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acknowledge that achieving 100% recycling or renewable energy may be neither practical 

nor economically feasible in reality. 

B. Methods 

Life cycle GHG emissions of plastics were compiled for three feedstock types, 

considering effects of energy mix transformation, different end-of-life management options, 

and different growth rates of plastics demand. 2015 was selected as the base year, with GHG 

emissions modelled until 2050 under different scenarios. GHG emission data were collected 

for three life cycle stages: (a) resin production stage, which includes all activities from 

cradle to polymer-production factory gate; (b) conversion stage, covering the manufacturing 

processes that turn polymers into final plastic products; and (c) EoL stage, which refers to 

the treatment and disposal processes of plastic waste. The use stage was excluded. To 

calculate the total GHG emissions of a certain year, the annual plastics production and waste 

generation volumes are multiplied with the life cycle GHG emissions of each plastic type as 

shown in equation (1): 

𝐺𝐻𝐺!,# 	= 𝛴	𝑄!,$,# ×	𝐸!,%,$,&,#                                             (1) 

Where Qs,j,t represents the annual global production or waste generation amount of type j 

plastic in year t under scenario s, and Es,i,j,k,t represents the per-unit weight emissions of 

GHG i by plastics type j at its life cycle stage k in year t under scenario s. Index i indicates 

different GHG types including carbon dioxide, methane and nitrous oxide; j indicates 

different type of plastics including L/LLDPE, HDPE, PET, PVC, PS, PUR, PP&A for fossil-

based plastics, and Bio-PE, Bio-PET, PLA, PHAs, TPS for corn- or sugarcane-based 

plastics; k indicates the life cycle stage of plastics from resin production, conversion, to end-

of-life management; t indicates a year between 2015 and 2050, and s indicates scenarios of 
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different combinations of feedstock, end-of-life options, energy mix and plastics demand 

growth.  

1. Life cycle GHG emissions of fossil-based plastics 

For resin production stage of fossil-based plastics, GHG emissions data from ecoinvent 

3.4 database39, European Life Cycle Database (ELCD)40 and various literature sources were 

used. Detailed unit processes of resin production are listed by polymer type; emission data 

of some polymer types with subtypes were calculated as weighted sums according to their 

market share information (Supplementary Table 2). There is a large gap in life cycle 

inventory data of plastics additives41. Hence, I chose Di-isononyl phthalate (DINP) as a 

proxy for plastics additives, which is frequently used as a general, all-purpose plasticizer42. 

For the last group, “Others”, average GHG emission values of all plastic types were used.  

After resin production, the polymers are transformed into various final products for 

specific applications. Injection molding, blow molding and extrusion are commonly used 

conversion technologies43. There are limited data on plastic products conversion processes 

in ecoinvent 3.4 and additional data was compiled from the literature. Ref. 43 and ref. 44  

served as main data sources for this stage. Ref. 5 shows average GHG emissions from 

converting various plastic parts for a typical vehicle, and I used the data for GHG emissions 

from general conversion processes. For PS conversion process, data was drawn from ref. 45. 

For PUR conversion process, due to the scarcity of data, the average emissions from PP and 

PE conversion processes were used. For PP&A fibers, data from ref. 46 was used and the 

emission values were weighted based on the market share of polyester, polyamide and 

acrylic. Due to the complex supply chain of textile industry, I cut off at yarn production and 

exclude the following conversion processes including fabric production and garment 
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production. Since the amount of additives added into different types of polymers varies, 

average emissions data were used for the conversion of all the other types for “Additives” 

and “Others”. 

For landfill and incineration processes, I used the life cycle GHG emissions data of 

mixed plastics from ecoinvent 3.4. For landfilling process, given that fossil-based plastics 

hardly degrade, only a small amount of GHG emissions is produced during collection and 

transportation. Incineration of per kilogram of plastic waste generates 3.92 MJ electricity 

and 7.66 MJ heat plastic according to ecoinvent 3.4, and these credits were used to calculate 

GHG emissions for incineration process.   

The recycling process includes collection, transportation, sorting, separation and 

material recovery of the waste. The average emission value from PET and HDPE recycling 

processes (906 kg CO2e/ton polymer) was calculated and used47. To account for the GHG 

emissions credits from recycling EoL plastics, a substitution ratio of 80% is applied, 

meaning that 1 kg of recycled plastics avoid producing 0.8 kg of average market-mix 

plastics37. As recycled content of average market-mix plastics changes over time under some 

scenarios, GHG credits from displacing them are calculated each year and subtracted from 

the GHG emissions generated from recycling. 

The resulting GHG emissions data of fossil-based plastics at different life cycle stages 

can be found in Supplementary Table 3. 

2. Life cycle GHG emissions of bio-based plastics 

The most readily available feedstock for a specific region can be different. For example, 

Thailand and Brazil have excellent conditions for growing sugarcane, the USA is 
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predominantly growing corn, while Europe has good farmland for growing sugar beet48. In 

our study, corn and sugarcane are chosen. The emission data of Bio-PE, Bio-PET, PLA, 

PHAs and TPS production derived from corn and sugarcane were collected separately, with 

the direct and indirect land use change (LUC) emissions already included or calculated as 

elaborated later in this section. System expansion method was used to handle co-products 

such as electricity, heat, and digestate. The biological carbon sequestration credits were 

subtracted from corresponding life cycle GHG emission values for bio-based plastics (e.g. 

3.14 kg CO2/kg Bio-PE, 1.83 kg CO2/kg PLA, 2.05 kg CO2/kg PHB49 and 1.94 kg CO2e/kg 

TPS50).  

Bio-PE and Bio-PET are two major bio-based non-biodegradable plastics used today34. 

The production processes of Bio-PE including corn or sugarcane cultivation and harvest, 

ethanol fermentation and distillation, bio-ethylene production through dehydration, and 

polymerization of bio-ethylene to polyethylene35,51. To produce Bio-PET, instead of directly 

going through polymerization, bio-ethylene is oxidized to ethylene oxide and hydrolyzed to 

ethylene glycol, which then is polymerized with purified terephthalic acid (PTA) to obtain 

Bio-PET polymers52. For corn-based PE and PET, I averaged Bio-HDPE and Bio-LDPE 

emission data35. For sugarcane-based PE, after adding LUC emissions, the net emissions in 

2015 under the baseline scenario ranged from -0.7 to 1.8 kg CO2e/kg Bio-PE52 and average 

value was taken. Average value of emissions data from three geographical locations for Bio-

PET resin production was used52. 

Polyhydroxybutyrate (PHB), the most common PHAs polymer, was selected as a 

representative PHAs type. A typical corn-based PLA/PHB polymer production process 

covers corn cultivation, corn wet milling, fermentation and polymerization/recovery, 
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successively. The sugarcane-based production follows similar process with only the 

difference of sugarcane milling instead of corn milling. The production process of TPS 

involves corn cultivation, starch production and compounding. The emissions data of resin 

production for corn-based PLA/PHB and TPS are from ref. 49 and ref. 53, respectively. And 

the ones for sugarcane-based PLA and PHB are from ref. 54 and ref. 55, respectively. 

For corn-based plastics, LUC emissions data of 89 kg CO2e/ton corn was used49. I used 

ref. 18 for the amounts of corn required for Bio-PE, Bio-PET, PLA, PHB and starch 

production. For sugarcane-based plastics, LUC emissions range between 0.16-2.38 kg 

CO2e/kg for Bio-PE and 0.03-0.4 kg CO2e/kg for Bio-PET52; I used an average value for 

each plastic type. For sugarcane-based PLA, 63.6 kg CO2e/ton PLA was used for LUC 

emissions56. 

Regardless whether the feedstock is fossil fuel or plants, further conversion of ethylene 

to Bio-PE or Bio-PET polymers remains the same52. Therefore, the emission values of Bio-

PE/PET conversion process are the same with fossil-based ones. The manufacturing 

technologies for plastics conversion into final products do not differ much between 

biodegradable plastics and conventional plastics49,57. For example, PLA is usually processed 

by existing methods such as extrusion, thermoforming, injection molding, blow molding or 

cast film and sheet16. One slight difference is that prior to melting processing of PLA, the 

polymer must be dried sufficiently to prevent excessive hydrolysis which can compromise 

the physical properties of the polymer58. However, no particular life cycle inventory data 

could be found for biodegradable plastics processing so far. Therefore, I assumed that the 

emission values for biodegradable polymers conversion is also the same with conventional 

polymers.  
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The EoL treatments of Bio-PE and Bio-PET are no different from their fossil-based 

counterparts, given that they have identical properties and appearances. Therefore, they 

follow the same EoL mix of fossil-based plastics including recycling, incineration and 

landfill. In comparison, EoL management methods for biodegradable plastics can be 

recycling, incineration, landfill, composting or anaerobic digestion. Credits were given to 

generation of electricity, heat and digestate during incineration and composting processes. 

The efficiency of waste plastics to substitute virgin polymers is assumed as 80% for all 

recycling processes, except 74% for TPS, which will undergo higher quality loss during 

recycling50. Recycled contents are assumed to replace an average market-mix of plastics for 

that year with 80% substitution rate as explained earlier. 

The resulting emission values for bio-based plastics at different life cycle stages can be 

found in Supplementary Table 4. 

3. Life cycle GHG emissions under low carbon energy scenario 

Building upon the methodology in ref. 35, I explored the emissions under low carbon 

energy scenario (i.e. electricity from 100% wind power and biogas). Contribution analysis of 

the life cycle emissions data was performed wherever possible. By closely examining the 

references, the amount of electricity and heat used in the production, conversion and EoL 

treatment processes were parsed out for different plastic types. Then I recalculated the 

emissions from the electricity and heat from low carbon energy sources in 2050, and 

assumed a linear increase of low carbon energy in the energy mix from 2015 to 2050 to 

model a gradual energy decarbonization process. The GHG emissions of each plastic type in 

2050 under low carbon energy scenario was calculated by Equation (2): 
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𝐸'()*+*,$,& = 𝐸$,& − (𝐸,',( + 𝐸-,.#) + (𝐸,',(_'( +	𝐸-,.#_'()             (2) 

Where Elc2050,j,k is the GHG emissions of plastic type j in its life cycle stage k under low 

carbon energy scenario in 2050; Ej,k is the GHG emissions of plastic type j in its life cycle 

stage k under current energy mix; Eelec and Eheat are the emissions produced from the 

generation of electricity and heat under the current energy mix, respectively; Eelec_lc and 

Eheat_lc are the emissions from the generation of electricity and heat under a low carbon 

energy scenario, respectively. All the emissions values are based on one unit of weight (i.e., 

one kilogram). 

For fossil-based plastics resin production stage, the ratios between the emissions under 

low carbon energy scenario and that under conventional energy scenario in ref. 49 were 

applied. For conversion stage, blow molding, injection molding and extrusion processes 

from ecoinvent 3.4 were selected as representative conversion processes to calculate the 

average contributions of electricity and heat to GHG emissions (81.3% and 9.5%, 

respectively).  For EoL stage, the electricity and heat generation credits from incineration 

were calculated using low carbon energy emission values. In addition, I calculated the 

process emissions from recycling by using the energy profile of recycling depicted in ref. 47. 

It is assumed that the diesel used for vehicles in waste collection in recycling process is 

replaced by electricity from wind. Supplementary Table 5 lists the GHG emission data of 

energy sources used to calculate our results under low carbon energy scenario.  

For corn-based Bio-PE and Bio-PET resin production, emissions data in low carbon 

scenario were from ref. 35. For corn-based PLA and PHA resin production, the low carbon 

emissions data from ref. 22 was used, and the LUC emission data from ref. 12 was applied. 

For TPS production, the maize starch production process in ecoinvent 3.4 was used as a 
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proxy process, and the contribution of electricity and heat to the GHG emission are 24% and 

17%, respectively. For sugarcane-based Bio-PE, 3.09 kWh electricity and 10.5 MJ diesel are 

used for per kilogram of Bio-LDPE produced51, and they served as representative data for 

Bio-PE and Bio-PET due to unavailability of detailed energy use data on Bio-HDPE/PET 

production. For sugarcane-based PLA, the emissions from electricity and steam are 600 kg 

and 675 kg CO2e/ton polymer, respectively54. For sugarcane-based PHB, the electricity and 

steam production are 1.1 kWh and 14.8 MJ per kilogram of polymer, respectively55.  

Bio-PE and Bio-PET are assumed to produce the same amount of GHG emissions as 

their fossil-based counterparts during EoL management stage. As for biodegradable plastics, 

GHG emissions are assumed to stay unchanged for landfilling process; for incineration, 

composting and digestion, electricity and heat generation data from ref. 59 were used.  

The GHG emissions values for fossil-based plastics and bio-based plastics under low 

carbon energy scenario can be found in Supplementary Table 6 and 7, respectively. 

4. Plastics demands 

Beginning with the amount of plastics produced in 20159, two scenarios are evaluated 

until 2050, assuming an annual resin production growth rate of 4% (average annual growth 

rate of 2010-2015) and 2% (a slower growth trend of plastics production). For 100% fossil-

based plastics scenario, the market share of each plastic type is assumed to remain 

unchanged. For corn- and sugarcane-based plastics scenario, the market share of bio-based 

plastics is assumed to linearly grow from zero in 2015 to 100% in 2050, given that the 

global market share of bio-based plastics in 2017 was less than one percent34. Additionally, 
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it is assumed that bio-based plastics substitute for conventional plastics on a 1:1 scale by 

weight. 

5. Substitution assumptions 

Today, there is a bio-based plastic alternative for almost every conventional plastic and 

the corresponding application34. A report regarding the technical substitution potential of 

bio-based polymers concludes that 90% of the conventional polymers can be technically 

replaced worldwide60. Considering biopolymer technology advancement, it is assumed that 

all fossil-based plastics can be replaced by bio-based plastics scenarios by 2050. 

In 2017, bio-based non-biodegradable plastics accounted for 56% of the global 

bioplastics market. These so-called “drop-in” solutions have the same properties, conversion 

processes and disposal methods with their fossil-based counterparts and therefore serve as 

perfect substitutes. Bio-PE are assumed to replace the majority of fossil-based PE, PVC and 

PUR, while Bio-PET to replace PET and PP&A fibers. Other types of bio-based non-

biodegradable plastics are not considered in this study since they are not yet available at a 

commercial scale or there is a lack of data in the literature. 

Bio-based biodegradable plastics make up the rest 44% of the bioplastics market, with 

PLA and PHAs driving the growth34. PLA is the most versatile biodegradable plastic type 

and has wide applications across food packaging, medical devices, agriculture films, among 

others61–63. It has comparable mechanical and thermal properties with PS and PET, and can 

also replace PE, PP, and PVC in some applications49. The use of PLA to replace nylon and 

PET in the textile industry is also increasing57. PHAs have been used in fibers, non-woven 

materials, disposable products64, cosmetic and food containers63. Commercialized PHAs can 

frequently replace PE, PP and PS, and may also substitute for PET and PVC49. The high 
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price of PHAs is a major barrier to its large scale commercialization64. TPS is used in 

specialized agricultural applications, as filler in plastic composites, or in single-use items 

like bags, containers, diapers and tampons63,65. Pure TPS has poor mechanical properties and 

is susceptible to water, which limits its potential product applications66. However, it is a 

common practice to blend starch with other polymers such as PLA, PCL, and PHAs to 

obtain composites to improve its properties62.  

Based on the technical substitution potential, comparable properties, common 

application areas and the market growth reviewed above, a substitution plan was developed 

for bio-based plastics to replace conventional plastics (see Supplementary Table 9).  

6. End-of-life management 

The projected EoL management mix change of all plastic types (fossil-based and bio-

based) between 2015 and 2050 is shown in Supplementary Table 10. The mix in 2050 is 

determined based on the projections of future EoL change9, as well as the historical changes 

of the plastic waste EoL management in Europe and the United States. Linear change of the 

rate of each EoL method is assumed between 2015 and 2050.  

7. Limitations 

There are uncertainties and limitations associated with the data and the model employed 

in this study. I made various assumptions to simplify the processes involved in plastics life 

cycle. For example, I assumed that the indirect land use change and the GHG emissions 

from agricultural expansion for bio-based plastics would remain at the current level. I also 

extracted and combined emissions data from multiple sources. Conventional plastics data 

are from ecoinvent 3.4, which are originally Eco-profiles of the European plastics industry 
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(PlasticsEurope). The data contains outdated numbers and uses extrapolation for the regions 

other than Europe. Therefore, the temporal and geographical representation of the data was 

identified as a weakness, while no better data sources were identified. The methods to 

calculate LUC emissions associated with bio-based plastics production vary in the literature 

and warrant further research. 

C. Results  

Our analysis shows that conventional plastics (fossil-based) produced in 2015 generated 

1.8 Gt CO2e emissions over their life cycle, excluding any carbon credits from recycling 

(Fig. 1). The amount corresponds to 3.8% of the 47 Gt CO2e global emissions that year67. 

Resin production stage generated the majority of the emissions (61%), followed by 

conversion stage (30%). Of all plastic types, PP&A fibers had the highest GHG emissions at 

both stages. Polyolefin family (PP, L/LLDPE, and HDPE), which accounts for nearly 50% 

of the world’s plastics consumption, was also a significant contributor. GHG emissions from 

bio-based plastics are not considered for 2015 given their negligible market share (<1 

percent).  
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Figure 1. Global life cycle GHG emissions of conventional plastics in 2015 by life cycle stage 

and plastic type. Carbon credits generated by recycling are not included. Blue, orange, and green 

represent resin production, conversion, and end-of-life management stage, respectively. The 

emissions from each stage are broken down by plastic type or end-of-life treatment method, 

indicated with different shades of the corresponding color. Abbreviations: Polyethylene terephthalate 

(PET), High density polyethylene (HDPE), Polyvinyl Chloride (PVC), Low-density/linear low-

density polyethylene (L/LLDPE), Polypropylene (PP), Polystyrene (PS), Polyurethane (PUR), 

Polyester, Polyamide and Acrylic fibers (PP&A), Additives, and Others.   

 

The EoL stage accounted for 9% of total life cycle emissions, excluding the carbon 

credits from recycling. Incineration was the dominant source of GHG emissions among EoL 

processes. Landfill generated the least GHG emissions although the process handles the 
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largest share of plastic wastes (58%). The recycling process itself generated 49 Mt CO2e 

emissions. However, if the displacement of carbon-intensive virgin polymer production by 

recyclates is considered, the GHG emissions of recycling would go down to -67 Mt, and the 

total emissions from EoL stage would be reduced from 161 Mt to 45 Mt CO2e. In this case, 

the total global life cycle GHG emissions of plastics become 1.7 Gt CO2e, or 3.5% of the 

global annual GHG emissions in 2015.  

Under the current trajectory, the global life cycle GHG emissions from plastics are 

poised to grow rapidly (Fig. 2a). The global economy produced 407 Mt plastics in 2015, 

with an average annual growth rate of 4% between 2010-20159. Following this trend, annual 

plastics production is expected to grow to 1,606 Mt by 2050, and the life cycle GHG 

emissions are expected to grow from 1.7 Gt CO2e in 2015 to 6.5 Gt CO2e in 2050, using the 

projected EoL management mix change9, and maintaining current energy mix (baseline: red 

solid line in Fig. 2a). If all plastic waste are incinerated by 2050, total annual emissions will 

reach 8.0 Gt CO2e (a 22% increase from the baseline). Recycling all plastic waste, however, 

would reduce the emissions to 4.9 Gt by 2050 (a 25% reduction from the baseline).   
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Figure 2. Global life cycle GHG emissions of plastics under scenarios of different feedstock 

sources, energy mix, end-of-life management and plastics demand growth, 2015-2050. Solid 

lines: projected end-of-life management mix (Supplementary Table 10); shaded areas: ranges due to 

EoL options; right-side bar of each panel: ranges due to different EoL options in 2050. a, plastics 

demand grows at 4% year-1 under current energy mix. b, plastics demand grows at 4% year-1, and 

energy mix decarbonizes until 2050. c, plastics demand grows at 2% year-1 under current energy mix. 

d, plastics demand grows at 2% year-1, and energy mix decarbonizes until 2050.  

 

With a plastics demand growth rate of 4% year-1, a complete replacement of fossil-based 

plastics by corn-based plastics is estimated to reduce global life cycle GHG emissions of 

plastics to 5.6 Gt CO2e by 2050 under current energy mix and the projected EoL mix, which 
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is 1.0 Gt or 15% less than the baseline (Fig. 2a). If  all EoL “drop-ins” are incinerated and 

all EoL biodegradable plastics are composted, global life cycle GHG emissions of corn-

based plastics would increase to 6.7 Gt CO2e. Recycling all EoL bio-based plastics, 

however, would reduce the emissions to 4.4 Gt CO2e. Sugarcane-based plastics can further 

reduce global life cycle GHG emissions of plastics to 4.9 Gt CO2e, which is 1.7 Gt or 25% 

less than the baseline, with a range between 5.8 Gt (100% incineration/composting) and 4.0 

Gt (100% recycling). Our model shows that fossil-based plastics under 100% recycling 

scenario achieves similar or even lower emissions compared to bio-based plastics with the 

projected EoL mix (Fig. 2a and 2b, sidebars). This implies that the recycling of conventional 

plastics may be as beneficial as using renewable feedstock. 

Decarbonising energy shows a significant potential to reduce GHG emissions (Fig. 2b 

and Fig. 2d). On average, switching to 100% renewable energy reduces life cycle GHG 

emissions from plastics by 62% in 2050, assuming 4% year-1 demand growth. Even if fossil 

sources (petroleum, natural gas and coal) serve as the sole feedstock for future plastics 

production, using 100% renewable energy can achieve 51% reduction (projected EoL mix) 

compared to the baseline, although the absolute total emissions would double the 2015 level 

by 2050. However, recycling all EoL plastics under 100% renewable energy allows 77%, 

84% and 86% reductions in life cycle GHG emissions from fossil, corn and sugarcane-based 

plastics, respectively. This result shows that absolute reduction of emissions can only be 

achieved by combining aggressive deployment of renewable energy and extensive recycling 

of plastics.   

Reducing plastics demand growth rate from 4% to 2% year-1 achieves 56% (under the 

current energy mix) to 81% (under low carbon energy) reduction from the baseline in 2050 
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(Fig. 2c and 2d). Using 100% renewable energy keeps the emissions flat at 2015 level for 

fossil-based plastics with projected EoL mix, and replacing them with bio-based ones brings 

the emission levels down further. Among all the scenarios tested, the global life cycle GHG 

emissions of plastics were the lowest under the 100% sugarcane-based plastics with 100% 

renewable energy combined with 100% recycling and reduced demand growth, which 

achieved 0.5 Gt CO2e/year, or 93% reduction from the baseline. This demonstrates that a 

drastic reduction in global life cycle GHG emissions of plastics would be possible in a 

technical sense, but it would require implementing all of the four strategies examined at an 

unprecedented scale and pace. 
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Figure 3. GHG emissions breakdown by life cycle stage of plastics derived from different 

feedstock types under two energy mix scenarios in 2050. a, GHG emissions per kilogram of 

plastics under the current energy mix scenario in 2050. b, GHG emissions per kilogram of plastics 

under a 100% renewable energy scenario in 2050. Emissions results are based on the scenario of 4% 

annual plastic demand growth rate and the projected end-of-life management mix (Supplementary 

Table 10). Carbon credits of recycling are considered.  

 

Figure 3 shows the breakdown of GHG emissions by life cycle stage, normalised to per 

kilogram of plastics derived from different feedstock types. The total life cycle GHG 

emissions for fossil-based, corn-based and sugarcane-based plastics are on average 4.1, 3.5 

and 3.0 kg CO2e/kg plastic in 2050, respectively, under current energy mix (Fig. 3a). Under 

a 100% renewable energy scenario, however, the average life cycle emissions will be 
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reduced to 2.0, 1.4 and 1.3 kg CO2e/kg plastic, respectively (Fig. 3b). Plastics derived from 

renewable feedstock (assuming projected EoL mix) generate less GHG emissions over the 

whole life cycle compared to their fossil-based counterparts regardless of the energy system 

used. 

Resin production and conversion stages are major contributors to the life cycle GHG 

emissions of all feedstock types under current energy mix (Fig. 3a). However, under the 

100% renewable energy scenario, incineration becomes the largest contributor to the total 

emissions for bio-based plastics (Fig. 3b). Under the 100% renewable energy scenario, 

recycling generates fewer carbon credits, as the low GHG emissions of renewable energy 

undercuts the carbon benefits of avoided virgin polymer production. 

D. Discussion and conclusions 

In sum, our results show that none of the four strategies, namely bio-based plastics, 

renewable energy, recycling, and demand management, can achieve sufficient GHG 

mitigation for absolute reduction below the current level on its own; only when implemented 

in concert, these strategies can achieve the much-needed absolute reduction. Among them, 

decarbonization of the energy system, which is an economically more favorable option for 

GHG mitigation as compared to the use of bio-based plastics35, shows the largest potential. 

Even if fossil feedstock is used as the sole source for plastics production, 100% renewable 

energy will reduce the average life cycle GHG emissions by half from the baseline 

emissions. If combined with extensive recycling or demand management, decarbonization of 

energy can virtually keep the current level of GHG emissions until 2050. Reducing GHG 

emissions even further to achieve absolute reduction from the current level requires large-
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scale adoption of bio-based plastics in addition to implementing all the other three strategies 

examined.  

Going forward, I see both opportunities and challenges in reducing the life cycle GHG 

emissions of plastics. The current global average plastics recycling rate of 18%9 certainly 

presents a significant room for further improvement. The low price of fossil-based plastics, 

however, is a key barrier to dramatically increasing recycling rates. Together with 

technological innovations in plastics recycling, fiscal policies, such as carbon pricing and 

incentivizing recycling infrastructure expansion, should be considered to overcome such 

barriers68,69.  

Replacing fossil-based plastics with bio-based plastics plays an important role in GHG 

mitigation. Nevertheless, our results show that the emissions of bio-based plastics are highly 

dependent on the EoL management method chosen. Composting or incinerating bio-based 

plastic waste, for example, showed similar or even higher GHG emissions than the case of 

using 100% fossil-based plastics under projected EoL mix in 2050. Moreover, EoL 

management of bio-based—especially biodegradable—plastics requires systematic changes 

such as separate collection and recycling infrastructure, since inclusion of biodegradable 

plastics in the mix of conventional plastic waste can affect the quality of the recyclates70. 

Furthermore, composting of biodegradable plastics in home composting conditions or 

natural environments is much less effective than in industrial composting facilities31. Lastly, 

the land use implications of a large-scale shift to bio-based plastics need further research. In 

2017, land use for bioplastics was reported to be 0.82 million hectares, or 0.016% of global 

land area, which would increase to 0.021% in 2022 under the projected market growth34. A 

complete shift of the plastics production of approximately 250 million tones to bio-based 
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plastics would require as much as 5 percent of all arable land71, which, depending on where 

they take place, may undermine the carbon benefits of bio-based plastics. The use of 

lignocellulosic or waste biomass as feedstock and growing material crops in fallow lands 

would alleviate the pressure of cropland expansion and associated GHG emissions from land 

use change. 

Our study shows that an aggressive implementation of multi-layered strategies would be 

needed in order to curb the GHG emissions from plastics. GHG mitigation strategies are 

often implemented within energy, materials, waste reduction and management policies in 

isolation. Our results indicate that absolute reduction in life cycle GHG emissions of plastics 

requires a concerted action among decarbonization of energy infrastructure, improvement of 

recycling capability, adoption of bio-based plastics, and demand management. 
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F. Appendix 

Supplementary Table 1. Considered mitigation strategies and description of scenarios 

Strategy Scenario Description 

Feedstock Fossil fuels Conventional plastics continue to dominate the plastics market, 
without the presence of bio-base plastics. 

Plastic types considered: Polyethylene terephthalate (PET), High 
density polyethylene (HDPE), Polyvinyl Chloride (PVC), Low-
density/linear low-density polyethylene (L/LLDPE), 
Polypropylene (PP), Polystyrene (PS), Polyurethane (PUR), 
Polyester, Polyamide and Acrylic fibers (PP&A), Additives, and 
Others. 

Corn Bio-based plastics substitute for fossil-based plastics, with their 
market penetration grows from zero in 2015 to 100% in 2050. 

Plastic types considered: Bio-Polyethylene (Bio-PE), Bio-
Polyethylene Terephthalate (Bio-PET), Polylactic Acid (PLA), 
Polyhydroxyalkanoates (PHAs) and Thermoplastic Starch (TPS). 

Sugarcane 

Energy mix Current 
energy mix 

Maintaining current energy structure and the emission data at each 
life cycle stage of plastics remain unchanged during 2015-2050. 

Low carbon 
energy 

Energy structure decarbonises gradually and reach 100% 
renewable energy (wind power and biogas) in 2050. 

End-of-life 
management 

Projected 
EoL mix by 
2050 

Projection of future EoL management change based on literature 
and government statistics (see Supplementary Table 10 or below). 

For fossil-based plastics and Bio-PE/PET, recycling, landfill and 
incineration rates change from 18%, 58% and 24% in 2015 
respectively, to 44%, 6% and 50% in 2050 respectively. 

For bio-based biodegradable plastics, recycling, landfill, 
incineration, industrial composting and anaerobic digestion rates 
change from 2%, 58%, 24%, 15% and 1% in 2015 respectively, to 
44%, 6%, 30%, 18% and 2% in 2050 respectively. 

100% 
incineration 
or 
composting 
by 2050 

The upper bound of EoL emissions. The higher emission value of 
incineration or composting is taken. Incineration or composting 
rate is assumed to grow linearly to 100% in 2050, with the rates of 
other EoL options decrease linearly. 

100% 
recycling by 
2050 

The lower bound of EoL emissions. Recycling rate is assumed to 
grow linearly to 100% in 2050, with the rates of other EoL options 
decrease linearly. 

Plastics 
demand 
growth 

4% year-1 Plastics production follow the trend of recent years and continue to 
grow at 4% until 2050. 

2% year-1 Plastics production grows a slower rate of 2% each year until 
2050. 
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Supplementary Table 2. GHG emissions data sources of resin production processes for 

conventional plastics 

Plastic 
type Subtype Global 

market share* Unit process** 

PET - - polyethylene terephthalate production, 
granulate, bottle grade - RoW 

HDPE - - polyethylene production, high density, 
granulate - RoW 

PVC - - polyvinylchloride production, bulk 
polymerisation - RoW 

PP - - polypropylene production, granulate - RoW 

L/LLDPE LDPE 42.9% polyethylene production, low density, 
granulate - RoW 

LLDPE 57.1% polyethylene production, linear low density, 
granulate - RoW 

PS General Purpose 
Polystyrene (GPPS) 

50% polystyrene production, general purpose - 
RoW 

High Impact 
Polystyrene (GPPS) 

50% polystyrene production, high impact - RoW 

PUR PUR, flexible foam 55.5% polyurethane production, flexible foam - RoW 

PUR, rigid foam 44.5% polyurethane production, rigid foam - RoW 

PP&A Polyester 88.5% polyethylene terephthalate production, 
granulate, amorphous - RoW 

Polyamide 8% Nylon 6-6 and Nylon 6 average 

Acrylic 3.5% Polyacrylonitrile fibres (PAN); from 
acrylonitrile and methacrylate; production 
mix, at plant 

Note: *For polymers with different subtypes, the emission value of resin production is a weighted sum 

based on the market share of each subtype. Market share data are from www.statista.com. 

**Most unit processes are from ecoinvent 3.4, except PAN production process, which is from ELCD 3.3 

and is used as a proxy for acrylic production. 
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Supplementary Table 3. Emission data of different conventional plastic types at each life 

cycle stage under current energy mix (kg CO2e/ton polymer) 

Note: Please see “Life cycle GHG emissions of fossil-based plastics” section in Methods for detailed 

references and calculation methods. *The emission value of recycling here does not include credits. 

  

Plastic type Production Conversion 
End-of-life 

Landfill Incineration Recycling* 

PET 3,332 805 

89 1,324 906 

HDPE 1,949 1,123 
PVC 2,066 593 
L/LLDPE 1,962 1,088 
PP 1,983 1,366 
PS 3,517 1,240 
PUR 4,900 1,192 
PP&A fibers 3,625 2,700 
Additives 2,200 1,036 
Others 2,837 1,036 
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Supplementary Table 4. Emission data of different bio-based plastic types at each life 

cycle stage under current energy mix (kg CO2e/ton polymer) 
Fe

ed
sto

ck
 

Plastic 
type Production Conversion 

End-of-life* 

Recycling Incineration Landfill Industrial 
composting 

Anaerobic 
digestion 

Co
rn

 

Bio-PE 995  

906 

1,324 89 - - 

Bio-
PET 2,280 

1,314 
  

1,324 89 - - 

PLA 1,820 1,240 44 1,538 670 

PHA 3,385 1,310 3,4
00 1,771 790 

TPS 1,279 1,260 1,2
50 1,410 600 

Su
ga

rc
an

e 

Bio-PE 550 

906 

1,324 89 - - 

Bio-
PET 2,040 1,324 89 - - 

PLA 566 1,240 44 1,538 670 

PHA 2,034 1,310 3,4
00 1,771 790 

TPS 1,279 1,260 1,2
50 1,410 600 

Note: Please see “Life cycle GHG emissions of bio-based plastics” section in Methods for detailed 

references and calculation methods. *The emission value of recycling here does not include credits. 

References for EoL emission data of bio-based biodegradable plastics: landfill, ref. 49 and ref. 72; 

Incineration/industrial composting/anaerobic digestion, ref. 59. 
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Supplementary Table 5. Life cycle emissions data of energy sources used under two 
different energy scenarios 

Scenario Energy source Life cycle 
emissions Unit Data source 

Low carbon 
energy 
scenario 

Renewable biogas 18 g CO2e/MJ LHV Ref. 35 
Electricity from wind 
power 12 g CO2e/kWh Ref. 35 

Current 
energy mix 
scenario 

Current electricity mix* 544 g CO2e/kWh Calculated based on 
ref. 73 and ref. 74 

Natural gas  56 g CO2e/MJ LHV Ref. 49 

Diesel 82 g CO2e/MJ LHV Ref. 49 
Note: *World gross electricity production by source (2016): 38.3% coal, 3.7% oil, 23.1% natural gas, 

10.4% nuclear, 16.6% hydro, 2.3% biomass, and 5.6% solar/wind/geothermal/others74  
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Supplementary Table 6. Emission data of different conventional plastic types at each life 

cycle stage in 2050 under low carbon energy scenario (kg CO2e/ton polymer) 

Plastic type Production Conversion 
End-of-life 

Landfill Incineration Recycling* 

PET 1,466 113 

89 2,227 372 

HDPE 780 158 

PVC 599 83 

L/LLDPE 785 153 

PP 1,091 192 

PS 1,864 174 

PUR 2,107 167 

PP&A fibers 1,595 379 

Additives 946 145 

Others 1,220 145 
Note: Please see “Life cycle GHG emissions under low carbon energy scenario” section in Methods for 

detailed references and calculation methods. *The emission value of recycling here does not include 

credits.  
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Supplementary Table 7. Emission data of different bio-based plastic types at each life 

cycle stage in 2050 under low carbon energy scenario (kg CO2e/ton polymer) 

Note: Please see “Life cycle GHG emissions under low carbon energy scenario” section in Methods for 

detailed references and calculation methods. *The emission value of recycling here does not include 

credits.   

Fe
ed

sto
ck

 

Plastic 
type Production Conversion 

End-of-life 

Recycling* Incineration Landfill Industrial 
composting 

Anaerobic 
digestion 

Co
rn

 

Bio-PE -435 

184 

372 

2,227 89 - - 

Bio-
PET 670 2,227 89 - - 

PLA 252 1,692 44 1,655 1,413 

PHA 1,017 1,928 3,400 1,908 1,641 

TPS 292 1,812 1,250 1,606 1,294 

Su
ga

rc
an

e 

Bio-PE -496 

372 

2,227 89 - - 

Bio-
PET -61 2,227 89 - - 

PLA -416 1,692 44 1,655 1,413 

PHA 958 1,928 3,400 1,908 1,641 

TPS 292 1,812 1,250 1,606 1,294 
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Supplementary Table 8. Global primary plastics production and waste generation in 2015 

by plastic type75  

 
 

  

Plastic type 
Primary resin production in 2015 Primary waste generation in 2015 

Amount (Mt) Percentage Amount (Mt) Percentage 

PP 68 16.7% 55 18.2% 
L/LLDPE 64 15.7% 57 18.9% 

HDPE 52 12.8% 40 13.2% 
PVC 38 9.3% 15 5.0% 
PET 33 8.1% 32 10.6% 
PS 25 6.1% 17 5.6% 

PUR 27 6.6% 16 5.3% 
PP&A 59 14.5% 42 13.9% 

Additives 25 6.1% 17 5.6% 
Others 16 3.9% 11 3.6% 

Total 407 100% 302 100% 



 

 38 

 

Supplementary Table 9. Substitution of bio-based plastics for conventional plastics 

Note: Please see “Substitution assumptions” section in Methods for detailed references and explanations. 

Plastic type 

Bio-based non-biodegradable 
plastic substitutes Bio-based biodegradable plastic substitutes 

Bio-PE Bio-PET PLA PHA TPS 

C
on

ve
nt

io
na

l p
la

st
ic

s PE 70% 0 10% 10% 10% 
PS 0 0 35% 30% 35% 
PP 0 0 35% 30% 35% 

PET 0 55% 35% 10% 0 
PP&A 0 70% 30% 0 0 
PVC 90% 0 0 10% 0 
PUR 80% 0 0 10% 10% 
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Supplementary Table 10. Projection of global EoL management mix in 2015 and 2050 

EoL Method 
Fossil-based plastics &  

Bio-based non-biodegradable plastic Bio-based biodegradable plastics 

2015 2050 2015 2050 

Recycling 18% 44% 2% 44% 

Landfill 58% 6% 58% 6% 

Incineration 24% 50% 24% 30% 

Industrial composting - - 15% 18% 

Anaerobic digestion - - 1% 2% 

Note: The EoL mix estimation of fossil-based and bio-based non-biodegradable plastics are from ref. 75. 

The EoL mix estimation of bio-based biodegradable plastics are estimated based on ref. 76, ref. 77, ref. 78 

and ref. 75.
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Supplementary Table 11. Numeric results of global life cycle GHG emissions (Mt CO2e) 

of plastics in 2050 under different scenarios, varying feedstock, end-of-life management 

method, annual growth rate of plastics demand and energy mix (corresponding to Figure 2 in 

Main text) 

Feedstock EoL 
4% yr-1, 

current energy 
mix 

4% yr-1, 
100% 

renewable 
energy 

2% yr-1, 
current energy 

mix 

2% yr-1, 
100% 

renewable 
energy 

Fossil 
fuel 

Predicted* 6544 3214 3316 1629 

Incineration 7969 4831 4039 2448 

Recycling 4930 1504 2499 762 

Corn 

Predicted* 5569 2323 2822 1177 

Compost/Incineration** 6702 3517 3397 1782 

Recycling 4381 1061 2220 538 

Sugarcane 

Predicted* 4885 2020 2476 1024 

Compost/Incineration** 5779 3107 2929 1575 

Recycling 4001 892 2028 452 

Note: *Projected EoL refers to the end-of-life management mix shown in Supplementary Table 10. 

**In 100% composting/incineration scenarios with corn or sugarcane as feedstock, all EoL Bio-PE and 

Bio-PET are assumed to be incinerated, and all EoL biodegradable plastics are either composted or 

incinerated, depending on which emission value is higher. 
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Supplementary Table 12. Numeric results of average GHG emissions of plastics (kg 

CO2e/ton plastic) by life cycle stage in 2050 under two energy scenarios and 4% annual 

demand growth rate (corresponding to Figure 3 in Main text) 

Energy mix Current energy mix Low carbon energy 

Feedstock/ 
Life cycle stage  Fossil fuel Corn Sugarcane Fossil fuel Corn Sugarcane 

Resin production 2665 1800 1225 1172 487 232 

Conversion 1314 1314 1314 184 184 184 

End-of-life       

     Landfill 4 27 27 4 27 27 

     Incineration 491 404 404 826 648 648 

     Recycling -400 -170 -21 -185 -5 61 

     Industrial Composting 0 87 87 0 95 95 

     Anaerobic Digestion 0 4 4 0 9 9 

Total 4074 3468 3042 2001 1447 1258 
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III. Mitigating curtailment and carbon emissions through load 

migration between data centers 

Material from: 

Zheng, J., Chien, A. A. & Suh, S. Mitigating Curtailment and Carbon Emissions through 

Load Migration between Data Centers. Joule 4, 2208–2222 (2020). 

https://doi.org/10.1016/j.joule.2020.08.001  

Copyright © 2020, Elsevier Inc. 

 

Abstract. As the share of variable renewable energy (VRE) grows in the electric grid, so 

does the risk of curtailment. While energy storage and hydrogen production have been 

proposed as solutions to the curtailment problem, they often pose technological and 

economic challenges. Here, I analyze the potential of data center load migration for 

mitigating curtailment and greenhouse gas (GHG) emissions. Using historical hourly 

electricity generation, curtailment, and typical data center server utilization data, I simulate 

the effect of migrating data center workloads from fossil fuel-heavy PJM to renewable-

heavy CAISO. The results show that load migration within the existing data center capacity 

during the curtailment hours in CAISO has the potential to reduce 113-239 KtCO2e yr-1 of 

GHG emissions and absorb up to 62% of the total curtailment with negative abatement cost 

in 2019. Our study demonstrates the overlooked role that data centers can play for VRE 

integration and GHG emissions mitigation.  
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A. Introduction 

Driven by aggressive public policy and compelling economics, global capacity of 

Variable Renewable Energy (VRE), such as solar photovoltaics (PV) and wind electricity, is 

growing rapidly. European Union, for example, has a target to achieve at least 32% share of 

renewable energy by 2030,79 and California aims at 60% renewable portfolio standard by 

2030.80  

As the penetration of VRE in the grid grows, so do the concerns of large-scale 

curtailment81–83. Curtailment is the reduction of output of a VRE resource below what it 

could have otherwise produced. It has been repeatedly reported in different world regions 

across Europe, America and Asia, significantly decreasing the market value of VRE.83,84 

Near-term reasons for VRE curtailment include minimum generation requirement for non-

renewable energy sources and transmission constraints, but long term, fundamental causes 

drive increasing pressure for curtailment.83,85 Large-scale energy storage and electricity 

transmission network expansion can mitigate VRE curtailment, but they are costly. With a 

system cost between $380 to $895 per kWh,86 the battery storage capacity deployed globally 

(12 GWh in 2018)87 is infinitesimal compared to the amount of global electricity 

consumption (about 23,000 TWh per year).88 Long-distance transmission of VRE-generated 

electricity is possible but the construction of transmission infrastructure and the associated 

transmission losses are often cost-prohibitive.89 Pumped hydro can be another storage 

solution, but it requires certain geographical features and may raise ecological concerns.90  

Another approach to reduce curtailment is to use excess VRE electricity to produce more 

easily storable materials or products, such as hydrogen through water electrolysis, which can 

be shipped upon demand.91,92 However, the logistics and handling of these materials and 



 

 44 

 

associated costs can pose additional challenge.93 A potential solution to this logistics and 

handling problem is to use over-generated electricity to produce something that can be 

transported at minimal cost and energy: information. 

Data centers can provide battery-like demand side management service by powering data 

processing with excess VRE. The technical and economic potential of zero-carbon cloud 

data centers which solely run on stranded renewable power has been explored.94,95 

Geographical load balancing has been widely studied to maximize renewable energy use by 

distributing the workloads among data centers in different locations.96,97 Data centers are 

highly automated and monitored with little human interventions. Importantly, they have 

considerable flexible workloads which can be distributed geographically.95,98  Provided the 

requisite data is available, those data centers with access to renewable energy can process 

the requests routed from other regions and return the results to users while meeting Service 

Level Agreements (SLAs). Moreover, most data centers operate well below 100% capacity 

most of the time – over-provisioning for peaks leaves servers and network resources 

underutilized.99 Furthermore, the peak loads for data processing often does not coincide with 

the peak time of VRE over-generation, providing room for data centers to use their excess 

capacity to process additional workloads with excess VRE. 

Compared with building large-scale transmission infrastructure, building fiber optics 

networks and transmitting data are much cheaper, and takes significantly less time.89 

Therefore, the transmission of data is more economically favorable than the transmission of 

electricity, i.e. “moving bits, not watts”.100 Furthermore, the society’s needs for data 

processing is growing rapidly. Global data centers used 205 TWh electricity in 2018 or 1% 

of global electricity consumption.10 In 2014, U.S. data centers consumed 70 TWh electricity, 
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which was 1.8% of the total annual U.S. electricity consumption.101 It is estimated that the 

global datasphere will grow from 33 zettabytes (ZB) in 2018 to 175 ZB in 2025 at an annual 

growth rate of 27%, implying growing needs for data center infrastructures.102 The 

decarbonization of data centers is imperative, and require combined efforts including 

maximizing IT-device efficiency, adoption of low-carbon electricity and improving 

infrastructure efficiency.103 Load migration between data centers can collectively improve 

IT efficiency and utilization of renewable energy. Nevertheless, the potential for load 

migration between data centers to utilize excess VRE generation and reduce greenhouse gas 

(GHG) emissions has not been quantified. 

In this chapter, I use two Independent System Operators (ISOs) in the U.S., California 

ISO (CAISO) and Pennsylvania-New Jersey-Maryland Interconnection (PJM), as a case 

study to explore the potential of workloads migration between data centers to mitigate 

curtailment and GHG emissions. PJM is the largest ISO in the U.S., which predominantly 

relies on thermal energy sources like coal and natural gas, with solar and wind accounted for 

only 3.2% in 2019.104,105 The states covered by PJM host a large amount of data centers, 

with the most noteworthy area being North Virginia. In the second half of 2018, North 

Virginia absorbed over a third of the world’s new data center capacity, with an addition of 

270 Megawatts (MW) data center power.106 As the hub of technology and media companies, 

California also has many data centers, mostly located in the Bay Area and Southern 

California.107 Of all the data center colocation establishments in the U.S., 15% are located in 

California and about 16% are in PJM region.108,109  

Based on the historical hourly curtailment data of CAISO and a typical data center 

energy consumption profile, I evaluate the potential of the existing and additional data 
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center capacities to absorb excess VRE and reduce GHG emissions by migrating data center 

workloads from PJM region. In this analysis, I use counterfactual scenarios as an illustration 

of the potential rather than as a record of historical accounts. 

B. Methods 

1. Historical curtailment and GHG intensity 

I collected the historical solar and wind curtailment data of CAISO at a 5-min interval 

during 2015-2019.110 I analyzed and visualized the curtailment data on an hourly basis. To 

calculate the hourly GHG intensity of the two grids, I first collected the data of electricity 

supply by energy resource type. I collected the hourly generation data by resource type with 

breakdown of renewable resources of CAISO during 2015-2019 from CAISO website.111 

For PJM, the generation data was obtained from the Generation by Fuel Type dataset from 

Data Miner 2 database.105 The generation data for year 2015 was not available in PJM 

database so only 2016-2019 data was used. Due to daylight savings time change, the 

generation data of PJM at 2 a.m. in a certain day in March was missing, and I handled it by 

filling it with the average value of two adjacent hours; there were duplicate data points at 1 

a.m. in a November day, and I only kept the latter one of the two duplicate hours.  

To calculate the GHG emissions and intensities, I used the life-cycle GHG emissions 

data for each energy resource. Life-cycle GHG emissions are the total emissions from all 

stages of an energy resource’s life cycle, covering upstream, operational and downstream 

processes. These processes include fuel/raw material extraction, transport, infrastructure 

construction/equipment manufacturing, combustion (for fossil fuels), equipment operation 

and maintenance and waste treatment. For natural gas, I used the life-cycle GHG emissions 
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value of natural gas combined cycle in the U.S. reported by National Energy Technology 

Laboratory.112 For coal, I used the generation-weighted average life-cycle GHG emissions 

data based on an investigation of over 300 coal power plants in the U.S.113 For low-carbon 

energy resources, the median values of the life-cycle GHG emissions presented in the Fifth 

Assessment Report by Intergovernmental Panel on Climate Change (IPCC) were applied.114 

The category “thermal” in CAISO generation data was treated as natural gas as the share of 

coal is negligible. The category “other renewables” in PJM generation data is considered as 

an equal mix of biomass and biogas. For any unspecified resource type such as “multiple 

fuels” and “other”, an average unspecified emission value was used.115 Table S1 summarizes 

the life-cycle GHG emissions values of electricity generation by energy resource that were 

used in this study. Imports of CAISO were not included when calculating the GHG intensity 

of generation as the energy mix was not clear. PJM was a net exporter of electricity as I 

summarized its interchange dataset.116   

The hourly GHG intensity of electricity supply during 2016-2019 was calculated as the 

weighted average of the life-cycle GHG emissions of all the energy resources in that hour 

(equation 1). 

𝐺𝐻𝐺_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦- =	∑ (𝐺𝐻𝐺01,%% 	× 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛%,-) ÷ ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛% %,-   (1) 

In equation (1), ℎ is a certain hour in a year, and 𝑖 is a certain resource type. 

𝐺𝐻𝐺_𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦- (in kgCO2e/MWh) is the GHG intensity of the grid in hour ℎ, 𝐺𝐻𝐺01,% (in 

kgCO2e/MWh) is the life-cycle GHG emissions of resource 𝑖, 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛%,- (in MWh) is 

the electricity generated by resource	𝑖 in hour ℎ and ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛% %,-  (in MWh) is the total 

electricity generation by all resources in hour ℎ. 
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2. Reductions in curtailment and GHG emissions  

The electricity consumption profile of a real-world data center on an hourly basis is 

difficult to obtain due to the secretive nature of the industry. Therefore I use the simulated 

energy consumption profile of a data center which has a critical (IT) power of 10 MW and a 

typical data center design.117 I obtained the hourly electricity consumption data of the typical 

data center in a week and extended the weekly profile to a year. The data center has a total 

peak power of 21 MW and consumes approximately 114 GWh electricity annually.117 The 

detailed technical specifications and the energy consumption data of this typical data center 

are shown in Table S2. Seasonal variations of the energy consumption are not considered.  

Energy consumption of a data center is jointly determined by their IT and non-IT energy 

efficiency. I made assumptions of two key parameters to model future data center energy 

use, Dynamic Range (DR) and Power Usage Effectiveness (PUE), considering the energy 

efficiency improvement of both IT and non-IT components. The yearly values of the 

parameters assumed for 2016-2019 are shown in Table S3. DR determines the lowest power 

(idling power) consumption of servers, which serves as the intercept in the linear model 

between server power usage and server utilization rate. As server power efficiency 

improves, DR value gets lower. In other words, the power usage of servers while idling 

would decrease over time as a result of improved energy proportionality.118 I assume that the 

average DR value drops from 0.25 to 0.11 from 2012 to 2019 based on the historical DR 

value changes reported in several literature sources.118–120 For the energy efficiency 

improvement of non-IT components in data centers, I simulate the change of PUE value 

during the examined period. I assume that the average PUE of data centers served by 

CAISO decreases from 1.59 to 1.30 from 2012 to 2019 based on the PUE trend in the data 
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center industry surveys conducted by Uptime Institute121,122 and recent PUE values of 

California data centers from a colocation website.123 I also developed a model based on the 

energy profile from the reference to simulate the linear relationship between hourly non-

server energy consumption and server utilization rate (R2 = 0.988). With this model, I 

calculated the hourly non-server energy consumption given certain annual average PUE 

value assumed for the year. Both PUE and DR values are assumed to change linearly during 

the examined period. 

Under Migration Scenario, during the hours when there is excess VRE in CAISO, 

workloads from the data centers served by PJM are assumed to be migrated to the data 

centers served by CAISO. The time difference between CAISO and PJM regions of three 

hours is considered. I assume using the remaining capacity of existing data centers to 

respond to excess VRE generation of CAISO first, and then use additional data center 

capacity to absorb the rest of the excess generation. The remaining capacity of existing data 

centers is determined by the allowed maximum server utilization rate during underutilized 

hours, for which I set different levels between 65% and 90% as explained in the main text. 

While in theory, servers should be able to run at 100% utilization rate, in practice they are 

run at significantly lower utilizations to tolerate the burstiness of computations, and 

fluctuations of loads118. Our assumption of 90% as the upper bound of the maximum server 

UR is a conservative assumption with respect to the benefits of workloads migration. The 

additional data centers, assumed to be Zero-Carbon Cloud (ZCC) data centers, run at the 

maximum server utilization rate with the remaining excess VRE that exceeds the existing 

data centers’ capacity. The GHG emissions reduction is then calculated as the difference of 

total GHG emissions between the Baseline Scenario and the Migration Scenario, i.e., by 
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multiplying the amount of excess VRE generation absorbed by CAISO data centers and the 

GHG intensity difference between PJM generation and the excess VRE generation in 

CAISO.  

To ensure a holistic perspective, the embodied GHG emissions of additional data centers 

are taken into account. They include all the non-operational emissions that come from the 

manufacturing of IT, electrical, mechanical equipment and building materials, etc. Life cycle 

assessment (LCA) studies of data centers are scarce in the literature, but I identified one 

study that has the energy consumption breakdown by data center component. The study 

shows that non-operational emissions account for 6.5% of the total life-cycle climate change 

impacts of a data center124. I calculated that the yearly non-operational energy consumption 

of a data center is around 432 MWh electricity per MW of critical (IT) power based on the 

data from the reference, assuming a 5-year IT refresh rate as the additional data centers run 

intermittently.124 According to the Emissions & Generation Resource Integrated Database 

(eGRID) by U.S. EPA, the average GHG intensity of U.S. grid was 456 and 432 

kgCO2/MWh in 2016 and 2018, respectively. I extrapolated the two points linearly and 

estimated that the average GHG intensity in 2017 and 2019 was 444 and 421 kgCO2/MWh, 

respectively. The embodied GHG emissions of a U.S. data center therefore amounted to 

0.20-0.18 KtCO2e/MW critical power per year during 2016-2019. I validated the number by 

analyzing the data from another earlier data center LCA study and it yielded similar 

estimate.125 

3. Estimation of abatement cost 

For the costs of additional data center capacity under the Migration Scenario, I use the 

cost estimates developed for the ZCC data centers that run solely on stranded renewable 
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power.94 They typically co-locate with existing renewable generation facilities and therefore 

the costs of power transmission and distribution can be reduced. The total abatement cost 

sums up the changes between the Baseline Scenario and Migration Scenario in facility cost, 

electricity cost and additional cost for a certain year.  

(1) Facility cost. The amortized physical facility cost of ZCC data centers ($0.50 per 

watt of critical power) is markedly lower than that of traditional data centers ($5.25/W) by 

using containers and co-locating at renewable generation sites94. But ZCC data centers run 

intermittently depending on the availability of excess VRE generation, and traditional ones 

run continuously as a comparison. Under the Migration Scenario, the amortized facility cost 

of ZCC data centers is obtained by simply multiplying $0.50/W with the total IT power, e.g., 

a 10 MW ZCC data center has an amortized facility cost of $5 million. To capture the 

facility cost of typical data centers served by PJM under the Baseline Scenario, I divided the 

amortized facility cost (e.g., $52.5 million for a typical traditional 10 MW data center) by its 

annual energy consumption, and then multiplied this unit facility cost (in $/MWh) with the 

amount of excess VRE generation absorbed by additional data centers through workloads 

migration in that year. In other words, I allocated the facility cost of data centers under the 

Baseline Scenario based on the amount of load that could be migrated to additional data 

centers under the Migration Scenario. Supplemental Equation S15-S17 represent the 

mathematical expressions of calculating facility costs. 

(2) Electricity cost. I assume zero cost for the over-generated electricity under the 

Migration Scenario since excess VRE generation is regarded as “stranded energy” and it 

would have been curtailed if not utilized. I used the historical average retail electricity prices 
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for Virginia during 2016-2019 as representative values to calculate the electricity costs of 

typical data centers powered by PJM under the Baseline Scenario.  

(3) Additional cost. Due to the fact that ZCC data centers run on intermittent excess 

VRE generation, additional solid state drives (SSDs) and energy storage devices to 

checkpoint-restart jobs interrupted by a power outage are needed.94 Combined with 

hardware for free cooling, the total additional cost incurred is $0.175/W per year.  

The amortized compute cost and network cost are assumed to be the same under the two 

scenarios. Workloads migration has the potential to increase software licensing costs, 

particularly if additional virtual instances are required. I do not model this cost, due to the 

lack of public information both on software use and licensing. The detailed cost breakdown 

is summarized in Table S4. Summing up all the cost changes across facility cost, electricity 

cost and additional cost due to workloads migration, I estimate the total abatement cost for 

each year. Then by dividing the total abatement cost by the total net GHG emissions 

reduction, I derive the net abatement cost standardized by one unit of GHG emissions 

reduction in a certain year. All the computation steps are presented in Equations S1-S21, 

with nomenclature listed in Table S5. 

4. Limitations 

There are a few uncertainties and limitations with this study. First, I used a typical data 

center energy consumption profile to estimate the remaining absorption capacity for excess 

VRE. In reality, it may not be representative enough as the data centers in CAISO region 

probably have various energy consumption patterns. I also extrapolated the weekly energy 

consumption data to the entire year, while in fact the profile may change because of 

temperature range under different climate conditions. Second, there is no complete and 
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transparent database available on the current data center capacity in the U.S., and the 

information of the power consumption of the data centers is particularly scarce, so I had to 

use limited available data points to estimate the existing capacity of data centers in CAISO 

region. Third, the DR and PUE values of data centers in real world vary depending on the 

data center type, scale and location. I simulated the average values as a simplification when 

geographic-specific and fine-grained data are lacking. I also simplified the analysis by 

assuming that the migration occurs between data centers of similar scale with typical energy 

use characteristics, while the electricity consumption to process a same compute task may be 

different for data centers with contrasting characteristics. Lastly, there is uncertainty with 

the data center costs. The cost components of data centers fall in a broader spectrum in the 

real-world, and they may evolve in the future due to a variety of reasons including disruptive 

technology development. The abatement cost of workloads migration may involve more 

potential cost categories such as new devices and algorithms that are necessary to enable the 

load migration and communication between grid operators and data centers. 

C. Results 

1. Historical curtailment of CAISO 

I collected and analyzed the historical curtailment data of CAISO during 2015-2019. The 

total annual curtailment of CAISO grew from 188 GWh to 965 GWh from 2015 to 2019, at 

an average annual growth rate of 51%. Curtailment data at CAISO shows wide daily and 

seasonal variations, with an upward trend over time (Fig. 1a). Solar PV curtailment 

accounted for 90% of the total cumulative curtailment during this period and wind 

accounted for 10%. The majority of curtailment occurred in the first and second quarter, 
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which combined accounted for 69% of the total curtailment in the period. Monthly 

curtailment peaked in April or May. This results from growing solar radiation strength and 

extended daytime length during spring, combined with mandatory runoffs from northwest 

hydro generation imports and cool weather. Both solar and wind curtailment occurred the 

least in the third quarter with July or August seeing the minimum, which can be explained 

by higher cooling demands in summer’s warmer weather. The surge of solar curtailment 

during 2015-2019 mirrors the fact that the share of solar power in total CAISO generation 

had increased from 6.7% to 13.0% in this period. In comparison, the share of wind power in 

the generation mix increased from 5.3% to 7.2%, representing a milder growth than solar. 

When disaggregated at hourly resolution (Fig. 1b), curtailment took place rather randomly 

throughout the 24 hours of a day in 2015 and 2016, but as solar PV capacity grew and 
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nighttime wind curtailment decreased during 2017-2019, total curtailment became 

increasingly more conspicuous in the daytime. 

Figure 1. Historical Curtailment of CAISO, 2015–2019. (A) Solar and wind curtailment by day. 

(B) Solar, wind, and total curtailment by day and hour.  

 

Instead of curtailing, the excess VRE generation in CAISO could be used to process data 

center workloads migrated from carbon-intensive grid regions. Many data centers operate at 

less than 50% average server utilization rate,101,118,126 and the time-zone difference between 

PJM and CASIO helps avoid peaking load at the same time, allowing the data centers served 

by CAISO to take on additional data processing jobs migrated from PJM-served data centers 
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during the off-peak hours. I use the historical curtailment data, which is referred to as 

“excess VRE” hereafter, to evaluate the potential of migrating workloads between data 

centers. 

2. Hourly GHG intensity of CAISO and PJM 

I collected and treated the electricity generation by energy resource data for CAISO and 

PJM during 2016-2019.105,111 The life-cycle GHG intensities of the two ISOs during 2016-

2019 (Fig. 2) were calculated on an hourly basis based on the historical generation data and 

U.S.-specific GHG emission factors, which include both combustion emissions and life-

cycle emissions embodied in the inputs to power generation (Table S1). Imported electricity 

is not included in the calculation. 

Figure 2. Hourly Life-Cycle GHG Intensity of PJM and CAISO, 2016–2019. During the time 

when there was curtailment in CAISO, only the intensity of curtailment (assumed proportionally 

contributed by solar and wind curtailment) is shown. Intensity of imports is not included. 
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The annual average GHG intensity of PJM decreased from 499 to 452 kgCO2e/MWh 

during 2016-2019. The monthly average intensity of PJM peaked in summer (July or 

August) and reached its lowest around April and October, with a range between 417-557 

kgCO2e/MWh. For CAISO, the annual average GHG intensity changed from 262 to 231 

kgCO2e/MWh during the same period. The monthly intensity of CAISO hit the lowest in 

April or May due to prominent solar and hydro power production. 

During the hours when curtailment occurred in CAISO, only the intensity values of the 

curtailment (i.e., excess VRE) are shown (Fig. 2 - CAISO), which is assumed to be 

proportionally contributed by curtailed solar and wind power. In other words, the GHG 

emissions intensity of the excess generation is calculated as the average life-cycle GHG 

emissions intensity of solar and wind weighted by their shares in the total curtailment during 

that hour. While the average GHG intensity of CAISO excess generation during 2016-2019 

was 41 kgCO2e/MWh, the average GHG intensity of PJM during CAISO’s excess 

generation time was 476 kgCO2e/MWh. The significant differences of the GHG intensities 

between the two grids during CAISO excess generation time present a great opportunity for 

GHG emissions mitigation by migrating the data center workloads geographically.  

3. The capacity of data centers to absorb excess VRE 

I first estimated the existing data center capacity in CAISO region. I collected the 

available data center location and power consumption data from a colocation data center 

industry website.123 By examining the profiles of all the listed data centers in California, I 

calculated that the average annual total power consumption per colocation site is 9.92 MW, 

based on 26 data points that provided the information. I also identified that currently there 

are 288 data centers in CAISO region by the end of 2019.127 I use a typical data center 
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energy profile with an IT peak power (or critical power) of 10 MW as a standardized unit117 

in this study to estimate the excess VRE absorption capacity, GHG emissions reduction 

potential and abatement cost.  

I then simulate the Dynamic Range (DR) and Power Usage Effectiveness (PUE) of the 

data centers served by CAISO. DR is the ratio of a server’s idling power to its maximum 

power,101 based on which I calculate the energy consumption of servers given the rated 

power and utilization rate. PUE is defined as the ratio of the data center total energy 

consumption to IT equipment energy consumption, calculated, measured or assessed across 

the same period.128 PUE values vary depending on data center type and geographical 

location. Here, I model the average PUE of colocation data centers in California. Detailed 

assumptions of the two parameters can be found in Experimental Procedures and Table S3. I 

also developed linear model between the hourly server utilization rate and the energy use of 

non-server components,117 through which I can calculate the non-server energy consumption 

given a certain PUE value in a year. 

I compare two scenarios for evaluating the excess VRE absorption potential of data 

center workloads migration: Baseline Scenario and Migration Scenario. In Baseline 

Scenario, workloads are processed by typical data centers served by PJM without any 

migration. In Migration Scenario, workloads are first migrated to and processed by the 

existing typical data centers served by CAISO. I assume that the migration occurs between 

data centers of similar scale with typical energy use characteristics in our model. Once the 

existing capacity is exhausted, I assume building additional data center capacity which run 

solely on the remaining excess VRE. I assume that the data centers all have advanced 

algorithms and automation mechanisms in place to enable the load migration.  
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Figure 3. Illustration of the Energy Consumption Profile Change of a Typical Data Center in 

the Baseline Scenario (No Workloads Migration) and the Migration Scenario (with Workloads 

Migration) in a Week. A maximum allowed server UR of 65% during underutilized hours is 

assumed in this graph as an example. 

 

Fig. 3 illustrates the excess VRE absorption potential of a typical data center in a week. 

The remaining capacity of an existing data center in an underutilized hour is calculated by 

subtracting the existent load of the data center in that hour from its maximum allowed load. 

Load migration is only enabled during the hours that the servers in data centers served by 

CAISO are underutilized. I test different scenarios by varying the assumption of the 

maximum allowed server utilization rate (UR) between 65% and 90% during underutilized 

time, representing an improved management and a maximized utilization scenario, 

respectively. Average utilization rate of large-scale cloud providers is estimated as 65%.129 

Once the remaining capacities of all existing data centers are exhausted, I calculate the 

respective additional data center capacity needed to absorb different portions of the total 
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excess VRE. During excess generation hours, the servers in the additional data centers 

would be activated to process the workloads migrated from PJM region and operate at the 

maximum allowed UR assumed. The servers are assumed to be shut down at times when 

there is no available excess VRE. 

4. GHG emissions reduction and abatement cost 

I calculate the achieved total GHG emissions reduction by summing up the products of 

the hourly GHG intensity difference between the two scenarios and the amount of excess 

VRE absorbed for each year between 2016-2019. I then estimate the total abatement cost of 

the plan by comparing the cost difference between the two scenarios. For the excess VRE 

that fall within the remaining capacity of existing data centers, workloads migration causes 

only a change in electricity bills between the two scenarios. When additional data centers are 

built to absorb extra excess VRE, changes in electricity cost, amortized facility cost and 

additional cost are all captured.  

I use the cost estimates developed specifically for zero-carbon cloud (ZCC) data centers 

that run on stranded renewable power94 for the additional data center capacity in Migration 

Scenario. These intermittent data centers have lower facility cost because they use 

containers and can be located near renewable generation sites with less power distribution 

costs.94 The electricity cost is also significantly lower for ZCC data centers than the 

traditional ones as the otherwise-curtailed VRE electricity is assumed to have zero cost. 

Additional cost for installing data and energy storage devices will incur due to the 

intermittent characteristic of the power supply for ZCC data centers. The cost of applications 

including software licenses, system and database administration are not considered as they 

vary greatly and do not constitute part of the infrastructure-related capital or operational 
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cost. The total abatement cost sums up the difference of facility, electricity and additional 

costs between the two scenarios on an annual basis. The net abatement cost (in $/metric ton 

CO2e) is then calculated by dividing the total abatement cost by the total net GHG emissions 

reduction achieved.  

Fig. 4 summarizes the results of total GHG emissions reduction and net GHG abatement 

cost using 2019 data. The existing data center capacity alone (i.e., when additional data 

center capacity is zero) can absorb 29%-62% of the total excess VRE in CAISO in 2019, 

assuming that the maximum server UR ranges between 65% and 90%. As I increase the 

maximum server UR and additional data center capacity, the excess VRE absorption level 

grows. At a given absorption level, a higher maximum server UR means a reduced need for 

additional data center capacity.  

Figure 4. Estimated Net GHG Emissions Reduction and Net Abatement Cost as a Result of 

Assumed Maximum Server Utilization Rate and Additional Data Center Capacity (2019). (A) 

GHG emissions reduction in KtCO2e. (B) Net abatement cost in $/tonCO2e reduction—negative net 

abatement cost indicates profitable GHG mitigation. The annotated black lines represent the 

percentages of total excess VRE absorbed.  
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The resulting GHG emissions reduction is the net reduction after accounting for the 

embodied GHG emissions of the additional data centers, which are incurred due to the 

manufacturing of IT equipment and infrastructure materials. The embodied emissions are 

proportional to the total number of new data centers built and would offset a fair amount of 

the operational GHG emissions reduction achieved by data center workloads migration. A 

total net GHG emissions of 113-239 KtCO2e could have been reduced in 2019 given the 

maximum server UR range assumed, and additional data center capacity can bring the total 

reduction further up to 247 KtCO2e (Fig. 4a). The net GHG emissions reduction peaks at an 

absorption level between 68%-75% when the maximum server UR exceeds 85%. Absorbing 

80% of the total excess VRE or above does not bring more GHG emissions reduction 

benefits because the embodied emissions from more additional data centers would outweigh 

the reduction from operational phase. 

Fig. 4b shows the estimated net abatement cost of the Migration Scenario. A negative 

abatement cost means that data centers can generate extra profits by mitigating GHG 

emissions through load migration. Without building any additional data center capacity, the 

existing capacity has a net abatement cost of -$242/tCO2e under any maximum server UR, 

driven by a decrease in electricity cost. The economic break-even point of additional data 

center capacity that should be built decreases from 780 MW to 350 MW as the maximum 

server UR increases from 65% to 90% (Fig 4b, the white line of zero). The lowest abatement 

costs (up to -$688/tCO2e) can be reached by keeping the maximum server UR below 70% 

and the additional data center capacity between 150 MW-350 MW, corresponding to an 

absorption level of 45%-60%. It is possible to absorb up to 77%-79% excess VRE while still 

manage to keep the net abatement cost negative, but an absorption goal of more than 80% 
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does not make sense economically under any maximum server UR as the net abatement cost 

would always stay positive. The results of GHG emissions reduction and abatement costs for 

years 2016-2018 are shown in Figures S1-S3. 

D. Discussion and conclusions 

The inherent intermittent nature of VRE poses a major challenge to the stability and 

profitability of electric grids. Curtailment around the world is likely to grow as the share of 

VRE continues to rise, unless strong measures are taken to mitigate it83. Even with 

curtailment, over-generation still occurs, in which case, electricity is routinely sold at 

negative prices. In CAISO, for example, the share of 5-minute intervals with negative prices 

between 2014 and 2018 ranged 2%-4%.130  

Our study shows that workloads migration between data centers can potentially absorb 

excess VRE, reducing both curtailment and GHG emissions at no or negative cost. The 

existing data center capacity served by CAISO has the potential to absorb up to 62% of the 

excess VRE and reduce GHG emissions of up to 239 KtCO2e with a net abatement cost 

of -$242/tCO2e in 2019, provided that server utilization rate is improved (Fig. 4). Additional 

data centers could further absorb the cumulative excess VRE up to 79% and reduce the 

GHG emissions up to 247 KtCO2e while still maintaining negative abatement cost.  

Furthermore, the potential for workloads migration among data centers to mitigate 

curtailment and GHG emissions is likely to grow, as the needs for data processing services 

and data center infrastructure continue to expand. In order to capture such growing potential 

for workloads migration, a number of institutional and technological changes are due. In 

particular, development of the technology, policy, and protocols that enable real-time 

workloads migration among data centers during the time of excess renewable generation 
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would be needed. In addition, it is essential to develop the mechanism to incentivize data 

centers on load migration between grid regions and to facilitate the fluid communication 

among multiple grid operators and data centers. Technologies should be developed to 

support highly dynamic data center operation based on instantaneous generation, load and 

capacity data. Reliable short-term VRE generation forecasting capability for accurate 

projection of VRE over-generation is indispensable for dynamic load migration during the 

excess generation hours.131  

Besides the spatial flexibility of data centers, the temporal flexibility of certain types of 

workloads also holds great potential for demand response, which is not evaluated in this 

analysis. Flexibly scheduling delay-tolerant workloads can increase renewable energy usage 

and accommodate more renewable resources in the grid.19,43 Some Internet service 

providers, for example Google, have developed carbon-aware scheduling technology to shift 

compute tasks across time to maximize renewable energy utilization, noting that their next 

step is to move the tasks between data centers in different locations.133 Incentivized deadline 

deferral can be an effective way to change customers’ behaviors and encourage workloads 

shifting.134 Energy storage devices in data centers can also play a role at smoothing VRE 

power by charging during over-generation time and discharging at a later time.135,136  

There are some challenges facing workloads migration, but potential solutions are 

available. First, workloads migration incurs additional network delay and thus potential 

service violations.96,97 The network latency time from U.S. east to west is currently around 

60 milliseconds,137 which is short but not trivial. Fortunately, delay-tolerant workloads 

including scientific computation, big data analytics, medical image processing etc. are a 

major component of data center workloads, accounting for more than 50% of total 
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workloads,126 far more than the fraction of workloads I model the migration of. Interactive 

workloads which are inappropriate to shift because of the user-response latencies required, 

such as web search and videoconference, are assumed not to be migrated. Network latency 

has been decreasing thanks to the growing transmission speed and capacity of optic fibers; 

some companies already achieved speeds of hundreds of terabytes per second. The 

intermittent nature of excess renewable generation requires the workloads to be easily 

interruptible as needed, which makes it challenging for some workloads.136 Nevertheless, 

this problem can be alleviated through installing more solid state drives and energy storage 

to checkpoint-restart the jobs.94 The confidentiality of data center information remains 

another major concern. Data center owners are usually reluctant to share data about their 

facilities, including power consumption, to the public.138 The confidentiality-related 

concerns can potentially be addressed through data reporting and aggregation protocols, 

advanced encryption technology and economic incentives.10  

Our findings are applicable not only in the U.S. but also in other world regions with 

growing penetration of VRE. Data centers can and should play an important role in global 

VRE integration and GHG emission mitigation, especially in a future when the capacities of 

data processing and renewable energy are both rapidly growing. 
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F. Appendix 

Table S1. Life-cycle GHG emissions of electricity generation technology by energy 
resource 

Energy resource Life-cycle GHG emissions 
(kgCO2e/MWh) Reference 

Solar 48 

114 
 

Wind 11 

Geothermal 38 

Biomass 230 

Hydro 24 

Nuclear 12 

Biogas 253 139 

Natural Gas 537 112 

Coal 1,046 113 

Oil 733 140 

Unspecified 428 115 
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Table S2. Characteristics of the 10 MW* typical data center used for analysis117 

Metric Value 

Number of servers 40,000 

Idling power per server 120 W 

Maximum power per server 250 W 

Range of hourly server utilization rate  5.4% - 94.0% 

Annual average server utilization rate 40% 

Peak total IT load 10 MW 

Peak total load 20.7 MW 

Estimated annual total energy consumption 114,234 MWh 
                     *IT (or critical) power. 
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Table S3. Assumptions of annual average Dynamic Range (DR) and Power Usage 

Effectiveness (PUE) values of data centers served by CAISO118–120,122 

Year PUE DR 

2012 1.59 0.25 

2013 1.55 0.23 

2014 1.51 0.21 

2015 1.47 0.19 

2016 1.42 0.17 

2017 1.38 0.15 

2018 1.34 0.13 

2019 1.30 0.11 
      *Only values assumed for the modeled years 2016-2019 are used in the analysis.  
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Table S4. Estimated amortized cost for Zero-Carbon Cloud (ZCC) data centers and 

traditional data centers94 

Category 
ZCC data centers powered by 
CAISO excess VRE generation  
(Migration Scenario)  

Traditional data centers 
powered by PJM  
(Baseline Scenario) 

Compute cost ($/W*) 5.18 5.18 

Physical facility cost ($/W) 0.50 5.25 

Network cost ($/W) 0.20 0.20 

Electricity cost (cent/kWh) 0 9.09, 9.18, 9.48, 9.68**  
(2016-2019, respectively) 

Total additional cost ($/W) 0.175 - 

SSD cost 0.075 - 

Battery cost 0.025 - 

Hardware for free cooling 0.075 - 

*The unit $/W is dollar per watt of IT power (2015 dollars). 
**Historical average retail electricity rate of Virginia141.  
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Supplemental Figures  

In the following Figures S1-S3, I show the GHG emissions reduction and net abatement 

cost for the year 2016-2018, respectively. 

The total curtailment in CAISO was 307 GWh, 379 GWh and 461 GWh in 2016, 

2017 and 2018, respectively. Therefore, the absorption level of the excess VRE (which 

would otherwise be curtailed) achieved by the same combination of maximum server UR 

and additional data center capacity decreases over time, comparing across Figures S1-S3. 

Particularly, the existing data centers alone could reduce 38%-73% of the total cumulative 

curtailment in CAISO during 2016-2019 (53%-89% in 2016, 46%-81% in 2017, 41%-78% 

in 2018, and 29%-62% in 2019), with the maximum server UR ranging between 65% and 

90% during underutilized hours. 

During 2016-2018, the net GHG emissions reduction can be up to 120-150 KtCO2e 

per year if the maximum server UR falls in higher range, similar to the observation from 

2019 results. The most reduction falls in the absorption level of between 75%-90%, and a 

further absorption beyond 85% would potentially have negative effects as the embodied 

emissions of additional data centers would offset the mitigation efforts, which is similar with 

2019 results. The total cumulative net GHG emissions reduction during 2016-2019 ranges 

between 342-647 KtCO2e for the existing data center capacity, depending on the maximum 

server UR assumed. 

The net abatement cost of the existing data centers alone 

is -$202/tCO2e, -$210/tCO2e and -$226/tCO2e for 2016, 2017 and 2018, respectively. The 

slight drop in net abatement cost results from higher availability of excess VRE electricity 

along the years. The maximum additional data center capacity that permits negative 
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abatement cost is 50-100 MW, 65-120 MW and 90-220 MW for year 2016, 2017 and 2018, 

respectively, depending on the maximum server UR. It is possible to absorb up to 85% of 

the excess VRE while still maintain a negative abatement cost for 2017 and 2018, if the 

maximum server UR can be improved to a range above 85%. Absorption goals beyond the 

limit would entail net positive abatement costs. For 2016, it is possible to absorb over 80% 

even 90% of the excess VRE with negative abatement cost when the maximum server UR 

can reach a level above 75%.  
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Figure S1. GHG emissions reduction and net abatement cost (2018). Related to Figure 4. 

(A) GHG emissions reduction (in KtCO2e). (B) Net abatement cost (in $/metric ton CO2e 

reduction). The annotated black lines represent the percentages of yearly total excess VRE 

absorbed. 
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Figure S2. GHG emissions reduction and net abatement cost (2017). Related to Figure 4. 

(A) GHG emissions reduction (in KtCO2e). (B) Net abatement cost (in $/metric ton CO2e 

reduction). The annotated black lines represent the percentages of yearly total excess VRE 

absorbed. 

  

A B 
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Figure S3. GHG emissions reduction and net abatement cost (2016). Related to Figure 4. 

(A) GHG emissions reduction (in KtCO2e). (B) Net abatement cost (in $/metric ton CO2e 

reduction). The annotated black lines represent the percentages of yearly total excess VRE 

absorbed. 

A B 
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Supplemental Experimental Procedures 

As I discussed in detail in Experimental Procedures, I compute the excess VRE in 

CAISO that can be absorbed by the remaining capacity of existing data centers and 

additional data center capacity, by varying the maximum server utilization rate in 

underutilized hours and allowable additional data enter capacity, and then calculate the 

resulting GHG emissions reduction and net abatement cost.  

Below Supplemental Equations illustrate the computation steps of: (A) absorption of 

excess VRE, (B) GHG emissions reduction, (C) energy consumption by data centers and (D) 

net abatement cost, with nomenclature listed in Table S5. 

Equations S1 – S21  

(A)  Absorption of excess VRE by existing and additional data center capacities powered by 

CAISO 

𝑅𝑚𝑛_𝐶𝑝𝑡𝑦!"#$%&',) = *𝐷𝐶𝑙𝑜𝑎𝑑*+",) − 𝐷𝐶𝑙𝑜𝑎𝑑',)1 ∗ 𝑁_𝐸𝑥𝑠𝑡𝐷𝐶                                  (S1) 

𝐴𝑏𝑠𝑝!"#$%&',)	 =	:
𝐸𝑥𝑐𝑒𝑠𝑠_𝑉𝑅𝐸',) ,										𝑖𝑓	𝐸𝑥𝑐𝑒𝑠𝑠_𝑉𝑅𝐸',) ≤ 𝑅𝑚𝑛_𝐶𝑝𝑡𝑦!"#$%&#'
𝑅𝑚𝑛_𝐶𝑝𝑡𝑦!"#$%&#',) , 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																																		

                       

 (S2) 

𝑁𝑒𝑒𝑑_𝑁!""#$%,'	 =	'
0,																																													𝑖𝑓	𝐸𝑥𝑐𝑒𝑠𝑠_𝑉𝑅𝐸%,' ≤ 𝑅𝑚𝑛_𝐶𝑝𝑡𝑦)*+,#$%
-*.)++_01-!,#234+5$%&'()!,#

#$67!"*+%,#
, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                (S3) 

𝐴𝑏𝑠𝑝!""#$%,'	 =	@

0,																																																											𝑖𝑓	𝑁𝑒𝑒𝑑_𝑁!""#$%,'	 = 0																																	
𝑁𝑒𝑒𝑑_𝑁!""#$%,' × 𝐷𝐶𝑙𝑜𝑎𝑑8!*,' , 𝑖𝑓	0 < 𝑁𝑒𝑒𝑑_𝑁!""#$%,' ≤ 𝑇ℎ𝑙𝑑_𝑁!""#$'	
𝑇ℎ𝑙𝑑_𝑁!""#$'	 × 𝐷𝐶𝑙𝑜𝑎𝑑8!*,' ,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																																										

    (S4) 

𝐴𝑏𝑠𝑝,2!#314	 = ∑ 𝐴𝑏𝑠𝑝,2!#31!-,4	-∈[8,9:;*]                                                               (S5) 

𝐴𝑏𝑠𝑝.==314	 = ∑ 𝐴𝑏𝑠𝑝.==31!-,4	-∈[8,9:;*]          (S6)     
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𝑇𝑜𝑡𝑎𝑙_𝐴𝑏𝑠𝑝4 =	𝐴𝑏𝑠𝑝,2!#314	 + 𝐴𝑏𝑠𝑝.==314	 (S7)        

                                                          

(B)  GHG emissions reduction 

∆𝐺𝐻𝐺-,4 = (𝐼𝑛𝑡𝑠𝑡>?@!,# − 	𝐼𝑛𝑡𝑠𝑡1ABCD,2(,!!!,#) 	× (𝐴𝑏𝑠𝑝,2!#31!-,4	 + 𝐴𝑏𝑠𝑝.==31!-,4)                    

 (S8) 

∆𝐺𝐻𝐺4 = ∑ ∆𝐺𝐻𝐺-,4-∈[8,9:;*]                                                                                                     

 (S9) 

(C)  Energy consumption by data centers 

𝑃𝑈𝐸4 =	
EF,GH4_IJ#.'#
EF,GH4_BI#

                                                                                                               

 (S10) 

𝐷𝑅4 =	
>JK,G_B=',#
>JK,G_@.2

                                                                                                                     

 (S11)    

𝑃𝑜𝑤𝑒𝑟_𝑆𝑒𝑟𝑣𝑒𝑟-,4 	= 	𝑃𝑜𝑤𝑒𝑟_𝐼𝑑𝑙𝑒4 + I𝑃𝑜𝑤𝑒𝑟_𝑀𝑎𝑥 −	𝑃𝑜𝑤𝑒𝑟_𝐼𝑑𝑙𝑒4L × 𝑈𝑅-,4                   

 (S12) 

𝐸𝑛𝑒𝑟𝑔𝑦_𝐼𝑇-,4 	= 	𝑃𝑜𝑤𝑒𝑟_𝑆𝑒𝑟𝑣𝑒𝑟-,4 × 𝑁_𝑆𝑒𝑟𝑣𝑒𝑟𝑠                                                                       

 (S13) 

𝐸𝑛𝑒𝑟𝑔𝑦_𝑛𝑜𝑛𝐼𝑇-,4 	= (𝑚* × 𝑈𝑅-,4 +	𝑏*) × 𝑚4  s.t.	 EF,GH4_IJ#.'#
EF,GH4_BI#

  = 𝑃𝑈𝐸4                     

 (S14) 

(D)  GHG emissions abatement cost 
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D	𝐹𝑎𝑐_𝐶𝑜𝑠𝑡4 =	𝐹𝑎𝑐_𝐶𝑜𝑠𝑡4,@C −	𝐹𝑎𝑐_𝐶𝑜𝑠𝑡4,LC (S15) 

𝐹𝑎𝑐_𝐶𝑜𝑠𝑡4,@C = 𝑈𝑛𝑖𝑡_𝐹𝑎𝑐_𝐶𝑜𝑠𝑡@C × 𝑇𝑜𝑡𝑎𝑙_𝐶𝑝𝑡𝑦.==314	 (S16) 

𝐹𝑎𝑐_𝐶𝑜𝑠𝑡4,LC =
		MF%#_N.(_1J!#$%	×	BI_>JK,G&		

EF,GH4_IJ#.'&,#
	× 𝐴𝑏𝑠𝑝.==314	 (S17) 

D	𝐸𝑙𝑒𝑐_𝐶𝑜𝑠𝑡4 = 0 − 𝐸𝑙𝑒𝑐_𝑅𝑎𝑡𝑒4,LC × 	𝑇𝑜𝑡𝑎𝑙_𝐴𝑏𝑠𝑝4 (S18) 

D	𝑂𝑡ℎ𝑒𝑟_𝐶𝑜𝑠𝑡4 =	𝑈𝑛𝑖𝑡_𝐴𝑑𝑑_𝐶𝑜𝑠𝑡@C ×	𝑇𝑜𝑡𝑎𝑙_𝐶𝑝𝑡𝑦.==314	– 0  (S19) 

𝑇𝑜𝑡𝑎𝑙_𝐴𝑏𝑎𝑡𝑒_𝐶𝑜𝑠𝑡4 =	D	𝐹𝑎𝑐_𝐶𝑜𝑠𝑡4	+	D	𝐸𝑙𝑒𝑐_𝐶𝑜𝑠𝑡4 + D	𝑂𝑡ℎ𝑒𝑟_𝐶𝑜𝑠𝑡4             (S20) 

𝑁𝑒𝑡_𝐴𝑏𝑎𝑡𝑒_𝐶𝑜𝑠𝑡4 =	
	IJ#.'_AP.#,_1J!##	

∆RSR#
                                                          (S21) 
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Table S5. Nomenclature for supplemental equations 

Symbol Unit Description 
𝑅𝑚𝑛_𝐶𝑝𝑡𝑦!"#$%&',)  MWh Total remaining capacity of existing data centers powered by 

CAISO to absorb excess VRE during hour ℎ in year 𝑦 
𝐷𝐶𝑙𝑜𝑎𝑑*+",)  MW Hourly total peak load of a typical 10 MW data center in year 

𝑦, determined by the assumed maximum server utilization rate 
which ranges between 65%-90% 

𝐷𝐶𝑙𝑜𝑎𝑑',)  MW Actual existent total load of a typical 10 MW data center at 
hour ℎ in year 𝑦 

𝑁_𝐸𝑥𝑠𝑡𝐷𝐶  EA Number of existing 10 MW-equivalent data centers powered by 
CAISO  

𝐴𝑏𝑠𝑝!"#$%&',)	  MWh Absorption of excess VRE by existing data centers powered by 
CAISO during hour ℎ in year 𝑦 

𝐸𝑥𝑐𝑒𝑠𝑠_𝑉𝑅𝐸',) MWh CAISO’s total excess VRE (i.e., curtailment) at hour ℎ in year 
𝑦 

𝑁𝑒𝑒𝑑_𝑁+--%&',)	  
 

EA Total number of additional data centers (10 MW IT power) 
required to absorb all the rest of excess VRE in CAISO that 
exceeds existing data center capacity during hour ℎ in year 𝑦 

𝐴𝑏𝑠𝑝+--%&',)	  MWh Absorption of excess VRE by additional data center capacity 
powered by CAISO during hour ℎ in year 𝑦 

𝑇ℎ𝑙𝑑_𝑁+--%&)	  EA Threshold number of additional data centers (10 MW critical 
power) that are allowed to be built in CAISO region in year 𝑦  

𝐴𝑏𝑠𝑝!"#$%&)	 MWh Annual total absorption of excess VRE by existing data center 
capacity powered by CAISO in year 𝑦 

𝐴𝑏𝑠𝑝+--%&)	 MWh Annual total absorption of excess VRE by additional data 
center capacity powered by CAISO in year 𝑦 

𝑇𝑜𝑡𝑎𝑙_𝐴𝑏𝑠𝑝) MWh Annual total absorption of excess VRE by both existing and 
additional data center capacity powered by CAISO in year 𝑦 

∆𝐺𝐻𝐺',)  kgCO2e GHG emissions reduction at hour ℎ achieved by processing 
migrated workloads with excess VRE in year 𝑦 

𝐼𝑛𝑡𝑠𝑡./0!,# kgCO2e/M
Wh 

GHG intensity of PJM generation at hour ℎ in year 𝑦 

𝐼𝑛𝑡𝑠𝑡&1234!"5!##!,# kgCO2e/M
Wh 

GHG intensity of CAISO curtailment at hour ℎ in year 𝑦 

∆𝐺𝐻𝐺) KtCO2e Annual total GHG emissions reduction in year 𝑦 
𝑃𝑈𝐸)  Unit-less Annual average Power Usage Effectiveness value assumed for 

a data center in year 𝑦 
𝐸𝑛𝑒𝑟𝑔𝑦_𝑇𝑜𝑡𝑎𝑙6,)  MWh Total energy consumption (IT + non-IT) of a data center in year 

𝑦 
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𝐸𝑛𝑒𝑟𝑔𝑦_𝐼𝑇6,)  MWh Total energy consumption of IT equipment in a data center in 
year 𝑦 

𝐷𝑅)  Unit-less Dynamic range assumed for servers in year 𝑦 
𝑃𝑜𝑤𝑒𝑟_𝑆𝑒𝑟𝑣𝑒𝑟',)  W Power usage of a server at hour ℎ in year 𝑦 
𝑃𝑜𝑤𝑒𝑟_𝐼𝑑𝑙𝑒)  W Power usage of a server when they are idling in year 𝑦 
𝑃𝑜𝑤𝑒𝑟_𝑀𝑎𝑥)  W Rated power usage of a server in year 𝑦 
𝑈𝑅',)  % Utilization rate of the servers at hour ℎ in year 𝑦 
𝑁_𝑆𝑒𝑟𝑣𝑒𝑟𝑠  EA Number of servers in the data center 
𝐸𝑛𝑒𝑟𝑔𝑦_𝑛𝑜𝑛𝐼𝑇',) MWh Total energy consumption of non-IT components in a data 

center at hour ℎ in year 𝑦 
𝑚7, 𝑏7, 𝑚) Unit-less 𝑚7, 𝑏7 – Slope and intercept of linear model of non-IT vs. 

server utilization rate, respectively. 𝑚) – Co-efficient of the 
linear model such that the assumed PUE value is met 

D	𝐹𝑎𝑐_𝐶𝑜𝑠𝑡) million $ Annual facility cost change due to workloads migration in year 
𝑦 

𝐹𝑎𝑐_𝐶𝑜𝑠𝑡),03  million $ Amortized facility cost of additional (ZCC) data centers 
powered by CAISO in year	𝑦 under Migration Scenario (MS) 

𝐹𝑎𝑐_𝐶𝑜𝑠𝑡),83  million $ Amortized facility cost of traditional data centers powered by 
PJM in year	𝑦 under Baseline Scenario (BS) 

𝑈𝑛𝑖𝑡_𝐹𝑎𝑐_𝐶𝑜𝑠𝑡03 $/W Unit cost of amortized facility cost of ZCC data centers under 
MS 

𝑇𝑜𝑡𝑎𝑙_𝐶𝑝𝑡𝑦+--%&)	 MW Total capacity of additional data centers in year 𝑦 under MS 

𝑈𝑛𝑖𝑡_𝐹𝑎𝑐_𝐶𝑜𝑠𝑡83 $/W Unit cost of amortized facility cost of traditional data centers 
under BS 

𝐼𝑇_𝑃𝑜𝑤𝑒𝑟6 		 MW IT peak load of a typical data center 𝑖 (i.e., 10 MW) 
D	𝐸𝑙𝑒𝑐_𝐶𝑜𝑠𝑡) million $ Annual electricity cost change due to workloads migration in 

year 𝑦 
𝐸𝑙𝑒𝑐_𝑅𝑎𝑡𝑒),83 $/MWh The average retail electricity rate in year 𝑦 under BS 
D	𝑂𝑡ℎ𝑒𝑟_𝐶𝑜𝑠𝑡)  million $ Annual other costs change due to workloads migration in year 

𝑦 
𝑈𝑛𝑖𝑡_𝐴𝑑𝑑_𝐶𝑜𝑠𝑡03 $/W Unit annual additional cost of ZCC data centers under MS 
𝑇𝑜𝑡𝑎𝑙_𝐴𝑏𝑎𝑡𝑒_𝐶𝑜𝑠𝑡)  million $ Total abatement cost in year 𝑦 under MS 
𝑁𝑒𝑡_𝐴𝑏𝑎𝑡𝑒_𝐶𝑜𝑠𝑡)  $/tonCO2e Net abatement cost in year	𝑦 under MS 

 

 

  



 

 

 

 80 

IV. Life-cycle cost and carbon implications of residential solar-

plus-storage in California    

Abstract. Capacities of residential photovoltaics (PV) and battery storage are rapidly 

growing.  However, their life-cycle cost and carbon implications under increasingly-

decarbonized electric grids and declining costs are not well understood. Here, we integrate 

PV generation and load data for households in California to assess the current and future 

life-cycle cost and carbon emissions of installing solar-plus-storage systems. Our results 

show that installing PV reduces 110-570 kgCO2 and $180-$730 per household in 2020. 

However, adding battery storage to a PV system increases life-cycle costs by 39%-67%, 

while impact on emissions is mixed (-20% to 24%) depending on tariff structure and 

marginal emission factors. In 2040, under current decarbonization and cost trajectories, 

additional life-cycle costs by adding storage decrease (31% to -3%) while additional 

emissions increase (2%-32%). Tariffs with wider spreads and aligned with marginal 

emissions, aggressive reduction in capital costs and embodied emissions are essential for 

residential solar-plus-storage to reduce costs and emissions.  

A. Introduction 

Variable renewable energy (VRE) such as solar and wind, is experiencing accelerated 

expansion with decreasing costs. However, the variability of VRE generation poses a major 

challenge to the low-carbon transition. Energy storage provides various benefits ranging 

from smoothing renewable generation, reducing curtailment, improving the reliability of 
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operating transmission and distribution grids, deferring or substituting costly investments in 

infrastructure, and peak shaving, among others142,143,144,4. 

For households, residential battery storage, typically coupled with rooftop solar 

photovoltaic (PV), can increase PV self-consumption, save electricity bills, and provide 

backup power during outages145. The capacity of behind-the-meter batteries with rooftop PV 

is estimated to dramatically increase and match that of utility-scale batteries by 2030 

globally19. In the U.S., one-quarter of new residential PV systems are expected to be paired 

with storage by 2025. Among U.S. states, California represents the largest market with 38% 

of nation-wide residential PV installations during 2016-2020, and is driving the growth of 

solar-plus-storage systems146.  

Understanding the implications of residential battery storage on greenhouse gas (GHG) 

emissions is imperative, but existing literature is largely limited to retrospective analyses. 

Some studies conclude that residential battery storage increases total emissions when 

performing energy arbitrage (charge when electricity price is low and discharge when it is 

high), mainly due to energy losses during battery cycling13,14,147,148. These analyses often use 

a set of short-run Marginal Emission Factors (MEFs) derived through regression models 

based on empirical fossil generation data, which do not take nuclear and renewable 

generators into account149,150. This method is not applicable to regions with large portions of 

VRE such as California and Mid-West region, where VRE can be often on the margin147,151. 

Extending short-run MEFs to include non-emitting generators in the regression model for a 

high-wind-penetration area is shown to have about 30% discrepancy compared to the MEFs 
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based on fossil fuels only151, and such extended method is frequently employed in later 

studies152,153.  

While suitable for retrospective analyses, short-run MEFs are unable to inform the 

impacts of battery storage on GHG emissions as the penetration of VRE in the electric grid 

increases in the future. Energy storage systems can induce structural changes in grid 

infrastructure by changing demand profiles154. Short-run MEFs evaluate the operational 

response to a marginal load change, assuming that the underlying grid composition is 

fixed155,156. In comparison, long-run MEFs also account for the structural changes of the 

electricity system, such as capacity investments of VRE and retirement of fossil-fuel power 

plants155,157–159. We use long-run MEFs in this analysis, which are more appropriate for 

prospective analysis, as both penetrations of renewable energy and storage increase in the 

future155,157,160. 

In addition, there is a disconnection between use-phase studies and life-cycle assessment 

(LCA) studies in existing literature that evaluate the GHG emissions of battery storage. On 

the one hand, use-phase studies often employ optimization models to quantify operational 

emissions with little consideration of the embodied impacts from battery production161,162. 

On the other hand, LCA studies generally limit the scope to the production phase or make 

oversimplified assumptions on battery cycling during the use phase163,164. Stationary 

applications of battery storage, especially in the residential sector, are notably under-

evaluated compared with mobile applications such as electric vehicles165.  

Here, we evaluate the life-cycle GHG emissions and costs of installing and operating 

solar-only and solar-plus-storage systems in 52 representative households across California. 
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We optimize the operation of residential solar-plus-storage systems with two power modes 

in three utility areas for the current time (2020) and a highly decarbonized future (2040). By 

comparing their life-cycle costs and GHG emissions, we explore if adding storage can 

further reduce cost and emissions and under what conditions would solar-plus-storage 

outperform solar-only systems. We conclude that marginal emissions-aligned tariff designs, 

rapid decreases in the capital cost and embodied emissions of batteries are key to reduce the 

life-cycle GHG emissions of residential solar-plus-storage. 

B. Methods  

1. Residential load profiles 

The residential load profiles in the U.S. are selected from an OpenEI dataset166. The 

dataset has a total of 961 load profiles of households in different cities across the United 

States. Base Load scenario is selected for our analysis, in which the hourly load profiles for 

a typical one-story house with three bedrooms are simulated using Typical Meteorological 

Year 3 (TMY 3) weather data. We use the electricity load profiles of 52 households which 

fall in the electricity service territory of the three major utility companies, PG&E, SCE, and 

SDG&E in California. We keep the households’ load profiles constant for 2020 and 2040 

with a purpose to examine the impacts of electric grid transformation on the life-cycle GHG 

emissions of solar-only or solar-plus-storage systems, and future changes in climates are not 

considered. 
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2. System design 

We use the PVWatts simulation tool in System Advisor Model (SAM) model to generate 

hourly solar PV outputs167. We assume that the capacity of the solar PV system is 4 kWdc, 

which is a reasonable size for a three-bedroom house. The PV panels are assumed to have a 

tilt angle of 20°, an azimuth of 180° and total system losses of 14.08%, which are common 

settings according to historical data168,169. To generate solar PV outputs for households at 

different locations, the respective weather files are required in SAM model. We downloaded 

the TMY 3 weather files170 from National Solar Radiation Database (NSRDB)171. We 

modified the LK code script provided by SAM model, ran a sequential batch of simulations 

iterating the weather files of California TMY 3 locations, generated and exported the hourly 

solar PV outputs for each household. A degradation rate of 0.5% per year and a lifetime of 

25 years is assumed for the solar PV system172.  

We use the specifications of Tesla Powerwall II to simulate the battery storage system. 

We assume that one battery is used in the solar-plus-storage systems, with an usable energy 

capacity of 13.5 kWh and a power rating of 5 kW173. The warranty states that the battery 

system has no less than 70% energy retention at ten years following the installation date, 

with an operating limitation of 37.8 MWh of aggregate throughput174. Based on this, a 

degradation rate of 3.89% per year is assumed for the battery system for 10 years of lifetime 

and a limit of aggregate yearly discharge is set as one constraint.   

Two power control configurations are modeled for residential solar-plus-storage 

systems, ExportOnly (also known as No Grid Charging) mode and ImportOnly (or No 
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Storage Export) mode that are NEM-eligible, based on a recent rule made by California 

Public Utilities Commission175.  

3. Emission factors  

For emission factors of the grid in 2020 and 2040, we use the Average Emission Rates 

(AER) and Long-Run Marginal Emission Rates (LRMER) from a mid-case scenario in the 

Cambium tool developed by National Renewable Energy Laboratory (NREL)159. AER is the 

average CO2 emission intensity of the grid weighted by the generation amount of each 

technology during an hour, calculated by dividing the total system emissions by the total 

system supply. LRMER is the CO2 emission rate of the mixture of generation that would 

serve a persistent change in end-use demand, taking into account any structural changes to 

the grid in response to the change in demand159. The emission factors for three balancing 

areas are used, defined as p9, p10 and p11 in Cambium, which covers PG&E, SCE and 

SDG&E, respectively. There is a slight misalignment in the borderline of the former two 

areas, i.e., Santa Barbara weather station lies in p9 but is exposed to the ToU rates of 

SDG&E while Bakersfield station is located in p10 but exposed to the ToU rates of PG&E. 

Based on the Cambium model, the portion of electricity generated from variable renewable 

energy (VRE, i.e., solar and wind) in the total generation for p9, p10 and p11 area is 17%, 

36% and 28% in 2020, respectively. The VRE portion is projected to increase to 23%, 64% 

and 64% in 2040, respectively. Representative hourly AER and LRMER values by season in 

2020 and 2040 are shown in Supplementary Fig. 2. 

We use AER to calculate the GHG emissions for the baseline scenario, when households 

have no solar PV or battery system, assuming that they consist part of the existing end-use 
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demand. When households install new solar PV or solar-plus-storage systems, we apply 

LRMER to the change in net load and feed-in. As a significant number of households install 

solar-only or solar-plus-storage systems, the new loads or change in load curves would 

induce structural change in the electricity supply infrastructure within a balancing area. 

Specifically, the addition of battery storage can help reduce peak demand of the grid and 

hence the need for fossil fuel peaker plants, enable the storage of more renewable energy 

and induce higher electricity consumption due to internal energy loss, which combined can 

alter both the structure and operation of the grid155.  

4. Capital cost and utility cost 

Capital cost is a major component of the life-cycle cost for a household adopting NEM-

eligible systems. We assume that the installation cost of residential solar PV systems in 

California is $3.75/W in 2020, given that the median installed price of such systems before 

incentives in California was $3.81/W in 2019, and we assume a same price drop (-1.7%) for 

2019-2020 with that in 2018-2019 168. The unit cost is assumed to decrease to $1.41/W  in 

2040, excluding subsidy or tax rebates, based on the projected cost decrease in NREL 

Annual Technology Baseline (ATB) on residential solar PV176. For residential battery 

storage, we use the empirical cost data in 2020 ($670/kWh usable capacity177) and the trend 

projected in ref 178 to estimate the cost in 2040 ($185/kWh). All costs in this analysis are in 

2019 U.S. dollars. For a detailed list of assumptions on key technical, cost and unit 

emissions parameters, see Supplementary Table 1. 
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Using a life-cycle perspective, we calculate the annualized capital cost of solar PV and 

battery system based on their lifetimes, shown in equation (1). Salvage value of the system 

is not considered. 

𝐴𝑛𝑛𝑢𝑎𝑙_𝑐𝑎𝑝_𝑐𝑜𝑠𝑡6	 = 𝐶𝑎𝑝_𝑐𝑜𝑠𝑡6 	×
9

:;(:=9)$%&	
   (1) 

In the equation, 𝑖 indicates the device, i.e., solar panels or battery storage. 𝐶𝑎𝑝_𝑐𝑜𝑠𝑡% is 

the total installed cost of the device, 𝑟 is the assumed discount rate (6.1%)179 and 𝑌6	 is the 

lifetime of solar PV (25 years) or battery storage system (10 years).	Annualized cost would 

be more if a higher discount rate is used. 

The NEM Program 2.0 in California allows households with PV panels to export surplus 

self-generated electricity to the grid and apply credits equivalent to retail prices to reduce 

their bills on a monthly-basis180. We collected the default ToU tariffs in 2020 for NEM 

participants from three utility companies. For households served by PG&E, we use E-TOU-

D plan181. For SCE and SDG&E, we use TOU-D-4-9PM182 and DR-SES183, respectively.  In 

a typical ToU rate structure, a high rate is charged during the peak time (4 to 9 p.m. or 5 to 8 

p.m.), and lower rates are applied to other hours of the day, which are off-peak or super off-

peak times. Detailed tariffs with rates by hour of the day and season are shown in 

Supplementary Fig. 1. We did not model the households served by other smaller utility 

entities. Non-bypassable charges and on-time interconnection fees are not included in our 

cost analysis. 
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5. Embodied GHG emissions  

There are extensive LCA studies of battery or battery systems, with a heavier focus on 

mobile applications (i.e. electric vehicles) than on stationary applications (grid-scale and 

residential batteries)184,165. Most of the LCA studies have a system boundary of cradle-to-

gate, leaving out the use and end-of-life phase due to complexity and lack of data185. For 

example, a recent LCA study on commercialized residential battery systems reported that 

the cradle-to-gate GHG emissions are around 200 kg CO2e per kWh of usable storage 

capacity165. In our analysis, we use this data to estimate the total embodied GHG emissions 

of a battery storage system based on its usable storage capacity.  

We calculate the annualized embodied emissions of battery storage based on its lifetime, 

assuming an equal allocation to each year throughout a 10-year lifetime (equation 2).  

𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺6 	 = 	 ?*@_BCB&
D&	

   (2) 

𝐸𝑚𝑏_𝐺𝐻𝐺6 represents the total embodied emissions of device 𝑖 (solar PV or battery 

storage) and 𝑌6	 is the lifetime of the device (25 years for solar PV and 10 years for battery 

storage). For solar PV, the unit life-cycle GHG emissions is 48 gCO2e per kWh of electricity 

output114, and the total life-cycle GHG emissions of a 4-kW solar PV system are calculated 

by multiplying this unit embodied emissions with the average lifetime total output of the 

sampled households (in kWh). 

We also estimated the embodied emissions of solar PV and battery storage for 2040. The 

International Energy Agency projects that the global average carbon intensity of power 

generation would decrease from 440 gCO2/kWh in 2020 to 282 gCO2/kWh in 2040186 in a 

Stated Policies Scenario (STEPS). In the STEPS scenario, future carbon intensities of the 
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U.S. grid are aligned with those modelled in Cambium mid-case scenario. Electricity 

consumption contributes to 53% and 64% to the life-cycle GHG emissions of a battery 

pack187 and a solar PV module188, respectively. Assuming that the GHG emissions from 

non-electricity contributors stay unchanged, we estimate that the embodied emissions of 

battery storage would decrease from 200 to 162 kgCO2e per kWh usable capacity and the 

embodied emissions of solar PV would decrease from 48 to 37 gCO2/kWh output from 2020 

to 2040.  

In Cambium, the emissions rates only account for emissions of electricity generation 

during the operational phase. So, we calculated the indirect GHG emissions of the grid, i.e., 

the infrastructure and supply chain emissions for all generation technologies and added them 

to the model. The indirect emissions factors of the grid by balancing area for 2020 and 2040 

are listed in Supplementary Table 1. 

6. Optimization model  

The optimization model dispatches battery storage under two separate objectives: 

minimizing annual utility cost (minCost) and minimizing annual operational emissions 

(minGHG) of the solar-plus-storage system. In addition, we optimize utility cost considering 

a carbon price that is equivalent to the social cost of carbon ($51/tonneCO2 for 2020 and 

$73/tonneCO2 for 2040)189. Under the minCost objective, since a certain electricity rate 

spans across a number of hours, the optimization model may have multiple solutions for a 

minimal total cost, but the resulting GHG emissions would vary slightly. This difference is 

small (0.3% for ImportOnly scenario and 1.7% for ExportOnly scenario on average in 

2020), and we show the upper bounds of the life-cycle emissions in the main text. For solar-
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only systems, no optimization is required. We built the optimization model using Pyomo in 

Python and solved it as a Mixed Integer Problem using Gurobi Optimizer 9.0.3. 

We calculate the life-cycle cost and GHG emissions of the systems based on the optimal 

battery dispatching solution under a minCost objective (equation 3). In an alternative 

scenario where there is a carbon price, we assume that the carbon cost is charged based on 

the household’s net grid consumption and the hourly average emission factor of the grid:  

𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 	∑ 	𝑇𝑜𝑈' × (𝐸E!$_FG+-,' − 𝐸H!!-;6E,') + 𝐶_𝑝𝑟𝑖𝑐𝑒 	× (𝐴𝐸𝐹' × 𝐸E!$_FG+-,')IJK7
'L:  (3) 

𝑇𝑜𝑈- is the Time-of-Use rate in hour ℎ ($/kWh), 𝐸F,#_'J.=,	- is the net load of the 

household in hour ℎ (kWh) and 𝐸T,,=U%F,	- is the surplus electricity fed back to the grid in 

hour ℎ (kWh),	𝐴𝐸𝐹- is the average emission factor of the grid in hour ℎ (kgCO2e/kWh) and 

𝐶_𝑝𝑟𝑖𝑐𝑒 is the carbon price (0 or social cost of carbon). 

We also minimize the annual operational GHG emissions for the solar-plus-storage 

system, applying MEFs to the change in net load. The objective function is shown in 

equation 4, where 𝐸'J.=,	- is the original load of the household in the baseline scenario in 

hour ℎ (kWh) and 𝑀𝐸𝐹- is the long-run marginal emission rates of the grid in hour ℎ 

(kgCO2e/kWh): 

𝑚𝑖𝑛𝐺𝐻𝐺	 = 	∑ 	𝐴𝐸𝐹' × 𝐸FG+-,' +𝑀𝐸𝐹'× (𝐸E!$_FG+-,'	 − 𝐸FG+-,'	 − 𝐸H!!-;6E,')IJK7
'L: 		 (4) 

There are a series of constraints in our optimization model. In ExportOnly mode, 

batteries can charge from solar PV only and export to the grid. In ImportOnly mode, 

batteries can charge from both solar PV and the grid but can only discharge to serve on-site 

load. In both modes, the battery system is set to be 50% charged in the first hour of the year. 

We assume a 90% round-trip efficiency and impose equal amounts of energy loss during 
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battery charging and discharging. There are other technical constraints for the battery 

system, for example, the household cannot send surplus PV generation to the grid and pull 

power from the grid at the same time. There is a yearly discharge limit which allows the 

battery system to meet the requirement specified in warranty. In addition, the household’s 

load must be met in any hour and the balance of solar PV output must be maintained. For a 

full list of constraints with notations, see Supplementary Table 2-4. 

7. Life-cycle cost and GHG emissions 

In the baseline scenario when households have no solar PV or battery storage installed, 

annual cost only consists of utility cost, and carbon cost if assumed. When households 

install only solar PV systems, the annual life-cycle cost includes net utility cost, carbon cost 

(if any) and the annualized capital cost of solar PV. When households install solar-plus-

storage systems, the annual life-cycle cost include the aforementioned components plus the 

annualized capital cost of battery system: 

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒_𝐶𝑜𝑠𝑡@+#!F6E! = ∑ 𝑇𝑜𝑈'	' × 𝐸FG+-,',) +	𝐶_𝑝𝑟𝑖𝑐𝑒 	× (𝑙𝑐𝐴𝐸𝐹' × 𝐸FG+-,')		(5) 

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒_𝐶𝑜𝑠𝑡#GF+9;GEF) = ∑ 𝑇𝑜𝑈'	' × (𝐸E!$_FG+-,',) − 𝐸H!!-;6E,',)) + 𝐶_𝑝𝑟𝑖𝑐𝑒 	×

[(𝑙𝑐𝐴𝐸𝐹' × 𝐸E!$_FG+-,') +𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺.M] + 𝐴𝑛𝑛𝑢𝑎𝑙_𝑐𝑎𝑝_𝑐𝑜𝑠𝑡.M 		(6)	

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒_𝐶𝑜𝑠𝑡#GF+9=#$G9+N! = ∑ 𝑇𝑜𝑈'	' × (𝐸E!$_FG+-,',) − 𝐸H!!-;6E,',)) + 𝐶_𝑝𝑟𝑖𝑐𝑒 	×

[(𝑙𝑐𝐴𝐸𝐹' × 𝐸E!$_FG+-,') +𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺.M + 𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺#$G9+N!] +

𝐴𝑛𝑛𝑢𝑎𝑙_𝑐𝑎𝑝_𝑐𝑜𝑠𝑡.M + 𝐴𝑛𝑛𝑢𝑎𝑙_𝑐𝑎𝑝_𝑐𝑜𝑠𝑡#$G9+N! 		(7) 

The life-cycle GHG emissions of households in the baseline scenario are the direct and 

indirect GHG emissions from grid electricity consumption. 𝑙𝑐𝐴𝐸𝐹' represents the life-cycle 



 

 

 

 92 

average emission factors in hour ℎ including the embodied emissions of grid infrastructure. 

The life-cycle GHG emissions in Solar-Only scenario include the GHG emissions from grid 

electricity use, GHG emissions avoidance due to feed-in and the embodied emissions of 

solar PV. In solar-pus-storage scenario, besides these components, embodied emissions of 

battery storage are added. 

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒_𝐺𝐻𝐺@+#!F6E! = ∑ 𝑙𝑐𝐴𝐸𝐹'',) × 𝐸FG+-,'		(8) 

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒_𝐺𝐻𝐺#GF+9;GEF) = ∑ 𝑙𝑐𝐴𝐸𝐹'',) × 𝐸FG+-,' + 	𝑀𝐸𝐹' × (𝐸E!$_FG+-,' − 𝐸FG+-,' −

𝐸H!!-;6E,') + 𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺.M 		(9)	

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒_𝐺𝐻𝐺#GF+9=#$G9+N! = ∑ 𝑙𝑐𝐴𝐸𝐹'',) × 𝐸FG+-,' + 	𝑀𝐸𝐹' × (𝐸E!$_FG+-,' − 𝐸FG+-,' −

𝐸H!!-;6E,') + 𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺.M + 𝐴𝑛𝑛𝑢𝑎𝑙_𝑒𝑚𝑏_𝐺𝐻𝐺#$G9+N! 		(10)	

The annual life-cycle cost and GHG results in three scenarios are therefore calculated 

and compared, shown in the main text.  

8. Limitations 

There are limitations with the methodology and data used in this study. First, we use the 

current ToU rates and NEM policy in California, which is subject to change in the future. 

The conclusions we draw here may not be applicable to regions with substantially different 

tariff designs or feed-in policies. Second, there are some limitations on the emission factors 

used, such as omission of transmission losses and distortion of data in the event of outages 

in the Cambium tool, as described in the reference159. Third, although we used the most 

recent and best available data, there are uncertainties around the future costs and embodied 

emissions of solar PV and battery systems, depending on technology development and 
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policy implementation, etc. Fourth, in our model, we assumed perfect information of the 

emissions factors of the grid for optimization. However, this information would not be 

known to the households until advanced technology which can quickly predict marginal 

generator(s) is in place. Furthermore, our model is limited to optimize individual households 

with two commonly-used power modes currently and cannot simulate complex grid-level 

power management with households running systems with various sizes and operation 

modes. Lastly, the weather data used by Cambium is 2012, while the load data we used is 

based on TMY 3 dataset, which is a condensation of a number of historical years to 

represent the weather of a typical year. 

C. Results 

1. Operation modes  

We estimate the life-cycle GHG emissions and cost of households under three power 

control modes - Solar-Only, ExportOnly, and ImportOnly. These are the most common 

residential self-generation configurations that are compliant with the current California Net 

Energy Metering (NEM) policy. Solar-Only refers to the case when households install only 

rooftop solar PV systems (Fig. 1a). In ExportOnly mode, households install solar-plus-

storage systems, in which the battery storage only charges from solar PV and the battery can 

discharge and export to the grid in addition to meeting the on-site load (Fig. 1b). In 

ImportOnly mode, households install solar-plus-storage systems where the battery can 

charge from solar PV or the grid, but the battery can only discharge to meet the on-site load 

(Fig. 1c). For both ExportOnly and ImportOnly modes, we assume that the households 
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dispatch batteries in order to minimize their annual electric utility cost (minCost). We model 

the hourly PV generation, grid electricity consumption, and battery dispatch for each 

sampled household through optimization.  

Figure 1. Illustration of different power control modes of solar-only or solar-plus-storage 

systems and resulting annual electricity flow for an example household. (a) Solar-Only mode, 

(b) ExportOnly mode and (c) ImportOnly mode. Shown in ExportOnly and ImportOnly modes are 

optimized electricity flows under an objective of minimizing annual utility cost. 
 

We use representative Time-of-Use (ToU) tariffs in 2020 from three major utility 

companies in California - Pacific Gas and Electric Company (PG&E), Southern California 

Edison (SCE), and San Diego Gas and Electric Company (SDG&E) - with hourly rates 

shown in Supplementary Fig. 1. We collect the hourly electric load for typical three-

bedroom houses across California, with the annual load varying by local climate (7,500-

13,000 kWh)166.  We simulate a 4-kilowatt (kW) solar PV system, coupled with lithium-ion 

battery storage with usable capacity of 13.5 kilowatt hours (kWh) and round-trip efficiency 
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of 90%173.  This system size is typical for a three-bedroom house and would ensure that the 

PV generation does not exceed the on-site load, as required by the NEM policy180. 
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Depending on the location of the houses, the solar PV generation ranges between 5,000-

7,300 kWh/year.   

Figure 2. Annual electricity flows of all sampled households in California by utility area in 

different scenarios. (a) Solar-Only mode, (b) ExportOnly mode and (c) ImportOnly mode. Results 

for ExportOnly and ImportOnly modes are optimized under an objective of minimizing annual utility 

cost.  

 



 

 

 

 97 

In Solar-Only mode, 33%-40% of the household’s on-site load is met by solar PV, with 

the remaining demand met by the grid. Surplus PV generation is fed back to the grid (33%-

60% of annual PV generation, depending on the location and load size) and the household 

receives financial credits for feed-in. The annual PV-to-load ratio of the sampled households 

ranges between 53%-90% with a mean value of 75%. 

In ExportOnly mode, the electricity flows of households served by SCE show a 

contrasting pattern with the others (Fig. 2b). Particularly, 72% of PV generation is used to 

charge batteries in SCE on average, with the rest serving on-site load directly (26%) or 

feeding back to the grid (2%). In comparison, only 20% of PV generation is stored in 

households served by PG&E, with a higher percentage used on site (44%) or fed back to the 

grid (36%). For SDG&E, the average percentage of PV generation used for battery charging, 

on-site consumption and feed-in is 32%, 36% and 32%, respectively. Across all three areas, 

the majority of the electricity stored in batteries (61%-86%) is discharged to the grid in 

exchange for credit, mostly during peak hours when retail rates are high. 

In ImportOnly mode, 33%-56% PV generation is used for on-site consumption, greater 

than in ExportOnly mode. The portion of PV generation stored in batteries is very low for 

PG&E and SDG&E (7% and 5% on average, respectively) but is much greater for SCE 

(34%). For households served by SDG&E, batteries charge mostly from the grid at 

nighttime rather than from solar PV. However, in SCE area, households charge more during 

the day from both on-site PV and the grid. Across all areas, batteries discharge in late 

afternoon and early night to displace expensive grid electricity. For detailed battery 

dispatching and state-of-charge curve, see Supplementary Fig. 4-9.  
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The differences in battery dispatching patterns can be attributed to the ToU tariff 

structures. The selected ToU plan of PG&E (E-TOU-D) has a very small price difference 

between on-peak and off-peak hours in winter and sets a flat rate for weekends 

(Supplementary Fig. 1). Thus, it provides little opportunity for arbitrage for households to 

dispatch batteries (except for summer weekdays), given that the energy loss during cycling 

leads to higher electricity consumption. The ToU rates of SDG&E (DR-SES) have very little 

variation across the day during wintertime but have a much larger gap between on-peak and 

off-peak hours during summertime. Further, off-peak rates are lower during nighttime (0-6 

a.m.) than daytime (6 a.m.- 4 p.m.), which results in frequent charging from the grid at night 

and more PV feed-in during the day in the ImportOnly mode. Conversely, the ToU plan of 

SCE (TOU-D-4-9PM) maintains a significant and consistent gap between on-peak and off-

peak times across all seasons. It also sets the lowest rate during off-peak hours (8 a.m.-4 

p.m.) in winter, which encourages more PV generation to be stored and later discharged 

during peak hours. Consequently, the battery storage at our modelled households served by 

SCE cycle more frequently than those by other utilities.  

2. Annual life-cycle cost and GHG emissions  

We calculate the resulting life-cycle cost and GHG emissions after optimizing the solar-

plus-storage systems for one year under the minCost (minimizing utility cost) objective for 

each household. Annual life-cycle cost consists of annualized capital cost of the device(s), 

utility cost based on ToU rates, credits from feed-in, and extra cost from imposing a carbon 

price in addition to ToU charges (when assumed). Under the current Net-Energy Metering 

(NEM) program in California, residential customers who produce surplus renewable 
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electricity and feed back into grid receive a financial credit on electricity bills at the same 

retail rate that they would have paid without the renewable generator180. Annual life-cycle 

GHG emissions include the annualized embodied emissions of the system, life-cycle 

emissions from grid electricity usage, and avoided emissions from feed-in.  

 

Figure 3. Life-cycle GHG emissions and cost of sampled households in 2020 by utility area in 

different scenarios. (a) Annual life-cycle GHG emissions and (b) annual life-cycle cost. Baseline – 

households have no PV or storage. Solar-Only – households install only solar PV systems. ExportOnly – 

households install solar-plus-storage systems with ExportOnly mode. ImportOnly – households install 

solar-plus-storage systems with ImportOnly mode. Results for ExportOnly and ImportOnly modes are 

optimized under an objective of minimizing annual utility cost for the household.  
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Fig. 3 shows the annual life-cycle GHG emissions and cost of all sampled households in 

different scenarios. Baseline scenario assumes households have no PV or storage installed. 

Compared to the baseline scenario, installing Solar-Only systems lead to 110-570 kgCO2 (or 

5%-39%) reduction. Across all scenarios, life-cycle GHG emissions of households in PG&E 

area are lower than those in the other two areas (Fig. 3a), due to fewer cooling degree days 

(less need for air-conditioning) and a lower-carbon grid. There is a larger variation in 

emissions among households served by SCE due to a greater variation in climate and load 

size within the utility area.  

For households served by PG&E, installing solar-plus-storage systems results in 2%-

27% higher life-cycle GHG emissions in 2020 than the Solar-Only scenario, due to a lack of 

tariff incentives for battery dispatch and a lower-carbon grid mix. For SCE, installing solar-

plus-storage systems can reduce more GHG emissions from the baseline than installing only 

solar PV. This is because households served by SCE fully utilize batteries by charging from 

on-site PV and discharge during peak time to replace generation from mostly natural gas 

peaker plants. Reduction of emissions in ExportOnly mode is greater since more stored 

electricity can feed back to the grid. For SDG&E, ImportOnly mode leads to a 9%-12% 

increase in life-cycle GHG emissions from the baseline, owing to nighttime charging from 

the grid when marginal costs are low while marginal emissions are high from the mostly 

fossil fuel-based generation.   

Although solar-plus-storage systems may reduce life-cycle GHG emissions, they result 

in 4%-49% more life-cycle cost compared to the baseline in 2020 without subsidy (Fig. 3b), 

because the annualized capital cost of battery storage exceeds the savings on utility bills 
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from optimizing the battery operation. Solar-Only mode, however, outperforms both modes 

of the solar-plus-storage systems by decreasing the life-cycle costs from the baseline 

scenario by 8%-32% (or $180-$730) across all utility areas in 2020. Breakdown of the life-

cycle GHG emissions and cost for representative households with similar annual loads 

served by each utility is shown in Supplementary Fig. 10-12. 

3. Comparing solar-plus-storage with solar-only systems  

The cost of battery storage is expected to decrease, making solar-plus-battery systems 

increasingly competitive compared to solar-only systems. In addition, the grid will be 

increasingly decarbonized. These dynamics will significantly affect the extent to which 

residential solar-plus-storage systems reduce life-cycle GHG emissions and costs, especially 

when compared with solar-only systems. We present results from both 2020 and 2040 

scenarios to highlight their differences (Fig. 4). For 2040, we use estimated long-run MEFs 

of the grid190 and estimated embodied emissions and capital costs of the systems. For 2040, 

we keep ToU tariff and load profiles unchanged from 2020, with a goal to illustrate the 

impacts of electric grid decarbonization on the life-cycle GHG emissions of the systems.  

To understand if a carbon price can change dispatch behaviors, we also consider a 

carbon price of $51/tonne CO2 in 2020 and $73/tonne CO2 in 2040189, charged in addition to 

the utility bills of households under the minCost objective, to account for the social cost of 

carbon. An additional objective of minimizing operational GHG emissions (minGHG) is 

also evaluated. Results of these two scenarios are shown in Supplementary Fig. 13-14. 
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 b 

c d 

a 

Figure 4. Differences in annual life-cycle GHG emissions and costs between installing solar-plus-

storage systems and installing solar-only systems for households in California. (a) ExportOnly mode, 

2020 (b) ImportOnly mode, 2020 (c) ExportOnly mode, 2040 and (d) ImportOnly mode, 2040. Results for 

solar-plus-storage systems are optimized under the objective of minimizing annual utility cost. The tables in 

lower left summarize average differences for households by utility area. Red color indicates solar-plus-

storage systems lead to higher life-cycle emissions or cost and green means the opposite. Solid circles 

represent differences in life-cycle GHG emissions and hollow circles represent differences in life-cycle 

costs. 

ImportOnly, 2020 ExportOnly, 2020 

ImportOnly, 2040 ExportOnly, 2040 

a b 

c d 
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ExportOnly mode leads to lower life-cycle costs and GHG emissions compared to 

ImportOnly mode across all utilities in both 2020 and 2040. With ExportOnly mode, 

households served by SCE can have on average 20% lower life-cycle GHG emissions than 

Solar-Only scenario in 2020, but with 39% higher life-cycle costs (Fig. 4a). For PG&E, 

there are on average 18% more life-cycle emissions, because the small reduction in 

operational emissions from low dispatching of batteries cannot offset their embodied 

emissions (Supplementary Fig. 10a). The life-cycle cost is much higher as the small price 

difference between peak and off-peak hours and the narrow peak-hour window of the ToU 

result in little savings in utility cost, in addition to the relatively high cost of battery storage. 

For SDG&E, the emissions and cost reduction from the operational phase cannot offset the 

annualized embodied emissions and capital cost either. In ImportOnly mode (Fig. 4b), 

households served by SCE have lower emissions reduction potential than when ExportOnly 

mode is adopted. For SDG&E, solar-plus-storage systems with ImportOnly modes lead to an 

average of 24% higher life-cycle GHG emissions than Solar-Only systems.  

The distinct results across utility areas can again be explained by their ToU plans, MEFs, 

and climates. The representative ToU plan of SCE provides higher incentives for battery 

dispatch and encourages more charging from on-site solar PV or from the grid during 

daytime. In comparison, SDG&E’s ToU plan incentivizes nighttime charging when MEFs 

are the highest. In 2020, the variations in MEFs of PG&E area are lower than those of SCE 

and SDG&E, due to a higher portion of non-solar renewable energy, such as wind, hydro 

and geothermal as marginal generation mix.  
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In the future, to meet decarbonization targets, more renewable energy and energy storage 

capacity will be added to the grid. Fig. 4c-4d show the modeled results for 2040 using the 

estimated capital cost, embodied emissions, and MEFs in 2040. The differences in life-cycle 

GHG emissions between solar-plus-storage and Solar-Only systems (2%-32%) are higher 

than 2020, but the differences in life-cycle cost are lower and could potentially be negative 

(-3% with ExportOnly mode) due to a lower cost of battery storage. With an increasingly 

decarbonized grid and growing utility-scale storage, the long-run MEFs in the future are 

much lower and with less variations than those in 2020 (Supplementary Fig. 2-3). This 

change leads to smaller or no reduction in operational GHG emissions from dispatching 

residential battery storage with the evaluated modes, in addition to their lower but non-

trivial embodied emissions in 2040 (Supplementary Fig. 10b-12b).  

Applying a carbon price can reduce the life-cycle emissions of solar-plus-storage 

systems, especially with ImportOnly mode (Supplementary Fig. 13). This is because battery 

charging is discouraged when carbon-intensive fossil fuels are on the margin, which would 

incur higher cost for the household. Under minGHG objective (minimize annual operational 

GHG emissions), the life-cycle GHG emissions reduction is much higher for solar-plus-

storage systems, but with higher life-cycle cost compared to the minCost scenario 

(Supplementary Fig. 14).   

D. Discussion and conclusions 

Our results show that installing residential solar PV systems in 2020 has the potential to 

significantly reduce both life-cycle GHG emissions and utility costs of households. But 

compared to solar PV systems, installing solar-plus-storage systems can drive the life-cycle 
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GHG emissions up or down depending on the utility area and operation mode, while 

increasing life-cycle costs for households across all utilities in California. In 2040, the 

differences in life-cycle GHG emissions increase but the differences in life-cycle cost 

decrease. We discuss the factors that would enable residential solar-plus-storage systems to 

reduce life-cycle costs and emissions effectively.  

ToU tariff design determines residential battery dispatch patterns as households seek to 

minimize their utility cost. A larger price gap between on-peak and off-peak hours is needed 

to provide more cost arbitrage opportunities and motivate households to move towards low-

carbon consumption during off-peak hours. To minimize life-cycle GHG emissions, an 

effective ToU rate structure should also reflect or internalize the marginal emissions of 

electricity generation in the grid, by enabling storage of low-carbon energy when VRE 

generation is abundant and avoiding low rates when the MEFs are high. Current NEM 

policy in California has been driving residential PV adoption, although a re-evaluation is 

urged as it raises social equity issues191.   

Applying a carbon price can improve the alignment between electricity prices and 

marginal emission factors of the grid and therefore enhance the GHG emissions mitigation 

potential of solar-plus-storage systems. It would enable more solar PV generation to be 

shifted and discourage pulling from the grid when fossil fuel generators are on the margin. 

Alternatively, Real-Time Pricing (RTP), which is based on the real-time marginal generation 

cost with a higher temporal resolution than ToU192, may be more effective in aligning 

economic and environmental goals as the capacity of low-carbon energy expands.   
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Assuming current life-cycle costs and rate structures, solar-plus-storage systems do not 

offer savings for most households in California. The savings in utility bills through battery 

arbitrage often cannot compensate for the high upfront cost. However, direct financial 

incentives such as the Self-Generation Incentive Program in California and the federal 

investment tax credit193, have been used to ease the financial burdens of households and 

drive large-scale uptake of solar-plus-storage systems. Furthermore, battery storage is 

projected to be more affordable in the coming decades due to technology improvement and 

economies of scale194,195.  

The net GHG emissions from a solar-plus-storage system are determined not only by 

operational parameters including the marginal electricity generation, ToU rate structure, 

load profile of the household and operation mode, but also embodied emissions due to 

materials production and manufacturing of the system, which contributes as a significant 

portion. For solar-plus-storage systems to mitigate life-cycle GHG emissions, reducing the 

upstream emissions by advancing energy efficiency and materials efficiency during 

production, improving round-trip efficiency during operation and increasing end-of-life 

reuse and recycling are essential.  

In the long run, as a growing portion of VRE and utility-scale storage capacities added to 

the electricity systems, the MEFs of the grid become lower and less variable, leaving smaller 

opportunities for residential battery storage to reduce emissions with the two operation 

modes evaluated. However, with the marginal generation cost and marginal emissions of the 

grid becoming increasingly temporally-aligned due to the growing penetration of VRE in 

California, residential battery storage has the potential to reduce utility bills and emissions 
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simultaneously in the future, especially with a full cost arbitrage mode in which the battery 

can import and export without constraints.  

Distributed energy resources can reduce the total cost and emissions of electricity 

systems by providing stacked benefits196. Especially, solar-plus-storage can reduce utility-

observed peak, prevent curtailment, defer distribution system upgrades and improve energy 

resilience. Our study shows that, to maximize the potential of residential solar-plus-storage 

systems in reducing life-cycle GHG emissions and cost, ToU tariffs that have wider spreads 

and are more aligned with MEFs, rapid cost reduction of and subsidy for battery storage and 

adoption of carbon prices are critical. Collaboration among policy-makers, utility 

companies, and residents is required to ensure that solar-plus-storage systems achieve 

economic and environmental goals without bringing unintended outcomes. 
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F. Appendix 

Supplementary Figure 1. Time-of-Use Rates by Utility Company in California (2020). 
PG&E: E-TOU-D. SCE: TOU-D-4-9PM. SDG&E: DR-SES. Summer is June-September for 
PG&E and SCE but June-October for SDG&E. 
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Supplementary Figure 2. Average Emissions Rates (AER) and Long-run Marginal 
Emission Factors (LRMER) of the electric grid in 2020 by balancing area in Cambium190. 
The balancing area p9, p10 and p11 covers PG&E, SCE and SDG&E service area 
respectively, with slight misalignment in the borderlines of the first two areas. 
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Supplementary Figure 3. Average Emissions Rates (AER) and Long-run Marginal 
Emission Factors (LRMER) of the electric grid in 2040 by balancing area in Cambium190. 
The balancing area p9, p10 and p11 covers PG&E, SCE and SDG&E service area 
respectively, with slight misalignment in the borderlines of the first two areas. 
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Supplementary Figure 4. (a) Electricity supply and demand and (b) state of charge level of 
a representative household served by PG&E by hour of the day and season (ExportOnly 
mode), optimized under an objective of minimizing annual utility cost (minCost). 
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Supplementary Figure 5. (a) Electricity supply and demand and (b) state of charge level of 
a representative household served by SCE by hour of the day and season (ExportOnly 
mode), optimized under an objective of minimizing annual utility cost (minCost). 
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Supplementary Figure 6. (a) Electricity supply and demand and (b) state of charge level of 
a representative household served by SDG&E by hour of the day and season (ExportOnly 
mode), optimized under an objective of minimizing annual utility cost (minCost). 
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Supplementary Figure 7. (a) Electricity supply and demand and (b) state of charge level of 
a representative household served by PG&E by hour of the day and season (ImportOnly 
mode), optimized under an objective of minimizing annual utility cost (minCost). 
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Supplementary Figure 8. (a) Electricity supply and demand and (b) state of charge level of 
a representative household served by SCE by hour of the day and season (ImportOnly 
mode), optimized under an objective of minimizing annual utility cost (minCost). 
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Supplementary Figure 9. (a) Electricity supply and demand and (b) state of charge level of 
a representative household served by SDG&E by hour of the day and season (ImportOnly 
mode), optimized under an objective of minimizing annual utility cost (minCost). 
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Supplementary Figure 10. Breakdown of life-cycle GHG emissions and life-cycle cost for 
a representative household (TMY 3 code 724936 – Concord Buchanan Field) served by 
PG&E. (a) 2020 and (b) 2040. Results for ExportOnly and ImportOnly modes are based on 
optimized battery scheduling under an objective of minimizing annual utility cost (minCost). 
No carbon price assumed. 
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Supplementary Figure 11. Breakdown of life-cycle GHG emissions and life-cycle cost for 
a representative household (TMY 3 code 722977 – Santa Ana John Wayne) served by SCE. 
(a) 2020 and (b) 2040. Results for ExportOnly and ImportOnly modes are based on 
optimized battery scheduling under an objective of minimizing annual utility cost (minCost). 
No carbon price assumed. 
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Supplementary Figure 12. Breakdown of life-cycle GHG emissions and life-cycle cost for 
a representative household (TMY 3 code 722900 – San Diego Lindbergh Field) served by 
SDG&E. (a) 2020 and (b) 2040. Results for ExportOnly and ImportOnly modes are based 
on optimized battery scheduling under an objective of minimizing annual utility cost  
(minCost). No carbon price assumed. 
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Supplementary Figure 13. Differences in annual life-cycle GHG emissions and costs between 
installing solar-plus-storage systems with objective to minimize annual utility cost considering a 
carbon price ($51/tonneCO2 in 2020 and $73/tonneCO2 in 2040) and and installing solar-only 
systems for households in California. (a) ExportOnly mode, 2020; (b) ImportOnly mode, 2020; (c) 
ExportOnly mode, 2040 and (d) ImportOnly mode, 2040. The tables summarize average values for 
households in each utility area. Red color indicates solar-plus-storage systems lead to higher life-
cycle emissions or cost and green means the opposite. Solid circles represent differences in life-cycle 
GHG emissions and hollow circles represent differences in life-cycle costs. 
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Supplementary Figure 14. Differences in annual life-cycle GHG emissions and costs between 
installing solar-plus-storage systems with objective to minimize annual GHG emissions and 
installing solar-only systems for households in California. (a) ExportOnly mode, 2020; (b) 
ImportOnly mode, 2020; (c) ExportOnly mode, 2040 and (d) ImportOnly mode, 2040. The tables 
summarize average values for households in each utility area. Red color indicates solar-plus-storage 
systems lead to higher life-cycle emissions or cost and green means the opposite. Solid circles 
represent differences in life-cycle GHG emissions and hollow circles represent differences in life-
cycle costs. 
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Supplementary Table 1. Parameters in 2020 and 2040 

  

Parameters 2020 2040 Unit Reference 

Time step 1 Hour - 

Solar PV size 4 kW 168,197 

Battery round-trip efficiency 90% - 

173 
Rated peak power of the 
battery system 5 kW 

Usable storage capacity of the 
battery system 13.5 kWh 

Lifetime aggregate discharge 
limit of the battery system 37,800 kWh 174 

Lifetime of the solar PV 
system 25 years 198 

Solar output degradation rate  0.5% per year 172,198 

Initial cost to purchase the 
battery system  $670 $185 per kWh usable 

capacity 
177,178 

Initial cost to purchase the 
solar PV system  $3.75 $1.41 per watt capacity 168,176 

Embodied emissions of 
residential battery system 200.5 162 kgCO2 per kWh 

usable capacity 
165,186,187 

Embodied emissions of solar 
PV system 48 37 gCO2 per kWh 

electricity produced 
114,186,188 

Indirect emissions of the grid 
(balancing area p9) 23 10 

gCO2 per kWh 
electricity 
generated 

114,190 Indirect emissions of the grid 
(balancing area p10) 27 23 

Indirect emissions of the grid 
(balancing area p11) 19 17 
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Supplementary Table 2. Nomenclature for constraints 

Notation Variable/Parameter Unit 

𝑃.%!9,	% Power charge in hour ℎ, before loss, non-positive kW 

𝑃":+.,	% Power discharge in hour ℎ, after loss, non-negative kW 

𝐿𝑜𝑎𝑑% Load of the household in hour ℎ  kWh 

𝑑𝑡 Time interval 1 hour 

𝐸4!,,,	% Stored energy in the battery system in hour ℎ  kWh 

𝐸4!,,,	8!* Maximum storage capacity of the battery system kWh 

𝐿𝑜𝑠𝑠.%!9,	% Energy loss during charging in hour ℎ  kWh 

𝐿𝑜𝑠𝑠":+.,	% Energy loss during discharging in hour ℎ  kWh 

𝑒𝑓𝑓9, Round-trip efficiency of the battery in hour ℎ - 

𝐸;0_,7_67!",% Energy flow from PV to meet on-site load in hour ℎ kWh 

𝐸<9:"_,7_67!",	% Energy flow from the grid to meet on-site load in hour ℎ kWh 

𝐸;0_,7_4!,,,	% Energy flow from PV to charge battery in hour ℎ kWh 

𝐸<9:"_,7_4!,,,	% Energy flow from the grid to charge battery in hour ℎ kWh 

𝐸;0_,7_<9:",% Energy flow from PV to feed back to grid in hour ℎ kWh 

𝐸4!,,_,7_<9:",% Energy flow from battery to feed back to grid in hour ℎ kWh 

𝑃𝑉_𝑔𝑒𝑛% Solar PV generation in hour ℎ kWh 

𝐸_𝑙𝑖𝑚𝑖𝑡4!,, Yearly total discharge limit of the battery system kWh 
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Supplementary Table 3. Constraints in the optimization model (ExportOnly mode) 

 

  

Constraint Equation 

Battery cannot charge and 
discharge at the same time 

𝑃.%!9,%	 × 	𝑃":+.,% = 0 

Battery does not charge nor 
discharge in the first hour of 
the year 

𝑃.%!9,	= + 𝑃":+.,	= = 0 

Battery is 50% charged in the 
first hour of the year 

𝐸4!,,,=	 = 0.5 × 𝐸4!,,,8!* 

Electricity discharged to serve 
load cannot exceed load in any 
hour 

𝐸4!,,_,7_67!",% ≤ 	𝐿𝑜𝑎𝑑% 

Energy loss of battery 
(charging) 𝐿𝑜𝑠𝑠.%!9,% = 	−	𝑃.%!9,%	 × 	𝑑𝑡	 × 	(1 −O𝑒𝑓𝑓9,) 

Energy loss of battery 
(discharging) 𝐿𝑜𝑠𝑠":+.,% = 	(𝑃":+.,%	 × 	𝑑𝑡	 +	𝐿𝑜𝑠𝑠":+.,%) × (1	 −O𝑒𝑓𝑓9,) 

Stored energy in the battery 𝐸()**,	+	 = 𝐸()**,	+,- − (𝑃.+)/,	+ + 	𝑃012.,	+) × 𝑑𝑡	 − 𝐿𝑜𝑠𝑠.+)/,+	 − 	𝐿𝑜𝑠𝑠012.,+ 

The household cannot send 
excess PV to grid while using 
grid power or vice versa 

𝐸;0_,7_<9:",	% × 𝐸<9:"_,7_67!",	% = 0 

Battery can only charge from 
solar PV  

𝑃.%!9,% × 	𝑑𝑡	 + 𝐸;0_,7_4!,,,	% = 0 

Battery discharge balance 𝑃":+.,	% × 	𝑑𝑡 = 𝐸4!,,_,7_67!",% + 𝐸4!,,_,7_<9:",% 

Load balance 𝐿𝑜𝑎𝑑% = 𝐸<9:"_,7_67!",% + 𝐸;0_,7_67!",% + 𝐸4!,,_,7_67!",% 

PV balance 𝑃𝑉_𝑔𝑒𝑛% = 𝐸;0_,7_67!",% + 𝐸;0_,7_4!,,)9',% + 𝐸;0_,7_<9:",% 

Yearly battery discharge limit Q 𝑃":+.,%	 × 	𝑑𝑡 ≤ 𝐸_𝑙𝑖𝑚𝑖𝑡4!,,

>?@=

%AB
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Supplementary Table 4. Constraints in the optimization model (ImportOnly mode) 

  

Constraint Equation 

Battery cannot charge and 
discharge at the same time 

𝑃.%!9,%	 × 	𝑃":+.,% = 0 

Battery does not charge nor 
discharge in the first hour of 
the year 

𝑃.%!9,	= + 𝑃":+.,	= = 0 

Battery is 50% charged in the 
first hour of the year 

𝐸4!,,,=	 = 0.5 × 𝐸4!,,,8!* 

Electricity discharged to 
serve load cannot exceed load 
in any hour 

𝑃":+.,	% × 𝑑𝑡 ≤ 	𝐿𝑜𝑎𝑑% 

Energy loss of battery 
(charging) 𝐿𝑜𝑠𝑠.%!9,% = 	−	𝑃.%!9,%	 × 	𝑑𝑡	 × 	(1 −O𝑒𝑓𝑓9,) 

Energy loss of battery 
(discharging) 𝐿𝑜𝑠𝑠":+.,% = 	(𝑃":+.,%	 × 	𝑑𝑡	 +	𝐿𝑜𝑠𝑠":+.,%) × (1	 −O𝑒𝑓𝑓9,) 

Stored energy in the battery 𝐸()**,	+	 = 𝐸()**,	+,- − (𝑃.+)/,	+ + 	𝑃012.,	+) × 𝑑𝑡	 − 𝐿𝑜𝑠𝑠.+)/,+	 − 	𝐿𝑜𝑠𝑠012.,+ 

The household cannot send 
excess PV to grid while using 
grid power or vice versa 

𝐸;0_,7_<9:",	% × (𝐸<9:"_,7_67!",	%	+	𝐸<9:"_,7_4!,,,	%) = 0 

Battery can charge from both 
solar PV and the grid 

𝑃.%!9,% × 𝑑𝑡	 + (𝐸;0_,7_4!,,,	%	+	𝐸<9:"_,7_4!,,,	%) = 0 

Battery discharge balance 𝑃":+.,	% × 𝑑𝑡 = 𝐸4!,,_,7_67!",% 

Load balance 𝐿𝑜𝑎𝑑% = 𝐸<9:"_,7_67!",% + 𝐸;0_,7_67!",% + 𝐸4!,,_,7_67!",% 

PV balance 𝑃𝑉_𝑔𝑒𝑛% = 𝐸;0_,7_67!",% + 𝐸;0_,7_4!,,)9',% + 𝐸;0_,7_<9:",% 

Yearly battery discharge limit Q 𝑃":+.,%	 × 	𝑑𝑡 ≤ 𝐸_𝑙𝑖𝑚𝑖𝑡4!,,

>?@=

%AB
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V. Summary 

To sum up, this dissertation evaluates the opportunities to reduce the life-cycle GHG 

emissions of rapidly-growing technologies including plastics, data centers and residential 

solar-plus-storage systems. I combine life-cycle GHG emissions accounting, scenario 

analysis, life-cycle cost and optimization modeling to achieve the research objectives.  

In Chapter II, I quantified the global life-cycle GHG emissions of plastics and evaluated 

the mitigation potential of demand reduction, renewable energy, bio-based plastics and 

recycling. In 2015, the global carbon footprint of plastics was 1.7 GtCO2e, or 3.5% of global 

total GHG emissions in that year. Resin production contributed the most to the total 

footprint (61%), followed by conversion (30%) and end-of-life treatment (9%). Among the 

strategies, adoption of renewable energy and demand reduction have the most reduction 

potential, followed by use of bio-based plastics and recycling. Only by combining the four 

mitigation strategies can we keep the future life-cycle GHG emissions of plastics below the 

2015 level. This chapter calls for urgent needs to rapidly decarbonize our energy systems, 

reduce our reliance on plastics, switch to renewable feedstocks and increase plastic recycling 

capability across the globe.    

In Chapter III, I assessed the potential of using workloads migration between data 

centers in different locations to absorb excess renewable electricity and reduce GHG 

emissions. By using underutilized server capacities, existing data centers in the CAISO grid 

region could have absorbed up to 62% of the yearly curtailment in that region and reduced 

up to 239 KtCO2e emissions with negative abatement cost. Building additional data centers 

that run intermittently based on the availability of excess renewable electricity could reduce 
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curtailment and GHG emissions further while keeping the net abatement cost negative, with 

the embodied emissions of data centers considered. This chapter underscores the potential of 

flexible demand such as workloads in data centers in mitigating the problem of renewable 

over-generation and thereby reducing GHG emissions. With data processing needs and 

renewable energy production both growing rapidly, this technology should be more widely 

adopted. Collaborations between the grid operators and data center owners and 

technological advancement in reducing data transmission latency should take place. 

In Chapter IV, I examined the life-cycle cost and GHG emissions of residential solar-

plus-storage systems in California. Installing PV reduces 110-570 kgCO2 and $180-$730 per 

household in 2020. However, adding battery storage to a PV system increases life-cycle 

costs by 39%-67%, while impact on emissions is mixed (-20% to 24%) depending on tariff 

structure and marginal emission factors. In 2040, under current decarbonization and cost 

trajectories, additional life-cycle costs by adding storage decrease (31% to -3%) while 

additional emissions increase (2%-32%). This Chapter concludes that ToU tariff, operation 

mode, capital cost and embodied emissions of the systems jointly determine the life-cycle 

cost and GHG emissions. It highlights the importance of marginal emissions-aligned tariff 

design, rapid decreases in battery cost and embodied emissions and use of carbon price to 

maximize the potential of residential solar-plus-storage systems. 

This dissertation advances the research agenda of assessing the decarbonization 

opportunities of rapidly-growing technologies. The data, methods, models and results from 

this dissertation address multiple research gaps and can be used in further research to 

accelerate the low-carbon transition of energy and technological systems.   
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