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Abstract

Objective. To examine the relationship between the pre-
scribed target dose and the dose to healthy neurovascular
structures in patients with vestibular schwannomas treated
with stereotactic radiosurgery (SRS).

Study Design. Case series with chart review.

Setting. SRS center from 2011 to 2013.

Subjects. Twenty patients with vestibular schwannomas
treated at the center from 2011 to 2013.

Methods. Twenty patients with vestibular schwannomas were
included. The average radiation dose delivered to healthy
neurovascular structures (eg, carotid artery, basilar artery,
facial nerve, trigeminal nerve, and cochlea) was analyzed.

Results. Twenty patients with vestibular schwannomas who were
treated with fused computed tomography/magnetic resonance
imaging–guided SRS were included in the study. The prescribed
dose ranged from 10.58 to 17.40 Gy over 1 to 3 hypofractions
to cover 95% of the target tumor volume. The mean dose to the
carotid artery was 5.66 Gy (95% confidence interval [CI], 4.53-
6.80 Gy), anterior inferior cerebellar artery was 8.70 Gy (95% CI,
4.54-12.86 Gy), intratemporal facial nerve was 3.76 Gy (95% CI,
3.04-4.08 Gy), trigeminal nerve was 5.21 Gy (95% CI, 3.31-7.11
Gy), and the cochlea was 8.70 Gy (95% CI, 7.81-9.59 Gy).

Conclusions. SRS for certain vestibular schwannomas can
expose the anterior inferior cerebellar artery (AICA) and
carotid artery to radiation doses that can potentially initiate
atherosclerotic processes. The higher doses to the AICA and
carotid artery correlated with increasing tumor volume. The
dose delivered to other structures such as the cochlea and
intratemporal facial nerve appears to be lower and much less
likely to cause immediate complications when shielded.
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R
adiosurgery has been increasingly used over the past

decade in the management of vestibular schwanno-

mas and other skull base tumors. While improve-

ments in stereotactic radiosurgery (SRS) have allowed for

more precise dosing to tumors, the extent of exposure of

some surrounding healthy structures as a result of radiation

of vestibular schwannomas has not been well described.

Histological examination of experimental animal models

after high-dose radiation has demonstrated pathological

changes to the middle ear, inner ear, and skull base struc-

tures.1-3 Patients receiving radiation therapy for skull base

tumors have been also shown to develop accelerated athero-

sclerosis and cranial nerve palsies such as facial paresthesias

and weakness, as well as hearing loss, tinnitus, and imbal-

ance, partly due to radiation exposure of healthy neurovas-

cular structures of the skull base.4 Although better than

microsurgery, the long-term quality of life in patients with

vestibular schwannoma treated with SRS has been shown to

be reduced due to ongoing headaches, dizziness, hearing

loss, facial nerve weakness, and tinnitus.5 Thus, understand-

ing the radiation dose to the surrounding structures during

SRS can improve pretreatment patient counseling.

A few studies have measured the GammaKnife (GK)

radiation dosage to certain skull base, inner ear, middle ear,

and external ear structures.6-10 However, to our knowledge,

no studies to date have evaluated the amount of radiation

that healthy neural and vascular structures receive after

SRS. We aimed to evaluate the radiation doses delivered to

healthy neural and vascular structures of the skull base and

inner ear in patients treated for vestibular schwannomas.
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Methods

After institutional review board approval was obtained at

the University of California–Irvine, a retrospective analysis

of 20 consecutive patients with cerebellopontine angle

tumors was performed. These patients were all managed by

the senior author with assistance from the radiation oncol-

ogy and physician team via primary SRS between 2011 and

2013. All treatment plans were evaluated in the planning

software, using a dose sampling protocol, for each of the

structures listed in Table 1. Treatment planning was per-

formed with the Accuray Cyberknife Multiple Treatment

Planning System (Sunnyvale, CA). The normal structures

evaluated were identified by 2 authors independently and

confirmed by the senior author on computed tomography

(CT), magnetic resonance imaging (MRI), or fusion images.

The radiation to the vessels was measured at the wall in

various portions of the carotid artery in the petrous portion,

as demonstrated in Table 1. The horizontal carotid was

divided into 3 segments: proximal, mid, and distal. The

proximal, mid, and distal sections of the horizontal carotid

artery were defined as the wall of the proximal-most portion

of the artery near the cochlea, the midpoint on the same

axial cut toward the nasopharynx, and the distal-most por-

tion on the same cut near the nasopharynx, respectively.

The vertical segment was defined at the point right before

the transition of the vertical to horizontal carotid. Radiation

dosage to the anterior inferior cerebellar artery (AICA) was

also measured as the closest portion of the vessel near the

facial nerve in the cerebellopontine angle at the mid–

internal auditory canal (IAC) level on axial cuts. We were

unable to identify AICA in all patients. The basilar artery

was found and measured at the level of the IAC as well.

All neural structures were measured at their midpoint,

with the cursor on the midportion of the structure. The dose

to the trigeminal nerve was measured after its exit from the

pons on axial cuts, as well as after the prepontine cistern in

the distal temporal portion. The abducens nerve was mea-

sured medial to the facial nerve. The facial nerve was mea-

sured at several points, beginning with the proximal

cisternal portion (when not adherent to the tumor) and in

the labyrinthine segment. In addition, the radiation to the

facial nerve was also measured at the cisternal portion,

when possible, at the geniculate ganglion, the tympanic seg-

ment at the oval window, and the mastoid segment at the

level of the basal turn of the cochlea. We were unable to

consistently measure the cisternal portion of the facial nerve

due to the tumor proximity to the nerve in certain cases.

The glossopharyngeal nerve was measured on axial cuts just

lateral to the eighth nerve complex. Similarly, the cochlear

radiation was measured on the walls of the basal turn at the

round window, the distal basal turn, the middle turn, and the

apex.

The distance between the tumor’s lateral end and the

fundus of the IAC was measured (cerebrospinal fluid [CSF]

cap). This distance was correlated with the radiation dose to

the labyrinthine segment of the facial nerve, the mean dose

to the facial nerve, and the cochlear dose using a linear

regression. Tumor volume was correlated with the average

dose to the carotid artery and AICA using an adjusted R2

linear regression. A P value of \.05 was considered statisti-

cally significant.

Results

Twenty patients with vestibular schwannomas who were man-

aged at our SRS center from 2011 to 2013 were included in

this study. There were 8 female and 12 male patients. Thirteen

of the 20 patients had right-sided tumors. The minimum dose

delivered to 95% of tumor volume was 15.49 Gy, delivered

over 3 hypofractions in most patients, with only 1 patient

receiving unfractionated therapy. Generally, the dose per frac-

tion was set at a mean of 6.35 Gy, with an average treatment

duration of 36.4 minutes. The average total tumor size was

16.2 mm (length, including the IAC) 3 11.8 mm (parallel to

the petrous face) 3 10.5 mm (craniocaudal). The tumor sizes

range length was (6.4 – 27.6 mm) 3 (4.6 – 26.3 mm) 3 (4.6 –

22.1 mm). The average tumor volume was 1227 mm3 (range,

203-6335 mm3).

As seen in Table 2, all portions of the carotid artery

evaluated received a mean radiation dose of less than 6.77

Gy, with the overall average radiation dose delivered of

5.66 Gy. However, there was an extensive range seen

among the patients, ranging from 0.36 to 13.0 Gy with a

95% confidence interval (CI) of 4.53 to 6.80 Gy. Such a

Table 1. Neurovascular Structures Evaluated.

No. Structure

1 Carotid artery proximal portion

2 Carotid artery midportion

3 Carotid artery distal portion

4 Carotid artery vertical portion

5 Basilar artery

6 Anterior inferior cerebellar artery

7 Fifth nerve cisternal

8 Fifth nerve temporal

9 Sixth nerve

10 Facial nerve: labyrinthine segment

11 Facial nerve: geniculate

12 Facial nerve: middle ear

13 Facial nerve: mastoid portion

14 Facial nerve: cisternal

15 Facial nerve mean: total

16 Eighth nerve cisternal

17 Ninth nerve cisternal

18 Cochlear aqueduct: midportion

19 Cochlear aqueduct

20 Cochlea: basal turn

21 Cochlea: basal turn opposite end

22 Cochlea: middle turn

23 Cochlea: apex
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variation was seen in nearly all the structures evaluated, as

seen in Tables 3 and 4. Tumor volume demonstrated a sta-

tistically significant positive correlation with the radiation

dose to both the carotid artery (adjusted R2 = 0.556, P \
.001) and the AICA (adjusted R2 = 0.461, P = .038). This

correlation is demonstrated in Figure 1. The mean doses to

the cochlea (adjusted R2 = 0.042, P = .563) and the facial

nerve (adjusted R2 = 0.058, P = .729) demonstrated no cor-

relation. Overall, the middle turn of the cochlea received the

highest radiation dose (mean [SD], 9.37 [2.99] Gy), com-

pared with the basal turn at the round window (mean [SD],

7.55 [3.63] Gy), distal (at the second turn junction) basal

turn (mean [SD], 8.15 [2.96] Gy), or apex (mean [SD], 8.17

[2.45] Gy). There was no correlation between the distance

from the tumor’s lateral margin and the fundus of the IAC

(CSF cap) and the radiation dose to any of the different por-

tions of the cochlea. There was no correlation between the

distance from the tumor’s lateral margin and the fundus of

the IAC (CSF cap) and the radiation dose to any of the dif-

ferent portions of the cochlea.

Discussion

With the advent of SRS in the management of vestibular

schwannomas, there is an increasing population of patients

managed as such. As of 2011, 42% of neurotologists are

using SRS to treat vestibular schwannomas.11 This number

is continuing to trend upward, and surgical volume has been

decreasing, with 6 additional neurotologists per year opting

for SRS in the management of vestibular schwannomas.12,13

In addition, with the various complications of surgical resec-

tion, including those not seen in SRS14 and the outpatient

nature of radiosurgery, many patients are choosing radiosur-

gery. SRS has proven to be a safe,15-17 reliable alternative

with equivalent or superior results in select patients, despite

rare complications.16,17 New SRS technology delivers pre-

cise, calculated dosage with the guidance of fused CT and

MRI, which can be hypofractionated. However, SRS, like

any radiation modality, has its risks due to radiation dosage

to adjacent healthy neurovascular structures. Given the

Accuray software’s ability to create a more conformal plan

vs the isocenter-based plans of GK, we aimed to measure

the radiation dose to healthy neurovascular structures with

SRS treatment of vestibular schwannomas.

Radiation to arterial walls is known to be a factor in accel-

erated atherosclerosis.18,19 Other effects to the arterial system

also include luminal occlusion, thrombosis, and premature

vessel aging,20 with small- and medium-size vessels experien-

cing the greatest radiation damage. Less frequently, complica-

tions, such as undiscovered aneurysms, have also been

reported in the literature.21-23 Larger arteries, such as the caro-

tid artery, may also undergo stenosis in patients who have

been radiated.24-26 Typically, dosages even as low as 2 to 8

Gy have been shown to increase the risk of vascular

events.19,27,28 Doses greater than 8 Gy were reached in the car-

otid artery wall in 7 of our 20 (35%) patients. In addition, we

note that the mean radiation dose delivered to the carotid

artery correlated to the volume of the tumor, as shown in

Figure 1. We noted that the average tumor volume was over

4 times as large (2247 mm3) compared with the other patients

who received doses under 8 Gy (514 mm3). In our cohort, a

patient with a tumor less than or equal to 15.1 mm in size

received less than 8 Gy to the carotid artery wall, whereas a

patient with a tumor greater than or equal to 17.8 mm had

Table 2. Radiation to Vascular Structures.

Structure Mean (SD), Gy

95% Confidence

Interval

Carotid artery 5.67 4.53-6.80

Proximal portion 6.79 (3.05)

Midportion 5.86 (3.18)

Distal 4.01 (2.90)

Vertical 6.17 (3.73)

Basilar artery 2.05 (1.59) 1.33-2.78

Anterior inferior

cerebellar artery

8.70 (5.74) 4.54-12.86

Table 3. Radiation to Cranial Nerves.

Structure Mean (SD), Gy

Trigeminal nerve

Cisternal 7.73 (5.65)

Temporal 2.69 (2.18)

Abducens nerve 2.97 (2.44)

Facial nerve

Labyrinthine segment 10.46 (4.83)

Geniculate 3.76 (2.38)

Middle ear 5.42 (3.55)

Mastoid portion 4.49 (4.87)

Cisternal 12.07 (6.42)

Mean total 3.76 (2.95)

Eighth nerve cisternal 11.74 (6.07)

Ninth nerve cisternal 8.22 (6.66)

Table 4. Radiation to Various Portions of the Cochlea.

Structure Mean (SD), Gy

Cochlear aqueduct: midportion 10.13 (5.49)

Cochlear aqueduct 10.66 (3.07)

Cochlea

Basal turn 7.55 (3.63)

Basal turn at second turn junction 8.15 (2.96)

Middle turn 9.37 (2.99)

Apex 8.17 (2.45)

Mean dose to cochlea 8.31
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radiation doses greater than 8 Gy to the carotid artery wall.

Since many of the radiation-induced effects can occur up to 10

years after the inciting event,29 patients with moderate- or

large-size tumors undergoing SRS should be informed about a

possible atherosclerosis risk in the future.

Similarly, the AICA was exposed to up to 16 Gy of

radiation, and the mean dosage was above the 8 Gy thresh-

old (8.70 Gy). The dose to the AICA also correlated to the

tumor volume. The basilar artery exhibited low doses of

radiation with a mean dose of 2.05 Gy (95% confidence

interval [CI], 1.33-2.78 Gy), exhibiting a low risk of radia-

tion. Given the toxic doses to the carotid artery and AICA,

patients, especially younger patients with larger tumors,

should be counseled on the risk of atherosclerosis even with

short radiation exposure. In addition, we should routinely

shield the carotid during the planning to potentially ensure

that less than 8 Gy of radiation is given to the carotid. The

AICA should ideally be shielded as well.

Cranial nerves also have been previously evaluated in radia-

tion studies and have been shown to have a dose-related

effect.30 The trigeminal nerve has preservation rates of greater

than 90%.30,31 Doses below 12.50 Gy are typically considered

safe with an extremely low (0.7%) rate of facial paresthesia or

anesthesia; however, they noted that the risk of cranial neuro-

pathy increased by 6-fold for each 2.50-Gy increase over

12.50 Gy.32 We note that the mean radiation dose to the cister-

nal portion of the trigeminal nerve was 8.30 Gy and 2.89 Gy

for the temporal portion of the trigeminal nerve. In 1 patient

with a 27-mm tumor (6355-mm3 volume), the largest in our

series, the radiation dose to the trigeminal nerve exceeded the

above threshold, with the highest at 17.09 Gy. Fortunately,

that patient did not develop facial paresthesia. In small- to

medium-sized tumors, radiation doses to the trigeminal nerve

are unlikely to reach toxic levels when treating vestibular

schwannomas with SRS.

We were unsuccessful in demonstrating a relationship

between the lateral extension of the tumor in the internal audi-

tory canal and the radiation dosages delivered to the facial

nerve and the cochlea. This, however, may be an artifact of

our small sample size and our active shielding of the cochlea

and the intratemporal facial nerve in our planning. Further-

more, considering that the long-term effects of radiation may

take 10 or more years to appear, radiosurgery should be con-

sidered with caution in patients who are younger and have

larger tumors. Potentially, a subtotal resection with radiation

for regrowth should be considered in those patients who may

be more concerned about facial nerve and vascular outcomes.

Increasingly, neurotologists are opting for SRS in the man-

agement of vestibular schwannomas.11-13 A recent retrospective

review of the Surveillance, Epidemiology, and End Results

(SEER) database demonstrated an overall shift toward more

conservative management of vestibular schwannomas with a

decreasing number of patients receiving primary microsurgery.33

While this article demonstrated a potential toxicity of the AICA

and carotid artery with the treatment of tumors, particularly

larger ones, SRS has previously been demonstrated as an effec-

tive alternative with lower complication rates in select

patients.13,14,34-36 This treatment modality allows for 96% to

99% reported tumor control rates.37 Tumor control rates are

generally better for smaller tumors (Koos grade 1) compared

with Koos grade 2 or higher tumors with a hearing preservation

rate of 85% and 75%, respectively.37,38 Despite the possible

arterial toxicity presented in our study when treating larger

tumors, SRS can allow for good tumor control with high hear-

ing preservation rates and should be strongly considered a treat-

ment option for select patients with vestibular schwannomas.

This study is limited by the small sample size. Another

limitation, inherent to all studies of this nature, is that this

study analyzes patients treated by a single individual at a

single institution. A multi-institutional study of this nature

is possible but may introduce some bias when selecting the

location for each measurement. We chose those years to

ensure adequate follow-up of the patients regarding their

facial nerve, trigeminal nerve, and imbalance. Hearing

results, we felt, were beyond the scope of this study and

will be reported in the future with a larger data set and

more long-term follow-up. In addition, data on atherosclero-

sis development in our patient cohort are lacking. Given the

long-term and multifactorial etiology of atherosclerosis, we

believe that this issue warrants further study with prospec-

tive data gathering with magnetic resonance arteriography.

Conclusions

The evidence from this radiation dosimetry evaluation shows

that SRS generally allows for safe radiation dosages to sur-

rounding structures. Patients with tumors that were 17.8 mm or

larger received radiation doses of greater than 8 Gy to the caro-

tid artery wall, which can lead to atherosclerosis. Patient with

larger tumors received doses of radiation to the AICA that can

also lead to atherosclerosis. The dose delivered to other struc-

tures, such as the cochlea and facial nerve, appears to be lower

and much less likely to cause immediate complications.
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