
Lawrence Berkeley National Laboratory
LBL Publications

Title
Parallel Performance Optimizations on Unstructured Mesh-based Simulations

Permalink
https://escholarship.org/uc/item/1m30663p

Journal
Procedia Computer Science, 51(1)

ISSN
1877-0509

Authors
Sarje, Abhinav
Song, Sukhyun
Jacobsen, Douglas
et al.

Publication Date
2015

DOI
10.1016/j.procs.2015.05.466

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1m30663p
https://escholarship.org/uc/item/1m30663p#author
https://escholarship.org
http://www.cdlib.org/

This space is reserved for the Procedia header, do not use it

Parallel Performance Optimizations on

Unstructured Mesh-Based Simulations

Abhinav Sarje1, Sukhyun Song2, Douglas Jacobsen3, Kevin Huck4, Jeffrey
Hollingsworth2, Allen Malony4, Samuel Williams1, and Leonid Oliker1

1 Lawrence Berkeley National Laboratory {asarje,swwilliams,loliker}@lbl.gov
2 University of Maryland {shsong,hollings}@cs.umd.edu
3 Los Alamos National Laboratory {douglasj}@lanl.gov
4 University of Oregon {khuck,malony}@cs.uoregon.edu

Abstract

This paper addresses two key parallelization
challenges the unstructured mesh-based ocean
modeling code, MPAS-Ocean, which uses a
mesh based on Voronoi tessellations: (1) load
imbalance across processes, and (2) unstruc-
tured data access patterns, that inhibit intra-
and inter-node performance. Our work an-
alyzes the load imbalance due to naive par-
titioning of the mesh, and develops methods
to generate mesh partitioning with better load
balance and reduced communication. Further-
more, we present methods that minimize both
inter- and intra-node data movement and max-
imize data reuse. Our techniques include pre-
dictive ordering of data elements for higher
cache efficiency, as well as communication re-
duction approaches. We present detailed per-
formance data when running on thousands
of cores using the Cray XC30 supercomputer
and show that our optimization strategies can
exceed the original performance by over 2×.
Additionally, many of these solutions can be
broadly applied to a wide variety of unstruc-
tured grid-based computations.

Keywords: Unstructured Mesh, Ocean Modeling,

Parallel Performance Optimization

1 Introduction

Iteration-based computational simulations re-
quire an abstract representation of the real-
world state. In most cases, the data is repre-
sented as a collection of multidimensional data
points where some of the data points define
spatial coordinates. In such applications, the
domain is discretized into cells, forming a mesh
or grid. In a distributed parallel environment,
these grids often provide a convenient frame-
work for decomposition of the data into inde-
pendent, groups of cells as partitions.

Structured meshes have regular cells and
connectivity. For example, 2D structured
meshes are typically represented with rectilin-
ear or curvilinear quadrangles which can often
be decomposed into partitions in a straightfor-
ward way. Structured meshes are appropriate
when they are sufficient to define regular do-
mains. One problem with structured meshes
in defining certain domains, such as surface
of spheres, is that they get distorted in order
to enclose areas such as the poles of spheres,
resulting in multiple grid points sharing the
same location creating a coordinate singularity
where the tangent space is undefined.

On the other hand, unstructured or irregu-
lar meshes have arbitrary polygon cells with
irregular connectivity. As such, partitioning

1

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

of these meshes is often not obvious and gen-
erally driven by complex algorithms. These
meshes are useful in applications requiring ei-
ther multiscale and/or variable resolution, and
they map better to curved surfaces, such as
surfaces of spheres, avoiding coordinate sin-
gularities and major distortions when mapped
to 2D [16]. Applications where unstructured
meshes are applicable include adaptive mesh
refinement, multi-resolution domains, and fi-
nite element methods on an irregular domain.

Often domain decomposition for distributed
memory parallel computations require the use
of ghost or halo cells from neighboring parti-
tions when cells on the boundary of a partition
require input from neighboring cells assigned
to a different partition. Furthermore, decom-
position of unstructured meshes that are not
fully connected results in irregular partitions,
potentially with high variability in the num-
bers of halo cells for each partition. This leads
to severe load imbalance, increasing synchro-
nization wait times and decreasing computa-
tional throughput. Deeper halo regions further
exacerbate this situation.

The on-node memory access patterns of
structured and unstructured codes tend to be
very different. Structured meshes are con-
venient in that their layout in memory is
amenable to optimizations such as blocking,
tiling, good cache reuse and vectorization be-
cause the cells are often represented as mul-
tidimentional rectilinear arrays. Because of
their regular shape and layout, they have a pre-
dictable access patterns. In contrast, unstruc-
tured meshes are a performance challenge as
they are frequently represented as connected
graphs with non-contiguous memory layouts.
Iterating over the “neighbors” of an unstruc-
tured mesh cell can result in poor cache reuse
due to pointer chasing since the neighbors may
not necessarily be localized in memory.

In this paper, we address these two par-
ticular challenges put forth by unstructured
meshes – load imbalance and unstructured
data. The issue of load imbalance is discussed
and addressed in Section 3, and the issue of un-
structured data is addressed in Section 4. We

Figure 1: (Left) Global multiscale ocean mesh
with refinement over the North Atlantic. The col-
oring represents variable resolutions with magenta
corresponding to finest resolution to blue for coars-
est. (Right) Detail of a region from the global
mesh. The actual mesh is overlaid to show the
smooth transitions of the mesh resolutions.

Figure 2: Diagram showing the MPAS-O hori-
zontal staggering with variables stored within cells
and on edges and vertices. Blue squares represent
scalar data (mass, temperature, etc.), orange cir-
cles represent vorticity related quantities, and red
triangles represent vector quantities (velocities).

present our results and solutions in the context
of an ocean modeling code, MPAS-Ocean [16],
which we briefly describe next.

2 Background

2.1 Ocean Modeling with MPAS

The Model for Prediction Across Scales
(MPAS) is a modeling framework collab-
oratively developed between Los Alamos
National Laboratory and the National Center
for Atmospheric Research [16]. The MPAS
framework is built on top of unstructured
mesh data structures that make heavy use of
indirect addressing. In this paper, we present
our optimization efforts on unstructured
meshes in the context of the ocean modeling
core, MPAS-Ocean.

MPAS-O is a next generation global ocean

2

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

model, built on top of spherical centroidal
Voronoi tessellations (SCVT). The resultant
meshes are composed of arbitrarily shaped
polygons which bring unique challenges to par-
allel load balancing and data locality. These
meshes can be generated using a density func-
tion to produce static mesh refinement in ar-
eas of interest (see Fig. 1). A major advan-
tage of such mesh is that it provides smooth
resolution transition regions, while allowing
for drastically different resolutions in differ-
ent regions of the mesh. It also eliminates the
need for “hanging node” issues that are com-
mon in regular structured variable resolution
meshes, while still providing refinement in ar-
eas of interest. Building off of this unstruc-
tured mesh, MPAS-O enumerates its data on
a staggered horizontal Arakawa C-Grid, visu-
alized in Fig. 2. While the horizontal data
structure is staggered and unstructured, this
mesh has a vertical (ocean depth) data struc-
ture that is regular and structured.

Global climate modeling is considered a
grand challenge problem due to the spatial and
temporal scales required to accurately simulate
the phenomena. Temporal scales for climate
models are on the order of centuries, while spa-
tial scales are on the order of tens of kilometers.
The requirements for performing global cli-
mate model simulations require models such as
MPAS-O to simulate on large number of hori-
zontal degrees of freedom of O(106) to O(107).
In addition, MPAS-O performs simulations us-
ing generally 100 vertical levels per horizontal
degree of freedom. These imply MPAS-O re-
quires efficient execution on high concurrency
systems to drive ocean analysis simulations.

2.2 Load Balance

Load balancing across processing units in par-
allel applications is a widely researched topic
due to its importance in gaining higher parallel
efficiency. Load imbalance leads to underuti-
lization of computational resources. Achiev-
ing an efficient load balance is particularly
challenging with unstructured meshes because
their balanced decomposition is not obvious [3,

Figure 3: An example visualization of the load im-
balance in an execution of MPAS-Ocean when the
mesh is partitioned using the Metis tool. The grid
used here consists of 1.8 million cells decomposed
into 2048 partitions, one per process. Blue parts
have low load and red parts have high load. In this
example, highest load process performs about 3×
as much work as the lowest load process.

12]. As unstructured meshes are easily rep-
resentable as graphs, many of the decomposi-
tion strategies are based on the graph parti-
tioning algorithms. Although the graph par-
titioning problem is NP-complete, a number
of heuristic-based partitioning algorithms ex-
ist [9, 15,17,21].

MPAS-O uses a popular graph partitioning
tool, Metis [13]. As will be discussed later,
using this approach directly causes significant
imbalance across processes. In addition to
the unstructured nature of the mesh, a pri-
mary factor causing the imbalance is the use of
deep halo regions in this application. The cell
counts in halo regions of different mesh parti-
tions is hence highly variable. A visualization
showing variability in computation and com-
munication loads across partitions in a sample
execution of MPAS-O is shown in Fig. 3.

It is known that graphs do not model parallel
communication volume well. Hypergraphs, on
the other hand, are able to model the commu-
nication volume accurately [5, 10, 11]. Hence,
in our work to improve the mesh partitioning,
we build a partitioner using hypergraph parti-
tioning [6, 10, 18, 19]. We analyze and address
this problem of load balance in Section 3.

3

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

2.3 Data Locality

Flops are free is the mantra of today’s large-
scale parallel systems. This refers to the obser-
vation that the primary bottleneck in nearly all
scientific applications today is data movement
and not computations. This gap in the cost
between computation and data movement is
only going to grow wider in future. Optimiz-
ing data movement (both volume and band-
width) is, hence, essential in obtaining high
performance. To affect this, the main strate-
gies are (1) maximizing reuse of data once
it has been loaded (through reordering data
traversal, and “communication-avoiding” algo-
rithms), and, (2) maximizing bandwidth via
streaming access patterns amenable to accel-
eration by hardware stream pre-fetchers.

To improve intra-node performance, it is es-
sential that the memory hierarchy (caches) is
used efficiently in data accesses. Data local-
ity, both spatial and temporal, is an impor-
tant factor in maximizing efficiency. When op-
erating on unstructured meshes, indirect and
semi-random access to data presents a num-
ber of challenges to maximizing cache reuse
and attaining high bandwidth. In this pa-
per, we increase data locality by reordering
the input mesh data to make sure that spa-
tially nearby cells are stored nearby in the
memory as well. Researchers have previously
used various strategies for improving cache
performance by introducing locality into struc-
tured meshes [2]. In [20], although the authors
consider unstructured data, they work with
meshes with high-degree of regularity. Here,
we address this problem for generic unstruc-
tured and multiscale meshes in Section 4.

2.4 Computational Environment

The experiments described in this paper were
executed on Edison, a Cray XC30 system at
NERSC. Each Edison node consists of two 12-
core Intel Ivy Bridge sockets. Each socket is
attached to 32 GB of DDR3 DRAM via a
memory controller providing about 44 GB/s
of bandwidth. Nodes are connected via Cray’s
high-performance Aries (dragonfly) network.

300 350 400 450 500 550 600 650
Communication Time [s]

50

100

150

200

250

300

350

400

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]

Figure 4: The variation in the computation versus
communication times for all processes, represented
by a dot, during an example simulation using a
partitioning obtained from Metis. This simulation
consists of 1,536 processes, each owning a mesh
partition. Communication time varies by about
42% and computation by 75% showing a large im-
balance.

In all the experiments presented in this paper,
we run with 12 MPI processes per socket.

The mesh used is a 15 km resolution world
ocean mesh, consisting of about 1.85M cells
and 5.5M edges. Each cell has 3 to 40 vertical
levels, representing a normalized vertical depth
of the ocean at that cell.

3 Mesh Partitioning

3.1 Load Imbalance Analysis

As previously mentioned, MPAS-O uses Metis
to decompose an input mesh into partitions.
Each partition may then be assigned to a dif-
ferent processors during simulations. Deep
halo regions are created for each partition
which represent the data that needs to be com-
municated from the neighboring partitions,
performing “halo-exchanges”. To demonstrate
the computational and communication load
imbalance due to a given Metis partitioning,
across the different processes during an execu-
tion, we show the variation in the computation
and communication time for each of the pro-
cess for a sample run in Fig. 4. It can be ob-
served that in this example the computation
and communication times vary by 75% and
42%, respectively, showing a high imbalance.

4

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

0 100 200 300 400 500 600
Partitioning Instance

105

C
o
st

model
actual

Figure 5: Total cost predicted using our model
compared with actual run times with respect to
700 different mesh partitioning obtained by using
PaToH with different parameter configurations.

Available partitioners generate a partition-
ing by (1) balancing the number of cells in all
partitions, and (2) minimizing the total num-
ber of edge cuts. Based on our analysis of load-
imbalance due to a straightforward Metis par-
titioning, it is clear that a different approach
is required to achieve better load balancing,
which would effectively balance the computa-
tion as well as the actual communication dis-
tribution. Therefore, this partitioner should
balance the partitions with respect to total
cells including the halo cells, and minimize the
communication volume. We turn to partition-
ing via hypergraphs using the PaToH parti-
tioner [7], which promises to model the com-
munication overhead more accurately.

The communication overhead between pro-
cesses is due to halo exchanges, and because of
the unstructured and non-contiguous nature of
meshes under consideration, each partition has
different number of halo cells, with high vari-
ability across all partitions. The effect of halo
cells is magnified when deep halos are used.
MPAS-O typically requires halos with depth
of three cells. Since graph/hypergraph parti-
tioning algorithms do not take these halo cells
into account, a different partitioning strategy
is necessary for a better balance. In order to
develop a halo-aware partitioning scheme, we
first construct a cost model for a given par-
titioning to accurately represent computation
and communication costs, and then use this
model to design our partitioning algorithm.

3.2 Cost Modeling

The computational cost for a processor in-
cludes the cost due to computations on the lo-
cal cells and on the halo cells. The cost may
be different for a local cell and a halo cell. For
p total partitions, let a represent the ratio be-
tween computation performed on a halo and
local cells. Given a partition k, we model its
computational cost, Cα as:

Cα =
1

F (p)

(
i∈Nk∑
i

wi + a

i∈Hk∑
i

wi

)
(1)

where Nk is the set of local cell for partition k,
Hk is the set of halo cells for partition k, and
wi is weight of a cell i. F (p) is a function of
p, the number of partitions, and represents the
fact that the cost decreases with increasing p.

The communication volume depends on the
number of halo cells for each partition, and
the number of neighbors each processor needs
to communicate with. We model the commu-
nication cost for a partition k as:

Cβ =
1

F (p)

hk
bk

+

(
max
i∈[1,p]

(ci)− ck

)
(2)

where hk = |Hk|, bk = number of neighbors of
partition k, ck is the total computational cost
of partition k. Hence, the first term represents
the average communication load to each neigh-
bor, and the second term represents the wait
time for processor owning partition k.

We perform extensive experiments with the
actual cost of representative simulations with
varying concurrency and input meshes, and
use the obtained performance data to per-
form a least-squares line fit in order to find
the computation-communication ratio, and the
value of F (p). From the data collected from
these experiments, we obtain the fitted val-
ues a = 0.7 and F (p) ≈ log(4p). We confirm
the correctness of our cost model for any given
mesh partitioning as shown in Fig. 5.

3.3 Halo-aware Partitioning

To model deep halos, we could naively use BFS
or DFS starting from each cell and identify all

5

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

the l distance neighbors to construct l-depth
halos. However, given that graphs can be rep-
resented as sparse matrices, a more efficient
approach is to compute the l-th power of a ma-
trix, through sparse matrix-matrix multiplica-
tion (SpMM), which identifies all nodes in the
corresponding graph that are at a distance l
and connects them with an edge. Therefore,
given A as the sparse matrix representation of
the input mesh, computing Al determines the
l depth halo cells. We utilize the CombBLAS
package [4] to perform the matrix power opera-
tions. Aggregating the edges from A,A2, ..., Al

identifies all the halo cells for any given parti-
tioning.

However, because the halo cells cannot be
identified until a partitioning has been per-
formed, their cost cannot be added for balanc-
ing during the partitioning process. Therefore,
our new partitioning strategy follows an iter-
ative approach. The strategy is designed as
a Monte-Carlo based partitioning scheme that
iteratively refines the partitioning using total
cost estimated for previous iteration’s parti-
tioning. Each iteration, thus, includes a call to
the hypergraph partitioning tool PaToH. This
scheme is as follows for an input mesh G:
1: procedure HaloAwarePartition(G)
2: Construct sparse matrix A representing G
3: Compute A2, · · ·Al

4: Compute A1···l =
∑l Ai

5: Construct hypergraph H0 for A1···l
6: while not converged do
7: Construct partitioning Pi of Hi

8: Construct halos for Pi

9: Compute cost prediction for each partition
k and assign corresponding weights to the cells
(distributing the cost of halo cells among partition
cells), and hence compute partition weights Wk

10: Compute imbalance, fi =
(
1− mink(Wk)

maxk(Wk)

)
11: if fi < fi−1 then
12: m = 1
13: else
14: m = min

(
1, e(fi−1−fi)/2

)
.

(Metropolis-Hastings probability)
15: end if
16: Accept Pi with probability m
17: if Pi is accepted then
18: Update Hi with the new cell weights to

construct H(i+1)

19: else
20: Reject Pi by Pi = Pi−1 and fi = fi−1

21: end if

22: end while
23: Output last accepted partitioning as result
24: end procedure

The above procedure ensures that the cost
due to halos are taken into account by as-
signing weights to the cells and refining the
partitioning. Experimental results show that
the convergence is reached quickly, generally
within 10 iterations.

3.4 Variable Cell Weights

In general a mesh may have variable cell
weights. For MPAS-O the cells in the in-
put mesh have variable depths, representing
the ocean depth at the corresponding loca-
tion. This introduces another opportunity for
optimization, since the computational cost of
a cell is proportional to the number of depth
layers it defines (varying between 3–40). To
take this into account, variable weights corre-
sponding to the cell depth are assigned to each
cell while calculating the cost using the perfor-
mance model. The next subsection presents
the impact of our depth and halo-aware parti-
tioning strategies compared with assigning the
original partitioning.

3.5 Performance Results

We perform experiments on the Edison sys-
tem (described in Section 2.4), using a 15 km
resolution mesh to simulate 10 days, with the
following four partitioning strategies: (1) Orig-
inal Metis partitioning. (2) Hypergraph parti-
tioning from PaToH. (3) Halo-aware partition-
ing. (4) Depth and halo-aware partitioning.
Each partitioning used in the following exper-
iments was selected from a sample size of 10
obtained from the corresponding partitioning
scheme, on the basis of best performance.

The performance as communication and
computation times of each run is shown in
Figure 6. These plots capture the maximum
to minimum ranges for all processes in a run.
Observe that the communication time drops
significantly for the partitions obtained from
our new partitioners, with a small increase
in the computation time. This is because

6

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

m
u
n
ic

a
ti

o
n
 T

im
e
 [

s]
Original
Hypergraph
Halo-aware
Depth-Halo-aware

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

s]

Original
Hypergraph
Halo-aware
Depth-Halo-aware

Figure 6: (Left) The ranges of time involved in communication related tasks among all processes in each
run. (Right) The ranges of time spent in computations among all processes in each run. Comparison
of the four types of partitioning is depicted for varying number of processes. The number of partitions
is equal to number of processors, and each partition is assigned to a different processor.

96 192 384 768
1536

3072
6144

12288

Num. Processes

102

103

104

105

T
im

e
 [

s]

Original total
Hypergraph total
Halo-aware total
Depth-Halo-aware total

Figure 7: Total application execution times with
varying number of processes are shown for each of
the four types of partitioning. The number of par-
titions is equal to number of processors, and each
is assigned to a different processor. Corresponding
communication time is also shown in lighter color
for reference.

the new partitioner attempt to combine
the computation and communication cost,
and better overall cost may be achieved by
increasing the maximum compute time and
decreasing the maximum communication
time. It should be noted that these plots
do not show the correspondence between the
minimum and maximum of computation and
communication time for each process, and

total time taken is not simply the sum of the
two. The total execution time taken by each
run is shown in Fig. 7. It can be seen that
at 12,288 cores, performance improvement of
our scheme is more than 2× over the base
graph partitioning. Lower concurrencies also
show performance improvements, although
less dramatic. Note that due to the significant
reduction in communication costs, our parti-
tioning scheme improves performance as well
as scalability.

4 Ordering Data

An unstructured mesh implicitly means that
the data layout is also unstructured, causing
the involved data structures to be mapped to
the memory in no particular order. Taken as is,
there is nearly no locality, leading to inefficient
use of the memory hierarchies. In our case,
the meshes have no regularity, and no assump-
tions regarding the data ordering can be made.
Since maintaining locality is essential for high
performance, particularly in presence of mem-
ory hierarchies, we need to introduce spatial
data locality by re-arranging data so that the
data with temporal locality reside nearby in
the memory as much as possible. Currently,
since the MPAS-O mesh can be directly repre-
sented as a sparse matrix, to create locality, its

7

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

Figure 8: A part of the mesh covering Earth’s
oceans is shown for each of the four cell or-
derings: random (top-left), original (top-right),
Hilbert (bottom-left) and Morton (bottom-right).
The ordering of the cells is shown using white lines
connecting the cells.

generation process follows a cell ordering called
the reverse Cuthill-McKee [8] (RCM) ordering,
which is an algorithm for permuting a sym-
metric sparse matrix to convert it into a band
matrix with a small bandwidth. We will show
below that even though it follows some locality
pattern, its performance can get nearly as low
as a complete random ordering.

4.1 Space Filling Curves

Space Filling Curves (SFCs) [1, 14] are gener-
ally used to map a higher dimensional data
on to a one-dimensional line. A number of
SFCs have been developed and have proven to
be widely applicable for solving scientific prob-
lems as well as for improving performance of
applications. In our case, SFCs are an obvi-
ous choice to explore for the introduction of
data locality, but due to the lack of any reg-
ularity in the underlying mesh, they cannot
be directly applied since SFCs are defined for
regular and/or repeating grid patterns. For-
tunately, the SCVT mesh under consideration
exists in 3D space, which allows overlaying
a structured grid on top of the unstructured
mesh for the purposes of data reordering.

Given an unstructured mesh defined in a 3-
dimensional space, we represent each cell as a
single point at its centroid. We then define
an octree-based rectangular grid enclosing all
these points. This grid constructed by recur-
sive decomposition such that each point resides
in a separate leaf node. Once we have this rep-
resentation, we simply order the octree leaves
according to an SFC of choice. This leads to
an ordering of the corresponding points repre-
senting the unstructured mesh. This ordering
is then mapped onto the corresponding mesh
cells to reorder the data.

Due to the mesh definition on a spherical
surface and the discontinuities, the application
of the above strategy to the complete mesh
at once causes a number of “jumps” between
cells along the ordering, which are not spatially
close but appear next to each other in the or-
dering. Hence, instead of reordering the full
mesh, we apply ordering to each mesh parti-
tion independently. This minimizes the num-
ber of jumps and allows for better data locality.
We considered several SFCs to improve simu-
lation performance, and present two top ap-
proaches: Hilbert curve, and Morton ordering
(or Z-SFC). Examples of the ordering of the
mesh cells produced by these curves is shown
in Fig. 8. In addition to ordering the cells,
we also follow the same scheme to reorder the
vertices and edges in the mesh.

4.2 Performance Impact

We perform experiments to analyze the per-
formance due to each ordering. In Fig. 9, the
results are summarized as the total application
execution time taken using each of the follow-
ing four mesh orderings: (1) Random ordering,
for reference. (2) Original RCM ordering. (3)
Morton SFC ordering. (4) Hilbert SFC order-
ing. The on node performance improvement
observed for the Hilbert and Morton orderings
is as high as 40% with respect to the origi-
nal (RCM) and random orderings. All these
experiments have been performed using our
depth and halo-aware partitioning, hence, the
observed benefits are on top of the previously

8

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

96 192 384 768
1536

3072
6144

Num. Processes

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35
S
p
e
e
d
u
p
 R

e
la

ti
v
e
 t

o
 O

ri
g
in

a
l

Random

Original

Morton

Hilbert

96 192 384 768
1536

3072
6144

Num. Processes

108

109

1010

1011

1012

N
u
m

.
M

is
se

s

L3 - Random

L3 - Original

L3 - Morton

L3 - Hilbert

TLB - Random

TLB - Original

TLB - Morton

TLB - Hilbert

Figure 9: (Left) Speedup of the total application execution time, relative to the original (RCM)
ordering, for the various mesh data orderings is shown. (Right) Total number misses for L1, L2,
L3 caches and TLB during the application execution with the four mesh data orderings is shown.
Optimized depth and halo-aware partitioning as obtained from previous section are used for all cases.

presented improvements.
The benefit of introducing data locality into

the mesh by using the two SFCs are clearly
observed with smaller number of partitions,
and the performance gain gradually dimin-
ishes. With strong scaling, this is expected be-
cause as the partition sizes grow smaller, more
of the mesh data can fit into the caches, which
makes their ordering not as important. Nev-
ertheless, the benefits are more profound on
higher resolution meshes as they scale to even
larger number of processors.

Further, to analyze how the cache behavior
is affected by the reordering, we collect cache
statistics using hardware counters. The total
number of cache misses for L1, L2, L3 caches
and TLB, during the execution of the applica-
tions are shown in Fig. 9. These show that
ordering the data is definitely beneficial for
improving cache performance. Apart from re-
ducing the execution time with reduced cache
misses, the minimization of data movement
also leads to lower power consumption.

5 Conclusions

In this work we address two of the primary per-
formance challenges, load balance and data lo-
cality, when faced with computations over un-
structured meshes. We demonstrated that dis-

tributing a work load across processors with
an unstructured mesh partitioning, it is nec-
essary to consider the computation and com-
munication costs due to any halos used in or-
der to reduce overall communication and gain
higher performance. We therefore devised a
new hypergraph-based depth- and halo-aware
partitioning strategy, which allowed significant
improvement for MPAS-O at scaling. We addi-
tionally applied an SFC-based ordering to the
unstructured mesh by mapping it to a 3D reg-
ular domain, showing that ordering is essential
to reduce data movement when the data size is
significantly larger than the system cache size.

Overall our optimizations attained up to
2.2× speedup compared with the original
implementation, allowing additional MPAS
short simulations that improve statistics
via increased ensembles. Additionally, our
improved scaling enables increased resolution
and throughput of higher resolution meshes
thus, allowing the optimized MPAS version to
answer novel science question of importance
to the climate modeling community.

Acknowledgments

The authors thank Aydin Buluc and Umit
Catalyurek for discussions on graph partition-
ing. Authors from LBNL were supported by

9

Parallel Performance Optimizations on Unstructured Mesh-Based Simulations Sarje et al.

DOE Office of ASCR under contract number
DE-AC02-05CH11231. Authors from Univ. of
Oregon were supported by DOE SciDAC grant
DE-SC0006723. Douglas Jacobsen was sup-
ported by DOE Office of BER. We used re-
sources at NERSC, which is supported by Of-
fice of Science of US DOE under Contract No.
DE-AC02-05CH11231.

References

[1] M. Bader. Space-Filling Curves. An Intro-
duction With Applications in Scientific Com-
puting. Springer, Oct. 2012.

[2] M. A. Bender, B. C. Kuszmaul, S.-H. Teng,
and K. Wang. Optimal Cache-Oblivious
Mesh Layouts. Theory of Computing Systems,
48(2):269–296, Feb. 2011.

[3] M. Berzins. A new metric for dynamic load
balancing. Applied Mathematical Modelling,
2000.

[4] A. Buluc and J. R. Gilbert. The Combinato-
rial BLAS: Design, implementation, and ap-
plications. International Journal of High Per-
formance Computing Applications, 2011.

[5] Ü. Catalyürek. Hypergraph models for sparse
matrix partitioning and reordering. PhD the-
sis, 1999.

[6] Ü. Catalyürek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel
sparse-matrix vector multiplication. Parallel
and Distributed Systems, IEEE Transactions
on, 10(7):673–693, 1999.

[7] U. Catalyurek and C. Aykanat. PaToH: Par-
titioning Tool for Hypergraphs, March 2011.

[8] E. Cuthill and J. McKee. Reducing the Band-
width of Sparse Symmetric Matrices. In Pro-
ceedings of the 1969 24th National Confer-
ence, ACM ’69, pages 157–172, 1969.

[9] J. M. Dennis. Inverse space-filling curve par-
titioning of a global ocean model. In Inter-
national Parallel and Distributed Processing
Symposium (IPDPS’07), pages 1–10. IEEE,
2007.

[10] K. D. Devine, E. G. Boman, R. T. Heaphy,
R. H. Bisseling, and Ü. V. Catalyürek. Paral-
lel hypergraph partitioning for scientific com-
puting. In Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th Inter-
national, page 10 pp. IEEE, 2006.

[11] O. Fortmeier, H. M. Bücker, B. O. F. Auer,
and R. H. Bisseling. A new metric enabling
an exact hypergraph model for the communi-
cation volume in distributed-memory parallel
applications. Parallel Computing, 39(8):319–
335, Aug. 2013.

[12] Y. F. Hu and R. J. Blake. Load balancing for
unstructured mesh applications. Parallel and
Distributed Computing Practices, 1999.

[13] G. Karypis. METIS: A Software Package
for Partitioning UnstructuredGraphs, Parti-
tioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices, Mar. 2013.

[14] B. Moon, H. V. Jagadish, C. Faloutsos, and
J. H. Saltz. Analysis of the clustering prop-
erties of the Hilbert space-filling curve. IEEE
Transactions on Knowledge and Data Engi-
neering, 13(1):124–141, 2001.

[15] I. Moulitsas and G. Karypis. Architecture
Aware Partitioning Algorithms. In ICA3PP
’08: Proceedings of the 8th international con-
ference on Algorithms and Architectures for
Parallel Processing. Springer-Verlag, June
2008.

[16] T. Ringler, M. Petersen, R. L. Higdon, D. Ja-
cobsen, P. W. Jones, and M. Maltrud. A
multi-resolution approach to global ocean
modeling. Ocean Modeling, 69(C):211–232,
Sept. 2013.

[17] K. Schloegel, G. Karypis, and V. Kumar.
Parallel static and dynamic multi-constraint
graph partitioning. Concurrency and Compu-
tation: Practice and Experience, 14(3):219–
240, 2002.

[18] N. Selvakkumaran and G. Karypis. Multi-
Objective Hypergraph Partitioning Algo-
rithms for Cut and Maximum Subdomain De-
gree Minimization. IEEE Transactions on
Computer Aided Design, pages 1–14, Apr.
2005.

[19] B. Uçar and C. Aykanat. Revisiting hyper-
graph models for sparse matrix partitioning.
SIAM review, 49(4):595–603, 2007.

[20] H. T. Vo, C. T. Silva, L. F. Scheidegger, and
V. Pascucci. Simple and Efficient Mesh Lay-
out with Space-Filling Curves. Journal of
Graphics Tools, 16(1):25–39, 2012.

[21] C. Walshaw, M. Cross, and M. G. Everett.
Dynamic mesh partitioning: A unified opti-
misation and load-balancing algorithm. 1995.

10

	Introduction
	Background
	Ocean Modeling with MPAS
	Load Balance
	Data Locality
	Computational Environment

	Mesh Partitioning
	Load Imbalance Analysis
	Cost Modeling
	Halo-aware Partitioning
	Variable Cell Weights
	Performance Results

	Ordering Data
	Space Filling Curves
	Performance Impact

	Conclusions

