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Abstract

This paper presents a methodology for deriving the closed-form density of diffusions 

restricted to finite intervals with reflecting or absorbing barriers. Bounded diffusions are 

useful, for example, in finance, resource economics, or industrial organization. Results 

are derived for popular diffusions.
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I. Introduction

Many economic time series may be usefully modeled with bounded diffusions. Reflecting 

barriers are warranted for price floors or price ceilings, or for limits on a population density; 

exchange rates or interest rates appear bounded by reflecting barriers. Alternatively, a lower 

absorbing barrier is needed when an investment opportunity vanishes at low values or for a 

renewable resource that could become extinct.

Unfortunately, explicit expressions for the density of bounded diffusions are unavailable 

in the econometrics literature, which may constrain modeling and precludes using maximum 

likelihood techniques. This may also create some econometric difficulties. For exchange rates, 

for example, it is difficult to reject the unit root hypothesis (see Perron 1989 or Caporale, Pittis, 

and Sakellis 2003), although some time series exhibit weak mean-reversion (Aït-Sahalia 1996).

This paper presents a methodology for finding the density of diffusions restricted to 

intervals with reflecting or absorbing barriers. It relies on separation of variables techniques and 

on the classical solution of homogenous, parabolic partial differential equations. Results are 

provided for several popular diffusions.

II. Methodology

Consider the diffusion {X(t),t≥0} defined over [L,R], where both L and R are finite. L and R are 

either reflecting or absorbing barriers:

( ) ( ) .dX X dt x dwµ σ= + (1) 

The infinitesimal drift µ(x) and volatility σ (x)>0 are assumed to be continuous; and dw is an 
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increment of a standard Wiener process (Karlin and Taylor 1981).

For 2( , ) [ , ]x y L R∈ , let ( , ; )p t y x  be the density of X(t) at y given that X(0)=x. Karlin and 

Taylor (1981) show that ( , ) ( , ; )u t x p t y x≡  verifies the Kolmogorov backward equation

2 2

2

( , ) ( ) ( , ) ( , )
( ) ,

2

u t x x u t x u t x
x

t xx

σ µ∂ ∂ ∂= +∂ ∂∂ (2) 

which is a second order parabolic differential equation. Since X=x at time 0, the initial condition 

for this problem is

(0 , ) ( ),yu x xδ+ = (3) 

where ( )y xδ  is the Dirac delta function. To have a well-defined problem, we need boundary 

conditions at L and R. Let ξ designate either L or R. From Karlin and Taylor (1981), if ξ is 

reflecting, then

( , )
0,  0.

u t
t

x

ξ∂∀ ≥ =∂ (4) 

If instead ξ is absorbing we have,

0,  ( , ) 0.t u t ξ∀ ≥ = (5) 

Equations (2), (3), and boundary conditions at L and R uniquely define ( , )u t x , if a 

solution exists (Lieberman 1996). Since this problem is homogeneous, a solution by separation 

of variables can be attempted: let ( , ) ( ) ( )u t x g t f x= . We see that g(t) is proportional to te λ− , 

where λ>0 is an unknown constant (if λ<0, the solution explodes), and f(x) verifies

2
'' '( )
( ) ( ) ( ) ( ) 0.

2

x
f x x f x f x

σ µ λ+ + = (6) 
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Multiplying (6) by

2 2

2 2 ( )
( ) exp

( ) ( )

x

L

z
r x dz

x z

µ
σ σ

 =    ∫ (7) 

gives the Sturm-Liouville equation (Boyce and DiPrima 1969)

[ ]( ) '( ) ' [ ( ) ( )] ( ) 0,p x f x r x q x f xλ+ − = (8) 

with

2

2 ( )
( ) exp  and ( ) 0.

( )

x

L

z
p x dz q x

z

µ
σ

 =   =  ∫ (9) 

Here p(x), p’(x), q(x), and r(x) are continuous on [L,R], p(x)>0 and r(x)>0 on [L,R], so we know, 

from the Sturm-Liouville theorem (Boyce and DiPrima 1969), that:

1) There exists an infinite, countable sequence of real, strictly increasing, non-negative 

eigenvalues λn, and associated nonzero eigenfunctions Fn(x) that verify ( ) 0nF ξ =  or ' ( ) 0nF ξ =

(ξ ∈{L, R}. Note that if we had L=-∞ or R=+∞, the spectrum of eigenvalues might be a mixture 

of discrete and continuous values; if (L, R) = (-∞, +∞), the spectrum of eigenvalues would likely 

be continuous;

2) The Fn(x)s are orthogonal with respect to r(x), i.e. if m≠n then ( ) ( ) ( ) 0
R

n m
L

r z F z F z dz =∫ ; and

3) The Fn(x)s forms a complete orthogonal set of functions defined on [L,R], so any piecewise 

continuous function g(x) can be expressed as a linear combination of the Fn(x)s:
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0

( ), if (.) is continuous at ,

( ) ( ) ( )
, if (.) is discontinuous at ,

2

n n
n

g x g x

c F x g x g x
g x

+∞
− +

=

=  +
∑

where 

1

2( ) ( ) ( ) ( ) ( )
R R

n n n
L L

c r y g y F y dy r y F y dy

− =    ∫ ∫ .

If problem (2)-(3) with appropriate boundary conditions at L and R has a well-behaved 

solution, it may then be written

0

( , ) ( ),nt
n n

n

u t x A e F xλ+∞ −
=

= ∑ (10)

where

1

2( ) ( ) ( ) ( ) ,
R

m m m
L

A r y F y r F dξ ξ ξ
− =    ∫ (11)

after imposing 
0

( ) ( )n n y
n

A F x xδ
+∞

=
=∑  at t=0+ (from (3)). Hence,

1

2

0

( , ; ) ( ) ( ) ( ) ( ) ( ) .n

R
t

n n n
n L

p t y x e r y F y F x r F dλ ξ ξ ξ
−+∞ −

=

   =       
∑ ∫ (12)

This powerful approach is well known in applied mathematics but it seems to have been 

overlooked in econometrics. It is especially useful when an explicit expression of the 

eigenfunctions Fn(x) can be found, which we show is the case for a number of common 

diffusions. Otherwise, Aït-Sahalia’s method (2002), which approximates densities with Hermite 

polynomials, may be used.
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III. Applications

To start with, let us consider the trendless Brownian motion (BM) over [L,R], with σ > 0:

.dX dwσ= (13)

Let us first assume that L and R are reflecting. A generic solution of (6) that verifies  

'( ) '( ) 0f L f R= =  is ( ) cos( )n
x L

F x n
R L

π −= − , n integer, so that 
2

1

2n
n

R L

πσλ  =  −  . The weight 

function here is 
2

2
( )r x σ= , so 0

1
A

R L
= −  and 

2
nA

R L
= −  for n>0. Hence,

2

1

1
( , ; ) 1 2 exp cos cos .

2n

t n x L y L
p t y x n n

R L R L R L R L

πσ π π
+∞

=

   − −      = + −        − − − −        
∑ (14)

As expected, as t→+∞, ( , ; )p t y x  tends towards the uniform stationary density 1( ) ( )y R Lψ −= − .

If instead L and R are absorbing ( ( ) ( ) 0f L f R= = ), ( ) sin( )n
x L

F x n
R L

π −= − , with 

2
1

2n
n

R L

πσλ  =  −  , 
2

nA
R L

= − , all for n>0, and 0
1

A
R L

= − . Hence,

2

1

2
( , ; ) exp sin sin .

2n

t n x L y L
p t y x n n

R L R L R L R L

πσ π π
+∞

=

  − −     = −       − − − −      
∑ (15)

This time, ( , ; )p t y x  tends towards 0 as t→+∞ as X is progressively “captured” either by L or by 

R, so over time ( , ; )p t y x  tends towards a uniformly null function on (L, R).

Figures 1a and 1b illustrate respectively the reflecting and the absorbing cases. They 
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correspond to classical heat diffusion problems in a laterally insulated rod with an initial 

temperature distribution. In the former, ends are insulated; in the latter, they are at temperature 0. 

Alternatively, we could analyze “mixed” boundary conditions, where one barrier is reflecting and 

the other absorbing, using the same approach. Note that ten terms were used in the summation of 

p(t,y;1); there was little difference between 8 and 12 terms.

Now consider the Ornstein-Uhlenbeck (OU) process

( ) ,dX K X dwν σ= − + (16)

where ν>0 drives how fast X reverts to ( , )K L R∈  and σ > 0. A series expansion shows that 

2

1 2

1 ( )
( ) , ,

2 2
n

n
x K

x
λ νϕ φ ν σ

 − −=    
 and 

2

2 2

1 3 ( )
( ) ( ) , ,

2 2 2
n

n
x K

x x K
λ νϕ φ ν σ

 −= − −   
 are two 

independent solutions of (6). The function

0

( )
( , ; ) ,

( ) !

k
k

kk

a z
a c z

c k
φ

+∞

=
=∑ (17)

with (a)0=1 and (a)k=a⋅(a+1)⋅⋅⋅(a+k-1), designates the confluent hypergeometric function of the 

first kind (Luke 1969).

Looking first at the reflected case, we find that a generic solution of (6) is given by

'
1

1 2'
2

( )
( ) ( ) ( ),

( )
n

n n n
n

L
F x x x

L

ϕϕ ϕϕ= − (18)

The λns are the roots of ' ' ' '
1 2 1 2( ) ( ) ( ) ( ) 0n n n nL R R Lϕ ϕ ϕ ϕ− = ; they need to be obtained numerically. 

Here, 2
2 2

2
( ) exp ( )r x x K

ν
σ σ

 = − −   , so we calculate Am from (11) and (18), and then ( , ; )p t y x
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from (12). As t→+∞, ( , ; )p t y x  tends towards the stationary density 
1

( ) ( ) ( )
R

L
y r y r dψ ξ ξ

− ≡   ∫ .

We proceed similarly for the absorbing case. The λns are now the roots of 

1 2 1 2( ) ( ) ( ) ( ) 0n n n nL R R Lϕ ϕ ϕ ϕ− = , and a generic solution f(x) of (6) is

1
1 2

2

( )
( ) ( ) ( ).

( )
n

n n n
n

L
F x x x

L

ϕϕ ϕϕ= − (19)

Figures 2a and 2b illustrate these results. Ten terms were used in the summation of p(t,y;1); the 

difference between 8 and 12 terms was visually insignificant. Since the λis depend on the model 

parameters (K, ν, and σ), using the proposed framework for maximum likelihood requires 

iterating.

An explicit expression of the eigenfunctions Fn(x) can also be found for several other 

popular diffusions. The key is to derive 2 independent solutions of (6) and to combine them with 

the relevant boundary conditions. In the following, let 1 ( )n xϕ  and 2 ( )n xϕ  denote 2 independent 

solutions of (6). 

• For the square root process (Cox, Ingersoll, and Ross 1985) with ν>0, σ>0, and L<K<R,

( ) ,dX K X X dwν σ= − + (20)

we have 1 2 2

2 2
( ) , ,n

n
K x

x
λ ν νϕ φ ν σ σ

− =     and 2 2 2

2 2
( ) , ,n

n
K x

x
λ ν νϕ ψ ν σ σ

− =    , where,

1-(1- ) ( -1)
( , ; ) ( , ; ) (1 , 2 - ; )

(1 - ) ( )
cc c

a c z a c z z a c c z
a c a

Γ ΓΨ = Φ + Φ + −Γ + Γ (21)
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is the confluent hypergeometric function of the second kind and 1

0

( ) t yy e t dt

+∞
− −Γ ≡ ∫  is the 

gamma function (Luke 1969).

• For the Gompertz Brownian motion process (ν>0, σ>0, and L<K<R)

( ( ) ( )) ,dX X Ln K Ln X dt Xdzν σ= − + (22)

we find 2
1

1
( ) , , ( )

2 2
n

n x f x
λϕ φ ν

− =    , 2
2

1 3
( ) ( ) , , ( )

2 2 2
n

n x f x f x
λϕ φ ν

 = −   , with 

2

( ) ln
2

x
f x

K

ν σ
σ ν

  = +     
.

• Finally, for the Brownian motion (σ>0)

,dX dt dzµ σ= + (23)

we obtain 
2

2

1 2 2

2
( ) e cos

x
n

n x x

µ
σ λ µϕ σ σ
−    = −     

,
2

2

2 2 2

2
( ) e sin

x
n

n x x

µ
σ λ µϕ σ σ
−    = −     

where

necessarily 2 22 0nµ λ σ− < . Note, however, that ( , ; )p t y x  cannot be found by this approach if

either R is reflecting when µ>0 or L is reflecting when µ<0. This suggests the presence of a 

singularity at the boundary that cannot be handled by this approach. Similar results can be 

derived for the geometric Brownian motion.
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Figure 1a. p(t,y;1) when X follows a reflected, trendless Brownian Motion.

Notes. These results were generated with L=0, R=2, σ=0.5, and x0=1.
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Figure 1b. p(t,y;1) when X follows an absorbing, trendless Brownian Motion.

Notes. These results were generated with L=0, R=2, σ=0.5, and x0=1. As t increases, the 

probability that X never hits L or R goes to zero so p(t,y;1) vanishes to 0 on (L,R).
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Figure 2a. p(t,y;1) when X follows a reflected Ornstein-Uhlenbeck process.

Notes. These results were generated with L=0, R=2, K=1.25, ν=0.2, σ=0.5, and x0=1. The first 10 

eigenvalues (λis) are 0.0000, 0.6508, 1.1668, 1.7046, 2.2507, 2.8003, 3.3518, 3.9044, 4.4576, 

and 5.0114.
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Figure 2b. p(t,y;1) when X follows an absorbed Ornstein-Uhlenbeck process.

Notes. These results were generated with L=0, R=2, K=1.25, ν=0.2, σ=0.5, and x0=1. The first 10 

eigenvalues (λis) are 0.4729, 1.0776, 1.6449, 2.2058, 2.7644, 3.3218, 3.8788, 4.4352, 4.9914, 

and 5.5474. As t increases, the probability that X never hits L or R goes to zero so p(t,y;1) 

vanishes to 0 on (L,R).
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