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Providence, RI, 02912 USA 

Tamar Kushnir (Tkushnir@socrates.berkeley.edu) 
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Abstract 

Previous research has demonstrated that causal learning is 

facilitated by observing interventions on a causal system (e.g., 

Lagnado & Sloman, 2002).  Does the origin of these 

interventions influence learning?  Sobel (2003) demonstrated 

that causal learning was facilitated when learners observed the 

results of their own interventions as opposed the results of 

another’s interventions, even though the data learners 

observed were identical.  Learners in the former condition 

were able to test various causal hypotheses, while learners in 

the latter condition were less able to do so.  The present 

experiment followed up on these findings by comparing 

causal learning based on observing the results of a learner’s 

own interventions with causal learning based on observing 

data from a set of interventions a learner is forced to make.  

Although learners observed the same interventions and 

subsequent data, learning was better when participants 

observed the results of their own interventions.  These 

findings are discussed in relation to various computational 

models of causal learning. 

Introduction 

Causal knowledge is important for everyday interaction 

in the world.  A recent pursuit in cognitive science has been 

to describe how human beings learn and represent causal 

knowledge.  Researchers in computer science have 

examined causal graphical models as a way of representing 

causal structure.  Recently, psychologists have adopted this 

formalism as a way of representing causal relations in a 

variety of domains (Gopnik, Glymour, Sobel, Schulz, 

Kushnir, & Danks, in press; Lagnado & Sloman, 2002; 

Rehder & Hastie, 2001; Tenenbaum & Griffiths, 2002). 

One issue in this discussion is whether a particular 

algorithm or class of algorithms best instantiates human 

causal learning.  Glymour (2001) proposes that constraint-

based models offer the best account of human causal 

learning (see also Gopnik et al., in press).  These models 

posit rules for learning causal structure based on observing 

patterns of dependence and independence among a set of 

events.  In contrast, Tenenbaum and colleagues (Tenenbaum 

& Griffiths, 2002; Steyvers et al., in press) propose that 

human causal structure learning is better instantiated by 

Bayesian algorithms.  Using these algorithms, learners 

assign probabilities to a constrained set of hypotheses.  They 

update those probabilities based on the observed data 

through an application of Bayes’ rule.  The resulting 

posterior probabilities on the hypotheses represent how 

likely each is the causal structure that generated the 

observed data. 

These algorithms make different predictions about the 

role of interventions in causal learning.  Constraint-based 

algorithms treat interventions as special conditional 

probabilities, which enable learners to distinguish between 

otherwise equivalent causal graphs (Pearl, 2000).  

Constraint-based algorithms ignore the source of the 

interventions: only knowledge of conditional independence 

and dependence is critical for learning.   

In contrast, Bayesian algorithms require that learners 

have particular hypotheses in mind, and given the observed 

data, update the probability that each hypothesis reflects the 

actual causal structure.  If a learner observes interventions 

that are relevant to those hypotheses, learning will be 

facilitated.  However, if a learner observes interventions that 

are not relevant to those hypotheses, then those data will be 

less beneficial, even if those data contain the critical 

conditional independence and dependence information 

necessary to discern a unique causal structure.  

An (albeit simple) example might help.  Suppose you 

wake up one morning with the flu, and have two symptoms: 

coughing and dry-mouth.  Many different causal models 

follow from these observations.  For example, the flu could 

cause the dry-mouth, which in turn could cause coughing.  

Alternatively, the flu could independently cause coughing 

and dry-mouth: coughing and dry-mouth could be unrelated, 

but dependent given that you have the flu.  Figure 1 depicts 

these two potential causal models.  

Figure 1: Two potential causal models 
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An intervention could distinguish between these two 

hypotheses: drinking a glass of water would eliminate the 

dry-mouth, but have no effect on the flu.  Learners would 

observe the probability of coughing given the presence of 

the flu, but the absence of dry-mouth.  If coughing persisted, 

then the left-hand model of Figure 1 would be the more 

likely causal structure.  If coughing were eliminated, then 

the right-hand model in Figure 1 would be more likely.  

However, this “drink water” intervention is only 

effective at discriminating among certain causal models, 

such as the two shown in Figure 1.  For example, another 

hypothesis is that dry-mouth and flu both cause coughing, 

and are independent from each other (perhaps because you 

are also dehydrated).  The “drink water” intervention does 

not discriminate between this common effect model and the 

common cause model depicted on the left side of Figure 1.  

Given that you have the flu, both models predict that 

coughing would persist if dry-mouth were eliminated.   

What this example illustrates is that a learner’s initial 

hypotheses matter.  This is not a novel idea in cognitive 

science: many researchers propose that adult learners have a 

variety of hypothesis-testing strategies, which may lead 

them to proper or improper conclusions (see e.g., Klayman 

& Ha, 1987; Wason, 1968).  Is this the case in the domain of 

causal learning?  If learners use constraint-based algorithms 

to build a causal model from observed data, then the source 

of those data should not matter.  However, if learners are 

actively testing hypotheses, then the source of interventions 

might make a difference in causal learning. 

This hypothesis relies on two assumptions about causal 

learning.  The first assumption is that learners benefit from 

interventions over simply observing data.  Schulz (2001) 

investigated whether adults and children could make causal 

inferences based on interventions.  In one experiment, she 

presented participants with two creatures (A and B) that 

moved together simultaneously, and told them that one was 

the “boss”, and made the other creature move.  From this 

information alone, the directionality of the causal relation 

between the two events was indeterminate: neither temporal 

priority nor contingency information allowed the 

participants to determine the nature of the causal relation 

between the two creatures.  Participants were then shown 

that there was an intervention (i.e., a button), designed for 

one of the creatures (B), which made it move.  The button 

was pressed and only creature B moved.  After observing 

this intervention, both adults and 4-year-olds consistently 

claimed that the other creature (A) was the boss. 

This valid conclusion follows from one of Pearl’s 

(2000) algorithms for learning causal structure through 

interventions.  Learners have observed a critical conditional 

independence: p(A | B) > p(A | do(B)) = 0.  Thus, these data 

are consistent with the predictions of constraint-based 

model.  However, Schulz’s (2001) experiments are also 

consistent with a Bayesian model.  The cover story of the 

experiment specified that one of two hypotheses were 

correct; the intervention produced data that distinguished 

between them.   

The second assumption of this project is that when 

learners are able to generate their own interventions, they 

choose interventions that enable them to test their 

hypotheses.  Steyvers et al. (in press) provided a critical 

piece of evidence for this assumption.  They asked 

participants to learn a causal structure from observing data.  

After participants generated a set of structures that reflected 

this learning, Steyvers et al. (in press) allowed learners to 

observe the results of one intervention on that structure.  

Learners did not choose their intervention randomly.  The 

majority of learners chose the intervention that provided 

them with the information necessary to distinguish among 

the models they chose previously.  Steyvers et al. (in press) 

presented a Bayesian model with an “active learning” 

component (e.g., Murphy, 2001), which provided the best 

model of these data. 

However, neither of these experiments directly tested a 

situation that compared learning from observing the results 

of one’s own interventions with the results of another’s 

interventions.  Sobel (2003) presented participants with a 

novel causal learning task: participants were told that “Dr. 

Science” had wired up a set of colored lights and sensors.  

The sensors were color sensitive and made the light they 

were connected to activate.  Thus, if a red sensor was 

connected to a white light, then the white light would 

activate whenever the red light activated.  Since this 

happened at the speed of light, learners just saw the white 

and red lights activating together.  Depending on the 

experiment, the sensors could have deterministic or 

probabilistic relationships.  Participants were asked to learn 

the causal structure among four colored lights (i.e., whether 

each light had sensors on it, and if so, of which color).  One 

group of learners was allowed to intervene on those lights 

themselves.  Another group observed another person make 

the same interventions (with the same results).  Over several 

experiments, although learners in both groups observed 

identical interventions and data, learning was superior when 

participants observed the results of their own interventions. 

The goal of this investigation is to examine two 

concerns with Sobel’s (2003) experiments.  In these 

experiments, learners actively manipulated the learning 

environment; observers, in contrast, did not.  The first 

concern is that it is possible that learners in the intervention 

condition were simply paying more attention than learners 

in the observation of intervention condition.  Sobel (2003, 

Experiment 4) attempted to control for this by presenting 

learners with the ability to select cases in which they 

observed a particular light activating.  In this condition, 

learners actively manipulated the learning environment, but 

had no information about interventions (and hence, little 

information about conditional independence and 

dependence).  Learning was quite poor in this situation. 

However, a better manipulation would be to allow 

learners to manipulate a learning environment, but disable 

them from testing their own hypotheses.  To do this, we 

created a fixed intervention condition.  In this condition, the 

learning environment was identical to an intervention 
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condition, but learners were forced to make a particular set 

of interventions.  This way, learners generated interventions, 

but those interventions were based on another learner. 

This allows us to examine a second concern with 

Sobel’s (2003) experiments, based on literature in 

educational psychology.  Several researchers suggest that 

kinesthetic learning – the ability to act on the environment 

as opposed to simply observing – may benefit learners even 

in non-kinesthetic domains, such as language (e.g., 

Furuhata, 1999).  Such a benefit may also translate to the 

domain of causal structure learning.  The results of the fixed 

intervention condition allows us to examine whether 

observing the results of interventions generated by a learner, 

independent of their own hypotheses impairs causal 

structure learning compared with learners who observe the 

results of their own interventions. 

Experiment

In this experiment, we presented learners with four 

causal structure learning problems using the same paradigm 

as Sobel (2003).  Participants were introduced to Dr. 

Science, and told that he had wired together colored lights 

and sensors.  Participants were asked to learn the causal 

structure among four colored lights (i.e., whether each light 

had sensors on it, and if so, of which colors).  Participants 

were either allowed to intervene on the data freely 

(Intervention Condition), or were instructed to make 

specific interventions (Fixed Condition).  In the fixed 

condition, these interventions and the subsequent data were 

yoked to a learner in the intervention condition.  Thus, 

learners observed identical data across the two conditions.   

Participants in the intervention condition were allowed 

to turn on lights, as well as temporarily remove any one 

light from the causal structure (by placing a bucket over it, 

which covers it and its sensors).  Sobel (2003, Experiment 

5) found that this additional type of intervention greatly 

benefited learning.  In particular, this enabled learners to 

observe conditional independence relations as well as 

conditional dependence relations – the exact data necessary 

to learn a causal structure given a constraint-based 

algorithm.  As long as the conditional independence 

relations are present, these algorithms would predict no 

difference between these two conditions.  However, if 

hypothesis testing is important to learners, then when they 

observe the results of their own interventions, they do so 

based on their own causal hypotheses.  Learners in the fixed 

intervention condition, in contrast, observe interventions 

and data based on another’s hypotheses, which might not 

match there own, and which might cause impaired learning.        

Method

Participants: Forty-eight undergraduates were recruited 

from an urban area university.  Approximately equal 

numbers of men and women participated in the experiment.  

Participants were paid $7 for their participation. 

Materials: Participants were tested on a Dell Dimension 

8100 desktop computer with a 19” monitor.   

Procedure: Following Sobel (2003, Experiment 5), all 

participants were seated at the computer and given the 

following instructions: 
“In Dr. Science's laboratory, he has created a 

number of games.  Each game has four lights, colored 

red, white, blue, and yellow.  Each light also has zero, 

one, or many sensors.  Some sensors are sensitive to red 

light, others to blue light, others to white light, and 

others to yellow light and will activate the light that it is 

connected to.  For example, if the red light is connected 

to a yellow sensor, then whenever the yellow light 

activates, the red light will also activate.  But, because 

this happens at the speed of light, all you will see is the 

red and yellow lights activating together.  It is also 

possible that a light has no sensors attached to it, and 

therefore is not activated by any other light.  Dr. Science 

is pretty absentminded, so he is not careful about how he 

wires the lights together.  Sometimes the sensors do not 

always work perfectly, so they won't always turn the 

lights they are connected to on. 

For each game, you have to figure out how the 

lights and sensors are wired up.  To help you, Dr. 

Science is going to let you turn on each of the lights.  So, 

you will see a set of buttons that turn on each light. 

In addition, Dr. Science has given you a black 

bucket.  You can put the bucket over any one of the 

lights (and the sensors it is connected to).  Putting the 

bucket over the light covers both it and its sensors.  If the 

bucket is over the light, then the light will not activate 

because the other lights cannot reach its sensors.”

Participants were divided into two groups.  In the 

intervention group, participants were told that they would be 

able to turn on any of the four lights as well as place the 

bucket over any of the lights as many times as they wanted.  

These participants were shown a computer screen with nine 

buttons.  Four of the buttons activated the four different 

colored lights.  If one of these buttons was pressed, then that 

light appeared on the screen for 0.5s.  In addition, any effect 

of that light (and likewise any of its effects) also appeared at 

the same time on the screen.  The probability that any effect 

occurred given that its cause occurred was 0.8.  Thus, 

turning on a light did not always cause its effects, which 

learners can attribute to Dr. Science carelessness in how the 

lights and sensors were wired together.  

The other five buttons moved the bucket – either over 

one of the four lights or off all of the lights.  Pressing one of 

these buttons would result in the bucket moving to the 

appropriate place.  The bucket appeared on the screen as a 

black box. 

Participants in this condition were told to intervene as 

much as they wanted in order to learn how the lights and 

sensors were wired together.  However, they were required 

to turn on the four lights a minimum of 25 times.  Their 

interventions and the subsequent data were recorded.  When 

they indicated they were finished, they were asked the test 

questions described below.   
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Participants in the fixed intervention condition were 

shown the same nine buttons.  However, Dr. Science gave 

them instructions to press particular buttons in a particular 

order.  Participants were not allowed to intervene on their 

own accord, but could only generated interventions that 

turned the lights on and moved the bucket based on what 

Dr. Science told them.  These instructions appeared on the 

screen one at a time.  If participants pressed an incorrect 

button, then they received an error message. 

Importantly, each sequence of interventions given to a 

participant in the fixed intervention condition was yoked to 

a participant in the intervention condition.  Thus, the first 

participant in fixed intervention condition was told to make 

identical interventions (and observed identical results) as the 

first participant in the intervention condition. 

Before learning the four models, participants in both 

conditions were given a training session with the bucket.  

They were shown three lights (colored green, purple, and 

gray), and three buttons that each activated one of the lights.  

They were told that Dr. Science had wired these lights and 

sensors perfectly.  They were first told to press the button 

that activated the gray light, and were shown that only the 

gray light activated.  They were told that from this they 

could conclude that there was not a gray sensor on the other 

two lights.  One could conclude this since if there had been 

a sensor on either of those lights, those lights would have 

activated.

Then they were told to activate the green light and 

observed that green and gray activated together.  From this, 

they were told to conclude that there was a green sensor on 

the gray light.  Then, they were then told to activate the 

purple light, and shown that all three lights activated.  From 

this, they were told that they could conclude that there was a 

purple sensor on the green light.  However, whether there 

was a purple sensor on the gray light was uncertain, since 

they already knew that there was a green sensor on the gray 

light and that the green light activated. 

They were then told that using the bucket could help.  

In particular, if the purple light was activated with the 

bucket on the green light, then they could observe whether 

the purple light activated the gray light in the absence of the 

green light.  Participants were told to make this intervention 

and shown that under this circumstance only the purple light 

activated.  Thus, participants observed the relevant 

conditional independence between purple and gray given the 

absence of green.  The probability that the gray light 

activated given the purple light and not the green light was 

zero.  There must not be a purple sensor on the gray light.  

Thus, there was only a purple sensor on the green light and 

a green sensor on the gray light. 

After this training, participants were asked to learn four 

different causal models, a chain, a chain with a link from the 

root light to the leaf light (A->D), a common effect and 

chain and a diamond model.  These are shown in Figure 2.  

The color of the lights was randomly determined for each 

model.  The causal connections were always probabilistic.  

Thus, if a cause occurred, the probability that its effect 

occurred was 0.8.  Importantly, lights never occurred 

spontaneously: the probability of an effect given the absence 

of a cause was zero.  The models were presented in one of 

four quasi-random orders.  In both conditions, participants 

were allowed to take notes. 

After participants indicated that they thought they knew 

how the lights and sensors were wired together (in the 

intervention condition) or were shown the same intervention 

sequence (in the fixed intervention condition), participants 

were asked two sets of questions.  First, participants were 

asked a set of causal structure questions – whether each 

light had a sensor of each other color attached to it (e.g., was 

there a blue sensor on the red light?).  Participants first 

answered the yes/no question, then rated their level of 

confidence in their answer on a scale of 0-100, with zero 

being a total guess, and 100 being fully confident.  There 

were twelve of these questions (one for each possible 

combination), asked in a random order.   

Participants were also asked a set of conditional 
probability questions, in which they were asked to rate the 

likelihood of a particular light activating given that they had 

turned on another light.  These questions were phrased as 

follows: “suppose you turned on the X light and the bucket 

wasn’t on any of the lights, what is the probability that the 

Y light (among possible others) would activate”.  

Participants were asked the twelve exhaustive pair-wise 

combinations, plus four questions that asked about the 

conditional probability of that light activating by itself (e.g., 

what is the probability that only the X light comes on if you 

turn on the X light).  The order of these question sets was 

counterbalanced across participants.   

Figure 2: The four causal structures that participants were 

asked to recover.  The colors were randomly assigned for 

each participant  

Results

For each model, participants received a score of one for 

each causal structure question they answered correctly, and 

a score of zero for each question they answered incorrectly.  

These scores were summed to reflect an overall accuracy 
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score for each model (maximum: 12).  These scores are 

shown in Table 1.  Preliminary analyses revealed no order 

effects: neither the question order nor the order the models 

were presented in influenced responses. 

A 4 (model) x 2 (condition) mixed Analysis of 

Variance was performed on participants’ accuracy scores.  

Model was a within-subject factor; condition was a 

between-subject factor.  This analysis revealed a main effect 

of condition: overall, learners were more accurate in the 

intervention condition than the fixed intervention condition: 

F(1, 46) = 8.74, p < .01.  A main effect of model was not 

found.  No significant interactions were found.  Simple 

effect analysis revealed that this difference was consistent 

for each of the four models: t(46) = 2.07, 2.01, 3.24, and 

2.20 for the chain, chain with A->D link, common effect 

and chain, and diamond models respectively, all p-values <

.05.

Table 1:  Accuracy scores on causal structure questions for 

each model and condition (Maximum = 12). Standard 

deviation shown in parentheses 

Model Intervention 

Condition 

Fixed

Intervention 

Condition 

Chain 10.88 

(1.44) 

9.88 

(1.87) 

Chain with  

A->D link 

11.08 

(1.10) 

9.96 

(2.51) 

Common 

Effect and 

Chain 

11.33 

(1.47) 

9.79 

(1.82) 

Diamond 10.96 

(1.08) 

9.88 

(2.15) 

Table 2:  Deviance scores on conditional probability 

questions for each model across the conditions.   

Standard deviation shown in parentheses 

Model Intervention 

Condition 

Fixed

Intervention 

Condition 

Chain 12.66 

(10.37) 

14.44 

(10.59) 

Chain with  

A->D link 

17.23 

(11.67) 

25.23 

(16.19) 

Common 

Effect and 

Chain 

12.80 

(10.47) 

15.35 

(11.68) 

Diamond 13.18 

(8.48) 

13.38 

(9.06) 

For each model, a deviance score was computed on 

participants’ answers to the conditional probability 

questions.  This was done by averaging the absolute value of 

the difference between the judged conditional probability 

and the expected conditional probability for the sixteen 

questions.  These scores are shown in Table 2.  A similar    

4 (model) x 2 (condition) mixed Analysis of Variance was 

performed on these scores.  A main effect of model was 

found: overall, deviance on the conditional probability 

questions differed among the four models: F(3, 138) = 7.22, 

p < .001.  A main effect of condition was not found.  No 

significant interactions were found.  Simple effect analysis 

revealed that the deviance score on the chain with A->D 

model was greater than any of the other three models: t(47) 

= 3.06, 2.96, and 3.49, in contrast with the chain, common 

effect and chain, and diamond models respectively, all p-

values < .005.   

Did learners’ error on the conditional probability 

questions reflect their ability to recognize causal structure?  

If learners are building accurate causal models, then 

responses to the conditional probability questions should be 

predictive of accuracy on the causal structure questions.  To 

examine this, four hierarchical regressions were performed; 

accuracy on the causal structure questions for each model 

was the dependent variable.  First, condition was factored 

into the model.  Next, deviance scores on the other three 

models were factored in.  This was done to control for 

participants’ individual differences in the deviance scores.  

Finally, the deviance score for the model in question was 

factored in.  This score contributed to the variance in the 

accuracy on the causal structure questions for the chain and 

the common effect and chain models: ∆r2 = .110 and .048 

respectively, F(1, 42) = 7.22 and 3.99, both p-values < .05.   

Discussion

Learners who were able to observe the results of their 

own interventions were better at recovering the causal 

structure among a set of events than learners who observed 

the results of interventions they were forced to make.  This 

result parallels Sobel (2003), who found that observing the 

results of another’s interventions resulted in worse causal 

learning than observing the results of one’s own 

interventions.  In both Sobel’s (2003) observation of 

intervention condition and the present fixed intervention 

condition, learners were unable to test their own causal 

hypotheses.  Even though learners might have observed 

critical information about conditional independence and 

dependence, learning in these circumstances was impaired 

compared with observing the results of one’s own 

interventions.  In fact, subsequent analysis revealed that all 

the participants in the intervention condition generated data 

that presented them with the specific conditional 

independence and dependence information necessary to 

learn each causal structure via constraint-based algorithms.  

Thus, all learners were given the relevant conditional 

independence and dependence information necessary to 

learn the causal structure.  However, learning was facilitated 

when the learner controlled when they were given that 

information.   
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This experiment was motivated by two concerns with 

the procedure used by Sobel (2003).  First, learners who 

observe the results of their own interventions might have 

simply been more involved with the task of learning than 

learners who observe another’s interventions because of 

their ability to act on the system.  Further, the benefit of 

observing the results of one’s own interventions might by 

due to learners relying on kinesthetic learning skills.  These 

two possibilities are inconsistent with the present data. 

These data seem inconsistent with the hypothesis that 

constraint-based algorithms of causal structure learning best 

account for human learning.  However, it is possible that 

constraint-based methods could be modified to account for 

these data.  We suggest that Bayesian accounts of causal 

structure learning are at least more qualitatively consistent 

with these data than other approaches to causal structure 

learning.  This is clearly a topic for future research.   

One question that must be addressed is whether learners 

explicitly engage in hypothesis testing, or are relying on 

processes that are more implicit.  Several researchers (e.g., 

Kuhn, 1989) have argued that children and in some cases, 

even adults lack the ability to design experiments that 

explicitly test causal hypotheses.  Such deficits in scientific 

reasoning indicate that adults and children might lack the 

metacognitive skills necessary to design unconfounded 

experiments or interventions that discriminate among causal 

hypotheses.     

Steyvers et al. (in press), however, demonstrated that 

adult learners would usually make a single intervention that 

offered them the most information to discern among various 

causal structures consistent with the data already observed.  

They proposed that there might be a difference between 

implicit causal knowledge, which is used in this kind of 

learning situation, and explicit causal knowledge, which 

was tested by researchers investigating scientific reasoning.  

For instance, participants in both the present experiment and 

in Steyvers et al.’s (in press) experiments were not asked to 

justify their responses, nor were they asked to reflect on the 

strategies they used to garner their knowledge.  Learning 

through a Bayesian algorithm does not require explicit 

verbal representations of those hypotheses (see also Gopnik 

et al., in press).   

To conclude, researchers in causal learning have been 

seeking a way to instantiate algorithms for learning causal 

structure.  We believe that causal learning is better 

instantiated by the causal graphical model framework, 

particularly because of its ability to account for data from 

interventions (see Gopnik et al., in press).  The present 

experiment represents an ongoing effort to investigate 

algorithms within that framework (see also Sobel, 2003).  

This line of research is more consistent with the qualitative 

predictions of Bayesian algorithms.  Future work, however, 

must specify exactly what the nature of these algorithms is 

and how they might be represented in the brain.   
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