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Abstract

Chunking is formalized as the dual process of
building percepts by recognizing in stimuli chunks
stored in memory, and creating new chunks by
welding together those found in the percepts. As
such it is a very attractive process with which to
account for phenomena of perception and learning.
Servan-Schreiber and Anderson (1990) demonstrated
that chunking is at the root of the "implicit learning”
phenomenon, and Servan-Schreiber (1990; 1991)
extended that analysis to cover category learning as
well. This paper aims to demonstrate the potential of
chunking as a theory of perception by presenting a
model of context effects in letter perception. Starting
from a set of letter segments the model creates from
experience chunks that encode partial letters, then
letters, then partial words, and finally words. The
model's ability to recognize letters alone, or in words,
pseudo-words, or strings of unrelated letters is then
tested using a backward masking task. The model
reproduces the word and pseudoword superiority
effects.

To overcome the limited capacity of its short term
memory a mind organizes its input into familiar
chunks (Miller, 1956). From this fact we can directly
derive two more: First, when confronted with a set of
input features, a mind will seek to recognize
configurations of features, or chunks, that it has
stored in its long term memory, and the resulting
percept in short term memory will consist of those
recognized chunks. Second, additional chunks will be
created, and stored in long term memory, by welding
together some of the chunks that make up the
percept. We have here a general description of an
adaptive recognition machine that learns continuously
in order to perceive better: A chunking machine.

The facts that minds perceive and learn by chunking
have been heavily documented (e.g., Bartram, 1978;
Buschke, 1976; Chase & Simon, 1973; Johnson,
1970; Newell & Rosenbloom, 1981), yet most
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current models of perception, and letter perception in
particular, overlook those facts (e.g., McClelland &
Rumelhart, 1981; Oden, 1979; Massaro & Sanocki,
in press). In this paper I demonstrate that the
perceptual advantage of letters in words and
pseudowords over letters in unrelated letter strings is a
natural characteristic of a chunking machine that has
learned, from scratch, to recognize letters and words.

The Chunking Model

Chunks. A chunk is a long term memory
hierarchical structure whose constituents are chunks
also. There are two kinds of chunks: Elementary
chunks are those that the cognitive system never had
to create. They are assumed to be the output of an
elementary perceptual system. All other chunks are
created by welding together lower level chunks. (Any
theory of chunking must assume a limit on chunk
size, the number of chunks that can be welded
together into a new chunk. For simplicity, this
theory assumes that it is 2, the lowest number that
still enables chunk creation.)
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Figure 1. A potential hierarchical network of
chunks that encodes the letters T, I, and D in terms of
simple line segments. Structurally similar letters
may share subchunks, and entire letters may be
subchunks of more complex letters.
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The letter perception model assumes that simple
straight line segments are elementary chunks. As
Figure 1 illustrates by showing a potential
hierarchical structure of three chunks for the letters T,
1, and D, the letters that were used as stimuli in the

simulation were made of such simple segments..

Note that, as in this case, structurally similar letters
may share subchunks.

Perception. Chunks are used to perceive stimuli,
and given the recursive and hierarchical nature of
chunks the perception process is necessarily cyclical
and bottom-up. Starting with an elementary percept
that contains all the elementary chunks present in the
stimulus (e.g., letter segments), each cycle of
perception seeks to reduce the number of chunks
currently in the percept by replacing pairs of chunks
in the percept by a chunk that encodes their co-
occurrence. This operation is called encoding. For
example, if the chunks w, x, y, and z are in the
percept and there are chunks (w x) and (y z) in
memory, then the next cycle of perception puts (w x)
and (y z) in the percept in place of their constituent
chunks. And if the chunk ((w x) (y z)) is also in
memory, then the percept can be encoded further on
the following cycle. The process can continue to
cycle until the percept cannot be encoded further.

Encoding occurs in parallel on each cycle. As the
example above illustrates, two or more chunks can
encode the percept simultaneously in one cycle. But
there are potential conflict situations: For example,
if the percept contains the chunks [w,x,y,z], and there
are chunks (w x), (x y), and (y z) in memory, then (w
x) and (y z) are compatible encoders while (x y) is
incompatible with both of them. To resolve such
conflicts, the model first collects the set of all the
candidate encoders, then randomly selects a subset of
those that are all compatible. Thus the percept could
be encoded either as [w,(x y) z] or as [(w x),(y z)].

Note that the choice that is made is not without
consequence for the next cycle of perception. If there
is a chunk ((w x) (y z)) in memory then it has a
chance to encode the percept on the following cycle if
it is [(w x),(y z)], but not if it is [w,(x y),z]. As is
common with simple hill-climbing procedures, this
bottom-up perception process can easily get stuck in
a non-optimal encoding of the stimulus.

A simple way to avoid getting stu¢k in non-
optimal encodings is to allow the process to
backtrack through a decoding operation. To decode a
chunk that is in the percept is to remove it and
replace it by its subchunks. For example, if the
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chunk (x y) is decoded in the percept [w,(x y),z] then
the resulting percept is [w,x,y,z].

In the model, every perception cycle consists of an
encoding stage followed by a decoding stage. Every
chunk that is in the percept at the end of an encoding
stage has a probability, dp, of being decoded before
the onset of the next cycle, and if a chunk is decoded
at the end of a cycle, it is forbidden to be an encoder
on the immediately following cycle. A chunk's dp is
determined throughout the perception process in the
following way: Elementary chunks come into the
process with an initial probability of being decoded.
Then every encoder chunk comes into the percept
with a dp that is equal to the average of its
subchunks' dps. Finally, and most importantly,
whenever an encoding stage has failed to retrieve any
encoder the dp of every chunk in the percept is
decreased by a small amount (e.g., .01). Thus, the
perception process will oscillate between different
percepts, but oscillations will become more and more
unlikely as the dps of the chunks in the percept
decrease. Eventually, the process settles on a stable
percept when the dp of each chunk is zero.

This is a straightforward application of simulated
annealing to bottom-up encoding. It has the nice
property of being likely to settle in one of the more,
and often the most, encoded interpretation of the
input, as the following example illustrates: Consider
Figure 2. It represents the different percepts that the
process oscillates between when presented with a D,
and given a hypothetical network of chunks. In each
network in the figure the chunks that make up the
percept are enclosed in bold squares. Thus percept P1
is the elementary percept that consists of the
elementary segments of a D, while percept P6
contains only a D chunk. Encoding proceeds from
top to bottom on the page, while decoding proceeds
from bottom to top following the arrows. There are
two possible minima: P5 which represents an "I" and
an isolated segment, and P6 which represents a "D".
To move from P5 to P6 requires at a minimum 1
decoding followed by 2 encodings, but to move from
P6 to PS5 requires at a minimum 2 consecutive
decodings followed by 1 encoding. Because encoding
is guaranteed at every cycle (provided that there exists
a pertinent encoder), while decoding is probabilistic,
it is easier to encode than to decode. Therefore, given
any probability of decoding it is easier to move from
P5 to P6 than to move from P6 to P5, and that
difference increases as the probability of decoding
chunks decreases. So the process will tend to settle
on P6 (D) much more often than on PS5 (I+ |).
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Figure 2. Starting with percept P1 (the segments of the letter "D") the perception process will tend to
oscillate between the two possible minima P5 ("I" + "|") and P6 ("D") before settling preferably on P6, the
most encoded interpretation of the input. The chunks of each percept are enclosed in bold squares, and
arrows indicate how encoding and decoding transform one percept into another.

Learning. Once the perception process has settled
on a final percept, a collection of chunks, a new
chunk is created by selecting a pair and welding it
into a new chunk (if it does not already exist in
memory). In cases where the final percept consists of
a single chunk, the creation process is not engaged.
The selection of the pair of chunks that will be
welded into a new chunk is essentially random but
may be constrained. For example, when letter
segments are welded together into a letter or a partial
letter, a constraint may be that the two segments
selected must be connected or parallel.

The combination of the perception and chunk
creation processes allows the model to continuously
grow a network of chunks from its experience with
successive stimulus exposures, given only a
minimum set of elementary chunks to start with.
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Test of the Model

The model was tested with respect to its ability to
reproduce several important results in the letter
perception literature. They are: (1) The perceptual
advantage of letters in words over letters in
pronounceable nonwords (also called pseudowords),
letters in strings of unrelated letters, and letters
presented alone. (2) The perceptual advantage of
letters in pseudowords over letters in strings of
unrelated letters. (3) The reversal of the advantage of
letters in words over letters presented alone at long
exposure durations. For a review of those results see
McClelland & Rumelhart (1981), or Massaro &
Sanocki (in press).
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Figure 3. Evolution of the number of chunks in a
percept, nchunks, with increasing number of
perception cycles. There is one curve for each type of
stimulus: a single letter (alone), a four letter word
(word), a four letter pseudoword (pseudoword), and a
string of four unrelated letters (unrelated). Individual
curves are plotted up to the cycle where, on average,
perception has settled on a stable percept.

All these results were obtained in experiments
where a high contrast stimulus letter is presented for a
short duration in a particular context, followed
immediately a high contrast masking stimulus. The
subject is then asked to choose among two possible
letters which one was in a particular position. For
example the subject might see "WORK" quickly
followed by a mask "####" and be asked whether "K"
or "D" was in the fourth position. As in this
example, when the context forms a word with the
target, the foil does also, therefore guessing is
controlled for.

Before any simulation of those results could be
attempted, the model first had to grow a network of
chunks to represent letters and words. To start it was
given a small set of elementary chunks to represent
letter segments of different lengths and orientations.
It then learned chunks to recognize the 26 individual
letters of the alphabet. Once it could perfectly
recognize any letter presented alone, it learned chunks
to recognize each word in a sample of 288 four letter
words. In the end, from the original 8 elementary
segment chunks the model grew a network containing
18 partial-letter chunks, 51 letter chunks, 1665
partial-word chunks, and 1339 word chunks., These
numbers indicate a large amount of redundancy in the
representation of letters and words.
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Figure 4. Evolution of the percentage of correct
forced-choice recognition of target letters, presented in
words or alone, with increasing number of processing
cycles before masking.

Time course of encoding. In a first experiment
the model was tested for its ability to encode words,
pseudowords, single letters, and strings of unrelated
letters. Figure 3 plots for 144 stimuli of each type
the average number of chunks, nchunks, in a percept
after a given number of perception cycles. Individual
curves are plotted up to the cycle where, on average,
perception has settled on a stable percept. For this
experiment, and the two that follow, the initial
decode-probability was set at .30. Note that the
process settles faster when a single letter is presented
that when a multi-letter stimulus is presented. For
instance, even though the letters in a word are
processed in parallel, recognizing a whole word takes
longer than recognizing a single letter. Note also that
the less related the letters in a multi-letter stimulus
are (as evidenced by the final nchunks), the longer it
takes to settle on a final percept. These two results
can only be attributed to a kind of lateral interference
that is an emergent property of the annealing process.
To put it simply, the less related the letters are, the
more chunks there are in the percept at any cycle, so
the more chance of decoding there is, and therefore the
longer it takes to encode.

Words vs. single letters. In a second
experiment, the recognition of letters in words and
letters presented alone was compared given different
numbers of cycles before masking. The mask used
by the model was the union of the letter segments in
"O", "X", and "+", and masking was simuluted by
adding to a percept those spurious segments of the
mask that were not already present in the stimulus.



The model assumed that if perception had settled
before the scheduled onset of the mask, then masking
could not disrupt perception, that is, responses would
be based on the settled percept only. Thus masking
could only potentially disrupt performance if it
occurred before perception had settled. In those cases;
the spurious mask segments were allowed to
contaminate the percept for a small number of cycles
before a response was made. To choose a response,
among two alternatives in a particular position, the
model simply checked if either could be found in its
percept in that particular position. If yes then it was
chosen, else, if neither or both were perceived in that
position, then the model chose randomly. (Two or
more letters could be recognized in a position because
of the spurious segment introduced by the mask.)

Figure 4 plots the results of that experiment
involving 144 targets in words and 144 equivalent
targets presented alone. This simulation assumed S
cycles of masking before a response was made. Like
the human subjects of Massaro and Klitzke (1979) the
model produced an advantage for letters in words that
was eventually reversed at late masking onsets.

There are essentially three possible encoding states
for the target letter in a percept before masking
introduces spurious segments: (1) The target may not
be encoded as a single chunk, possibly due to
decoding or, more simply, encoding failure. (2) The
target may be encoded as a chunk that is not part of a
larger chunk, possibly due to the decoding of a larger
chunk, or the fact that it was presented alone, (3)
The target may be encoded as a chunk that is further
encoded in a larger chunk, or a hierarchy of larger
chunks. Masking has potentially different effects in
any of those three states: (1) If the target is not even
encoded as a chunk then the spurious segments of the
mask can prevent future encoding of the target by
being encoded together with target segments into
chunks incompatible with the target's structure. (2) If
the target is encoded as a free standing chunk then on
each masking cycle there is a probability that this
chunk gets decoded with dire consequences as in (1),
or that a spurious mask segment gets encoded with
the target chunk into a chunk that represents another
letter (for instance, the addition of a single letter
segment to the chunk for "P" can transform it into an
"R"). (3) If the target chunk is well hidden within a
further encoded hierarchy, for example in a chunk for
a complete word, or part of a word, and these larger
chunks resist decoding during the masking cycles,
then masking has no harmful effect. But if those
larger chunks get decoded, then there may be dire
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consequences as in (2).

The more cycles of processing there have been
before masking, the more unlikely it is that chunks
get decoded (the closer to settling perception is). So
targets in words, which are likely to be encoded in
chunks with other letters, are likely to be quite
immune to the effects masking compared to targets
encoded in free standing chunks. However, as Figure
3 shows, percepts tend to settle quicker with single
letter stimuli than with words. Therefore, because a
settled percept is immune to masking, late masking
is less likely to disturb the perception of single
targets than that of targets presented in words.

Words vs. pseudowords vs. strings of
unrelated letters. A final experiment compared
the forced-choice recognition of targets in words,
pseudowords (e.g., MIPE), and unrelated letter strings
(e.g., TCKU). 30 cycles of perception were allowed
before 10 cycles of masking. There were 144 stimuli
in each condition. The results are in Table 1. Like
human subjects the model produced a large advantage
for words and a smaller advantage for pseudoword over
strings of unrelated letters (e.g., McClelland &
Rumelhart, 1981).

The time course of encoding of the different
stimulus types plotted in Figure 3 indicated that
words are encoded as fewer chunks than pseudowords,
themselves encoded as fewer chunks than strings of
unrelated letters. This is simply a reflection of the
different amounts of relatedness between the letters in
the three stimulus types. And as the analysis of the
previous experiment demonstrated, more compact
encoding directly translates into less adverse effect of
masking.

Table 1
Correct forced-choice recognitions of letters in words,
pseudowords, and strings of unrelated letters.

Word Pseudoword Unrelated

84.4 % 78.6 % 70.3 %

To conclude, briefly, this limited testing of the
model demonstrated its potential as a theory of letter
perception. Further testing is certainly warranted, but
considering that the same chunking analysis was
successfully applied elsewhere to "implicit learning”
and to category learning (Servan-Schreiber &
Anderson, 1990; Servan-Schreiber, 1990; 1991),
there is some reason to be confident that chunking



processes of the type explored here underly much of
human learning and perception. Indeed, one major
contribution of this chunking analysis is to show
how these apparently unrelated phenomena are in fact
deeply related.
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