
Lawrence Berkeley National Laboratory
LBL Publications

Title
Visualization dot com

Permalink
https://escholarship.org/uc/item/1m3545n4

Journal
IEEE Computer Graphics and Applications, 20(3)

ISSN
0272-1716

Author
Bethel, W

Publication Date
2000

DOI
10.1109/38.844367

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1m3545n4
https://escholarship.org
http://www.cdlib.org/

Visualization Dot Com

Wes Bethel
Lawrence Berkeley National Laboratory

University of California, Berkeley
Berkeley, CA 94720
1.0 Abstract

In this article, we explore the seemingly well-worn
subject of distance-based, or remote visualization.
Current practices in remote visualization tend to
clump into two broad categories. One approach,
which we’ll call render-remote, is to render an
image remotely, then ship the image to the user.
Another option, render-local, is to send data to the
user, where it is visualized rendered on the local
workstation. With advances in networking tech-
nology and graphics technology, we can begin to
focus on a class of approaches from a new, third
category. With this third category, which we’ll call
shared, or “dot com” visualization, we stand to
reap the best of both worlds; minimized data trans-
fers and workstation-accelerated rendering. We
will describe a prototype system currently under
development at Lawrence Berkeley National Labo-
ratory (LBNL) that strikes such a balance, achiev-
ing a blended, scalable visualization tool.

2.0 The Brute-Force Approaches

Consider the following common scenario: you and
your workstation are on the West Coast, but your
data is on the East Coast, and you need to look at
the data. What do you do? One option is to per-
form the visualization and rendering on the East
Coast, and send an image to your workstation. The
other option is to move the data, either the whole
thing or just a subset, to the West Coast.

In the render-remote approach, you win because
only a single image is sent across the network. Pre-
sumably, one expects at least an order of magni-
tude reduction in traffic when sending only the
final image as compared to the cost of sending the
raw data. The usability cost of this approach is the
loss of interaction on the local workstation due to
the sacrifice of local rendering capabilities. The
workstation plays the role of image viewer. In
order to achieve interactivity using the remote ren-
dering model, one would expect a minimum of ten
frames per second, using potentially upwards of 30
megabytes per second of raw bandwidth
(1024x1024x24 bit uncompressed images). We’re

making a generous assumption: on the remote
host, it is possible to perform visualization and
rendering ten times per second.

Using the render-local approach, data is trans-
ferred to the local workstation where it is subse-
quently visualized and rendered. We stand to gain
the interactivity lost in the render-remote model,
assuming a reasonable amount of local graphics
and processing horsepower. Troublesome areas
inherent in the render-local model include poten-
tially long download times, the possibility that a
large dataset simply cannot be stored on the local
workstation, and related issues.

What if we could combine the best of both
approaches? In such a model, we wouldn’t have to
move the potentially large data across the network,
and we could take advantage of local workstation
graphics. A blended model would facilitate the
best use of resources; a large cluster, for example,
could be used for computationally expensive par-
allel software volume rendering while the local
workstation is used for interactive graphics

3.0 A Prototype Implementation

The balance of this article describes a specific
implementation of a distributed visualization pro-
totype that is built upon a blended shared-render-
ing model. The title “Visualization Dot Com”
reflects the importance of this type of emerging
technology.

Our prototype is constructed from a distributed
implementation of Meuller, et. al’s Image Based
Rendering Assisted Volume Rendering method [1],
or just IBRAVR for short. The IBRAVR method
leverages image-based rendering properties in
order to achieve interactive volume rendering
within a constrained interactivity framework. One
of the many attractive properties of the IBRAVR
model is that it will perform well on low-end
workstation graphics, or even software, but will
also run in high performance, immersive and ste-
reo environments. What makes this possible is the
decoupling of a computational back-end that per-
February 7, 2000 1LBNL-44871

forms software volume rendering from a front-end
viewer that can run at interactive rates.

FIGURE 1. IBRAVR Task Decomposition

In the IBRAVR model, a volume is decomposed
into some number of “slabs” (see Figure 1). Each of
these slabs is separately volume rendered using
whatever technique is handy to produce a single
image. The resulting image is then used as raw tex-
ture data, and applied to either axis-aligned quads
or quadmeshes. Quadmeshes are used to create a
“terrain-style” elevation map for each of the tex-
tures, and provide more depth cues than flat quad-
rilaterals. Multiple texture maps are created from
subsets of the volume so that the viewer may
rotate the entire model for inspection. The IBRVR
method works well, but within a limited range of
rotation. Mueller et. al. claim a rotation range of
about thirty-two degrees before visual degradation
occurs [1], although this threshold may prove to be
data-dependent. Increasing the number of texture
maps may increase the threshold, while decreasing
the number of texture maps will decrease the
threshold.

3.1 Distributed IBRVR

The IBRAVR model maps nicely to an object-order
decomposition for parallel rendering [2]. The pri-
mary difference between the IBRVR method and
traditional object-order parallel software volume
rendering lies in the design of the partial image
recombination, or gather stage of the parallel ren-
dering operation. The partial images produced by

each processor, each of which renders a subset of a
volume, must be composited together in a particu-
lar order to produce a final image. Algorithms for
image recombination in parallel software volume
rendering have been the subject of much study [2].

The IBRAVR approach can be implemented with a
pool of processors that perform object-order paral-
lel software volume rendering. Rather than recom-
bine the partial images in software, the partial
images are “combined” using low-cost graphics
hardware that supports two-dimensional texture
mapping. By low-cost, we mean contemporary PC
graphics cards that are in the $100-$250 price
range. One of the fundamental ideas behind
IBRAVR is that the image warping and depth-
order compositing is performed using inexpensive
graphics. The image warping represents the image-
based rendering aspect of the algorithm, while the
depth-order rendering of semi-transparent 2D tex-
tures represents the image-gather and compositing
stage of the traditional object order decomposition.

Our prototype is an application composed of two
logical rendering components and one data com-
ponent, all of which may be separated by a WAN.
A “back-end” volume rendering engine performs
the object-order parallel volume rendering in soft-
ware. It is written using MPI [3], and runs on a
variety of distributed memory and shared memory
machines. The second component is a viewer. The
viewer is a lightweight interactive rendering appli-
cation built from a OpenGL-based scene graph tool
[4] that manages data and rendering services. The
viewer is also a parallel application built using
Pthreads[5]. The third component of the system is
the scientific data and it’s management. In some
cases, this might be as simple as a large disk farm
connected directly to the volume rendering back-
end, while in other cases, the data may be scattered
across a WAN. We’ll address this component in
more detail later in this article.

The volume renderer and the viewer communicate
over a custom IPC layer built using TCP sockets.
The protocol implemented by the prototype might
be considered a visualization communication protocol,
similar in some respects to the scene description
and payload model described by the MPEG-4 spec-
ification [8].

The payload between viewer and software ren-
derer consists primarily of the two-dimensional
texture maps containing the results of partial vol-
ume rendering. Our present implementation is

Volume data is first sub-
divided, with each pro-
cessing element given
the assignment of vol-
ume rendering it’s subset
of the volume.

The results, an image
from each PE represent-
ing partial volume ren-
dering, is sent to a
viewer.

The viewer uses 2D tex-
ture mapping to render
all partial images, and
provides for interactive
transformation.
February 7, 2000 2

designed using a striped-socket model, where mul-
tiple back-end processing elements communicate
with multiple threads in the viewer. Figure 2 pre-
sents an example created by our distributed
IRVAVR prototype.

In general, the payload from the back-end and the
viewer consists of “visualization data.” The tex-
ture maps and geoemtry in the current system
combine on the viewer side to implement an
IBRABR algorithm. Arbitrary geometry can be
used to represent the results of other types of visu-
alization, such as the representation of grids in
Boxlib [6], an Adaptive Mesh Refinement (AMR)
multiresolution modeling framework . Figure 3

shows a set of adaptive grids from a scientific sim-
ulation

The scene graph model plays an integral part in the
design of the communication framework as well as
viewer architecture: we think of the scene graph
model as a “data sink.,” and data arriving on a
communication channel as a combination of scene
layout and scene data, or content. Each of the
viewer-side listener threads makes a contribution
to the scene graph in the form of new texture data,
or new geometry.

3.2 Application of Shared Visualization

The prototype has proven useful in viewing large
and time varying datasets produced by discipline
scientists in the fields of Combustion and Cosmol-
ogy, and was demonstrated at SC99 in the LBNL
and ASCI booths. The prototype application
defines a flexible framework centered around the
communication protocol between the back-end

and the viewer. As such, we have several types of
back-end renderers. One of these back-end engines
consumes data from a DPSS [7], a distributed par-
allel storage system.

The prototype shown at SC99 performed interac-
tive rendering of a 50Gbyte time varying simula-
tion, with data located in Berkeley, the back-end
volume rendering engine located at Sandia

A data volume from a combustion simula-
tion is decomposed into four slabs, and each
slab is volume rendered in parallel using a
software compositing engine. The resulting
images, shown on the left, are transmitted
across a WAN to a viewer that uses a scene
graph rendering engine and two-dimen-
sional texture mapping to produce the image
on the right. Except for the data transfer,
both viewer and back-end rendering execute
asynchronously.

FIGURE 2. IBRAVR Applied to Combustion Simulation Results
February 7, 2000 3

National Laboratory in Livermore, and the viewer
operating in Portland, Oregon. We used a private,
high-speed network to move the large, time-vary-
ing data between Berkeley and Sandia-Livermore.
Such demands may not be appropriate in con-
gested, low-bandwidth networks.

Data logically travels in one direction only, from
the data source (DPSS, Berkeley) to the parallel
software volume rendering engine (SNL, Liver-
more) to the viewer (SC99, Portland). Control
information, in contrast, travels in the “upstream”
direction. For example, the back-end renderer
needs viewing parameters from the viewer.

4.0 Discussion and Future Work

We believe that network-based, shared rendering
and visualization is a fruitful avenue for future
research. The application model we have pre-
sented uses a decomposition that leverages current
trends in technology: graphics, networking and
data storage and management.

Low-cost graphics hardware for the PC continues
to become faster, and is presently matching the
rendering rates of $100,000 machines of just a few
years ago. Those visualization tools that are cross-
platform and that scale from the lowly PC through
the fully immersive environment are attractive
from an economical standpoint.

Network technology improvements make possible
a scenario that includes shared rendering. By net-
work technology improvements, we mean not only
evolution of the underlying grid fabric, but also
advances in software and standards that make bet-
ter use of the transport-centric shared visualization
and rendering model.

The prototype system discussed in this article is
not unique in its design. MPEG-4, for example,
provides for a scene description layer that is based
upon scene graph technology, includes support for
still and dynamic video compression, as well as
support for audio [8]. The benefits realized in
MPEG-4 include the possibility that the local
viewer may interact with objects in a 3D scene, but
with scene content being provided by a remote
source.

Compression technology is integral to many net-
work-based applications. The fundamental trade-
off is one of time versus space. Compression algo-
rithms can consume a substantial amount of time,

but can produce highly compact and quickly-trans-
mitted data objects. While reducing raw band-
width through compression is a desireable goal,
not all applications lend themselves to use of gen-
eral compression. For example, when the content is
static, but downloadable and viewable by many,
the cost of compression is not only ammortized
over the wide distribution, but may be performed
once, off-line. Our prototype system is to be used
for the visualization of large, time varying data
that is remotely located. In the IBRAVR subsystem,
the transmitted images are the results of visualiza-
tion. Visualization is an iterative process - there is
not a close match between the traditional compres-
sion ammortization model and a process of inspec-
tion, modification and parameter changing,
followed by more inspection. However, general
purpose image compression technology can
reduce transmission costs in our system, at least for
the IBRAVR subsystem.

Our distributed IBRVR prototype combines
shared, parallel volume rendering with tradi-
tional visualization. In this case, the underly-
ing grids are adaptive and hierarchical.

FIGURE 3. IBRVR and Grid Visualization
February 7, 2000 4

Geometry compression is a related topic, but
unlike image and audio compression, is still in
embryonic stages of development. MPEG-4 refers
to compression of geometry, where the geometry
consists of meshes built from triangles, as well as a
model for progressive refinement, or “level-of-
detail” management, where the client may choose
to display a lower-resolution model while a
higher-resolution representation is downloading.
Our approach is slightly different, where compres-
sion occurs, at least for the grid visualization, at the
semantic level rather than at the level of vertices
and faces. A “box” can be described simply with
two vertices, and a sphere can be described with a
center point and radius. The compression comes
from using a higher-order representation of the
underlying geometry.

Similarly, our “elevation maps” consist of two
coordinates (minimum and maximum), two inte-
gers that define the resolution of the map in each
parametric dimension, and a byte stream provid-
ing a positive or negative elevation at each implicit
grid point of the elevation map.

Network technology improvments can enhance
the basic “visualization dot com” model. Dynamic
monitoring of Quality-of-Service parameters such
as raw bandwidth, error rate, latency, reliability
and priority can all have an impact on scheduling
and performance of the system. Dynamic route
discovery and modification could potentially
result in shorter and more reliable data paths from
the back-end to the viewer. Changes in bit rate can
be taken into account to alter the resolution of data
sent from the back-end to the viewer. Bandwidth
reservation will assist in scheduling, so that “hero-
sized” problems may be smoothly executed. A
“hero” problem would be one in which a
researcher wishes to perform visualization of
remote data that is tera-scale in size.

The combination of inexpensive, scalable storage
with high capacity networking also promises to
alleviate a long-standing requirement that the
computing engine and data source are physically
close. Bandwidth off the DPSS has been shown to
be on the order of 100 megabytes per second. The
bottlenecks we have encountered thus far tend to
be clustered around the network interface of the
parallel computer used for back-end data render-
ing.

In the future, we are interested in exploring two
primary topic areas. The first is to expand the fea-

ture set of the underlying framework to support
the needs of the scientific user community, the con-
sumers of this technology. Second, we are tracking
the changing network techologies in order to make
best possible use of the network.

The use of the term “visualization dot com” is
illustrative of an important point: with new tech-
nologies come new opportunities. We have dis-
cussed one such opportunity that capitalizes upon
technology advances in networking and graphics.

5.0 Acknowledgement

This work was supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-
AC03-76SF00098.

6.0 Bibliography

[1] Klaus Meuller, Naeem Shareef, Jian Huang and
Roger Crawfis, IBR-Assisted Volume Rendering,
Proceedings of IEEE Visualization 99, Late Break-
ing Hot Topics, pp. 5-8, 1999.

[2] Ulrich Neumann, Communication Costs for
Parallel Volume-Rendering Algorithms, IEEE
Computer Graphics and Applications, Volume 14,
Number 4, pp 49-58, July 1994.

[3] The Message Passing Interface (MPI) Standard,
http://www.mcs.anl.gov/mpi/.

[4] RM Scene Graph Programming Guide (beta),
http://www.r3vis.com/.

[5] David Butenhof, Programming with POSIX
Threads, Addison-Wesley, 1997.

[6] C.A. Rendleman, V. E. Beckner, M. Lijewski,
W.Y. Crutchfield, J. B. Bell, Parallelization of Struc-
tured, Hierarchical Adaptive Mesh Refinement
Algorithms, Computing and Visualization in Sci-
ence, April 1999.

[7] Brian Tierney, Jason Lee, Brian Crowley, Mason
Holding, J. Holding and F. Drake, A Network-
Aware Distributed Storage Cache for Data Inten-
sive Environments, Proceedings of IEEE High Per-
formance Distributed Computing, August 1999.
http://www-didc.lbl.gov/DPSS/.
February 7, 2000 5

[8] Overview of the MPEG-4 Standard, http://
drogo.cselt.stet.it/mpeg/standards/mpeg-4/
mpeg-4.htm#E40E1.
February 7, 2000 6

	1.0 Abstract
	2.0 The Brute-Force Approaches
	3.0 A Prototype Implementation
	3.1 Distributed IBRVR
	3.2 Application of Shared Visualization

	4.0 Discussion and Future Work
	5.0 Acknowledgement
	6.0 Bibliography

