
UC San Diego
Technical Reports

Title
Agent Usage Patterns: Bridging the Gap Between Agent-Based Applications

Permalink
https://escholarship.org/uc/item/1m46085j

Authors
Hung, Eugene
Pasquale, Joseph

Publication Date
1999-11-19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1m46085j
https://escholarship.org
http://www.cdlib.org/

Agent Usage Patterns: Bridging the Gap

Between Agent-Based Applications and

Middleware

Eugene Hung

�

Joseph Pasquale

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92092

feyhung,pasqualeg @cs.ucsd.edu

Technical Report

November 17, 1999

Abstract

The concept of agents|programs that are capable of transport-

ing themselves across a [heterogeneous] network to execute and return

results|is a fascinating if troubled area of research. While theoretical

advantages of agents have been well-established, few agent-based ap-

plications have been commercially successful. We argue that the lack

of applications stems from a lack of understanding essential agent us-

age patterns. In this paper, we identify a set of fundamental patterns

that support the design of agent-based applications that scale perfor-

mance, reliability, and security. To evaluate their performance, some

of these patterns were implemented in Java to demonstrate customiz-

able and scalable performance.

�

Supported by a fellowship from National Semiconductor

1

List of Figures

1 Traditional (RPC) implementation vs. Agent implementation 8

2 Agent monitoring a space probe far away from the client . . . 11

3 Decoupling computation to bypass an unreliable link 13

4 Customizable search controlled by host to ensure privacy . . . 14

5 Agent monitoring stock quotes 17

6 Structure graph key . 33

7 Structure of the Bypasser pattern 34

8 Structure of the Commuter pattern 35

9 Structure of the Isolator pattern 36

10 Structure of the Monitor pattern 37

11 Structure of the Interface pattern 38

12 Structure of the Rover pattern 39

13 Structure of the Shepherd application 41

14 Structure of the Trader application 42

15 Structure of the RoboTrader application 43

16 Three Network Paradigms . 44

17 Experimental Setup . 47

List of Tables

1 Comparison of Response Time for Various Paradigms 45

2 Success Rates for the RoboTrader vs. the Trader 48

iii

1 Introduction

The idea of mobile code or agents (programs that can move to di�erent lo-

cations and execute) is promising : agents o�er a faster, more
exible, more

reliable, and more secure alternative for network communications. The idea

of agents is not new [18], and yet, agents have failed to make a measurable

impact in today's programming environment. Most network applications,

including the ones that would signi�cantly bene�t from agents, still commu-

nicate using traditional client/server methods. In this paper, we introduce

tools called agent usage patterns that will aid in the development and use of

agent applications, ultimately promoting the development of network appli-

cations that bene�t from agents.

1.1 Next-Generation Network Applications

Troutman's Third Law states that "Any useful program will have to be

changed.", and network applications are no exception. This constant evo-

lution results from the demand for more features or solutions. The next gen-

eration of network applications (NGNAs) are those that can be visualized

using today's technology but not yet implemented in a widespread fashion.

Examples of NGNAs include remote multimedia �lters, stock quote monitors,

and virtual worlds. A goal of this work is to stimulate the development of

NGNAs, so this section will survey several NGNAs and identify the obstacles

facing their implementation.

1.1.1 The Applications

The Electronic Marketplace Sparked by the success of the World Wide

Web (WWW), the Internet is developing into a global marketplace. The

size of this marketplace is unprecedented in history, as is the corresponding

variation in demand: di�erent people desire di�erent treatment. However,

the primary reason behind these large-scale problems | the ability to tran-

scend the limitations of physical location via computers | also provides the

theoretical means to address them, through clever programming.

Given this, one might wonder why the electronic marketplace, as it cur-

rently stands, depends so much on traditional mail-order methods of service

listing and delivery; it would seem as if the
exibility inherent in computing

would allow a
exibility in marketplace transactions unknown till now. For

1

example, when purchasing a service, one is bound to the services that the

seller had the foresight to o�er; if the buyer wants a special service, he is

out of luck. Traditional client/server methods of computer communication

do not allow service customization without requiring much e�ort and cost on

both sides to establish a specialized protocol.

Virtual Worlds A common theme in speculative �ction is the concept of

the virtual world on top of an information network [13, 30]. The virtual

world is a representation of data objects in a 3-D graphical environment, as

if the computer were a window on another world. Several advantages can be

gained from such an approach: improved user interaction, extra information

from using the third dimension, and a more natural method of control [6].

However, current virtual world implementations su�er from many prob-

lems, such as clumsy, intractable interfaces; expensive equipment [25]; failure

to scale well as bandwidth escalates [7]; and "lag" from latency penalties for

updates. In particular, since users experience motion sickness if objects are

not updated in a realistic manner [25], the lag resulting in part from the

existing network infrastructure forms a major obstacle to creating successful

virtual worlds.

Flexible databases Another NGNA revolves around the protection of

intellectual property [2]. Many databases ideally want to maintain some

amount of control over the information dispensed, but the ease of duplicat-

ing digital media renders this impossible once a client gets its hands on the

information.

One attempt at maintaining the privacy of intellectual property is to have

the server perform client-requested operations upon its private data, and

sending out only the results. This process thwarts any attempt to duplicate

the original data, as the information never leaves its home site. The drawback

of this solution is that, under traditional communications methods, unless a

server can anticipate or completely understand a client's request, it cannot

support a specialized, complex operation upon the private data. What is

needed is a middle ground whereby the server can keep control of the data

without restricting the client's ability to process the data.

Mobile applications In the fast-paced environment of today's business

world, more and more people are �nding it necessary to be able to access

2

computing services wherever they go. Current networking technology has

succeeded in bringing the network wherever radio signals can reach, at the

price of less-reliable connections and uncertainty about resources (such as

bandwidth).

Common desktop applications translate poorly to a wireless environment.

In particular, applications that demand reliable, continuous data communica-

tion (e.g., Web browsers, �le transfer) work poorly in a mobile environment

unless speci�c, expensive measures | such as redesigning the network to

capture state | are taken. Easily porting these applications to a mobile en-

vironment requires a general, widespread, and cost-e�ective mechanism for

maintaining reliability, which does not exist.

One can also apply the same argument to applications which depend on a

certain level of resource availability and capacity to function correctly. Here,

what is needed is a way to e�ciently and transparently compensate for un-

expected shortages of resources, otherwise known as adaptation. The ability

to adapt to the environment is extremely valuable in mobile applications.

Some research on adaptation has focused on support from the operating sys-

tem [24, 27]. However, a general, cost-e�ective mechanism for supporting

adaptation at the application level would signi�cantly reduce porting prob-

lems for a generic desktop application, and, like a general mechanism for

maintaining network reliability, does not exist.

Resource sharing The explosive growth of microprocessor performance

over the last few decades has created an abundance of computing resources. It

is common to see workstations with power equivalent to the supercomputers

of a few years ago sitting idly on their owners' desks. Despite these advances,

there still exist applications that would either bene�t from or require more

resources than those provided by a single machine, especially in a resource-

poor environment (such as a network computer).

Researchers have attempted to harness the idle resources of other com-

puters by implementing global resource managers at the network level: these

detect idle machines to help other machines [23, 1]. However, there are situa-

tions where it would be better for the application itself to determine and use

these resources. This would require a means to access remote environments

and monitor them continuously for idle resources, without jeopardizing the

security of the remote environment. Unfortunately, most research in this

area has ignored this problem by assuming only local network operation.

3

This severely limits the scope and
exibility required for demanding appli-

cations, but is necessary given the constraints of the client/server model: if

the operation is extended to any remote network, the latency problems in-

volved in monitoring and security problems involved in resource access from

a foreign site are immense.

Flexible distributed control In a distributed system, it is often hard

to manage and control resources spread out over the network, yet there is

a large demand for applications that can do this e�ciently [4]. For exam-

ple, take the common problem scenario of monitoring and maintaining the

systems sharing a network. Current management techniques use a protocol

such as SNMP to provide and update network information. The simplicity

of SNMP has led to its widespread adoption, yet it has been described as

a "band-aid" due to its failure to provide adequate security measures and

inability to perform high-level tasks [34]. A government-backed attempt to

introduce a more powerful, secure protocol (CMIP) failed due to poor per-

formance, as the existing client/server infrastructure could not support it in

an e�cient manner [34]. A
exible, powerful, secure, and e�cient approach

to distributed control is needed.

Multimedia �lters Playing back multimedia streams requires synchro-

nization of the di�erent media streams and signi�cant amounts of bandwidth.

Certain clients, facing limited or uncertain bandwidth/CPU resources, may

desire a lower quality product in order to meet synchronization requirements.

For example, a client watching a video on a wireless computer may want to

cope with its more limited and unreliable resources by having the video play-

back program, or "player", sacri�ce image �delity or frame rate. However,

most current players are not designed to �lter the incoming stream to cater

for the special needs of the client and its environment. Even the players

that are able to
exibly respond to the client's needs through �ltering have

performance problems, usually as a result of network delays between the

application and the server [8].

The ideal player should be able to adapt quickly to changing conditions.

Note that this is similar to mobile communications, but deserves special men-

tion because real-time constraints may result in a low Quality of Service(QoS)

even over reliable networks. Furthermore, the ability to vary the resolution

of multimedia content lends itself to adaptation.

4

Real-time monitors Certain applications may require real-time opera-

tions to be performed at a very distant site. The archetypical example is

that of a space probe which needs instructions on how to adapt to changing

conditions [18]. Use of a communication channel between the probe and its

source will be ine�ective due to the staggering delays from latency. Such

long-distance control requires a way to avoid the latency costs in order to

facilitate real-time interaction.

A useful everyday application that uses this concept is one which monitors

a remote stock quote site. Most current stock monitors are passive, relaying

information over the network back to the owner for a decision. However, if the

latency and packet processing overhead signi�cantly delays the transaction,

the client may �nd that the option to buy or sell may no longer be available,

especially during periods of unusually heavy trading. It would be highly

advantageous if the monitor program itself could be empowered to make the

decision, thus eliminating delays and correspondingly, the client's frustration

with unconsummated transactions.

1.1.2 Analysis of Applications

The NGNAs described above share many of the same problems. These are:

Inability to adapt The
uctuating conditions of a mobile environment, the

remote monitoring and acquiring of resources, and the variable user

requirements of a multimedia player may all bene�t from a more general

adaptation mechanism. Such a mechanism should be
exible enough to

support user-de�ned resources for tracking, and also let the user specify

when and how to react.

In
exible user interfaces The electronic marketplace,
exible databases,

and multimedia players all rely on the ability for the user to have more

control over the services o�ered. Instead of being a passive receptor

of services, the user | or a third-party developing software on behalf

of the user | should be able to create customized environments that

directly cater to the user's needs without unnecessary complexity. This

last point, complexity, is often ignored in theory, but is important in

practice. For example, a VCR's advanced features are useless if its user

cannot operate them.

5

Excessive latency The virtual world, the real-time monitor, and the mul-

timedia �lter have problems with network latency costs signi�cantly

a�ecting their performance. The escalating use of the Internet will

only exacerbate this problem as more and more messages will face po-

tential queuing delays from congestion. Even in an ideal world with no

congestion and unrivaled power on every desktop, the latency problem

will remain, as the speed of message delivery is bounded by the speed

of light.

Susceptibility to failure Many applications perform at an acceptable level

in an ideal environment, but deteriorate rapidly in a environment which

cannot provide resource or packet delivery guarantees, such as a wireless

network. Without the ability to adapt, wireless machines will not be

able to perform well compared to their wired counterparts.

Lack of security Some of the above applications are merely
exible exten-

sions to existing applications (resource sharing, network management,

exible databases). These applications are untenable in the current

environment due to their inability to cope with violations of system

security. For example, it is foolish to give power over system resources

to a remote, untrusted system for resource sharing or network manage-

ment, nor is it wise to expose one's assets (the data set of a database)

to a customer who can easily dilute said assets through duplication.

Until these problems are addressed, the full potential of these NGNAs

will not be realized.

1.2 Agent-based Computing

The problems raised by the previous section's analysis can be categorized into

four areas:
exibility (which includes adaptivity), performance (latency), re-

liability (failure), and security (privacy and integrity). A communications

model based on agents speci�cally provides these advantages : programma-

bility of agents for
exibility, latency reduction for performance, encapsula-

tion of state for reliability, and built-in support mechanisms for security.

We de�ne agent-based computing as a mechanism for communication that

relies on programs which, in the course of operation, can move to another

machine and execute. These programs are called agents, because they carry

6

out orders on their owner's behalf. While the term agent is rapidly becom-

ing overloaded in computer science, particularly in the sub�eld of arti�cial

intelligence [11], any future reference to agents will be under this de�nition.

1.2.1 The Electronic Marketplace Revisited

To clarify how agents operate, the implementation of the electronic market-

place scenario is compared between traditional and agent-based techniques.

A more detailed description and analysis of agents is presented in the follow-

ing section.

Traditional Implementation Under the traditional client/server model,

an electronic transaction is carried out by having the buyer (the client) and

seller (the server) communicate using remote procedure calls (RPC) [5] How-

ever, the
exibility of client applications is usually restricted to choice of

server and to the options pre-de�ned by each speci�c server. To take a

concrete example, a user who wishes to �nd and purchase a book can only

choose the remote bookserver (e.g., Amazon vs. Barnes & Noble). Once

there, the user is forced to use whatever search mechanism the server pro-

vides. Customized operations for each client, such as a specialized search

(e.g., by publishing house) are unavailable unless the server has anticipated

the client's wishes|a condition that is neither practical nor scalable.

Agent-based Implementation In contrast to RPC, agent-based comput-

ing achieves greater customizability by delegating communication to a mobile

program de�ned as the agent. The agent can move to an agent execution

environment on another machine, known as the host, and execute owner-

speci�c code on its owner's behalf. The agent program can be a book search,

a �lter, or even just a better interface. The crux is that the agent's owner

has full control over the powers of the agent, and hence, can customize any

transaction. The cost of such customization is the development of a general

agent architecture, where research has already provided several examples

[18, 20, 15, 26, 31].

Consequently, with the agent as an intermediary for each transaction,

the Internet can be perceived and used through an agent, providing a pro-

grammable, and hence, customizable interface for its owner.

7

Figure 1: Traditional (RPC) implementation vs. Agent implementation

Similar constructions can be made for each of the NGNAs described in

the previous section. In all cases, the traditional method creates problems for

the general deployment of each application. It must be noted while agents are

never superior to a specialized, traditional implementation of a service (such

as the server deliberately providing the client's search method), the primary

advantage of agents lies in their
exibility: an agent-based infrastructure can

provide the advantages of performance, reliability, and security in a scalable,

customizable manner.

1.2.2 Panacea or Prestidigitation?

Agent-based computing is not a new idea, yet there have been few viable,

commercially successful applications based upon its principles. A skeptic may

point to the lack of applications as a proof of the impracticality of agent-based

computing. However, many, if not all, of the NGNAs described are strong,

practical ideas with implementation problems addressed by agents.

This paper describes a method for bridging the conceptual gap between

agent systems and their applications: namely, agent usage patterns. These

patterns are designed to capitalize on the performance, reliability, and secu-

rity advantages of agents. Through application of these agent usage patterns,

8

we can build next-generation applications that scale these advantages.

1.2.3 Organization

The rest of this paper is organized as follows. Section 2 details the theory

and operation of agents. Section 3 surveys the work done by others in agent

systems up to this point and identify the problems behind their approach.

A complete listing, description, and analysis of the patterns is in Section 4.

Preliminary experiments using these patterns will be described in Section 5

and conclusions will be presented in Section 6.

9

2 Agent-based Computing

Agents o�er
exibility, performance, reliability, and security advantages. Of

these agent advantages, the most important is the �rst,
exibility, as most

of the other bene�ts can be derived from dedicated services.

2.1 Agent Flexibility

The hallmark of agent-based computing lies in its
exibility. As mentioned

before, any dedicated client/server protocol for a speci�c solution will be

superior, performance-wise, than an agent-based solution except in the most

extreme cases (such as the space probe example given earlier). However, as a

general platform for non-dedicated applications that require latency-reducing

performance, reliability, and security, agents are hard to beat. Any protocol

can be supported easily by writing an agent that implements it and have the

application call that agent instead.

Adaptability The
exibility of an agent-based design lends itself naturally

to adaptive applications such as multimedia �lters [27]. Agents make it easy

for such an application to adapt to an environment by encapsulating the

necessary procedures for identifying and reacting to changes. Taking the �lter

example, this means if a multimedia server is sending out high-bandwidth

data streams to the agent (which is in turn sending the stream to the client)

and the client's connection suddenly experiences a vast loss of bandwidth |

frequent in mobile communications | the agent can adapt to this loss by

stripping the multimedia stream of characteristics that the client considers

less important. When combined with the ability to get close to the source of

problems (improving reaction time through the reduction of latency), agents

provide an e�cient, robust method of adaptation, which is especially critical

for mobile applications.

2.2 Other Agent Advantages

In order to justify the construction of an agent architecture for improved

exibility, it is helpful to realize that agents o�er several extrinsic advan-

tages: performance, reliability, and security. Depending on their owner's

preferences, agent applications can choose to exploit one or more of these

advantages.

10

2.2.1 Performance

Agents o�er signi�cant performance bene�ts, albeit with some cost. Since

they have the ability to migrate, they can short-circuit long network dis-

tances, thus reducing latency and bandwidth consumed. They can also ex-

ecute in an environment with signi�cantly more resources than their home

machine. However, this comes at the (one-time) cost of establishing the agent

system to support it.

Resource Flexibility The simplest and easiest way to improve perfor-

mance with an agent is to use the movement powers of the agent to move to

a machine with vastly superior resources, such as CPU, memory, bandwidth,

etc. This also ties in with the inherent
exibility of agents | no longer is

the user bound to a single machine's limitations.

Figure 2: Agent monitoring a space probe far away from the client

Latency Reduction Under the client/server model, messages sent be-

tween the client and the server incur a delay for each transmission. If many

messages are sent, the cost can be prohibitive. Agents reduce much of this

cost by moving one side closer to the other. In the most extreme case, agents

can even merge the two sides onto the same machine by having one side

send an agent directly onto the other side's machine, reducing the number of

network messages to a constant factor: the initial and �nal movement. For

applications that normally require many network messages, performance is

greatly improved.

11

This performance advantage is more important than it seems because,

according to current scienti�c principles, latency is the one factor that can-

not be improved upon: it is bounded by the speed of light. While current

applications will probably see low latencies due to the bound on distance

imposed by intra-planet applications, the potential for enormous latencies in

the future (e.g., inter-planet) cannot be ignored.

Bandwidth Reduction An agent can also reduce the amount of band-

width consumed by a network application by having the agent act as a �lter.

For example, an agent for a network computer incapable of displaying color

can strip incoming multimedia streams of their chrominance factors before

being sent to the client. The chrominance would be wasted on the client's

computer, while the bandwidth saved could be critical for a client lacking

abundant network resources.

2.2.2 Reliability

An agent's ability to encapsulate communication increases transaction reli-

ability: the system is reduced to taking care of a single agent program that

can contain speci�c recovery information. Concrete advantages of this are:

Dynamic Rerouting Agents, being mobile code, can readily recompute

an alternative destination if its destination is unavailable. These destina-

tions can be either statically provided by the programmer or dynamically

computed through a server that specializes in providing alternative desti-

nations. While traditional methods can also do this, agents improve the

modularity of design by encapsulating the movement handling code into the

mobile code itself.

Decoupling Computation The ability of agents to migrate to a remote

machine allows the agent to decouple their computation from the owner. If

the owner's machine is known to be unreliable, either from system or network

problems, the agent can be customized in advance to migrate to a more stable

environment. This improves the reliability of the transaction by bypassing as

much of the unreliable portions of the communication transport as possible.

12

Figure 3: Decoupling computation to bypass an unreliable link

Data Recovery The results of an agent computation can be stored by

the agent if its programmer and the agent infrastructure has allowed for it.

If the infrastructure contains general agent recovery mechanisms, then the

agent can encapsulate all process-speci�c data recovery mechanisms since its

general recovery is assured. The advantage of this setup is that the owner is

freed from detailed recovery concerns: the only thing it needs to know is how

to reestablish communications with a mobile agent. In addition, the host is

not required to keep transaction records for each particular agent, since the

pertinent data can be stored within the agent itself. By encapsulating the

process-speci�c recovery data within the critical section of code, the agent,

the reliability of the transaction is improved.

2.2.3 Security

Security has a number of di�erent aspects, three of which are privacy, in-

tegrity and authentication. As applied to communication, privacy is the

ability to keep transaction data private from outsiders, integrity maintains

13

that the data will be uncorrupted, and authentication assures that both sides

are who they say they are. Agents provide a concrete privacy advantage, and

the implementation of their infrastructure can help with the other two.

Figure 4: Customizable search controlled by host to ensure privacy

Privacy Agents allow servers to guarantee data privacy while providing

clients with customizable access to the data. A visiting agent is under the

complete control of its host (presumably the server) and can only carry away

a limited amount of data, determined by the host. In fact, the host can

completely imprison the visiting agent, obtain the results of the agent's com-

putation, and construct its own trusted agent to send the results back. While

a malicious agent may still �nd a covert channel to transmit data, this ap-

proach will greatly reduce the amount of information that can be leaked.

In contrast, traditional servers cannot provide customizable access to its

data without depending on the goodwill of its client and the privacy of the

network to maintain the value of its information. Given the ease of duplicat-

ing digital media, it is impractical to provide such a service and expect to

maintain data privacy.

Integrity While there is work on rendering the agent tamper-proof from

malicious hosts [38], by and large research has focused on protecting hosts

from malicious agents. With the problem of viruses, opening a system to for-

eign programs without adequate protection measures would lead to unimag-

inable problems. However, many groups have invented clever methods to

guarantee host integrity [9, 21, 16, 17, 32], detailed in the following section.

14

All of them rely to some extent on the underlying architecture (e.g., by run-

ning a "sandboxed" agent interpreter | that is, placing an interpreter in a

isolated sandbox where nothing can get out). Integrity is therefore not an

intrinsic feature of agents, but a feature of good agent systems.

Authentication Agents act on behalf of their owner, so it seems intuitive

to store digital signatures and other authentication mechanisms within the

agent. While this seems to be mostly a cosmetic advantage, it does clarify

programming by allowing the agent module to handle everything related

with the communication. However, in practice, headers can be forged and

signatures might be faked. A good agent system will provide a naming

hierarchy that will solve some of these problems, but most hosts should not

depend on the agents themselves to provide authentication.

2.3 Scalability of Advantages

An important side bene�t of the advantages described in the previous section

is that they are scalable: as greater demands are placed upon an agent-based

system, performance, reliability, and privacy either improve or at worst, are

maintained. For example, take the performance advantages. Agent-based

communications can reduce latency and bandwidth consumed to a constant

factor. Under traditional client/server communications, as the number of

messages between the client and server increase, the added network costs

begin to severely impair performance. However, an agent can simply migrate

to the server and, in the best case, avoid all network costs except for the initial

migration and �nal return, by having most of the communications take place

intra-machine at the server. While the agent may need to communicate with

the client from time to time, sophisticated agents can minimize this to a

small fraction of the former number. Thus agents scale well with regard to

the number of messages sent.

The scalability argument can also be extended to reliability. Borrowing

from classic fault-tolerance techniques, agents can better overcome intermit-

tent failures by spawning multiple agents to perform identical tasks: as long

as a required subset of agents executes successfully, the transaction is carried

out[28].

The data privacy that agents provide is scalable. As the number of ma-

chines grows, they can be subdivided into domains where each machine only

15

trusts other machines in the same domain. Con�dential inter-domain trans-

actions would require an agent to be sent, with the previously described

limits on privacy. As inter-domain tra�c escalates, more agents would be

sent, but privacy would not be compromised to a greater extent; the privacy

exists at a one-to-one communication level, versus a one-to-many. This is

in contrast to current methods, where sending data over a network for cus-

tomized processing has an increased chance of compromised data as the size

of the network increases.

Finally, agent integrity can be scalable. As an agent visits more machines,

the chance of a malicious host tampering with the agent increases. One can

therefore scale agent integrity by increasing or decreasing the number of

machines the agent is expected to visit.

2.4 Rami�cations of agents

Like all new paradigms, agents create new areas and problems along with

their solutions.

2.4.1 Infrastructure

Some of the next-generation network applications would greatly bene�t from

an existing agent infrastructure: docking bays for retrieving lost agents,

metadata servers providing directory information, etc. The lower layers of

such an infrastructure would need to be revamped, either through placing

agent environments within the network layer (the active network concept),

or within a "middle" layer above the network but below the application level

(the middleware concept). Research is extensive in both �elds, with Active IP

[36] and SwitchWare [29] being two active network solutions and CORBA[35]

and DCE [3] being two middleware solutions.

2.4.2 Security Problems

While agents provide privacy with
exibility, both agent and host integrity

may be severely compromised.

Agent integrity As mentioned previously, agent integrity can be com-

promised by having a malicious host brainwash an agent into performing an

undesirable action. For now, designers of agent-based applications must cater

16

to the problem of brainwashing by restricting the powers of agents | and

correspondingly, the agent's
exibility | or by trusting the invisible hand of

the market to weed out the malicious hosts. Neither option is particularly

attractive to consumers.

Host integrity The situation is almost just as bad from the other side.

Hosts have to guard against malicious agents who try to crack through the

safeguards of the agent environment in order to siphon away resources or

information. This is not as likely to be as big of a problem as agent integrity

since the tendency of recent programming languages (such as Java) towards

strong typing and built-in sandboxing techniques o�ers a strong line of secu-

rity, but the consequences of an unforeseen loophole would be catastrophic

in a global agent infrastructure.

2.5 Applying Agent Technology

It is easy to apply agents to the NGNA scenarios described in the previous

section, and see how they solve the problems facing their adoption. Here are

a few examples:

Figure 5: Agent monitoring stock quotes

17

Agent as real-time monitor An agent is an excellent real-time monitor.

It can migrate as close as it desires to the monitored resource, minimizing

network tra�c and latency. Because of its proximity and programmability, it

can rapidly take actions triggered by speci�ed environment changes. Thus,

agents are able to double as both the monitors and the decision makers.

To clarify, take the example of stock quotes mentioned earlier. An agent

monitoring stock quotes can buy or sell shares at the market price without an

intervening latency delay. The client does not need to worry about network

delays invalidating transactions. Furthermore, it conserves its own resources

by not actively polling the site for price changes. Instead, the agent uses the

server's resources (which are presumably more abundant than the client's).

Agents with
exible databases With agents, a client can parse the

entire database at the server by using the specialized code that performs the

search as the client's agent. On the other hand, the server can guarantee that

only results are transmitted back with the agent. This approach maintains

the privacy of the data while allowing the client to access the complete data

set for user-speci�c operations.

Agents in a mobile environment Agents provide the general, reliable,

cost-e�ective mechanism for porting programs to a mobile environment. The

improved robustness and fault-tolerance of agents allows the client to ignore

the e�ort of maintaining a reliable connection, as most of the time, the agent

will not be in the unreliable portion of the network. In fact, the client can

even disconnect from the network and asynchronously restore contact with

the agent when convenient. Of course, the network will have to provide

housing for "homeless" agents, perhaps by using a docking bay [14].

Agents also facilitate the building of adaptable applications by encapsu-

lating the adaptation code. Such adaptation will react quickly as a result of

its ability to closely monitor external stimuli, minimizing latency delays. The

uncertain amounts and general paucity of resources in a mobile environment

are therefore no longer problems for mobile applications; adaptive modules

can be easily added in the form of agents.

A �nal advantage of using agents for mobile applications is that by exe-

cuting remotely, agents reduce the amount of computation within the mobile

computer itself. This results in a performance advantage whenever the mi-

gration costs are cheaper than the di�erence in computation times.

18

Agents in network management By having agent protocols subsume

current network management protocols, the programmability of agents helps

one control resources in a faster, safer, and better fashion. System adminis-

trators will no longer be restricted to simple peeks/pokes; for example, they

will be able to program an agent to alert the appropriate authorities via

e-mail that a certain �le-server is down. Protocol overhead is also reduced

through having updates encapsulated as agents, as individual machines only

need to know a general agent protocol, and not a speci�c management pro-

tocol. Agent managers scale better than SNMP-based solutions, as network

resources will be consumed in a distributed, rather than a centralized man-

ner. Finally, the security of such communications would tie in with general

agent security, eliminating the need to develop a separate security manager

for this application.

19

3 Related Work

3.1 Survey of existing agent systems

While the idea of mobile agents has been around since General Magic in-

troduced Telescript in 1994[37], agents have yet to be supported directly by

operating systems. Previous research in this area has concentrated on the

design of middleware for supporting agents, sometimes referred to as agent

systems. This section provides a brief overview of this research.

Four of the most basic issues in the design of agent systems are: mobility

semantics (and its rami�cations on implementation), communication meth-

ods, agent languages, and security features. In this section, an overview of

the general approaches for addressing each of these issues will be provided

before delving into the speci�cs for �ve surveyed systems : Agent Tcl [15],

Mole [31], TACOMA [31], Ara [26], and Aglets Workbench [19]. A more

detailed overview of these systems can also be found in [10].

Mobility semantics The most important component of an agent system

is its treatment of mobility: what aspects of an agent are mobile? Since an

agent is a process that can move from machine to machine, di�erences in

mobility semantics revolve around the aspects of an agent that are captured

for remote execution. In the following paragraphs, the taxonomy used for

de�ning mobility is taken from [31].

The simplest type of mobility is code mobility. When the agent is ready

to move, the system terminates the agent and sends the source code or script

to the destination system, where the agent is restarted from the beginning.

Since the system does not need to capture the agent's state (which, con-

sequently, does not have to then be re-established at the remote machine),

mobility is greatly simpli�ed, at the cost of restricting agent application de-

sign.

Since several of the applications discussed above would bene�t from state

capture, some agent systems assume a stronger form of mobility called data

mobility. Data mobility involves the system capturing the machine-independent

data portion of an agent and sending it along with the source code. Upon

reconstruction, the agent has access to any results from the previous ma-

chine(s), although it still must start over from the beginning|but a clever

programmer can use the data to manipulate the control structure to return

to the point of movement. Data mobility lends itself to a wider variety of

20

applications than code mobility, at the cost of performance and, of course,

additional complexity.

Finally, a few agent systems have the goal of transparent migration. A

program can move itself during its execution via a "move command," and

after moving, will pick up execution right where it left o�. To do this, the ex-

ecution state as well as the data and code must also be captured and moved.

Transparent migration is di�cult to implement due to language incompat-

ibilities and machine-dependencies, but a common execution environment

such as the Java Virtual Machine may facilitate such transfers. Transparent

migration o�ers the highest degree of
exibility to the programmer at the

expense of portability, performance, and system complexity.

Communication methods Agent systems tend to support a variety of

communication methods. Some, like Agent Tcl, support low-level socket op-

erations [15]. As sockets are the building blocks for network communication,

such low-level support allows a developer to construct any high-level com-

munication protocols desired. On the other hand, it is convenient to provide

several high-level protocols. Even if these are not the most e�cient tools

available, the loss of e�ciency is made up for by the reduced complexity for

the programmer.

Most systems support some form of message-passing as the principal

means of communication between agents, as the asynchronous,
exible na-

ture of message passing complements the autonomous remote execution of

agents. In addition, some systems also support remote procedure calls and

connection-based communication streams. Finally, some agent systems o�er

a means of multi-cast communication, the ability to send a message to a

group of agents.

One �nal consideration of agent communications is addressing. While

intra-server communication is present in practically every agent system, inter-

server communication is not. The problem lies in the complexity of identify-

ing a remote agent whose location can change without notice. While some

systems have global directories or proxies to enable inter-server communica-

tion, others consider this feature to be a luxury.

Agent Languages One of the most important design decisions of an agent

system is whether agents should be compiled, interpreted, or some hybrid

[18]? Compiling agents in a manner similar to programs may seem intuitive

21

to programmers. However, in a heterogeneous environment like the Internet,

sending agents as compiled code is impractical due to lack of portability.

Furthermore, the security of the host system would depend on the trustwor-

thiness of the foreign compiler|not a viable option.

One approach to these problems is to express agents as scripts that get

interpreted on-the-
y. Scripting allows the agent programs to be expressed as

text, and interpreting allows an agent system to rely on the home-compiled

interpreter to safeguard the environment. Unfortunately, these bene�ts often

come at the cost of performance.

Another approach is to assume that agents will be written in the Java

language, resulting in a hybrid solution that achieves acceptable performance

with security and portability. In Java, the Java compiler creates inherently

portable "bytecodes", which other Java Virtual Machines are guaranteed to

interpret. Such bytecodes can be easily checked and monitored for violations

of host integrity through Java's strict typing and the Java Security Man-

ager. Further, interpreting bytecodes often leads to faster execution than

interpreting scripts since some of the work has already been done by the

Java compiler. Consequently, some of the newer agent systems employ Java

bytecodes as a portable, secure method for de�ning agents.

Security Features There are at least three areas of security that must

be treated by mobile agent systems: accounting of resources, assurance of

integrity, and tools for authorization. Accounting of resources relates to the

capability of a system to specify, monitor, and enforce the resources available

to agents. Assurance of integrity is de�ned as protection of both the host's

data and its guest agents from other malicious agents (usually through some

form of sandboxing). An even more di�cult problem is protecting an agent

from a malicious host (di�cult because the agent often relies on the host

to provide its execution environment). Finally, authorization tools allow a

system to verify that the owner of an agent is the user whom the agent claims

to represent. All of these are highly desirable features that should be a part

of an agent infrastructure.

3.1.1 D'Agents

D'Agents, formerly Agent Tcl, is an agent system developed at Dartmouth

[15]. The original version, Agent Tcl v1.1, used the Tcl scripting language

for agents; all agents were written in Tcl and interpreted by an agent server

22

running on each participating machine in the Agent Tcl network. The current

version of D'Agents supports other languages such as Java 1.1 and Scheme,

with support for Java 2 in the works.

D'Agents achieves mobility through transparent migration via the agent-

jump command. Upon interpreting the command to agent-jump to a remote

machine, the host saves the execution state and transmits the script and

state to the remote machine, whereupon the agent restarts right after the

agent-jump command.

D'Agents has a
exible agent communication structure by o�ering sev-

eral types of communication: sockets, message-passing, and connections. By

o�ering support for low-level socket operations, D'Agents gives resourceful

programmers the ability to create a specialized agent protocol. In addition

to standard message-passing, D'Agents also allows agents to establish direct

connections with each other to provide a dedicated message stream for agents

that frequently communicate with each other. Finally, D'Agents allows com-

munication between agents on di�erent machines through the use of a global

naming hierarchy to identify each agent in a unique fashion.

The D'Agents project o�ers security measures for protecting machines

from malicious agents.[17]. v1.1 uses Safe Tcl, a modi�ed version of Tcl, to

provide a measure of resource control and host integrity. The idea is to have

a trusted interpreter running in conjunction with an untrusted interpreter.

An agent is �rst interpreted with the untrusted interpreter, which traps to

the trusted interpreter whenever a "dangerous" command (i.e., one that may

consume too many resources if not checked) is given. The trusted interpreter

then evaluates the command with the aid of a resource manager agent to see

if the agent is overstepping its bounds. This can be extended to a sandboxing

approach for maintaining host integrity, although v1.1 did not support it. For

authorization tools, D'Agents supports PGP to digitally sign and encrypt

agents for authorization con�rmation. Despite these precautions, the system

does not address the inverse problem of protecting agents from malicious

machines.

3.1.2 Mole

Mole is a Java-based agent system developed at the University of Stutt-

gart in Germany [31]. All the agents are written in Java and compiled into

bytecodes for transport and interpretation.

Since Mole interprets agents using the Java Virtual Machine, it can cap-

23

italize on the security advantages of Java such as bytecode veri�cation. For

access restriction, Mole divides agents into two classes: user (mobile) and

system (immobile). Only system agents can access system resources, and

since they are immobile, they must be created by the system user (who is

assumed to be trustworthy). User agents communicate with system agents

in order to get work done, but do not actually interact with the resources

themselves.

Mole's migration concept extends only to data mobility. The marginal

returns from enabling transparent migration were seen as inadequate for

the �rst version (although future plans include implementing transparent

migration). Thus, when a user agent moves to another site, it must restart

execution from the beginning, although it has access to previous results.

Finally, Mole o�ers both message passing and RPC (through Java's RMI

facility) protocols for agent communication. While global inter-agent commu-

nication is supported, it is not location-transparent: in order to communicate

with an agent, one must know the location along with the name of the agent.

Location transparency may be supported in a future version.

3.1.3 Aglets Workbench

Aglets are the agents of IBM's commercial Java-based agent system, known

as the Aglets Workbench. Aglets are most similar to the Mole system, as

they both use the Java Virtual Machine and bytecodes as the foundation

for their agent framework. Thus, they share many of the same security and

language attributes. However, the two do di�er in a few aspects.

First, aglets are able to transparently migrate from host to host. Second,

the Aglets Workbench o�ers an enormous variety of communication methods:

synchronous/asynchronous message passing, RPC via RMI, group commu-

nication via "whiteboards", priority queues, remote messaging, and more.

The addressing is global and transparent; each aglet has a proxy associated

with it that keeps track of its location, and all communication with an agent

is done through its proxy. Third, there is an Aglet Security Manager that

performs additional aglet-speci�c integrity checks on top of the generic Java

Security Manager. Finally, there is no division between the powers of system

aglets and user aglets. All aglets have the potential to do the same things;

however, aglets created locally tend to be tagged with a "trusted"
ag that

tells the Aglet Security Manager to be more lenient.

24

3.1.4 TACOMA (TUX)

TACOMA is another agent system, developed at the University of Tromso

in Norway [20]. Like Mole, it eschews the added complexity of transparent

migration in favor of the simple data mobility approach. Code and data are

stored into TACOMA abstractions called folders, which are collected into

another abstraction called a briefcase and sent to a remote machine. Upon

arrival, the host unpacks the folders from each briefcase and executes the

code in the CODE folder.

TACOMA supports only local communication between agents. This sim-

pli�es communication methods to one type: Agents meet with one another,

which involves the transfer of a briefcase from one agent to another, similar

to a synchronous message passing scheme. Since meetings can only occur

between two agents at the same location, agents in TACOMA do not com-

municate with agents on di�erent hosts{avoiding the addressing problems

through limiting powers.

While several agent systems espoused the goal of supporting multiple

agent languages, TACOMA was the �rst to realize it. An agent's briefcase

speci�es the type of code it is carrying. Consequently, the host knows how to

handle the code sent to it, provided that the agent is written in a language it

supports. TACOMA v.1.2 supports Tcl, C, C++, ML, Perl, Scheme, Python,

and VB, with Java support expected in later versions.

3.1.5 Ara

The Ara system's chief goal is to provide transparent migration while sup-

porting compiled code for performance
exibility. The transparent migration

is similar to Agent Tcl's: both provide a jump-type of operation that saves

the execution, code, and data state of an agent to be restored at the remote

site.

Both architectures use Tcl for their main agent scripts, but Ara also sup-

ports agents compiled in C. Ara avoids the portability and security problems

presented by compiled agents by dividing agents into mobile and non-mobile,

as in Mole, and restricting compiled agents to the latter set. Ara also claims

to have an extensible architecture for supporting other interpreters, and the

developers are working on adding a Java interpreter to the architecture to

prove their point.

Ara allocates resources through an allowance system, determined when

25

an agent moves. Ara has de�ned an interface to the system through which

agents can inquire about and trade allowances to other agents. The agents

are also protected from each other through an address-space type of security:

agents can only a�ect what is in their "space" and the core/interpreter is the

controlling entity that can interact between spaces. While the core is not

directly accessible to agents, its functions can be called through the use of

stubs.

Finally, Ara uses the concept of a service point to handle inter-agent

communications. Service points are essentially meeting places created by

agents so that they can transmit data between each other in a synchronous,

blocking fashion. A special feature of service points is that more than one

agent can "meet" at a service point, providing multicast services. Since

service points are "located" at a host, the abstraction neatly sidesteps the

addressing problem by forcing all agents to come to the same place.

3.2 Summary

This section has covered some of the more important features and details of

several existing agent systems. It is noteworthy that there has been signi�-

cant prior research in the area of agent-based systems. These systems have

done an e�ective job of supporting agents, and mechanisms for supporting

agents are becoming well-understood. We now describe the patterns we have

identi�ed that allow these systems to support scalable NGNAs.

26

4 Agent Usage Patterns

An agent usage pattern describes the use of an agent in a fashion that capital-

izes on the advantages of the paradigm, in terms of
exibility, performance,

reliability, or security. The de�ning attributes of patterns will be described

�rst, before speci�c patterns are identi�ed and analyzed.

4.1 Pattern Components

Patterns consist of machines, objects, and channels.

Machines A machine represents the system hardware. All agent patterns

contain a client machine (the machine of the client/user) and a host machine

(a machine that executes agents). A data server machine, which is analogous

to the server machine in the client/server model, is not required, but is a

frequent component in patterns that seek to be compatible with existing

network services. Also, the host machine is not required to be a distinct

third-party machine; either the client machine or the data server machine

may double as the host machine.

Objects Objects represent running software, and are divided into three

categories: agents, clients, and servers. All agent patterns require at least

one agent object (an agent) and at least one client object (the program to

which the agent is responsible). A server object is frequently used, for the

same reason | compatibility with existing services | as server machines

above.

Channels Channels represent the communications between objects and

are categorized by the Communication attribute (described in detail below).

This attribute stipulates the allowed types of communications in a pattern.

4.2 Pattern Attributes

There are three basic attributes for patterns: location, communication, and

movement. These attributes heavily in
uence its performance, reliability,

and/or security. Delineating each pattern into these attributes makes it

easier for a designer to analyze a pattern's advantages and disadvantages.

27

4.2.1 Location

The �rst attribute of a pattern is the identity of the host machine, and hence,

the location of agent execution. The host machine can be the client machine,

the data server machine, or an independent third-party. This attribute is the

primary factor behind the analysis of a pattern's performance. However, it

also in
uences reliability and security. Here is a breakdown of what each

location gives the application:

Agent executes on data server machine In this case, the data server

machine also runs an agent server. Thus, both the speed of computa-

tion and the reliability of the agent is equivalent to a normal program

running on the data server. Furthermore, any latency costs or instabil-

ity from the communications between the agent and server objects can

be ignored. The privacy of the server data can be enforced if the server

denies the agent a communication channel back to the client. Finally,

the client receives no guarantees about agent safety or server fairness:

the agent is entirely at the mercy of the server.

Agent executes on client machine Here, the client runs the agent server,

and the agent never physically migrates away from the client. Conse-

quently, the speed and reliability of the agent is equivalent to a normal

program running on the client. Any problems with the communication

channels between agent and client objects, such as unstable connections

in a mobile environment scenario, are completely eliminated. This es-

sentially emulates traditional client/server applications, with the added

bonus of agent
exibility. Furthermore, data privacy is voided, since

the server is forced to transmit the data to the client machine, but

the client gains the assurance of agent integrity: the agent cannot be

tampered with if it never leaves the client.

Agent executes on third-party machine In this scenario, the agent does

not rely on the ability of a traditional client or server to support its

execution; rather, it moves to a third-party machine that runs an agent

system. This way, the agent performs at the speed and reliability of

the third-party machine. While it is impossible to completely eliminate

performance or reliability problems from communications, if commu-

nication between one side and the agent is minimal, then there will

be a corresponding bene�t. For example, in the Bypasser pattern, the

28

client sends the agent to a neutral server and then only communicates

with the agent at the end of execution, thus reducing latency costs and

bypassing a potentially troublesome link.

A disadvantage of this approach is that it reduces privacy, as now two

outside machines get access to the data. However, a neutral host has

the unique advantage of providing a fair transaction model: both the

data server and the data consumer can send agents to the same neutral

host and experience an equivalent level of trust. Of course, the integrity

of both agents is subject to the integrity of the neutral host.

4.2.2 Communication

As with location, there are three basic choices for communication between

objects. The choices are : no communication, simple communication (equiv-

alent to message passing between objects), and dedicated communication

(equivalent to a channel that is opened and maintained by the objects).

No object communication Since there is no communication, any poten-

tial communication problems, such as limited bandwidth between the

objects, can obviously be ignored. Also, the privacy of data is assured,

because no communication takes place.

Simple communication If a pattern describes communication as simple,

the communication is not expected to be a performance bottleneck,

so the latency cost of such communications is negligible and should

usually be ignored for analytical purposes (exception : when the cost

of a single transmission is signi�cant, such a client sending a message

to a very distant agent). However, the reliability of the communication

is now based upon the reliability of the weakest link between the two

objects, albeit slightly since the communication is not expected to be

maintained for long periods of time.

The privacy of server data is dependent on whether foreign objects can

communicate beyond the boundary of the data server machine. If so,

the pattern does not guarantee data privacy.

Dedicated communication A pattern with dedicated communication be-

tween two objects has both its performance and reliability dependent on

29

the weakest link between the two objects. Again, as with simple com-

munication, privacy cannot be guaranteed if communication generated

from a foreign object leaves the con�nes of the data server machine.

4.2.3 Movement

The migrational behavior of the agent | its movement | is the �nal at-

tribute of a pattern. A pattern can choose an agent to act as a one-shot

(moves at most once), a boomerang (moves to remote site, then returns, as

a thrown boomerang), itinerant (moves according to a prede�ned itinerary),

or autonomous (moves as its execution dictates).

One-shot A one-shot agent guarantees privacy provided all the other pri-

vacy factors (no communication outside data server machine, execution

at data server) are met. It is also simpler to model and implement than

the other migration models, and is the assumed movement model for

all patterns unless otherwise de�ned.

Boomerang An agent using the boomerang movement can be analyzed ex-

actly as a one-shot, except that the privacy guarantee is voided and

it is slightly more complex to implement. The reason for the added

complexity is that the underlying agent system must provide a mech-

anism for recovering agents from the network, in the case of a client

crash. Since this mechanism must be in place for this model to function

correctly, a pattern using a boomerang over a one-shot has a stronger

reliability model in terms of receiving agent results.

Itinerant The itinerant agent's advantage is the ability to visit multiple

machines in a predetermined order. While the one-shot model does

not prevent this (each one-shot agent can spawn a child agent that

goes to the next destination), the advantages of the itinerant approach

over the one-shot are twofold. First, it is more intuitive and simpler

to program an itinerant agent given direct support for this model: all

of the destinations are in a simple list and there is no need to have a

separate branch for each stage of movement. Second, the encapsulation

of all vital data into a single agent makes it easier to program crash

recovery. There is no need to identify the correct computer from which

the agent needs to be restarted, as the itinerary is stored within the

agent and the agent can restart on any machine in the itinerary and

30

maintain "travel state". In addition, no connections need to be restored

to a parent agent which may be awaiting results.

Autonomous As of yet, while no patterns require an autonomous move-

ment model, it is included for completeness. The autonomous model

provides nothing at all in terms of reliability, security, or performance,

but is the most
exible movement model for applications, as there is

only one restriction on movement: the destination must be running an

agent server. This model supports the ability of an agent to move to a

remote site, and make a decision on-the-
y to move to a di�erent site.

It is the traditional movement model for mobile agents.

4.3 Scalability Analysis

Through recognizing a pattern's fundamental attributes, a designer or user

can easily scale agent advantages by choosing a di�erent attribute within the

same category.

Scaling through location All agent advantages can be scaled through

location, as the performance, reliability, and security of the execution envi-

ronment strongly in
uence the performance, reliability, and security of the

agent. The user can easily customize these advantages by choosing the ap-

propriate machine: i.e., a powerful, but untrusted host for performance over

security, or a stable, safe, and highly congested host for reliability and secu-

rity over performance.

In addition, the location attribute even enables users to scale performance

in a network of machines relatively equal in power, as the choice of an agent

execution location is the overriding factor behind the calculation of latency

costs of network messages. The designer, knowing which communications

are dedicated, can suggest certain locations as optimal for minimizing these

costs, but the user can customize the quality of service by selecting another

location to attain other advantages (such as reliability or security).

Scaling through communication Changing the communication attributes

of a pattern in
uences reliability to a large extent. The user can determine

which communications should be minimized, as there may be congested or

troubled links to avoid. Thus, in an unreliable environment, the user can

choose a pattern that minimizes the use of troubled links by reducing the

31

amount of communication over the links. For example, while dedicated com-

munication is usually the communication of choice between objects, if an

application has trouble with the link between the objects and knows that

the amount of data to be sent does not require maintaining a channel, the

designer should scale down the pattern's communication to simple, message-

based communication.

Scaling through movement The movement attribute primarily in
u-

ences security, as it determines the amount of foreign exposure an agent

encounters. In the case of the one-shot, the agent only moves to the host

machine and never leaves, providing minimum exposure to both the agent

and to the server's data. A pattern using the boomerang movement model

would face the same amount of exposure, but would be unable to guarantee

privacy of server data. The itinerant and autonomous models o�er greater

exibility in mobility with a correspondingly greater risk in agent integrity,

as the more machines an agent is exposed to, the more likely it is that an

agent will fall victim to a malicious host.

Reliability is also scalable through changing the movement. The boomerang

model guarantees a return of the agent, while the itinerant model enables a

simpler crash-recovery scheme.

4.4 Agent Pattern Catalog

We now present a catalog of the patterns identi�ed up to this point. For

mnemonic purposes, the patterns have been given names which re
ect their

usage: e.g., Monitor, Commuter, Isolator. A template similar to the one

used in Erich Gamma's Design Patterns [12] will be in use in the description

of each of the following patterns. The template will consist of the following

�elds:

Description How the pattern works, and its intent.

Key Application The next-generation network application(s) that would

use this pattern.

Structure A graphical model of the pattern, using the following nota-

tion:

32

represents heavy channel-type communication

represents migration

C is the Client process

A is the Agent

S is a Server object

represents simple message-type communication

indicates an unreliable link

Figure 6: Structure graph key

4.4.1 Analysis

Describes the pattern's advantages and disadvantages.

4.4.2 Bypasser

Description Many applications require frequent communication between

client and server. An unstable network or client can destroy the utility of

such applications. The Bypasser is an agent that will help these applications

by being used for the purpose of circumventing an unreliable link. The agent

is sent to transact on behalf of the client. The agent need not be located at

the same site of the server. It is su�cient to have the agent go far enough

towards the server so that any unreliable network links will be bypassed; or,

in the case of an unstable client, to have the agent just get o� the client. Upon

completion, the agent returns to the client, invoking any recovery methods

built into the system in case of failure.

Key Application The Bypasser is oriented towards any non-interactive

application on a mobile platform that needs to communicate frequently with

33

a more reliable server. The mobile computer uses the section of code that

communicates with the server as the Bypasser.

SC A

Figure 7: Structure of the Bypasser pattern

Analysis The Bypasser's primary advantage is reliability with performance.

The use of the unstable link is minimized. Since the pattern uses the

boomerang movement model, which requires an agent system with recovery

mechanisms, a return is guaranteed despite being made over the unstable

link. While traditional networks can provide similar recovery mechanisms,

such recovery is not guaranteed, nor will the average extra overhead needed

for each traversal of the problem link be e�cient.

The Bypasser also gives a slight performance bonus by reducing the la-

tency involved in messages sent between client and server, but this is not the

driving feature of the pattern.

The Bypasser should not be used in an interactive application such as a

web browser, as this defeats its purpose of bypassing the client's unreliable

situation.

4.4.3 Commuter

Description The Commuter is a program that is sent to execute on an-

other machine in order to capitalize on the remote location's (server's) re-

sources.

Key Application The pattern is the agent model for implementing re-

source sharing over remote networks.

34

C A

Figure 8: Structure of the Commuter pattern

Analysis This is primarily a performance or reliability-boosting pattern

with a touch of security. By giving the client choice of execution environment,

the client can scale performance vs. reliability by picking the appropriate en-

vironment. In addition, the agent system infrastructure should provide built-

in security and resource control procedures to prevent foreign programs from

abusing the resources provided to them. Since inter-machine communication

tends to be more expensive than intra-machine communication, this pat-

tern should be primarily used for non-interactive, computationally-intensive

processes whose home environment lacks either the necessary or su�cient

resources to execute.

4.4.4 Isolator

Description The Isolator pattern forces the agent to execute on the server,

while denying it the ability to communicate with the client. Upon completion,

the agent sends its results to the server. The server, being the host, then

destroys the agent and sends the results to the client.

Key Application Any application which needs to safeguard privacy of

data without restricting
exibility, such as the
exible database, will want

to use the Isolator. In the case of the database, the database only forces

agents to go through the Isolator pattern : it receives agents, permits them

to execute and achieve a result without outside communication, destroys the

agent, and relays the result back to the client.

Analysis This is a pattern for privacy. By restricting the movement and

communication of the agent, the server/host can bound the amount of in-

formation (in bits) sent to the client, and thus guarantee a certain level of

35

C SA

Figure 9: Structure of the Isolator pattern

secrecy of its data. The pattern may provide other bene�ts (such as eliminat-

ing problems related to network communications between agent and server),

but these are peripheral to the privacy advantage of this pattern.

4.4.5 Monitor

Description As a Monitor, the agent migrates to a remote location that

is closer than the client to an object that needs to be constantly monitored.

Ideally, this would be the machine upon which the object is located, but

external circumstances may force the agent to monitor from a nearby location

instead. The agent is given the identity of the object to be monitored, trigger

procedure(s) which are executed upon the object reaching a state of interest,

and the states of interest to the client.

The agent's normal procedure is to check the state of the object every so

often (the time between checks being set by the client). If the object reaches

an interesting state, the appropriate trigger procedure is executed.

The agent may return a result to the client.

Key Application The quintessential application for this pattern is real-

time monitoring of a remote object. Take the stock quote monitoring ex-

ample from the introduction: an agent could monitor a stock price, and

when the price hits a certain amount, it executes a transaction on behalf of

the client. Other applications which would �nd this pattern useful include

the multimedia �lter (monitoring state of network to adapt), resource shar-

ing (monitoring remote workstations for idleness), and distributed network

management (monitoring systems for problems).

36

C SA

Figure 10: Structure of the Monitor pattern

Analysis The Monitor agent pattern clearly reduces the latency costs of

monitoring by reducing the distance traveled by most of the tra�c (the mon-

itoring requests and responses). In the special case of having the Monitor

agent at the site of the object, the Monitor completely eliminates the network

latency during monitoring. There is still a latency cost for initial and �nal

transmission, but as the nature of monitoring requires many messages to be

sent, there is a scalable performance gain from this special case(the number

of network messages is constant despite the number of monitoring attempts).

Furthermore, the Monitor is more reliable than traditional monitors. It

uses at least a portion of the connecting network between the client and

the object less frequently, and is correspondingly less susceptible to network

failure.

4.4.6 Interface

Description The Interface is an agent that acts as an intermediary be-

tween the client and a server. There is no restriction on agent location: the

agent can execute anywhere and still perform the function of an Interface.

All communication between client and server is expected to go through the

agent, which can perform customized operations upon the data before send-

ing it onwards.

Key Application The Interface should be used for interactive applications

that need customization without requiring much e�ort on either side. The

NGNA corresponding to this pattern is the electronic marketplace. As a

buyer, a user can have an agent that acts as a
exible, transparent front-end

to personalize the interactions with a seller. Also, applications which need to

�lter complex server data (such as multimedia, or verbose HTTP headers) for

37

the special needs of the client would also bene�t from applying this pattern.

SC A

Figure 11: Structure of the Interface pattern

Analysis An Interface interpolates an agent into the communication
ow.

While the agent can be �ne-tuned to improve the application's performance

(via data �ltering), or reliability (via checkpoint services), the underlying

advantage of the Interface is the customizability of established interactive

applications, such as web browsers. For example, a client who prefers to read

in Swahili can interpose a Swahili-translator agent in front of the browser to

display the data in Swahili.

Adding such a specialized interface reduces overall performance through

the overhead of receiving and sending data an extra time, but this is a small

price to pay for the added customizability.

4.4.7 Rover

Description The Rover models the agents that purposefully visit several

sites in sequence. An agent using this pattern is given an itinerary of sites

to visit and then visits every site on the list.

Key Application Network management applications and applications us-

ing the electronic marketplace could bene�t from this pattern. In network

management, one could use a roving service agent that continually hops from

machine to machine to check for problems. In the electronic marketplace,

a client can batch requests into a single agent which can visit several sites

before returning results to the client.

38

1SC

S2

S3

A

A

A

Figure 12: Structure of the Rover pattern

Analysis The Rover pattern is the only pattern cataloged here that uses

the itinerant movement model. The advantages of itinerant movement, as

described earlier, still apply: intuitive design and a streamlined recovery

model.

The Rover may also grant a performance advantage: it may achieve sig-

ni�cant reduction in latency costs if the client is far away from the cluster of

target servers. However, given the interconnected nature of network topolo-

gies, it is unlikely that this will be a strong factor. A more likely performance

bene�t will be the decongestion of network tra�c by distilling the multiple

communications of a centralized server into a single mobile agent; but this is

a global bene�t, not an individual one.

4.5 Summary

Now that the patterns have been introduced, with their attendant analysis, it

remains to show how one can use these patterns to develop agent applications.

In the next section, we describe some applications that were built using these

patterns.

39

5 Experiments

Having de�ned the agent usage patterns and analyzed their individual strengths

and weaknesses, we present some preliminary experiments that show how

these patterns can be used in a conceptually modular fashion to construct

successful, scalable agent applications. In the following experiments the goals

were to :

� Develop useful applications based on agents.

� Show that patterns facilitate application development.

� Scale agent advantages with these patterns.

5.1 Completed Applications

As a foundation, a primitive agent system in Java was developed. Its ar-

chitecture relies on a specialized, intermediary server to host agents, called

the CAS (Client-Agent-Server) Server. Three applications were then devel-

oped: the Shepherd, the Trader, and the RoboTrader. The Shepherd is an

agent application for resource sharing and is based upon the Commuter agent

pattern. The Trader is an application that uses traditional communication

methods to monitor a primitive stock server for the right moment to buy

shares. The RoboTrader uses code from both the Shepherd and the Trader

to provide an improved-performance, agent-based alternative to the Trader.

5.1.1 The Shepherd

The goal of the Shepherd is akin to that of a real shepherd guarding his
ock.

The Shepherd application is entrusted with a program (henceforth referred

to as the Sheep) submitted by the client. The Shepherd is then responsible

for �nding a place to execute the Sheep. If it thinks the Sheep would be

better o� running in some other machine's pasture (agent environment), it

will send an agent with the Sheep to that environment. During the Sheep's

execution, the Shepherd agent operates in another thread, monitoring the

environment for any problems and taking care of them if they arise (e.g., if

the Sheep is about to run out of resources for execution, it purchases more).

40

C Sheep

Shepherd

Figure 13: Structure of the Shepherd application

Theoretical Analysis The Shepherd, being a Commuter-based applica-

tion, aids performance and/or reliability while providing security to the re-

mote server through use of the established agent infrastructure. Both ma-

chine performance and reliability are dependent on the machine the Shep-

herd chooses to execute on, and the relative importance of the advantages

is customizable by having the user prioritize them appropriately. Unless

the programs being transferred are unusually large and their transfer time

is signi�cantly longer than their execution time, network performance and

reliability will be not be a factor, as only simple communication channels are

used to transfer the Shepherd and Sheep over to their destination. Finally,

the Shepherd enables quick adaptation to environment changes by controlling

the Sheep on the same machine.

Implementation Details Upon startup, the Shepherd is given the at-

tributes of the Sheep : the compiled Java class �le and its arguments. Then,

for the purposes of this exercise, the Shepherd arbitrarily decides to move

an agent containing the Sheep to another machine, "santorini", upon which

a CAS server is running. It contacts the CAS server at santorini, sends an

agent, and opens a simple socket-based connection between the agent and

the client to send over the Sheep's attributes to the agent. The agent then

uses this information to execute the Sheep on the remote site, capturing the

output stream in the process. Finally, the agent sends the output stream

back to the original machine for display.

In this implementation, the monitoring aspect of the Shepherd was not

41

fully implemented. The only contact between Shepherd and Sheep was for the

Shepherd to capture the Sheep's output stream and send it back to the client

upon completion. Also, for this simple experiment, the Shepherd adheres to

the one-shot movement model, moving at most once. A more useful Shepherd

may be able to improve performance at the expense of security by being able

to move the Sheep to di�erent servers.

5.1.2 The Trader

The Trader application trades stocks through more traditional means of com-

munication.

Server
Stock

Trader

Figure 14: Structure of the Trader application

As one can see from �gure 14, the Trader is designed with a straight-

forward client/server approach. The client establishes and maintains a con-

nection with the server. The server sends messages to the client whenever a

stock price changes. The client then chooses to buy or sell shares depending

on the price changes.

Theoretical Analysis The Trader's performance is dependent on three

factors: the speed of the data server, the speed of the client machine, and

network delays. The reliability of the Trader is dependent on the reliability

of the data server machine, the client machine, and the network; if any fail,

the application fails.

Implementation Details The Trader connects via network sockets to a

remote stock server. The server outputs a ticker, showing the changing stock

prices. The Trader is programmed to send a buy request when the price

of a certain stock falls to a certain value (both chosen by the user as input

arguments), and then exits. The server is programmed only to accept the

�rst buy order it receives, and refuses all other buy orders until the price of

the stock changes.

42

5.1.3 The RoboTrader

The RoboTrader has the same goal as the Trader. The di�erence lies in

its implementation: agents are used to scale performance, reliability, and

security.

Server

Stock
C Sheep

Shepherd

Figure 15: Structure of the RoboTrader application

Theoretical Analysis The RoboTrader's structure is based upon the Mon-

itor pattern. According to the analysis from the catalog in the previous sec-

tion, the RoboTrader's performance and reliability is based solely on the data

server's performance and reliability. The network and client machine only

�gure into the equation during the initial setup.

In addition, when at the data server, the RoboTrader pays no network

latency costs for monitoring the stock. The only costs paid are on startup

and �nish, when the agent migrates to the server and sends the result (failure

or success) back to the client. This is a stark contrast to the Trader, which

wastes valuable time by having to pay network costs for each monitoring

message. Even if the RoboTrader is forced to use a third-party host as a base

for monitoring, performance will always be at least as good as the Trader,

because it can reduce latency costs by moving to a closer, intermediary site

(unless, of course, the hosts vary widely in performance).

Implementation The RoboTrader application was created by combining

the previous two applications: the Trader application was used as the Sheep

in the Shepherd application. This method was arrived at through side-by-

side comparison of the Commuter and Monitor pattern and �guring out what

43

needed to be done to transform the former into the latter. The Shepherd

attempts to move the Trader Sheep to a machine as close as possible to the

stock server, to minimize latency costs; if the stock server itself is unavailable,

the Shepherd can adapt by targeting a machine close by, or in the worst case,

stay on the client machine. The intent of this design is to provide a
exible

performance gain at the expense of slower startup and delayed output to the

client (which has to go through the extra Shepherd Agent).

Server
Stock

Trader
Stock at price $N

Register trader

Buy stock

Trader

Trader

Register limit order

Stock
Server

Stock at price $N

Buy stock
Trader

Register trader

Stock
ServerStock bought

Agent

Manual

Service

Figure 16: Three Network Paradigms

5.2 Results

5.2.1 Experiment 1: Evaluating Paradigms

The �rst experiment was to evaluate the relative performance of three net-

work paradigms (shown in Figure 16):

44

1. traditional RPC { the Manual paradigm

2. customized incorporation of services { the Service paradigm

3. agent-based computing { the Agent paradigm

The Manual and Agent paradigms were de�ned in the Introduction and

correspond to a traditional method of communication with a server, and

the RoboTrader application, respectively. The third attempts to realize the

customizable advantages of agents without actually using agents. This is

done by directly incorporating, or "hard-wiring," the customizations into

the primitive server services. This removes the need to support the agent

infrastructure, as well as the overhead of agent-server communication, at the

cost of
exibility that programmable agents provide.

In the following experiments, the performance metric used was the time

it took for the server to receive a "buy" command after the stock hit the

target price, essentially a measurement of the network latency time between

the decision-maker and the server and the CPU time alloted to the decision-

maker.

To introduce latency as an important factor, the client machine, a Sun

Ultra 1, was stationed at Carnegie Mellon University in Pittsburgh, approx-

imately 2500 miles away from the server machine, a Sun Ultra 10, in San

Diego. The results, after 10000 iterations for each application, are summa-

rized in the following table:

Response Time (ms) Con�dence Standard

Paradigm Min Max Mean (95%) Deviation

Manual 71 3474 79.6 � 1.8 ms 91.4 ms

Service 0 11 0.051 � 0.005 ms 0.27 ms

Agent 1 14 1.161 � 0.008 ms 0.39 ms

Table 1: Comparison of Response Time for Various Paradigms

As can be seen from the con�dence intervals, the averages are statistically

signi�cant. These results show that, not surprisingly, the best performance

occurs if the server can be hard-wired with the action that the client requests.

However, in practice, not all servers will be able to anticipate every need of

the client. The manual "non-agent" approach for
exibility results in severe

performance penalties, and also a highly variable response time, as shown by

45

the high standard deviation. The high deviation is a result of intermittent

network congestion and timeouts.

5.3 Experiment 2: Application-based Comparison of

Scalable Performance

As a supplement to the previous experiment, an application-based perfor-

mance comparison was constructed. In this experiment, the central result

depended on whether the stock monitoring application was successful in pur-

chasing its stock at a desired price. A competition between the two stock

monitoring applications, the Trader and the RoboTrader, was set up, dia-

grammed in Figure 17. In each case, the client is the previously mentioned

machine at CMU (federation), while the stock quote server is the previously

mentioned machine at UCSD (ursus).

The �rst experiment was a control experiment. Both the Trader and the

RoboTrader were started on federation. Each program competed for the right

to purchase a stock on ursus. Since both traders were running on the same

machine, this control experiment was expected to produce a success rate of

approximately 50In 5000 trials, the RoboTrader bought the stock 2538 times

to the normal Trader's 2462, giving a sample success rate of 50.8% with a

95% con�dence interval of 1.4%.

In the next phase, the RoboTrader migrated to ursus, the server, in order

to demonstrate the optimal case for agents. After 5000 trials of this new

setup, the RoboTrader beat the Trader every time, instead of half the time.

The elimination of the network latency from the critical path gave the Trader

no chance to beat the RoboTrader.

To test
exible support of scalability, in the last phase the Shepherd

aspect of the RoboTrader was given a list of sites to run on, with ursus as

the primary choice and abmem, also a Sun Ultra 10 on ursus's local subnet,

as a secondary choice. Then, ursus was modi�ed to deny support for agents.

The Shepherd aspect of the RoboTrader was able to react to this turn of

events by migrating to its alternative machine, abmem. From abmem, it

competed with a Trader on beowulf for the same stock at the same price.

Under these conditions, the RoboTrader was able to purchase the stock

at a 100% success rate in 5000 trials, a success rate equivalent to the second

experiment, where the RoboTrader ran on the stock server ursus itself. Thus,

the experiment showed that agent-based applications can still achieve out-

46

Trader

Server

Stock

abmem

ursusfederation

RoboTrader

RoboTrader

RoboTrader

Figure 17: Experimental Setup

standing performance without requiring the server to accommodate agents,

as long as there exists an agent server nearby.

Table 2 summarizes all of these results.

5.4 Conclusions

The �rst experiment shows that the agent paradigm achieves similar, al-

though slightly inferior, performance when compared with traditional RPC:

the price of
exibility. However, attempts to create
exible applications

without agents result in signi�cantly inferior and variable performance.

The RoboTrader, the outcome of the pattern-based approach to appli-

cation design, managed to parley these performance bene�ts into a
exible,

scalable agent application. The RoboTrader was shown as being able to cater

to the client's needs while adapting to agent-ignorant servers by migrating

47

RoboTrader DayTrader 95% Con�dence

Host Success Rate Interval

cmu 50.8% � 1.4%

abmem 100.0% � 0.0%

ursus 100.0% � 0.0%

Table 2: Success Rates for the RoboTrader vs. the Trader

to a friendly agent server near the server. In the worst case scenario with no

supporting agent servers, the RoboTrader achieved a success rate similar to

the Trader itself. Thus, the RoboTrader's only costs were in its construction

and deployment, and not during the actual execution.

As for said construction and deployment, the pattern-based approach

seemed to facilitate this process. After developing one agent application(the

Shepherd) and the traditional Trader application, the structural diagrams

logically pointed towards combining these two to create a Monitor-based ex-

tension, the RoboTrader. The only changes needed to create the performance-

enhancing RoboTrader were the arguments to the Shepherd program. The

Shepherd was given the Trader (and its arguments) as its �rst argument,

and a prioritized list of potential hosts(ursus �rst, abmem second, and fed-

eration third) as its second argument. Consequently, through the use of only

two arguments, a scalable,
exible agent-based version of the Trader with

signi�cantly greater performance was constructed.

48

6 Conclusions

Our experiences con�rm the idea that agent usage patterns provide an ele-

gant means for developing scalable next-generation applications, promoting

exibility, performance, reliability, and security. We believe that a bottom-up

pattern-based approach will ensure that these advantages are kept in focus,

making it easier to create more e�ective network-based applications of the

next generation.

To date, we have identi�ed several fundamental agent patterns, and we

have developed prototypes that have been used as bases for developing some

small-scale applications. Our next steps include the further development of

prototypes for other agent usage patterns, and to more systematically eval-

uate the hypothesis that through the use of these patterns, one can scale

performance, reliability, and security. Part of this step will involve devis-

ing metrics to quantify the levels of scalability achieved. While quantifying

levels of performance is fairly straightforward and was demonstrated in our

experiments, levels of reliability and security are not so clearly delineated.

49

References

[1] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, D. Patterson.

"The Interaction of Parallel and Sequential Workloads on a Network of

Workstations", UC Berkeley Technical Report CS-94-838, Nov. 1994.

[2] S. Belmon, B. Yee. "Mobile Agents and Intellectual Property Protec-

tion," Proc. Second Int'l Workshop on Mobile Agents 98, 1998.

[3] M. Bever, "Distributed Systems, OSF DCE, and Beyond." DCE - The

OSF Distributed Computing Environment: Client/Server Model and Be-

yond Springer-Verlag, 1993.

[4] A. Bieszczad, T. White, B. Pagurek, "Mobile Agents for Network Man-

agement." IEEE Communications Surveys, Sept. 1998.

[5] A. D. Birrell, B. J. Nelson, "Implementing Remote Procedure Calls."

ACM Trans. on Comp. Sys., Jan. 1984, pp. 39{59.

[6] S. Bryson. "Introduction [to Virtual Reality]", Implementing Virtual

Reality, ACM SIGGRAPH '93 Course 43 Notes, 1993.

[7] S. Bryson, Y. M. Gerald. "The Distributed Windtunnel." Proc. Super-

computing '92, pp. 275{284.

[8] S. Cen, C. Pu, R. Staehli, C. Cowan, J. Walpole, "A Distributed Real-

Time MPEG Video Audio Player." Proc. of the 5th Int'l Workshop

on Network and Operating System Support of Digital Audio and Video

(NOSSDAV '95), pp. 151{162.

[9] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G. Tsudik.

"Itinerant Agents for Mobile Computing." Technical Report RC 20010,

IBM T. J. Watson Resesarch Center, Mar. 1995.

[10] W. Cockayne, M. Zyda, "Mobile Agents" Manning Publications Co,

1998.

[11] S. Franklin, A. Graesser. "Is it an Agent, or Just a Program? A Tax-

onomy for Autonomous Agents," Institute for Intelligent Systems, Uni-

versity of Memphis, 1996.

50

[12] E. Gamma, R. Helm, R. Johnson, R. Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[13] W. Gibson. "Neuromancer", Ace Books, 1984.

[14] R. Gray, D. Kotz, S. Nog, D. Rus, G. Cybenko, "Mobile agents for

mobile computing," Proc. of the 2nd Aizu Int'l Symp. Parallel Algo-

rithms/Architectures Synthesis, Fukushima, Japan, Mar. 1997.

[15] R. Gray. "Agent Tcl: A
exible and secure mobile-agent system." PhD

Thesis, Dept. of Computer Science, Dartmouth College, Jun. 1997.

[16] R. Gray. "Agent Tcl: A
exible and secure mobile-agent system." Proc.

of the 4th Annual Tcl/Tk Workshop, Jul. 1996.

[17] R. Gray, G. Cybenko, D. Kotz, D. Rus. "D'Agents: Security in a

multiple-language, mobile-agent system." In Mobile Agents Security,

Springer-Verlag, 1998.

[18] C. Harrison, D. Chess, A. Kershenbaum, "Mobile Agents: Are They a

Good Idea?" IBM Research Report, Mar. 1995.

[19] D. Lange, M. Ishima. Program and Deploying Java Mobile Agents with

Aglets., Addison-Wesley, 1998.

[20] D. Johnasen, R. van Renesse, F. Schneider, "An introduction to the

TACOMA distributed system", Technical Report 95-23, Dept. of Com-

puter Science, University of Tromso, Jun. 1995.

[21] D. Johnasen, R. van Renesse, F. Schneider, "Operating system support

for mobile agents." Proc. of the 5th IEEE Workshop on Hot Topics in

Operating Systems, 1995.

[22] D. Johansen. "What TACOMA Taught Us.", talk. Paper avail-

able with F. Schneider and R. van Renesse as co-authors at

http://www.tacoma.cs.uit.no/papers/taughtus.html.

[23] M. Litzkow, M. Livny, M. Mutka. "Condor { A Hunter of Idle Work-

stations," Proc. of the 8th Int'l Conference of Distributed Computing

Systems, pp. 104{111, Jun. 1988.

51

[24] L. Mummert, M. Ebling, M. Satyanarayanan. "Exploiting Weak Con-

nectivity for Mobile File Access." Proc. of the 15th ACM Symposium on

Operating Systems Principles, Dec. 95.

[25] R. Pausch. "Virtual Reality on Five Dollars a Day," ACM SIGCHI:

Human Factors in Computing Systems, Apr. 1991, pp. 265{270.

[26] H. Peine, T. Stolpmann. "The Architecture of the Ara Platform for

Mobile Agents". Proc. of the 1st Int'l Workshop on Mobile Agents, Apr.

1997.

[27] M. Satyanarayanan, B. Noble, P. Kumar, M. Price. "Application-Aware

Adaptation for Mobile Computing," Operating Systems Review, Jan. 95.

[28] F. B. Schneider. "Towards fault-tolerant and secure agentry". Proc. of

the 11th Int'l Workshop on Distributed Algorithms, 1997

[29] J. Smith, et al., "SwitchWare: Accelerating Network Evolution." Techni-

cal Report MS-CIS-96-38, CIS Department, University of Pennsylvania,

1996. Also as http://www.cis.upenn.edu/ jms/white-paper.ps.

[30] N. Stephenson, "Snow Crash", Bantam Spectra, 1993.

[31] M. Straser, J. Baumann, F. Hohl. "Mole { a Java based mobile agent

system", 2nd ECOOP Workshop on Mobile Object Systems, pp. 28{35,

Jul. 1996.

[32] J. Tardo, L. Valente. "Mobile agent security and Telescript", 41st In-

ternational Conference of the IEEE Computer Society (CompCon '96),

Feb. 1996.

[33] D. Tennenhouse, D. Wetherall. "Towards an Active Network Architec-

ture", Computer Communication Review, 26(2), Apr. 1996.

[34] T. Vallillee, "A Guide to SNMP and CMIP." Available from:

http://www.geocities.com/ SiliconValley/Horizon/4519/snmp.html.

[35] S. Vinoski, "CORBA: Integrating Diverse Applications Within Dis-

tributed Heterogeneous Environments". IEEE Communications Maga-

zine 14(2), Feb. 1997.

52

[36] D. Wetherall, D. Tennenhouse. "The ACTIVE IP Option", 7th ACM

SIGOPS European Workshop, 1996.

[37] J. E. White. "Telescript Technology: The Foundation for the Electronic

Marketplace". General Magic White Paper, General Magic, Inc., 1994.

[38] B. Yee. "A Sanctuary for Mobile Agents", UCSD Technical Report

CS97-537, Apr. 1997.

53

