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Computational Rod Model With
User-Defined Nonlinear
Constitutive Laws
Computational rod models have emerged as efficient tools to simulate the bending and
twisting deformations of a variety of slender structures in engineering and biological
applications. The dynamics of such deformations, however, strongly depends on the con-
stitutive law in bending and torsion that, in general, may be nonlinear, and vary from
material to material. Jacobian-based computational rod models require users to change
the Jacobian if the functional form of the constitutive law is changed, and hence are not
user-friendly. This paper presents a scheme that automatically modifies the Jacobian
based on any user-defined constitutive law without requiring symbolic differentiation.
The scheme is then used to simulate force-extension behavior of a coiled spring with a
softening constitutive law. [DOI: 10.1115/1.4041028]

1 Introduction

The continuum mechanics-based elastic rod models [1,2] have
evolved as viable tools to efficiently simulate the bending and
twisting deformations of a variety of slender structures. Slender
structures occur not only in structural engineering applications but
also in several biological and nanoscale applications. Some of the
recently emerging applications involving slender structures
include nanoscale biological filaments [3–5] (e.g., DNA mole-
cules [6–8], microtubules [9,10], cila and flagella [11] and several
others [12–14]), carbon nanotubes [15], and silver nanowires [16].
Several of these slender structures undergo very large twisting
and bending deformations. For example, biological filaments such
as DNA perform their biological functions via well-regulated
structural deformations that involve large twisting and bending
deformations [17]. Computational rod models are capable of
simulating the nonlinear dynamics of such deformations by
employing appropriate constitutive laws in bending and torsion
[18,19], including intertwining with self-contact [20].

A continuum-rod model, in general, consists of dynamic equi-
librium equations and compatibility equations, which need to be
solved respecting the prescribed constitutive law. Although
dynamic equilibrium equations and compatibility conditions,
which we henceforth refer to as the rod model, remain the same
for all slender structures, the key distinguishing factor is the con-
stitutive law. Traditional models assume linear constitutive laws
in bending and torsion. However, nonlinearities in the constitutive
laws strongly influence the dynamics of such large deformations.
For example, both DNA [21,22] and microtubules [23,24] are
known to kink suggesting that these filaments must have noncon-
vex stored energy functions [25]. The material nonlinearities are
also known to influence the onset of buckling of nanorods and
nanotubes [26,27] as well as the postbucking behavior [28]. Such
details of buckling dynamics of filaments play an important role
in biological systems [29]. Yet, highly limited knowledge of the
constitutive laws of biological filaments and nanorods has been a
major roadblock for applicability of continuum rod models. Accu-
rate identification of constitutive law parameters that are not
directly measurable involve challenging inverse methods, while a
computational forward model can predict deformations given

initial and boundary conditions as well as parameters defining the
constitute law, inverse models seek to identify unknown parame-
ters of the constitutive law given some measurements of deforma-
tions as well as the equilibrium and compatibility equations.
However, in developing inverse methods, a review of which can
be found here [30,31], the need first arises for a computational for-
ward model that can efficiently simulate the deformations with
any user-defined nonlinear constitutive law. Therefore, the inverse
models for nonlinear constitutive laws have to evolve together
with the development of corresponding forward models. Develop-
ing a computational rod model that is capable of incorporating
user-defined constitutive laws, which is claimed as the contribu-
tion of this paper, is also a stepping stone for addressing the
research on estimation and identification of constitutive law
parameters.

Given the wide range of applications in which the computa-
tional rod model is being employed and the commonalities among
these applications, a user-friendly computational rod model
framework that is applicable across these applications will greatly
impact research in these areas. As discussed earlier, while the
equations of dynamic equilibrium and compatibility are the same
across these varieties of applications, the key difference is the
exact functional form of the nonlinear constitutive law. This exact
functional form of nonlinear constitutive law varies from material
to material depending on their atomistic structures [32,33]. Thus,
to develop a user-friendly computational tool employing rod
model, an important required feature is to allow the user to pre-
scribe or input any functional form of the constitutive law. Cur-
rently available computational rod models, such as Ref. [34] that
simulate the deformations, are unable to allow the user to define
different constitutive laws in a user-friendly way. This is so
because the computational model numerically solves the govern-
ing nonlinear differential equations with Jacobian-based methods,
and the constitutive law contributes to the Jacobian. Any change
in the form of the constitutive law thus necessitates extensive
rewriting of the parts of the code that relate to the Jacobian. This
poses a barrier in modularizing the constitutive law as a user input
in the computer program. One way to circumvent this hurdle is to
introduce symbolic differentiation to compute the Jacobian. How-
ever, symbolic differentiation is computationally very sluggish,
and must be avoided, especially when they are required iteratively
within “for” loops. Another brute-force approach is to preprogram
a library of different functional forms of the nonlinear constitutive
law (along with the respective Jacobians-related codes) and allow
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users to choose from the list of available functions, but this
approach is neither elegant nor can it handle unanticipated consti-
tutive laws.

Yet another approach is automatic differentiation (AD) [35],
which is as accurate as the method of symbolic differentiation and
also faster than that. However, the approach that this paper
presents is simpler in programming than AD. The main focus of
this paper is to allow a user-friendly computational rod model
environment wherein a user who is not necessarily familiar with
programming of the computational rod model can easily input a
constitutive law, the rod parameters, boundary conditions, and can
compute the rod-deformations in a short span of time required to
setup the simulation. We achieve this by programming into the
model (and Jacobian) not a specific functional form of the consti-
tutive law, but rather basis functions that can be used to represent
arbitrary functions. For instance, if powers of the deformation var-
iables are coded into the Jacobian, they can be used to represent
any analytic function (by Taylor series expansion) of the deforma-
tion variables by simply supplying the appropriate coefficients.
This is therefore an efficient approach that has one preprog-
rammed Jacobian that can accommodate any user-defined consti-
tutive law without requiring symbolic differentiation. In this
scheme, the user simply enters the constitutive law desired, and
the computer program first expands the user-defined constitutive
law into a series (such as Taylor series) or in terms of appropri-
ately chosen basis functions. The coefficients of the series (or the
basis functions) are automatically passed on to the Jacobian, the
form of which is hard-coded based on the derivative of the series
or the basis functions. Thus, this scheme numerically (not sym-
bolically) passes on the information of the functional form of the
user-defined constitutive law directly to the Jacobian via coeffi-
cients, and no reprogramming by the user is needed.

The above-proposed approach is demonstrated in this paper by
implementing the above scheme into an existing computational
rod model [34] using MATLAB, and testing it with hardening, soft-
ening, and other types of constitutive laws including the implicit
forms. We analyze the results (including the accuracy and speed)
for several loading scenarios leading to highly nonlinear rod
deformations. The impact of the choice of the basis functions in
the proposed method is also examined.

The paper is organized as follows: Section 2 summarizes the
mathematical formulation of the dynamic rod model [2] with a
general form of a nonlinear constitutive law in bending and tor-
sion. The mathematical formulation consists of nonlinear partial
differential equations that need to be integrated numerically for
any given initial and boundary conditions. Section 3 begins with
describing the computational approach for the numerical integra-
tion that was adopted in Ref. [2]. Section 3 then continues further
with introducing the proposed strategy for incorporating the user-
defined nonlinear constitutive law in the computational approach.
Section 4 presents some case studies to compare the proposed
strategy with existing (but non user-friendly) approaches.

2 Mathematical Formulation of Rod Model

The mathematical formulation of the dynamic rod model that
we use [2] employs the classical approach of the Kirchhoff [36],
which assumes each cross section of the rod to be rigid. The posi-
tion and orientation of each cross section are determined in space
s and time t by tracking the transformation of a body-fixed frame
âiðs; tÞ with respect to an inertial frame of reference êi that are
shown in Fig. 1, where subscript i¼ 1, 2, 3.

Vector Rðs; tÞ defines the position of the body-fixed reference
frame âiðs; tÞ relative to the inertial frame of reference êi. The
spatial derivative of Rðs; tÞ, which we denote by rðs; tÞ, is in
the tangential direction along the centerline. Its deviation from the
unit normal of the cross section determines the shear and stretch
at the cross section. The change in magnitude of rðs; tÞ quantifies
the extension or compression along s, and the change in its orien-
tation with respect to the body-fixed frame âiðs; tÞ quantifies

shear. Furthermore, the spatial rate of change of cross section ori-
entation is denoted by jðs; tÞ, and describes the curvature and
twist of the rod. In general, the rod may be intrinsically curved
and twisted in its stress-free state. We denote this stress-free cur-
vature and twist by j0ðsÞ. The stress distribution over the cross
section of the rod results in a net internal force fðs; tÞ and a net
internal moment qðs; tÞ. Moreover, the translational velocity
vðs; tÞ and angular velocity xðs; tÞ of the frame âiðs; tÞ are used to
describe the rigid-body motion of the cross section.

Thus, the dynamics of rod deformation is described by six vec-
tor fields, jðs; tÞ and rðs; tÞ that represent deformation of the rod,
qðs; tÞ and fðs; tÞ that represent the restoring moment and force,
and vðs; tÞ and xðs; tÞ that represent motion of each cross section.
These six vector fields must satisfy equations of dynamic equilib-
rium and compatibility as well as a constitutive law.

2.1 Equilibrium and Compatibility Equations. By applying
Newton’s second law to an element of the rod with infinitesimal
length, the equations of equilibrium (1) and (2) are derived. The
compatibility Eqs. (3) and (4) follow from the space–time conti-
nuity of the cross section position Rðs; tÞ, and the space-time con-
tinuity of the transformation that maps âiðs; tÞ to êi, respectively.
A detailed discussion and derivation of these equations are given
in Ref. [2]

m
@v

@t
þ x� v

� �
� @f

@s
þ j� f

� �
� F ¼ 0 (1)

Im

@x
@t
þ x� Imx� @q

@s
þ j� q

� �
þ f � r�Q ¼ 0 (2)

@r

@t
þ x� r� @v

@s
þ j� v

� �
¼ 0 (3)

@j
@t
� @x

@s
þ j� x

� �
¼ 0 (4)

In Eqs. (1)–(4), all the derivatives are relative to the body-fixed
reference frame, m is the mass of the rod per unit length, and
Im ðsÞ is a 3� 3 tensor of the moments of inertia per unit length.

The interaction of the rod with the environment is captured with
external force per unit length Fðs; tÞ as well as the external
moment per unit length Qðs; tÞ.

2.2 Constitutive Law. The differential equations of equilib-
rium and compatibility have to be solved together with a constitu-
tive law to find the six unknown vector fields. The constitutive
law describes the relationship between the deformation of the rod
and the restoring internal force and moment. In general, an elastic
constitutive law can be written as the following set of implicit
algebraic equations in a R6 space:

Fig. 1 The motion of each cross section of the rod at length s
and time t is determined by tracking the transformations of the
body-fixed frame â i (s; t) with respect to the inertial frame of
reference ê i

101006-2 / Vol. 13, OCTOBER 2018 Transactions of the ASME

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org on 11/06/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Wðq; f;j; r; sÞ ¼ 0; W 2 R3 �R3 �R3 �R3 �R! R6

(5)

However, for an inextensible rod, rðs; tÞ has unit magnitude,
and for an unshearable rod, its orientation relative to the body-
fixed frame is constant. Therefore, for an inextensible and
unshearable rod, ð@rðs; tÞ=@tÞ ¼ 0. Extension and shear are indeed
negligible in majority of applications of thin rods in low tension
or compression, for which deformation of the rod is dominated by
large bending and twisting. So, we describe our numerical
approach in this paper for inextensible and unshearable rods, but
recognize that the same approach is applicable to a geometrically
exact rod as well. We further assume the constitutive law to be
such that the restoring moment is an explicit function of curvature
and twist and not dependent on the internal forces. Thus, the con-
stitutive law takes the following form:

q ¼ wðj� j0; sÞ; w 2 R3 �R! R3 (6)

where we recall that j0 describes the initial stress-free curvature
and twist of the rod. Note that in this case, we have one less vector
field to solve for (rðs; tÞ is constant, not variable). Furthermore,
the constitutive law (Eq. (6)) can be directly substituted in the
angular momentum equation (Eq. (2)) to eliminate qðs; tÞ. In par-
ticular, the constitutive law is used to express the internal moment
q and its derivatives in terms of j using the total derivative of
function w given in the below equation:

@q

@s
¼ @w
@j

@j
@s
� @w
@j0

dj0

ds
þ @w
@s

(7)

With this substitution, we are left with four vector differential
equations to solve for four unknown vector fields, namely,
vðs; tÞ; xðs; tÞ; jðs; tÞ, and fðs; tÞ. The four partial differential
equations of equilibrium and compatibility can be assembled as
described next to apply a numerical integration scheme.

2.3 Assembled System of Equations. The equations of the
inextensible and unshearable rod model (Eqs. (1)–(4)) are
assembled after substitution of the constitutive law (Eq. (6) and its
spatial derivative Eq. (7)) to write them in the following compact
form:

M
@Y

@t
þK

@Y

@s
þ F ¼ 0 (8)

Here

Y ¼

v

x

j

f

266664
377775 (9)

is a 12� 1 column matrix of unknowns to be solved for that
describe the dynamic state of the system. M and K are 12� 12
matrices that describe the overall inertia and stiffness of the sys-
tem, and F is a 12� 1 column matrix of nonhomogeneous terms.
For our numerical code, we assembled the four equations in the
following order: Eqs. (3),(4),(2), and (1) that resulted in the fol-
lowing form of M, K, and F:

M ¼

O O O O

O O I O

O Im O O

mI O O O

266664
377775 (10)

K ¼ �

I O O O

O I O O

O O
@w
@j

O

O O O I

26666664

37777775 (11)

F ¼

x� r� j� v

�j� x

� @w
@s
� @w
@j0

dj0

ds

� �
þ x� Imxþ f � r� j� w�Q

m x� vð Þ � j� f � F

26666664

37777775
(12)

In Eqs. (10) and (11), the symbols I and O, respectively, refer to
the identity tensor and null tensor (with the dimensions of 3� 3).
Note that rows in M, K, and F correspond to the four equations,
and their order is immaterial.

The Generalized-a method [37] is adopted to compute the
numerical solution of this system, subjected to necessary and suf-
ficient initial and boundary conditions. To compute the geometric
shape of the rod, we use the method of incremental rotation [2,38]
to construct the transformation matrix from body-fixed frame to
an inertial frame. The rod model formulation presented here is dis-
tinctly different from geometrically local approaches that were
first proposed by Simo and Vu-Quoc [39] and describe configura-
tion of a slender structure locally, by using displacements and the
rotation of a cross section. There are many choices to parametrize
the rotation of a cross section in geometrically local approaches
and various approaches such as Euler angles [40], the rotation
vector [41], and Euler parameters [42] have been used. In Sec. 3,
we illustrate how the Generalized-a method is applicable to a rod
with nonlinear and nonhomogeneous constitutive law. Here, note
that K and F have the contribution of the nonlinear constitutive
law from its derivative given by Eq. (7), and therefore must have
contribution to the Jacobian of the system. In the next section, we
introduce our strategy for implementation of the user-defined non-
linear constitutive law in the computational approach.

3 Numerical Algorithm With User-Defined

Constitutive Law

We first devise a numerical algorithm in Subsec. 3.1 that is gen-
eral enough to allow for any constitutive law by expressing it in
terms of the arbitrary function w. In doing so, we identify the parts
of the algorithm that get affected by w, the constitutive law. Then,
in Subsec. 3.2, we introduce how a symbolic implementation
would (traditionally) take care of any constitutive law given any
arbitrary function w. This is the most accurate approach, but com-
putationally extremely sluggish due to recurring symbolic differ-
entiations. Finally, in Subsec. 3.3, we introduce our user-friendly
and computationally efficient strategy for inputting the user-
defined nonlinear constitutive law that circumvents the need of
symbolic differentiation.

3.1 Generalized-a Discretization. For a rod with linear and
homogenous constitutive law, the matrices M and K are constant
and are not discretized in space and time. Therefore, Eq. (8) can
be discretized as

M
@Y

@t

� �1�at

1�as

þ K
@Y

@s

� �1�bt

1�bs

þ F
1�bt

1�bs
¼ 0 (13)

in which the notation A1�x and A1�x for any quantity A and any
parameter x are defined as follows:
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A1�x ¼ ð1� xÞAi þ xAi�1 (14)

A1�x ¼ ð1� xÞAj þ xAj�1 (15)

The indices i and j enumerate the discretized nodes in time and
space, respectively. The parameters at and as are called mass aver-
aging parameters and bt and bs are stiffness averaging.

In the case of nonlinear constitutive laws, the term ð@w=@jÞ in
the stiffness matrix K, depends on the curvature and twist vector;
therefore, it varies in space and time and is discretized as given in
the following equation:

K
1�bt

1�bs
¼ ½ð1� btÞðð1� bsÞKi

j þ bsK
i
j�1Þ

þ btðð1� bsÞKi�1
j þ bsK

i�1
j�1Þ� (16)

For nonhomogeneous rods, the mass matrix M varies along the
length of rod but not in time. Therefore, the discretized form of
the system can be written as

M1�as

@Y

@t

� �1�at

1�as

þ K
1�bt

1�bs

@Y

@s

� �1�bt

1�bs

þ F
1�bt

1�bs
¼ 0 (17)

The derivatives of Y are then discretized with Newmark-like for-
mulation. In Eqs. (18) and (19), the Newmark constants ct and cs

control the averaging of time and space derivatives

@Y

@t

� �i

¼ Yi � Yi�1

ctDt
� 1� ct

ct

@Y

@t

� �i�1

(18)

@Y

@s

� �
j

¼ Yj � Yj�1

csDs
� 1� cs

cs

@Y

@s

� �
j�1

(19)

Applying this scheme to Eq. (17) results in an algebraic equation

with nonlinear terms of Yi
j and Yi

j�1 and linear terms of

ð@Y=@sÞij�1. In Eq. (20), AðYi
jÞ and BðYi

j�1Þ represent the nonlin-

ear terms, H contains all of the known terms from previous time-

step (i� 1), and the matrix K̂ is given in the following equation:

K̂
@Y

@s

� �i

j�1

þA Yi
j

� �
þ B Yi

j�1

� �
¼ H (20)

K̂ ¼ 1� btð Þ bs � 1� bsð Þ 1� cs

cs

� �� �
K

1�bt

1�bs
(21)

To derive an integrable linear algebraic equation in the space, Eq.
(20) is linearized about a guessed solution. The linearization
requires the calculation of the Jacobian of the terms AðYi

jÞ and
BðYi

j�1Þ that we will show with AY and BY

AY ¼ 1� atð Þ 1� asð Þ M1�as

ctDt

� �
þ 1� btð Þ 1� bsð Þ

K
1�bt

1�bs

csDs
þFYi

j

 !
(22)

BY ¼ 1� atð Þ asð Þ
M1�as

ctDt

� �
þ 1� btð Þ 1� bsð Þ

K
1�bt

1�bs

csDs
þ bsFYi

j�1

 !
(23)

To linearize the terms AðYi
jÞ and BðYi

j�1Þ, the Jacobian of the vec-
tor F needs to be calculated. The Jacobian of F, which is called
FY, is given in Eq. (24) for the case that external force and exter-
nal moment, F and Q do not depend on Y

FY ¼

�ej �er ev O

O �ej ex O

O exIm � gImx
� � ew � ej @w

@j
þ Jws �er

mex �mev ef �ej

26666664

37777775 (24)

The symbol em in Eq. (24) represents the skew-symmetric tensor
associated with the vector m generated as follows from its
components:

em ¼ 0 ��3 �2

�3 0 ��1

��2 �1 0

24 35 (25)

and the Jws is given below:

Jws ¼ �
@

@w
@s
� @w
@j0

dj0

ds

� �
@j

(26)

Equation (20) is linearized around a guessed solution. This

means that the terms AY; BY, and K̂ð@Y=@sÞij�1 are calculated

using the guessed solution so that Eq. (20) rendered integrable

with respect to Yi
j in space

AYYi
j þ BYYi

j�1 ¼ H� (27)

The matrix H� contains all of the known terms from previous
time-step (i� 1) as well as the linearization terms that depend on
the guessed solution.

In most scenarios, the boundary condition contains partial infor-
mation on Y at one end (s¼ 0) and the rest is known at the other
end (s¼ L). For example, in Fig. 1 the left-hand side of the rod is
fixed by a clamp which imposes vð0; tÞ ¼ 0 and xð0; tÞ ¼ 0, while
on the right-hand side, the external forces and moments, fðL; tÞ
and qðL; tÞ, are prescribed. We use the shooting method at each
time-step as explained by Sun et al. [43] to start integration from
one end and match the boundary conditions at the other end.
Alternatively, an assembled matrix approach can also be used to
match the boundary conditions at both the ends simultaneously.
Figure 2 shows the algorithm of how shooting method is applied
to this problem.

Now, the aim is to implement the numerical solution of the rod
model as explained here in a way that user has to provide the ini-
tial and boundary conditions for the simulation, the parameters for
the numerical scheme (at, as, bt, bs, ct, cs, Dt, and Ds), the physical
properties of the rod (L, m, Im ), and the function ! w that

Fig. 2 The algorithm of the numerical scheme. The guessed
solution for all spatial nodes is shown with Y�i. At each time-
step, the linearized equation is integrated in space. The spatial
integration is iterated and is used to update the guessed solu-
tion until it converges to the true solution Yi bounded by a small
tolerance e.
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describes the constitutive law of the rod. The constitutive law is
allowed to have any arbitrary functional form and its derivatives
need to be calculated for this formulation. In particular, the matri-
ces K and F in Eqs. (11) and (12) depend on the constitutive law
and its derivatives. In addition, the Jacobian of the matrix F as
represented in Eq. (24) also depends on the derivatives of the con-
stitutive law.

In Secs. 3.2–3.3, we discuss two approaches to incorporate a
user-defined constitutive law with an arbitrary functional form in
the numerical solution of the rod model. The first approach uses
accurate description of the constitutive law and its derivatives
while the second approach, which we propose, approximates the
constitutive law using polynomial functions. It is important to
note that by approximating the matrices K and F, the true solu-
tion of the system Y will be directly affected while by approxi-
mating the Jacobian FY merely the number of iterations for
guess solution to converge may get affected and the true (con-
verged) solution will remain unchanged. Such approximation of
the Jacobian does not necessarily increase the Newton–Raphson
iterations. Instead, a slightly inexact Jacobian helps overcome
some known singularities that are encountered with exact
Jacobian.

It is also important to note that an alternative way to assemble
the system of equations in comparison to Eqs. (8) and (9) would
be to use a five-variable formulation. By defining the state vari-
able to be Y ¼ ½v;x; f; q; j�, there would be no substitution of the
constitutive law in Eq. (2) and therefore the matrices K and F will
not contain any term that depends on the derivatives of the consta-
tive law. Instead of the substitution, the constitutive law will be
captured through the fifth row of the system of equations in order
to complete the five-variable formulation. However, elaborating
on the implementation of our strategy of handling user-defined
constitutive law in the five-variable variable formulation is not in
the scope of this paper.

3.2 Symbolic Implementation. We will compare the per-
formance of our method with that of the symbolic implementa-
tion, which is the most accurate approach. So, here we describe
how we used the method of symbolic implementation in getting
our benchmark results.

The constitutive law is defined as an input by the user in terms
of the scalar symbolic variables j1;j2; j3, and s in the form simi-
lar to Eq. (6).

The matrices K, F, and FY are implemented in terms of the
symbols j1; j2; j3, and s and MATLAB substitute command is
used to compute the value of these matrices. The algorithm as
shown in Fig. 2 requires the calculation of matrices K, F, and
FY at each space-step. The shooting method iteration will repeat
the spatial integration until it converges, which requires reeval-
uation of all matrices. Therefore, the accuracy of this descrip-
tion comes with a high computational cost due to iterative
calculation of the matrices of symbolic type. A comparison of
the computational costs among the two methods is presented in
Sec. 4.

3.3 Least-Square Polynomial Approximation. The second
method that this paper contributes has a similar user interface in
which the constitutive law is defined symbolically as expressed in
Eq. (6). However, in this approach, the least-square polynomial
fitting is used to approximate the functions wi where subscript
i¼ 1, 2, 3 as given in the following equation:

qi ¼
Xn1

j¼0

Xn2

k¼0

Xn3

l¼0

Xn4

m¼0

pjklmjj
1j

k
2j

l
3sm (28)

The user can control and choose the order of the polynomial func-
tions so that approximations match well with the true constitutive
law or it can be automated with a convergence criteria.

For the cases in which the two axes of bending of the rod and
its one axis of twist are decoupled, the polynomial approximation
reduces to

qi ¼
Xn1

j¼0

Xn2

k¼0

pjkj
j
is

k (29)

And finally, if in addition to the decoupling, the rod also has
homogeneous elastic properties, the function approximation can
be written as

qi ¼
Xn

j¼0

pjj
j
i (30)

Therefore, in this approach, the matrices K, F, and FY are defined
in terms of arrays of polynomial coefficients, for example pj’s that
are calculated before entering the iteration loops. For instance, the
derivative of the function wi with respect to the curvature or twist
ji, which appears in both K and FY, has the following form, for
any arbitrary constitutive law:

@qi

@ji
¼
Xn

j¼1

jpjj
j�1
i (31)

Thus, there is no need for symbolic description of the constitutive
law and it is expected to gain a significant computation advantage
by using this method. This will be addressed in Secs. 4 and 5 with
more detail.

To compute the derivative of the constitutive law and using
these values in the Jacobian and other matrices, one might also
use an existing technique of automatic differentiation as described
in Ref. [35]. Automatic differentiation (AD) uses exact formulas
along with floating-point values, instead of expression strings as
in symbolic differentiation, and it involves no approximation error
as in numerical differentiation using difference quotients. This
method is as accurate as symbolic differentiation and very quick
in computation also.

But using this technique might not be of great help when com-
pared to the method mentioned above. The constitutive laws in
real life will not be too complex which cannot be approximated
accurately by Taylor Series. The current method as shown in the
previous examples is giving very accurate results when compared
with symbolic differentiation. Also, understanding and then
implementing Automatic Differentiation in the rod theory will
take some extra effort. Introducing this new technique might just
make the current code complex and might not be of significant
help when studying the nonconvex constitutive laws.

4 Results

In this section, a case study is defined to illustrate and compare
the results of the two methods that are previously explained. In
order to show the effect of nonlinear constitutive laws on the over-
all dynamics and mechanics of the rod, we also present the results
for a rod with linearized constitutive laws in bending and torsion.

All the simulations are conducted for a rod with an intrinsic
curvature j0 that corresponds to a helix and resembles a coil
spring. There are many scenarios in which these types of struc-
tures are important. For example, recently it is shown [44] how
the injection mechanism of the viral genome, which involves
compressing and stressing helical proteins can be understood and
modeled by the continuum rod model.

4.1 Geometry and Properties of the Rod. As explained in
Sec. 2, the vector j0 captures the stress-free configuration of the
rod. In this section, a rod with helical shape is simulated by pre-
scribing the j0. The rod has an arc-length of 1 m, the radius and
the pitch of the helix are, respectively, called R and P and are

Journal of Computational and Nonlinear Dynamics OCTOBER 2018, Vol. 13 / 101006-5

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org on 11/06/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



chosen to be both equal to ð
ffiffiffi
2
p

=10pÞ. Therefore, the stress-free
curvature and twist of the helix are calculated as follows:

j0 ¼
1

R2 þ P2
R;R;Pð Þ (32)

The rod has a circular cross section with the radius of 1 cm and
its density is 2766:67ðkg=m3Þ. The rod is assumed to be com-
posed of homogenous isotropic material with the following consti-
tutive laws:

w1 ¼ EI14 arctan
j1 � j01

4

� �
(33)

w2 ¼ EI24 arctan
j2 � j02

4

� �
(34)

w3 ¼ GI34 arctan
j3 � j03

4

� �
(35)

In Eqs. (33)–(35), I1 and I2 represent the second moment of area
of the rod’s cross section about the axes â1 and â2 and I3 is the
polar moment of area of the cross section about â3. The values of
the E and G are chosen to correspond to the Young’s modulus and
shear modulus of the aluminum in its linear elastic regime where
E ¼ 68:95� 109 Pa and G ¼ 27:58� 109 Pa.

4.2 Loading Scenario. The helical rod that is explained in
Sec. 4.1 is equivalent to a coil spring. The following boundary
conditions are devised to stretch and compress the rod along the
axis of the helix as depicted in Fig. 3. The end of the rod at s¼ 0
is clamped by imposing vð0; tÞ ¼ 0 and xð0; tÞ ¼ 0. The other end
at s¼ L is also clamped but slowly moves toward or away from
the clamp at s¼ 0 by prescribing vðL; tÞ ¼ hðtÞN and xðL; tÞ ¼ 0.
The vector N ¼ ð1; 1; 1Þ is along the axis of the helix and the sca-
lar function h(t) is given by the following expression:

hðtÞ ¼ 6
5t m=s; if t � 0:1
0:5 m=s; otherwise

	
(36)

The positive and negative signs on the right-hand side of Eq. (36),
respectively, correspond to the extension and compression of the
spring.

In Sec. 4.3, the force–extension relationship of the rod is
extracted from the results of the simulations that are described
here.

4.3 Force–Extension Relation. In this section, the simulation
results of the loading scenario that explained previously are com-
pared when the symbolic implementation of the accurate constitu-
tive laws are used versus the case in which the constitutive laws
are approximated by a polynomial function as explained in Sec. 3.
The least-square fitting is used to find fifth order polynomial func-
tions that approximate wi’s in the interval 0:4j0i < ji < 1:6j0i.
The order of polynomial and the range of ji’s can be controlled
by the user for the desirable accuracy. Figures 4 and 5 show the
accurate constitutive laws and the corresponding polynomial
approximations as well as the linearized constitutive laws about
the initial curvature and twist. The symmetry of the circular cross
section of the rod in addition to the isotropic mechanical proper-
ties result into having equal bending constitutive laws or equiva-
lently I1¼ I2 and w1 ¼ w2.

Figure 6 is showing the force–extension relationships obtained
by the two different methods proposed in Sec. 3 as well as the
results using the linearized constitutive law. We can see in this
figure that the method explained in Sec. 3.3 is able to closely
reproduce the same results as the method of Sec. 3.2, which incor-
porates accurate description of the constitutive laws. We also
observe that the linearized constitutive law is overestimating the
hardening behavior of this coil spring in stretching while underes-
timating its softening behavior in compression.

The method of Sec. 3.2 as mentioned before uses symbolic vari-
ables to implement the accurate constitutive laws. This increases

Fig. 3 Loading scenarios of compressing and stretching the
helical rod

Fig. 4 Bending constitutive law that captures the relationship
between the restoring moment q1 and curvature j1. The rod
chosen to be isotropic with a circular cross section. Therefore,
the bending constitutive law for both planes of bending q12j1,
and q22j2 are the same.

Fig. 5 Twisting constitutive law that captures the relationship
between the restoring torque q3 and torsion j3
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the computational cost drastically in comparison to the method of
Sec. 3.3 in which the constitutive laws are approximated by poly-
nomial and there is no need to use the symbolic variables. In par-
ticular, the simulations that are presented here take about 4 s per
time-step for the method of Sec. 3.3 on a 3.1 GHz Intel Core i7
machine with 16 GB of memory, while it takes 400 s per time-step
when the method of Sec. 3.2 is used on the same machine.

4.4 Dynamic Response. In this section, to compare the
performance of the three methods on the dynamic of the rod, a
loading scenario is defined as follows: The rod is initially at rest.
The end of the rod at s¼ 0 is clamped similar to Sec. 4.2. The
other end of the rod at s¼L is stretched along the axis of helix
and then released by prescribing the vðL; tÞ ¼ gðtÞN where N ¼
ð1; 1; 1Þ and

gðtÞ ¼
1000t m=s; if t � 0:005

5 m=s; if 0:005 � t � 0:015

(
(37)

For the time t � 0:015, the end of the rod at s¼ 0 is released to
freely vibrate by imposing fðL; tÞ ¼ 0 and jðL; tÞ ¼ j0.

Figure 7 is showing the results of the three simulations using
the accurate description of the constitutive law, the least-square

fitting, and the linear approximation of the constitutive law. This
figure shows that the polynomial approximation of the constitutive
law closely captures the dynamics of the rod when it is compared
to the simulation with the accurate description of the constitutive
law. Although, the deviations of the results, using the linear
approximation of the constitutive law, grow as the time elapses. In
these simulations, the rod is surrounded by water and the hydrau-
lic drag which is captured through the external force F in Eq. (1)
is calculated based on the Morison law as explained by Goyal
et al. [20]

Fdrag ¼ �
1

2
qfd Cnjv� t̂jt̂ � v� t̂ð Þ þ pCt v � t̂ð Þjv� t̂jt̂
� �

(38)

Here, the diameter of the rod is d ¼ 2� 10�2 m, the normal drag
coefficient is Cn ¼ 0:1, the tangential drag coefficient is
Ct ¼ 0:01, and qf is the surrounding fluid density, which is chosen
to be water. The vector t̂ represents the vector r for an inextensi-
ble and unshearable rod.

5 Conclusions

This paper contributes a simple and fast method of implement-
ing any arbitrary user-defined constitutive law in a computational
rod model. The method avoids symbolic differentiation by
expanding the user-input constitutive law function in a series and
using the derivative of the series in the Jacobian. Thus, the method
automatically modifies the Jacobian based on the coefficients in
the series expansion. The performance of the method is presented
for hardening and softening constitutive laws in the force-
extension behavior of a helical spring. The effect of nonlinearity
in the constitutive law is also emphasized by comparing the
results with those for linearized constitutive laws.
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