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The chapters of this dissertation are devoted to three different topics.

The first chapter studies estimation of parameters expressed via non-differentiable func-

tions. Such parameters are abundant in econometric models and typically take the form

of maxima or minima of some estimable objects. Examples include bounds on the average

treatment effects in non-experimental settings, identified sets for the coefficients in regression

models with interval-valued data, bounds on the distribution of wages accounting for selec-

tion into employment, and many others. I consider estimators of the form φ(θ̂n+ v̂1,n)+ v̂2,n,

where θ̂n is the efficient estimator for θ0, and v̂1,n, v̂2,n are suitable adjustment terms. I

characterize the optimal adjustment terms and develop a general procedure to compute

them from the data. A simulation study shows that the proposed estimator can have lower

finite-sample bias and variance than the existing alternatives. As an application, I consider

estimating the bounds on the distribution of valuations and the optimal reserve price in

English auctions with independent private values. Empirically calibrated simulations show

that the resulting estimates are substantially sharper than the previously available ones.
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The second chapter studies inequality selection in partially identified models. Many par-

tially identified models have the following structure: given a parameter vector and covariates,

the model produces a set of predictions while the researcher observes a single outcome. Exam-

ples include entry games with multiple equilibria, network formation models, discrete-choice

models with endogenous explanatory variables or heterogeneous choice sets, and auctions.

Sharp identified sets for structural parameters in such models can be characterized via a

special kind of moment inequalities. For a given parameter value, the inequalities verify

that the observed conditional distribution of the outcome given covariates belongs to the set

of distributions admitted by the model. In practice, checking all of the inequalities is often

computationally infeasible, and many of them may not even be informative. Therefore, some

inequality selection is required. In this chapter, I propose a new analytical criterion that

dramatically reduces the number of inequalities required to characterize the sharp identi-

fied set. In settings where the outcome space is finite, I characterize the smallest subset of

inequalities that guarantees sharpness and show that it can be efficiently computed using

graph propagation techniques. I apply the proposed criterion in the context of market entry

games, network formation, auctions, and discrete-choice.

The third chapter (coauthored with Liqiang Shi) is about model selection for policy learn-

ing. When treatment effects are heterogeneous, a decision maker that has access to (quasi-)

experimental data can attempt to find the optimal policy function, mapping observable char-

acteristics into treatment choices, to maximize utilitarian welfare. When several different

policy classes are available, the choice of the policy class poses a model selection problem.

In this chapter, following Athey and Wager (2021) and Mbakop and Tabord-Meehan (2021),

we propose a policy learning algorithm that leverages doubly-robust estimation and incor-

porates data-driven model selection. We show that the proposed algorithm automatically

selects the best available class of policies and achieves the optimal n−1/2 rate of convergence

in terms of expected regret. We also refine some of the existing related results and derive a

new finite-sample lower bound on expected regret.
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CHAPTER 1

On Efficient Estimation of Directionally Differentiable

Functionals

1.1 Introduction

Many econometric models concern parameters of the form φ(θ0), where φ is a known func-

tion that is directionally but not necessarily fully differentiable, and θ0 is an unknown but

estimable object. Such φ(θ0) may represent, for instance, the bounds on a parameter of

interest in a partially-identified model, or a parameter defined as the value function of an

optimization problem that may have multiple solutions. Examples include bounds on treat-

ment effects obtained by taking minima or maxima of the estimated conditional moments

(e.g., Manski and Pepper, 2000, 2009; Shaikh and Vytlacil, 2011), identified sets for the coef-

ficients in regression models with interval-valued data (Manski and Tamer, 2002; Beresteanu

and Molinari, 2008; Bontemps et al., 2012), bounds on the distribution of wages accounting

for selection into employment (e.g., Blundell et al., 2007), and bounds on the distribution

of valuations and optimal reserve prices derived from the observed distribution of bids in

English auctions (Haile and Tamer, 2003; Aradillas-López et al., 2013a; Chesher and Rosen,

2017), among others.1

The lack of full differentiability of the function φ complicates estimation of such param-

1Other examples include bounds on structural parameters in market entry and discrete choice models
(Ciliberto and Tamer, 2009; Beresteanu et al., 2011; Pakes et al., 2007, 2015), shape restrictions via projec-
tions (Fang, 2018), and the breakdown frontiers in the recent literature on sensitivity analysis (Kline and
Santos, 2013; Masten and Poirier, 2020). A more detailed discussion is provided in Section 1.2.2.
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eters. Assuming that an efficient estimator θ̂n for θ0 is available, a natural approach is to

estimate φ(θ0) with φ(θ̂n). However, the properties of such “plug-in” estimator critically

depend on the value of θ0. If the full differentiability of the function φ fails at θ0, then the

“plug-in” estimator will be asymptotically biased (Hirano and Porter, 2012) and inefficient

(Song, 2014; Fang, 2018). Moreover, in such cases, one faces a bias-variance trade-off: Since

unbiased estimators may not exist, attempting to reduce the bias “too much” may dramat-

ically increase the variance of the resulting estimator (Doss and Sethuraman, 1989). The

existing bias-reduction approaches do not take the bias-variance trade-off into account, while

the analysis of efficient estimators is very limited.

In this paper, I study efficient estimators for such parameters in a general setting. I

assume that the parameter θ0 is “well-behaved,” in the sense that a regular efficient esti-

mator θ̂n is available, and that the function φ is everywhere directionally differentiable. To

accommodate applications such as English auctions or regressions with interval-valued data,

I allow both θ0 and φ(θ0) to take values in finite or infinite-dimensional spaces. I consider a

flexible class of estimators of the form

φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n
, (1.1)

where v̂1,n, v̂2,n are adjustment terms that converge in probability to constants, and show

how to obtain the optimal estimator within this class.

The proposed estimator has two key features. First, it automatically adapts to the

presence or failure of full differentiability. That is, if the data suggest that the function

φ is likely to be fully differentiable at θ0, both adjustment terms will be equal to zero by

construction. In this case, the proposed estimator reduces to φ(θ̂n), which is known to be

efficient under full differentiability (e.g. van der Vaart, 1988). On the other hand, if the data

reveal that the full differentiability is likely to fail at θ0, the adjustment terms will differ

from zero and improve on the “plug-in” estimator. Second, the optimal adjustment terms

depend on the loss function chosen to evaluate and compare different estimators. Under full
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differentiability, the “plug-in” estimator φ(θ̂n) is known to be efficient for any symmetric

“bowl-shaped” loss function, so that the choice of a particular functional form is irrelevant

(e.g. van der Vaart, 1988). In contrast, when differentiability fails, the adjustment terms

can depend on the loss function, suggesting that the latter should be tailored to specific

applications. In particular, choosing the squared loss function allows to select the adjustment

terms to balance the bias-variance trade-off.

In order to accommodate a variety of econometric models and parameters in a tractable

way, as a notion of efficiency I employ Local Asymptotic Minimaxity.2 To elaborate, suppose

that the data X1, . . . , Xn are an i.i.d. sample with a common distribution P ∈ P, where P

denotes the model (i.e., the set of all plausible distributions, consistent with the maintained

assumptions). Let θ0 denote some root-n estimable feature of the distribution P , and φ̂n

denote a generic estimator for the target parameter φ(θ0). Letting l denote a non-negative

loss function, the quality of different estimators can be evaluated by their risk, EP{l(
√
n(φ̂n−

φ(θ0)))}, where the expectation is calculated with respect to the data distributed according to

P .3 For every fixed n, it is understood that the lower the risk, the better the estimator. The

idea of Local Asymptotic Minimaxity is to compare estimators in terms of the asymptotic

risk in a locally-worst-case scenario, that is,

lim inf
n→∞

sup
P̃∈Vn(P )

EP̃
{
l
(√

n(φ̂n − φ(θ(P̃ )))
)}

, (1.2)

where Vn(P ) ⊂ P denote certain “local neighborhoods” of P that shrink as n approaches

infinity and only contain distributions that are hard to distinguish from P empirically. Any

estimator sequence {φ̂n} that minimizes the above expression is called Locally Asymptoti-

2It is worth-noting that, due to the potential lack of full differentiability, regular or unbiased estimators
may not exist (van der Vaart, 1991; Hirano and Porter, 2012), and therefore traditional optimality criteria,
searching for the “best regular” or “best minimum-variance unbiased” estimators, are inapplicable. Local
Asymptotic Minimaxity is applicable more broadly, see Section 1.3.

3For example, for a real-valued parameters, the quadratic loss l(x) = x2 corresponds to the mean-squared

error, EP {(
√
n(φ̂n − φ0))2} = VarP {

√
n(φ̂n − φ0)}+ {EP (

√
n(φ̂n − φ0))}2. Note that both the distribution

of the estimator φ̂n and the value of the target parameter φ(θ0) depend on the distribution P of the data.

3



cally Minimax (or LAM). A more precise formulation requires substantial background and

is discussed in Section 1.3.

To obtain the LAM estimator within the class (1.1), I proceed in two steps. First, I show

that the LAM risk, given by (1.2), of any such estimator is bounded from below by

inf
v1,v2

sup
s∈S(Z)

E
{
l
(
φ′0(Z + v1 + s)− φ′0(s) + v2

)}
, (1.3)

where a random vector (or process) Z denotes the distributional limit of the efficient estima-

tor sequence θ̂n, the set S(Z) denotes its support, and the function φ′0 denotes the directional

derivative of φ at θ0. This risk lower bound holds for all symmetric “bowl-shaped” loss func-

tions, and parallels the familiar notion of the variance lower bound, establishing a sharp

limit on the quality of estimation of the parameter φ(θ0) under directional differentiabil-

ity. Second, I show that the estimator in (1.1) with adjustment terms v̂1,n, v̂2,n solving a

suitable sample analog of (1.3) attains the risk lower bound. This optimization problem

takes a min-max form with a non-convex-concave objective function and, in general, can

be computationally demanding. I discuss computational heuristics that help speed up the

optimization and in some cases provide approximate closed-form solutions.

The finite-sample performance of the proposed estimator is investigated in a simulation

study. I consider a simple setting, similar to Manski and Pepper (2000), in which the identi-

fied set for some real-valued parameter of interest is given by [maxj6d1(θ1,j), mink6d2(θ2,k)],

where (θ1, θ2) = (EP (X1),EP (X2)) ∈ Rd1×Rd2 for observable random vectors (X1, X2). Let-

ting (X̄1,n, X̄2,n) denote the corresponding sample means, one can estimate the bounds by

[maxj6d1(X̄1,j,n),mink6d2(X̄2,k,n)]. However, the resulting estimates are generally biased to-

wards each other, and, in practice, may be significantly tighter than the population bounds,

potentially leading to erroneous conclusions. Therefore, it is customary to use bias-correction

methods in practice (Kreider and Pepper, 2007; Chernozhukov et al., 2013). By extensive

simulations, I compare the performance of the proposed estimator with the simple “plug-

in” estimator and the existing bias-correction methods near the values of (θ1, θ2) where

4



the finite-sample bias is most problematic. These are the values (θ1, θ2) where the maxi-

mum/minimum are attained by multiple coordinates of θ1 and θ2 respectively,4 so that the

maximum/minimum functions are not fully differentiable. With the squared loss function, I

find that the proposed estimator mildly reduces the bias but avoids substantial fluctuations

in variance, compared to the alternatives.

As an application, I revisit the model of English auctions from Haile and Tamer (2003).

In a setting with independent private values, the main primitive object of interest for the

empirical analysis is the marginal distribution of valuations. The knowledge of this distri-

bution allows one to forecast expected revenue and bidders surplus and study the effects of

a change in the auction design. Under natural assumptions on bidders behavior, Haile and

Tamer (2003) derived informative bounds on the distribution of valuations that take the

form of point-wise minima and maxima of smooth transformations of the observed distribu-

tion of bids. I apply the methodology developed in this paper to construct estimators for

the bounds on the distribution of valuations and the implied bounds on the optimal reserve

price. Empirically calibrated simulations show that the resulting estimates are substantially

sharper than the previously available ones.

This paper contributes to the literature on asymptotically efficient estimation in Econo-

metrics and Statistics (e.g., Chamberlain, 1987, 1992; Newey, 1990, 1994a; Brown and Newey,

1998; Ai and Chen, 2003, 2012; Ackerberg et al., 2014; Kaido and Santos, 2014; Ibragimov

and Hasḿinskii, 1981; Bickel et al., 1993; van der Vaart and Wellner, 1996; van der Vaart,

1988, 2000, and others). It is well-known that if θ̂n is asymptotically efficient for θ0, and φ is

fully (Hadamard) differentiable, the “plug-in” estimator φ(θ̂n) is asymptotically efficient for

φ(θ0) (e.g., van der Vaart, 1988). In this paper, I study asymptotically efficient estimators

for φ(θ0) assuming only directional differentiability of φ, which allows to handle a new and

4Suppose that θ2,1 is the minimal component of θ2 and it is well-separated from the rest, relative to the
sampling uncertainty. Then, mink6d2(X̄2,k,n) = X̄2,1,n with probability close to one so that the plug-in
estimator is approximately unbiased. On the other hand, if the minimal components of θ2 are close to each
other, the “plug-in” estimator is more likely to pick up the estimation errors in the components of X̄2,n.
Similar intuition holds for the maximum function and the lower bound.
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important class of parameters. Restricting attention to the class of estimators given in (1.1)

allows to keep the analysis tractable and consistent with the literature. Efficient estimation

under directional differentiability is also considered in Song (2014) and Fang (2018). Both

papers aim to derive risk lower bounds for classes of estimators more general than (1.1),

but the provided arguments turned out to be problematic.5 That being said, very little

is known about optimal estimation of non-differentiable functions. First, Blumenthal and

Cohen (1968) show that in the experiment {Z ∼ N(θ, σ2) : θ ∈ R}, |Z| is a minimax for

|θ|, and in the experiment {(Z1, Z2) ∼ N(θ1, σ
2) × N(θ2, σ

2) : θ1, θ2 ∈ R}, max(Z1, Z2) is

a minimax esitmator for max(θ1, θ2). Second, Cai and Low (2011) derive a rate-optimal

estimator (as p → ∞) for a non-smooth functional φ(θ) = p−1
∑p

j=1 |θj| in the Gaussian

model {Z ∼ N(θ, I) : θ ∈ Rp} based on suitable polynomial approximations. This indicates

that the problem at hands is very hard and may not have a unique general solution. At the

same time, for a class of estimators in (1.1) a complete and general answer can be provided.

Another closely-related paper is Fang and Santos (2019). My work is complementary to

theirs: I focus on efficient estimation, whereas they focus on valid inference in settings with

directionally differentiable functions.

The rest of the paper is organized as follows. Section 1.2 provides the general setup and

motivating examples and discusses the appropriate notion of directional differentiability. Sec-

tion 1.3 elaborates on the optimality criterion, provides some background, and formulates

the basic assumptions. Sections 1.4 and 1.5 establish the general risk lower bound under

directional differentiability and construct efficient estimators. Section 1.6 presents a simula-

tion study. Section 1.7 contains an empirical application. Section 1.8 discusses extensions,

and Section 1.9 concludes.

5A more detailed discussion is provided in Section 1.4
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1.2 Directionally Differentiable Parameters

1.2.1 General Setup

The main parameter of interest in this paper is φ(θ0), where θ0 is an unknown but estimable

feature of the distribution of the data, and φ is a known directionally differentiable function.

In order to accommodate applications such as incomplete auction models or regression mod-

els with interval-valued data, I allow both θ0 and φ(θ0) to take values in possibly infinite

dimensional spaces. Specifically, I assume that θ0 ∈ B and φ : B → D where (B, ||·||B)

and (D, ||·||D) are Banach spaces. This includes B = Rdθ and D = Rdφ with the standard

Euclidean norm as a special case.

Throughout the paper, I assume that the data Xn
1 ≡ (X1, . . . , Xn) are an i.i.d. sample

drawn from a distribution P ∈ P of a random vector X ∈ X.6 Here, P denotes the model,

i.e. the set of probability distributions (on a measurable space (X,B)) that are plausible

under the maintained assumptions. The set P may be explicitly indexed by finite- or infinite-

dimensional parameters. The unknown parameter θ0 takes value θ(P ) when the distribution

of the data is P ∈ P.

Generic estimators for θ0 and φ(θ0) are denoted by θ̂n : Xn
1 → B and φ̂n : Xn

1 → D

respectively. The distributional convergence is understood in the Hoffman-Jørgensen sense

(van der Vaart and Wellner, 1996), which does not require θ̂n and φ̂n to be measurable for

each n. This fact is hidden from the notation throughout the text but highlighted in the

Appendix when necessary. The distributional convergence denoted by
√
n(θ̂n − θ0)  Pn G

and
√
n(φ̂n−φ0) Pn W is understood to be in B and in D respectively, with respect to the

joint law
∏n

i=1 Pn of Xn
1 . The individual laws Pn may change with n.

The transpose of any vector a is denoted by aT . The indicator functions are denoted by

6The i.i.d. setup is not essential: the asymptotic analysis relies on the notion of Local Asymptotic
Normality which extends to non-i.i.d. settings via the limits of experiments framework. See Ibragimov and
Hasḿinskii 1981; Le Cam 1986; van der Vaart 2000; Fang 2018.
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1(S), which is equal to one if the statement S holds and to zero otherwise. For any pair

of probability measures P and Q defined on the same measurable space, the ratio dP/dQ

denotes the Radon-Nikodym derivative of the absolutely continuous part of P with respect

to Q. For any sequences of constants an and bn and random variables An and Bn, the symbol

An = oPn(an) means that An/an converges in probability to zero under Pn, and Bn = OPn(bn)

means that Bn/bn is bounded in probability under Pn.

1.2.2 Motivating Examples

Next, I present several motivating examples, some of which I revisit throughout the paper

to fix ideas. These examples cover both finite and infinite-dimensional parameters and

include models of treatment effects (Example 1.1), discrete choice (Example 1.2), English

auctions (Example 1.3), regression models with interval-valued data (Example 1.4), and

shape restrictions via projection (Example 1.5). To focus on the main ideas, the examples

are simplified.

The first example, due to Manski and Pepper (2000, 2009), concerns estimation of bounds

on average treatment effects.

Example 1.1 (Bounds on Average Treatment Effects). Consider the standard potential

outcomes framework. Let D ∈ {0, 1} denote the treatment indicator, Y (d) ∈ [y, y] denote the

potential outcome under treatment d ∈ {0, 1}, Y = DY (1)+(1−D)Y (0) denote the observed

outcome, and X ∈ {x1, . . . , xM} denote an observed discrete covariate. The basic parameter

of interest is E(Y (d)|X = xm), i.e., the expected potential outcome under treatment d for

a subpopulation with X = xm. This parameter can only be point-identified under the

assumption that the potential outcomes (Y (0), Y (1)) are statistically independent from D

conditional on X, which may be hard to support in non-experimental settings. To provide a

viable alternative, Manski and Pepper (2000) propose a number of weaker assumptions that

deliver informative bounds on the parameter of interest, including the following Monotone
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Instrumental Variables assumption. Suppose there is an order x1 4 · · · 4 xM such that

xj 4 xj+1 implies

E(Y (d)|X = xj) 6 E(Y (d)|X = xj+1)

for d ∈ {0, 1} and all j = 1, . . . ,M − 1. For example, letting Y denote wage, D indicate

attending college, and X contain some measure of ability, it is reasonable to assume that

the individuals with higher ability (X = xj+1) are, on average, better off than their less

talented peers (X = xj) both in and out of college. Under this assumption, Manski and

Pepper (2000) show that

max
j6m

θjd(y) 6 E(Y (d)|X = xm) 6 min
j>m

θjd(y),

where, for y ∈ {y, y}, d ∈ {0, 1}, and j = 1, . . . ,M ,

θjd(y) = E(Y |X = xj, D = d)P (D = d|X = xj) + y · P (D 6= d|X = xj).

The above bounds on the expected potential outcomes can be used to obtain bounds on the

average treatment effects, or strengthened under further monotonicity restrictions. Using

similar ideas, Blundell et al. (2007) study changes in the distribution of wages accounting

for selection into labor force, and Kreider et al. (2012) study the effects on food stamps on

child health outcomes accounting for endogenous or misreported participation. See Ho and

Rosen (2015) for a detailed review of recent applications. In this example, θ = (θ1, θ2) ∈

Rm×RM−m+1 where θ1 = (θjd(y))mj=1 and θ2 = (θjd(y))Mj=m, and the function φ : RM+1 → R2

is given by

φ(θ) =

 maxj6m(θ1,j)

mink6M−m+1(θ2,k)

 .

This function is not fully differentiable at θ0 if the maximum or the minimum are attained

by multiple components of the corresponding subvector of θ0. �

The next example, due to Pakes et al. (2007, 2015) and Pakes (2010), concerns bounds

on a real-valued parameter of interest in a partially-identified discrete-choice model.
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Example 1.2 (Counterfactuals in Moment Inequality Models). Suppose an agent chooses

y ∈ RdY from a set Y = {y1, . . . , yM} to maximize her expected payoff E(π(y, Z, γ0)|F),

where Z is a vector of payoff-relevant variables, γ0 is a vector of payoff parameters, and F

is the agent’s information set. Let Y ∗ denote the optimal choice, and assume that (Y ∗, Z)

are observed by the econometrician. Then, optimality of Y ∗ implies that for all y′ ∈ Y ,

E(π(y′, Z, γ0)− π(Y ∗, Z, γ0)|F) 6 0. (1.4)

A common payoff specification is π(y, Z, γ0) = u(y, Z) + yTγ0, where u is a known function

(e.g., Pakes, 2010). Under suitable assumptions, the optimality condition in (1.4) implies

that γ0 must satisfy, for any y, y′ ∈ Y ,

E
((
u(y′, Z)− u(y, Z) + (y′ − y)Tγ0

)
1(Y ∗ = y)

)
6 0

Therefore, the identified set for the vector of structural parameters γ0 ∈ Rd is a convex

polytope and it can be expressed as

Γ0 = {γ ∈ Rdγ : E(m1j(X) +m2j(X)Tγ) 6 0, j = 1, . . . , J}, (1.5)

where m1j,m2j are known functions, and X is directly observed by the econometrician. Let

f(γ0) = a+ bTγ0 denote a counterfactual of interest, representing, for instance, an expected

change in profit. Assuming that Γ0 is compact, the identified set for f(γ0) is given by

[L(θ0), U(θ0)] defined as

L(θ0) = min
γ∈Rdγ

{f(γ) | F (θ0, γ) 6 0},

U(θ0) = max
γ∈Rdγ

{f(γ) | F (θ0, γ) 6 0},

where θ0 ∈ R2J is a vector of moments containing E(m1j(X)) and E(m2j(X)) for all j =

1, . . . , J and the function F (θ0, γ) defines the inequalities. In this example, B = R2J , D = R2,

and the function φ : R2J → R2 is given by φ(θ) = [L(θ), U(θ)]. This function is not

fully differentiable whenever the above optimization problems have multiple solutions. A

conceptually different approach to identification in an overlapping class of models has been
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developed in Galichon and Henry (2011) and Beresteanu et al. (2011), who characterize sharp

identified sets for the structural parameters using tools from the theory of random sets. In

particular, the so-called Artstein inequalities (Artstein, 1983) naturally fit the framework

of the present paper. A detailed discussion of this matter, and the treatment of general

moment inequality models, is provided in the Appendix. �

The next example, due to Haile and Tamer (2003), concerns bounds on the distribution

of valuations in English auctions.

Example 1.3 (English Auctions). Consider a symmetric ascending auction with indepen-

dent private values. Each bidder draws her valuation Vi ∈ [v, v], independently of the others,

from a distribution with a cumulative distribution function (CDF) denoted by F . Let Bi

denote the final bid of player i. For simplicity, suppose that each auction has N bidders, and

the reserve price is below v. The main parameter of interest in the empirical analysis in this

setting is the CDF of valuations F . To relate the unobserved valuations with the observed

bids, Haile and Tamer (2003) assume that each player: (i) does not bid above her valuation

and (ii) does not let the others win at a price she is willing to pay. Assumption (i) can be

used to obtain an upper bound on the distribution of valuations

F (v) 6 min
i6N

ψi(Gi:N(v)),

where Gi:N is the CDF of the i-th smallest bid, and ψi : [0, 1] → [0, 1] is a strictly in-

creasing differentiable function.7 In turn, Assumption (ii) can be used to obtain a lower

bound using the distribution of the winning bid. Let D([v, v], [0, 1]) denote the set of

all cádlág functions from [v, v] to [0, 1] (i.e., functions that are continuous from the right

and have left limits evewyehrer) endowed with the supremum norm. Focusing on the up-

per bound presented above, in this example, B = D([v, v], [0, 1])N , D = D([v, v], [0, 1]),

7This function relates the marginal distribution of the order statistics of i.i.d. random variables with the
parent distribution. More details are provided in Section 1.7.
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θ0 = (ψ1(G1:N), . . . , ψN(GN :N)) ∈ B and φ : B→ D, is defined by

φ(θ)(v) = min
i6N

(θ0,i(v)).

This function is not fully differentiable if the minimum is attained by multiple θ0,i for at

least one v ∈ [v, v]. For example, if the bids are i.i.d., all ψi(Gi:N(v)) will coincide for all

v ∈ [v, v]. The bounds on the distribution of valuations can be translated into the bounds

on the expected revenue, bidders surplus, and optimal reserve price; see Haile and Tamer

(2003). In the same setting, Chesher and Rosen (2017) characterize the sharp bounds on

the distribution of valuations using tools from the theory of random sets. Aradillas-López

et al. (2013a) provide bounds on the expected revenue and bidders surplus in auctions with

correlated private values. �

The next example, due to Beresteanu and Molinari (2008) and Bontemps et al. (2012),

deals with a regression model with interval-valued outcomes.

Example 1.4 (Interval Outcome Regression). Let Y ∈ R be an outcome variable, Z ∈ RdZ

be a vector of covariates, and β0 ∈ RdZ be a vector of coefficients for the best linear prediction

Y = ZTβ0 + ε, E(εZ) = 0.

Assume that YL 6 Y 6 YU almost surely and the researcher only observes (Z, YL, YU).

One parameter of interest is γ0 = pTβ0, with known p ∈ RdZ , representing, for example, a

coordinate projection. Bontemps et al. (2012) derived the closed-form expressions for the

bounds on γ0, given by

inf
β∈B0

pTβ = E(bT0ZYL + min{bT0Z, 0}(YU − YL)),

sup
β∈B0

pTβ = E(bT0ZYL + max{bT0Z, 0}(YU − YL)),

where b0 = (E(ZZT ))−1p ∈ RdZ , and B0 is the sharp identified set for β0. Denote θ0 =

(ψ0, b0), where ψ0 : RdZ → R2 is given by

ψ0(b) =

E(bTZYL + max{bTZ, 0}(YU − YL))

E(bTZYL + min{bTZ, 0}(YU − YL))

 .
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Letting l∞(T ) denote the set of all bounded real-valued functions defined on T endowed

with the supremum norm, it is convenient to view ψ0 ∈ l∞(B) for some compact set B

containing b0 in its interior. Then, B = l∞(B) × RdZ , D = R2 and φ : B → D is defined by

φ(θ) = ψ(b) for any (ψ, b) ∈ B. This function is not fully differentiable if P (bT0Z = 0) > 0.

More generally, one can consider any parameter of the form ψ(β), where both β and ψ are

unknown, but root-n estimable, and ψ is potentially only directionally differentiable. For

example, forecasts in regression kink models share a similar structure; see Hansen (2017). �

The final example concerns quantile regression models. Due to the potential misspecifica-

tion, the quantile regression function may not be monotone, which complicates interpretation

(Bassett and Koenker, 1982; Angrist et al., 2006). To avoid this problem, Fang (2018) pro-

poses projecting the curve onto a suitable set of monotone functions.8

Example 1.5 (Quantiles without Crossing). Let Y ∈ R and Z ∈ Rd denote the outcome

variable and the set of covariates correspondingly, and consider the quantile regression model

β(τ) = argmin
β∈Rd

E(ρτ (Y − ZTβ)),

where ρτ (u) = u(τ − 1{u 6 0}). Denote the quantile regression process, for a fixed value

of z, by θ(τ) = zTβ(τ). Let T = [ε, 1 − ε] with ε ∈ (0, 1/2), and view θ : T → R as

an element of L2(T ), denoting the space of square-integrable functions with respect to the

Lebesgue measure. To impose monotonicity, one may project θ(τ) onto the set Λ ⊂ L2(T )

of all monotonically increasing functions:

φ(θ) = ΠΛθ ≡ argmin
λ∈Λ

||θ0 − λ||L2(T ) .

Since Λ is a convex cone, the projection exists and is unique. In this example, B = L2(T ),

D = Λ, and φ : L2(T ) → Λ is defined by φ(θ) = ΠΛθ. The projection map is not fully

differentiable at all points that are projected on a vertex of Λ. �

8This provides an alternative to the monotone rearrangement operator of Chernozhukov et al. (2010).
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1.2.3 Hadamard Directional Differentiability

In the above examples, there exist points θ0 at which the corresponding function φ is not

fully differentiable. However, at such points, φ remains directionally differentiable in the

following sense:

Definition 1.1. A function φ : B→ D is Hadamard directionally differentiable at θ0 if there

is a continuous function φ′0 : B→ D such that, for any hn → h in B, and any tn ↓ 0,

lim
n→∞

∣∣∣∣∣∣∣∣φ(θ0 + tnhn)− φ(θ0)

tn
− φ′0 (h)

∣∣∣∣∣∣∣∣
D

= 0. (1.6)

If the above holds for each h ∈ B0 ⊂ B, it is said that φ is directionally differentiable at θ0

tangentially to B0. In this case, the domain of φ′0 is B0.

Intuitively, a function is directionally differentiable at θ0 if it can be linearly approximated

in each direction around θ0, and the approximation is suitably continuous. To compare, a

function φ is Hadamard fully differentiable if the derivative φ′0, satisfying (1.6), is a continuous

linear function. That is, full differentiability implies directional differentiability, and the only

distinction between the two notions is the potential non-linearity of the directional derivative

(Shapiro, 1990).

In this paper, in addition to Hadarmard directional differentiability of the function φ, I

require that the directional derivative be Lipchitz-continuous.

Assumption 1.2.1 (Restrictions on φ). The map φ : B→ D is directionally Hadamard dif-

ferentiable at θ0 tangentially to B0, as in Definition 1.1. Moreover, the directional derivative

φ′0 : B0 → D is Lipchitz-continuous. That is,

||φ′0(x)− φ′0(y)||D 6 Cφ′ ||x− y||B

for all x, y ∈ B0, for some Cφ′ <∞.

Since continuous linear functions are Lipchitz-continuous, this assumption is satisfied

whenever φ is fully differentiable. Otherwise, it only imposes a mild restriction: the direc-

tional derivative is a “partially linear” function with different “slopes” in different regions
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of the domain, so the assumption merely rules out unbounded “slopes”. Moreover, in most

applications, the function φ itself is Lipschitz-continuous, in which case Assumption 1.2.1 is

automatically satisfied; see Shapiro (1990).

1.2.3.1 Examples Revisited

To fix ideas, I will focus on Examples 1 and 3 throughout the paper. The remaining examples

are discussed in the Appendix.

Example 1 (Continued). Focus on the upper bound φ(θ0) = minj6d(θ0,j) with θ0 ∈ Rd. For

each h = (h1, . . . , hd)
T , the directional derivative is equal to

φ′0(h) = min
j∈B(θ0)

(hj), (1.7)

where B(θ0) = {j : θ0,j = mini(θ0,i)} is the set of indices of the components of θ0 that attain

the minimum. That is, the function φ is fully differentiable at θ0 if there is a unique min-

imal component, and only directionally differentiable otherwise. The directional derivative

satisfies Assumption 1.2.1 with Cφ′ = 1. Similar arguments hold for the lower bound, and

for both bounds simultaneously. �

Example 3 (Continued). Assume that N = 2, so that θ0 ∈ D([v, v], [0, 1])2 is given by

θ0(v) = (θ1,0(v), θ2,0(v)) = (ψ1(G1:2(v)), ψ2(G2:2(v))). Recall that φ(θ)(v) = min{θ1(v), θ2(v)},

and define the sets

S1(θ0) = {v ∈ [v, v] : θ1,0(v) < θ2,0(v)}

S2(θ0) = {v ∈ [v, v] : θ2,0(v) < θ1,0(v)}

S0(θ0) = {v ∈ [v, v] : θ1,0(v) = θ2,0(v)}.

(1.8)

The directional derivative φ′0 : D([v, v], [0, 1])2 → D([v, v], [0, 1]) is given by

φ′0(h)(v) = h1(v) · 1(v ∈ S1(θ0)) + h2(v) · 1(v ∈ S2(θ0))

+ min{h1(v), h2(v)} · 1(v ∈ S0(θ0)) (1.9)
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for any h = (h1, h2) ∈ D([v, v], [0, 1])2. Therefore, whenever the set S0 is non-empty, the func-

tion φ is only directionally differentiable. For example, if the bids are i.i.d., then ψi(Gi:2) = G

for i = 1, 2, so that S0 = [v, v]. The directional derivative satisfies Assumption 1.2.1 with

C ′φ = 1. �

1.3 Local Asymptotic Minimaxity

This section formally defines the efficiency criterion and formulates the basic assumptions of

the paper. Before diving into the technical details, I discuss the general idea of the criterion.

1.3.1 General Idea

Intuitively, a “good” estimator should not deviate from the estimand too much, too often.

The notion of risk provides a way to quantify this intuition. To elaborate, recall that the data

X1, . . . , Xn are an i.i.d. sample with a common distribution P ∈ P, where P denotes the

model, and the parameter θ0 takes value θ(P ) when the underlying distribution is P ∈ P. Let

φ̂n denote a generic root-n consistent estimator for the target parameter φ(θ0). Let l denote

a non-negative “bowl-shaped” loss function, which specifies penalties, l(
√
n(φ̂n − φ(θ0))),

imposed when the estimator deviates from the estimand. Then, the risk of the estimator φ̂n

under the distribution P is defined as EP (l(
√
n(φ̂n − φ(θ0)))). For a given loss function and

fixed n, it is understood that the smaller the risk, the better the estimator.

Additionally, since the distribution P is ex ante unknown, beyond the assumption that

P ∈ P, a good estimator should perform well in some overall sense within P. For example,

one may take the Bayesian approach and construct estimators that minimize the average risk,

calculated over some prior belief about P, or the minimax approach and construct estimators

that minimize the worst-case risk within P (see, e.g., Lehmann and Casella (2006) for the

discussion of these and other approaches). However, one often lacks prior knowledge about

the relative likelihood of the plausible distributions (especially, in semi- and non-parametric
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models), while tailoring the estimator to the least favorable distribution may worsen its

performance at other, potentially more empirically relevant distributions.

To gain tractability, one may take a more local approach. As the sample size increases, the

true distribution P of the observed data can be better located within the model P. Therefore,

one may focus on the appropriate “local neighborhoods” Vn(P ) ⊂ P around P and evaluate

different estimators by their asymptotic worst-case risk within such neighborhoods. This

line of thought leads to the notion of Local Asymptotic Minimaxity. Formally, an estimator

sequence {φ̂n} is Locally Asymptotically Minimax (LAM) if it minimizes the asymptotic

locally-worst-case risk, that is,

lim inf
n→∞

sup
P̃∈Vn(P )

EP̃
(
l
(√

n(φ̂n − φ(θ(P̃ )))
))

. (1.10)

The local neighborhoods Vn(P ) shrink to P as n approaches infinity and only contain dis-

tributions that are hard to distinguish from P empirically. The discussion below makes this

definition rigorous, providing the necessary background, stating the main assumptions, and

discussing the choice of the local neighborhoods and loss functions.

1.3.2 Background and Assumptions

I start by defining the main components of the local asymptotic framework, following the

literature on semiparametric efficiency (e.g., Bickel et al., 1993). The following notation is

used recurrently. For a probability measure P on (X,B), the spaces L2(P ) and L0
2(P ) are

defined as

L2(P ) =

{
h : X→ R

∣∣∣∣ ∫ h2dP <∞
}
,

L0
2(P ) =

{
h : X→ R

∣∣∣∣ ∫ h2dP <∞,
∫
hdP = 0

}
.

These spaces are endowed with the standard L2(P ) norm ||h||2,P = (
∫
h2dP )1/2 and scalar

product 〈h1,h2〉P =
∫
h1h2dP . For any subset H, of L2(P ), H̄ denotes its closure with

17



respect to ||·||2,P . To simplify exposition, I assume that the model P is dominated by a

positive, sigma-finite measure µ on (X,B).

1.3.2.1 Smooth Parametric Submodels and Tangent Sets

The idea of local asymptotic analysis is to study the behavior of the parameters and estima-

tors of interest along suitable submodels of P passing through P . Following the literature,

I consider smooth parametric sumbodels and scores defined as follows.

Definition 1.2 (Smooth Parametric Submodels and Scores). A smooth parametric submodel

t 7→ Pt,h is a mapping defined on [0, ε) for some ε > 0, such that (i) Pt,h is a probability

distribution for each t; (ii) P0,h = P ; and (iii) for some measurable function h : X→ R,∫ (√
pt,h −

√
p

t
− 1

2

√
ph

)2

dµ → 0 as t ↓ 0. (1.11)

Such h is called the score for the submodel {Pt,h}. Here pt,h = dPt,h/dµ and p = dP/dµ

denote the densities of Pt,h and P with respect to µ.

The score h, defined above, is a quadratic-mean version of the familiar parametric score,

defined by ∂ log pt,h(x)/∂t|t=0. Any score h automatically satisfies EP (h) = 0 and EP (h2) <

∞, so that h ∈ L0
2(P ). The collection of all scores corresponding to the submodels {Pt,h} ⊂ P

is called the tangent set.

Definition 1.3 (Tangent Set). The set of all scores corresponding to the submodels {Pt,h} ⊂

P is called the tangent set and denoted by

T (P ) = {h ∈ L2
0(P )

∣∣ h satisfies (1.11) for some {Pt,h} ⊂ P}. (1.12)

The tangent set depends on both the distribution P and the model P and describes the

informational content of the assumption P ∈ P. It is directly related to both construction

of efficient estimators (e.g., Bickel et al., 1993) and existence of specification tests with

non-trivial power (Chen and Santos, 2018). Assumptions on P may translate into further
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restrictions on the tangent set through the requirement {Pt,h} ⊂ P. If T (P ) = L0
2(P ), the

tangent set is said to be unrestricted; otherwise, it is restricted. In the latter case, the

tangent set typically forms a linear subspace of L0
2(P ), but in some cases T (P ) can be a

convex cone, e.g., in some moment inequality models.9

Throughout the paper, I assume that the tangent set is a linear space, as recorded below.

A partial extension of the main results to convex cones and some issues associated with such

settings are discussed in Section 1.8.

Assumption 1.3.1 (Random Sampling and Restrictions on the Model). The researcher

observes an i.i.d. sample {Xi}ni=1 of X ∈ X from P ∈ P. The model P and the distribution

P ∈ P are such that tangent set T (P ) is a linear subspace of L2
0(P ).

1.3.2.2 Differentiable Parameters and Regular Estimators

For a submodel {Pt,h} ⊂ P with a score h ∈ T (P ), denote Pn,h ≡ P1/
√
n,h. The parameter

θ0 = θ(P ) is assumed to be differentiable in the following sense.

Definition 1.4 (Path-Wise Differentiable Parameters). A parameter θ(P ) ∈ B is differen-

tiable relative to a tangent set T (P ) if there is a continuous linear functional θ′0 : T̄ (P )→ B,

such that
√
n(θ(Pn,h)− θ(P )) → θ′0(h) in B, as n→∞.

The functional θ′0(h) is called the path-wise derivative of θ(P ).

Assumption 1.3.2 (Diferentiability of θ(P )). The parameter θ(P ) is differentiable relative

to the tangent set T (P ), according to Definitions 1.2, 1.3, and 1.4.

Path-wise differentiability guarantees existence of the estimators with nice asymptotic

behavior. The path-wise derivative θ′0 is crucial in characterizing the asymptotic efficiency

9The tangent set T (P ) is a cone by construction. If h ∈ L0
2(P ) corresponds to a submodel {Pt} then

ah ∈ L0
2(P ) for any a > 0 corresponds to the submodel {Pat}. Therefore, T (P ) is a collection of rays i.e. a

cone. For a detailed discussion, see van der Vaart (1988).
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bound for θ(P ), which is discussed in more details in Section 1.3.2.3.10 With i.i.d. data,

this assumption limits the analysis to parameters estimable at the root-n rate. Examples

include moments, distribution functions, quantile functions, parametric components in semi-

parametric models, and smooth functions of those. Differentiable parameters are typically

estimated with regular estimators.

Definition 1.5 (Regular Estimator). A sequence of estimators θ̂n : Xn
1 → B for a parameter

θ(P ) ∈ B is regular, if
√
n(θ̂n − θ(Pn,h))

Pn,h
 G (in B)

for all h ∈ T (P ), where G is a tight random element in B that does not depend on h.

Regularity is a desirable property: A small disappearing perturbation of the distribution

of the data should not affect the limit distribution of the estimator. For example, sample

averages, empirical distribution and quantile functions, and smooth functions of those are

regular estimators for the corresponding population parameters.

1.3.2.3 Convolution Theorem and Best Regular Estimators

The efficient estimator for φ(θ0), developed in the sequel, relies on the notion of the best

regular estimator for θ0, discussed below. Consider estimating a differentiable parameter

θ0 = θ(P ). The Convolution Theorem states that the asymptotic distribution of any regular

estimator θ̂n can be represented as a convolution of a centered Gaussian random element G0

and an independent “noise term” W, that is

√
n(θ̂n − θ0)

P
 G0 + W.

Since convolution increases variance, the “best possible” limit among regular estimators is

G0, and its variance-covariance matrix of G0 is known as the efficiency bound. Any regular

10The concept of path-wise derivative originated in Koshevnik and Levit (1976) and Pfanzagl (1982) for
Euclidean parameters and was extended to general normed spaces in van der Vaart (1988).
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estimator that attains this limit is called the best regular estimator. The covariance structure

and the support of G0 are determined by the path-wise derivative θ′0 and the tangent set

T (P ) (see Theorems 1.3 and 1.4 in the Appendix).11

Next, consider estimating φ(θ0) with a fully Hadamard differentiable function φ with

derivative φ′0 at θ0. One can show that φ(θ(P )) is also a differentiable parameter, and the

distributional limit of any regular estimator φ̂n satisfies

√
n(φ̂n − φ(θ0))

P
 φ′0(G0) + W′,

where G0 is the same as in the previous display, and W′ is an independent “noise term” (e.g.,

van der Vaart, 1988). In the same fashion as above, the best regular estimator sequence

converges in distribution to φ′0(G0), which is also a centered Gaussian random element, since

the derivative φ′0 is linear. It follows from the Delta-method that if θ̂n is best regular for θ0,

the “plug-in” estimator φ(θ̂n) is best regular for φ(θ0).

When estimating differentiable parameters, it is without loss of generality to focus on reg-

ular estimators, because best regular estimators are also asymptotically minimum-variance

unbiased (when applicable) and locally asymptotically minimax among all estimators (e.g.,

van der Vaart, 2000). However, for parameters of the form φ(θ0) where φ is only directionally

differentiable, regular and asymptotically unbiased estimators do not exist (van der Vaart,

1991; Hirano and Porter, 2012), so that it is necessary to consider larger classes of competing

estimators.

1.3.3 LAM Risk and Directional Differentiability

Having introduced the notions of smooth parametric submodels and tangent sets, I am in

position to define the optimality criterion rigorously. Following the literature, I define the

11For example, to construct the best regular estimator for θ0 ∈ Rd, one has to find θ̃ such that θ′0(h) =

EP (θ̃h), project such θ̃ onto T (P ), denoting the projection by ψθ, and seek an estimator such that
√
n(θ̂n −

θ0) = n−1/2
∑n
i=1 ψθ(Xi) + oP (1).
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Figure 1.1: Example of a Local Neighborhood with I = {h1, . . . , h6}.

LAM risk as12

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θ(Pn,h)))
)}

, (1.13)

where I denotes an arbitrary finite subset I ⊂ T (P ) of the tangent set, and Pn,h denotes a

probability distribution corresponding to a smooth parametric submodel {Pt,h} ⊂ P with a

score h ∈ T (P ) with t = 1/
√
n. In the notation of Equation (1.10), the local neighborhoods

are Vn(P ) = {Pn,h : h ∈ I}. Figure 1.1 illustrates.

The restriction to finite neighborhoods is made for two reasons. First, when the local

neighborhoods are too rich, the sharp lower bound for the local asymptotic maximum risk

may be infinite (see van der Vaart, 1988). In such case, every estimator is “optimal”,

which makes the criterion meaningless. Second, to construct optimal estimators, one has to

establish weak convergence uniformly over the local neighborhoods, which may be impossible

if the neighborhoods are too large.

Next, I discuss the difficulties associated with deriving LAM estimators for parameters

expressed via directionally differentiable functions. First, as in the previous section, consider

estimating a differentiable parameter θ0 with a regular estimator θ̂n. Using a representation

from the Convolution Theorem, one can argue that the LAM risk of any such estimator is

12See e.g., van der Vaart (1988); van der Vaart and Wellner (1996); Hirano and Porter (2009); Fang (2018).
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E(l(G0 + W)). By Anderson’s Lemma, it is larger than E(l(G0)) for any symmetric quasi-

convex loss function l. Moreover, this lower bound turns out to hold among all estimators,

so the best regular estimator θ̂n whose distributional limit is G0 is also LAM. Note that in

this argument, the random noise W in the expression for the LAM risk is replaced with a

constant w = 0.

Now, consider estimating φ(θ0). Using a suitable Delta-Method, one can show that
√
n(φ(θ̂n) − φ(θ0)) converges in distribution to φ′0(G0 + W), for any regular θ̂n, where φ′0

denotes the Hadamard directional derivative of φ at θ0. If φ is fully differentiable, φ′0 is in

fact linear, so φ′0(G0 + W) = φ′0(G0) + φ′0(W). Here, the first summand is also Gaussian, so

the argument from the preceding paragraph still applies. However, if φ is only directionally

differentiable, one can show that the LAM risk takes the form:

sup
h∈T (P )

E(l(φ′0(G0 + W + θ′0(h))− φ′0(θ′0(h))). (1.14)

Here, since φ′0 is now non-linear, the terms φ′0(θ′0(h)) do not cancel out. Recall from the

previous section that W is a random noise whose distribution depends on θ̂n. Song (2014)

and Fang (2018) note that, in order to derive a practically useful lower bound, it would be

desirable to replace W by a constant. In the absence of a general result in the spirit of An-

derson’s Lemma, it is a complicated task. To this end, Song (2014) and Fang (2018) suggest

applying purification arguments from Dvoretzky et al. (1951) and Feinberg and Piunovskiy

(2006) correspondingly. Essentially, these techniques allow to replace a randomized deci-

sion rule W0 with a deterministic rule w(z), for an arbitrary finite number of loss functions

ρj(z, w) = l(φ(z + w + θ′0(hj)) − φ(θ′0(hj))). Note, however, that w(z) is still a function of

the state variable z, and cannot, in general, be replaced by a constant w. In special cases

when it can, the resulting lower bound will take the form (1.3) and the optimal estimator

will take the form (1.1). In general, however, other types of estimators may be optimal. For

example, if l is convex, (1.14) is bounded from below by

EG0

(
l(EW(φ′0(G0 + W + θ′0(h))− φ′(θ′0(h)))

)
,
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by Jensen’s inequality and independence of G0 and W. This suggests an estimator of the

form
∫
φ(θ̂n + w/

√
n)dF (w), which, intuitively, smooths out the non-differentiability of φ.

Studying the properties of such estimators is beyond the scope of this paper and left for

further research.

1.3.4 Loss Functions

An essential ingredient in the LAM-analysis is the loss function. It specifies which deviations

of the estimator from the estimand should be punished relatively more than the others, and

by how much. In practice, the loss function can be used to “fine-tune” the estimator (e.g.

specify the relative importance of different dimensions of the target parameter, or focus

on a subvector), address sensitivity to outliers in the data (e.g., consider the absolute loss

instead of quadratic loss), or boost computation (e.g., pick a smooth or convex function). In

theory, the loss function must ensure that the LAM risk is finite for at least one estimator,

for otherwise the optimality criterion becomes meaningless (see, e.g., Lemma 3.1 in Fang,

2018).

Following the literature, I consider a large family of symmetric “bowl-shaped” loss func-

tions, which are appropriate for most applications.

Assumption 1.3.3 (Loss Functions). The loss function l : D→ R+ is sub-convex. That is,

the lower level sets {x ∈ D : l(x) 6 c} are closed, convex and symmetric.

Any sub-convex loss function must be lower semi-continuous and satisfy l(−x) = l(x).

This assumption rules out asymmetric loss functions, but allows, for example, for different

weights along different dimensions of the argument, and for discontinuities. Some examples

are provided below.

• For x ∈ Rd, one can consider a weighted quadratic loss, absolute loss, or maximum
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loss, with w1, . . . , wd > 0:

l(x) = w1x
2
1 + w2x

2
2 + . . .+ wdx

2
d,

l(x) = w1|x1|+ w2|x2|+ . . .+ wd|xd|,

l(x) = max{w1|x1|, w2|x2|, . . . , wd|xd|}.

Adjusting the weights allows to specify the relative importance of the coordinates.

• For x ∈ l∞(S), one can consider the supremum loss or focus on a finite-dimensional

slice, for some s1, . . . , sd ∈ S and w1, . . . , wd > 0:

l(x) = sups∈S |x(s)|,

l(x) = w1x(s1)2 + w2x(s2)2 + · · ·+ wdx(sd)
2.

• For x ∈ L2([a, b]), one can consider a weighted L2-loss, with bounded w(t) > 0,

l(x) =

∫ b

a

w(t)x2(t)dt,

or focus on a finite-dimensional slice in the same fashion as above.

• In any of the above examples, one can consider a zero-one loss, defined as

l(x) = 1{x /∈ A},

where A is a a closed convex set symmetric around the origin.

1.4 Risk Lower Bound

In this section, I formally derive the lower bound for LAM risk for all estimators of the form

φ̂n = φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n
, (1.15)

where v̂1,n, v̂2,n are adjustment terms converging in probability (under P ) to some constants.

Theorem 1.1 below presents the general result, and Corollary 1.1.1 specializes to Eu-

clidean parameters. To state the general result, some new notation is required. Recall that
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the path-wise derivative is a continuous map θ′0 : T̄ (P ) → B. By the Riesz representation

theorem, for any b∗ ∈ B∗ (the continuous dual of B), there is an element θ̃b∗ ∈ T̄ (P ) such

that b∗(θ′0(h)) = 〈θ̃b∗ , h〉2,P for all h ∈ T̄ (P ). Such θ̃b∗ is called the canonical gradient of θ′0

in direction b∗.

Theorem 1.1 (General Lower Bound). Let Assumptions 1.2.1, 1.3.1, 1.3.2, 1.3.3, and

assume that the infimum in the display below can be attained. Then, for any estimator

sequence of the form (1.15),

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θ(Pn,h)))
)}

> inf
(v1,v2)∈B×D

sup
s∈S(G0)

E
{
l (φ′0(G0 + v1 + s)− φ′0(s) + v2)

}
,

where I is an arbitrary finite subset of the tangent set T (P ), G0 denotes the distributional

limit of the best regular estimator sequence
√
n(θ̂n− θ0), and S(G0) ⊂ B denotes the support

of G0. Specifically, G0 is a Gaussian random element in B such that (b∗1, . . . , b
∗
K) ◦ G0 is a

centered Gaussian random vector with Cov(b∗i (G0), b∗j(G0)) = E(θ̃b∗i θ̃b∗j ) for all i, j = 1, . . . , K,

and S(G0) is equal to the closure of θ′0(T (P )) in B.

Corollary 1.1.1 (Lower Bound for Euclidean Parameters). Let Assumptions 1.2.1, 1.3.1,

1.3.2, 1.3.3, and assume that the infimum in the display below can be attained. Consider

θ ∈ Rdθ and φ ∈ Rdφ. Then, for any estimator sequence of the form (1.15),

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θ(Pn,h)))
)}

> inf
(v1,v2)∈Rdφ+dθ

sup
s∈R(Σθ)

E
{
l (φ′0(G0 + s+ v1)− φ′0(s) + v2)

}
,

where I is an arbitrary finite subset of the tangent set T (P ), G0 ∼ N(0,Σθ) denotes the

distributional limit of the efficient (best regular) estimator sequence
√
n(θ̂n− θ0), and R(Σθ)

denotes the range of the efficient covariance matrix Σθ.

Several comments are in order. First, if the function φ is fully differentiable at θ0, the
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lower bound simplifies as follows:

inf
v1,v2

sup
s

E {l (φ′0(G0 + v1 + s)− φ′0(s) + v2)} (a)
= inf

v1,v2
E {l (φ′0(G0) + φ′0(v1) + v2)}

= inf
v∈D

E {l (φ′0(G0) + v)}
(b)
= E {l (φ′0(G0))} ,

where (a) follows from the linearity of φ′0, and (b) follows from the Anderson’s Lemma, since

φ′0(G0) is Gaussian. The expression E {l (φ′0(G0))} is the well-known risk lower bound for

differentiable parameters (e.g., van der Vaart and Wellner, 1996). It implies, in particular,

that the “plug-in” estimator φ(θ̂n) is Locally Asymptotically Minimax for any sub-convex

loss function. In contrast, the lower bound in Theorem 1.1 suggests that with directionally

differentiable functions φ, the optimal estimator of the form (1.15) will generally depend on

the chosen loss function.

Second, the min-max form of the lower bound is not surprising. The supremum appears

by construction, because the theorem deals with the locally maximum risk. In turn, the

infimum appears because the lower bound must hold for a large class of competing estimators.

Finally, the lower bound for Euclidean parameters takes a somewhat simpler form. Specif-

ically, note that in Theorem 1.1, the supremum is taken over the support of G0, which is

equal to the closure of the image of the tangent set under the path-wise derivative mapping.

If the tangent set is restricted in a complicated way, this set may be hard to characterize.

In contrast, the range of the efficient covariance matrix Σθ is a relatively simple object. In

particular, if Σθ is of full rank, R(Σθ) = Rdθ .

Remark 1.1. To study the estimators attaining the lower bound, it will be necessary to work

with bounded loss functions, because an application of the Portmanteau lemma is required

to establish the distributional convergence of the candidate estimator uniformly over finite

neighborhoods of P . To this end, let l be a loss function satisfying Assumption 1.3.3, and

lM be a sequence of bounded, Lipschitz-continuous sub-convex loss functions, converging

to l poitwise monotonically from below. For instance, if l is continuous, one can simply
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take lM = min{l,M} for M large enough (Lemma 1.6 in the Appendix provides a general

construction). Then, in the notation of Theorem 1.1, the lower bound also holds in the

following sense:

lim
M→∞

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
lM

(√
n(φ̂n − φ(θn(h)))

)}
> inf

(v1,v2)∈B×D
sup

s∈S(G0)

E {l (φ′0(G0 + s+ v1)− φ′0(s) + v2)} .

1.4.1 Examples Revisited

Example 1 (Continued). Suppose, for simplicity, that θ0 = EP (X) ∈ R2, and the model P is

unrestricted, and focus on the upper bound φ(θ0) = min(θ0,1, θ0,2). Then, the sample average

θ̂n = n−1
∑n

i=1Xi is the best regular estimator, and
√
n(θ̂n − θ0)  Z, where Z ∼ N(0,Σ)

with Σ = Var(X). Assume that Σ is full rank.

First, consider the binding case when θ0,1 = θ0,2 so that φ′0(h) = min{h1, h2}. The risk

lower bound with the quadratic loss l(x) = x2 is given by

inf
(v11,v12)∈R2

v2∈R

sup
(s1,s2)∈R2

E
{

(min(Z1 + v11 + s1, Z2 + v12 + s2)−min(s1, s2) + v2)2
}

= inf
(v1,v2)∈R2

sup
(s1,s2)∈R2

E
{

(min(Z1 + v1 + s1, Z2 + v2 + s2)−min(s1, s2))2
}
.

In contrast, when θ0,1 < θ0,2, the derivative is given by φ′0(h) = h1, and the risk lower bound

simplifies to

inf
v1∈R2,v2∈R

sup
(s1,s2)∈R2

E
{

((Z1 + v11 + s1)− (s1) + v2)2
}

= inf
v∈R

E{(Z1 − v)2} = E{Z2
1}.

The case when θ0,2 < θ0,1 is symmetric. �

Example 3 (Continued). Suppose again that N = 2. Let θ̂n = (ψ1(Ĝ1:2), ψ2(Ĝ2:2)) where

Ĝj:2, for j = 1, 2 are the empirical CDFs of order statistics of bids. Under suitable as-

sumptions, it can be shown that the model P is unrestricted. Therefore, Ĝ1:2, Ĝ2:2 are best

regular estimators for G1:2, G2:2, and, since ψ1 and ψ2 are fully Hadamard differentiable, θ̂n
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is the best regular estimator for θ0. Moreover,
√
n(θ̂n − θ0) converges in distribution to a

tight centered Gaussian element G0 in D([v, v], [0, 1])2, which is a vector of Brownian bridges

supported on S(G0) = C([v, v])2, where C([v, v]) denotes a set of continuous functions on

[v, v]. As in the preceding example, one can verify that the second adjustment term v2 is

not required. Then, for any loss function (e.g., l(x) = supv∈[v,v] |x(v)|, or l(x) =
∑d

j=1 x(vj)
2

for v1, . . . , vd ∈ [v, v]), the risk lower bound is given by

inf
w∈D([v,v],[0,1])2

sup
s∈C([v,v])2

E
{
l
(
φ′0(G0 + w + s)− φ′0(s)

)}
,

where the directional derivative is given in Equations (1.23)–(1.24). �

1.5 Attaining the Lower Bound

Theorem 1.1 and Remark 1.1 verify that the LAM risk of any estimator of the form (1.15)

is bounded from below by:

inf
(v1,v2)∈B×D

sup
s∈S(G0)

E {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)} . (1.16)

A natural way of obtaining the optimal adjustment terms (v̂1,n, v̂2,n) is by minimizing a

suitable sample analog of (1.16), as discussed below.

1.5.1 Setup and Assumptions

Denote the population criterion function by

Q(v1, v2) = sup
s∈S(G0)

E {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)} .

To construct a sample analog, one has to estimate two unknown components: the distribu-

tion of φ′0(G0 + v1 + s) − φ′0(s) + v2 and the support S(G0). The law of G0 can typically

be approximated by bootstrap or simulation, so the main complication here is that the

directional derivative φ′0 is an unknown and potentially non-linear function. Letting Ĝ∗n
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denote a bootstrap process approximating G0 and φ̂′n denote a suitable estimator for the

directional derivative φ′0, the analogy principle suggests approximating the distribution of

φ′0(G0 + v1 + s)−φ′0(s) + v2 by the finite-sample distribution of φ̂′n(Ĝ∗n + v1 + s)− φ̂′n(s) + v2

conditional on the data. Next, since G0 is tight, its support is separable and can be approx-

imated by a sequence of compact sieves. It is not a substantial loss of generality to assume

that G0 is non-degenerate, in which case the support is typically known, but more generally

it has to be estimated. Let (Rn)n>1 denote a sequence of sieves approximating S(G0) and

(R̂n)n>1 denote the corresponding estimators. Then, I choose (v̂1,n, v̂2,n) to minimize:

Q̂n(v1, v2) = sup
s∈R̂n

E
{
lM

(
φ̂′n(Ĝ∗n + v1 + s)− φ̂′n(s) + v2

) ∣∣∣∣ Xn
1

}
,

where the expectation is taken with respect to the distribution of Ĝ∗n conditional on the data.

To ensure that (v̂1,n, v̂2,n) converge in probability to some minimizers of Q, it is necessary

to guarantee that Q̂n converges to Q uniformly on compact sets. The estimators for the

unknown components of Q must be chosen accordingly.

First, I assume that the law of G0 can be consistently estimated by bootstrap or sim-

ulation. Recall that G0 denotes the distributional limit of the efficient estimator sequence
√
n(θ̂n− θ0). Let θ̂∗n denote the bootstrapped version of θ̂n, mapping the data Xn

1 and boot-

strap weights W n
1 , independent of the data, into B. This definition includes nonparametric,

Bayesian, block, multiplier and general weighted bootstrap as special cases. Define the set:

BL1(B) =

{
f : B→ R : sup

b∈B
|f(b)| 6 1, |f(b1)− f(b2)| 6 ||b1 − b2||B for b1, b2 ∈ B

}
.

Assumption 1.5.1 (Bootstrap Consistency).

(i) θ̂∗n : (Xn
1 ,W

n
1 )→ B with W n

1 independent of Xn
1 satisfies

sup
f∈BL1(B)

∣∣∣E(f(
√
n(θ̂∗n − θ̂n))|Xn

1 )− E(f(G0))
∣∣∣ = oP (1)

under Pn =
∏n

i=1 P .

(ii)
√
n(θ̂∗n − θ̂n) is asymptotically measurable (jointly in Xn

1 ,W
n
1 ).
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Condition (i) states that the limiting law of
√
n(θ̂n − θ0) can be approximated by the

law of Ĝ∗n =
√
n(θ̂∗n − θ̂n), conditional on the data.13 Condition (ii) is a mild measurability

assumption that ensures that the bootstrap process converges to G0 unconditionally.

Second, I assume that the directional derivative can be estimated uniformly well.

Assumption 1.5.2 (Estimating the Directional Derivative). The estimator φ̂′n : Xn
1 → D

of φ′0 satisfies, for any δ > 0,

sup
s∈Rδn

∣∣∣∣∣∣φ̂′n(s)− φ′0(s)
∣∣∣∣∣∣
D

= oP (1),

where Rδ
n = {b ∈ B : d(b, Rn) 6 δ} and (Rn)n>1 ⊂ S(G0) is an expanding sequence of

compact sets.

In view of applying the extremum estimation arguments, the distribution of φ′0(G0 +v1 +

s)−φ′0(s)+v2 must be approximated uniformly in (v1, v2) ∈ K and s ∈ Rn, where K is a fixed

compact set and Rn denotes an expanding sequence of compact sets (specified in Assumption

1.5.3). Therefore, the estimator φ̂′n must approximate the derivative φ′0 uniformly well. While

the above assumption may seem restrictive, natural estimators typically have a stronger

property that φ̂′n(b) = φ′0(b) for all b ∈ B with probability approaching one. In practice,

such estimators can be based on the analytical expression for φ′0 or obtained by numerical

differentiation (see Fang and Santos, 2019; Hong and Li, 2020).

Third, I impose the following assumption on the estimator of the support S(G0).

Assumption 1.5.3 (Estimating the Support). There is an expanding sequence of compact

sets (Rn)n>1 ⊂ B such that for any ε > 0 and s ∈ S(G0), there is sn ∈ Rn for n large enough

such that ||sn − s|| 6 ε. The sets Rn are either known or can be estimated with R̂n satisfying

dH(R̂n, Rn) = oP (1) as n→∞.

13The Bounded Lipchitz distance between two Borel probability measures P and Q is defined as
dBL(P,Q) = supf∈BL1

∣∣∫ fdP − ∫ fdQ∣∣. It metrizes weak convergence in the sense that a sequence of
probability measures Pn converges weakly to a probability measure P if and only if dBL(Pn, P ) = o(1)
(van der Vaart and Wellner, 1996). Condition (i) can be seen as the sample analog of this requirement,
conditional on the data.
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Recall that S(G0) is equal to the closure of θ′0(T (P )) in B. Since both θ′0 and T (P )

are unknown and the latter may be restricted in a non-trivial way, estimating S(G0) is, in

general, a complicated task. However, as I show below, Assumption 1.5.3 can be verified in

a number of different ways, depending on the application, and does not necessarily require

estimating the tangent set T (P ) and the path-wise derivative θ′0 directly. See Sections 1.5.2.1

and 1.5.2.2 for further discussion and examples.

Finally, note that the minimization problems with both Q and Q̂n may have multiple

solutions. It is therefore necessary to formulate conditions under which a minimizer of Q̂n

converges in probability to a minimizer of Q.14 Lemma 1.7 in the Appendix shows that

the key requirement for such “point-wise” consistency of the set of minimizers is that Q̂n

converges to Q in probability uniformly over compact sets.

1.5.2 Optimal Estimators

This section contains the second main result of the paper, which develops the optimal esti-

mator of the form (1.15). The result is presented in the general form first and then adapted

to a number of special cases.

Theorem 1.2 (Optimal Estimator). Let Assumptions 1.2.1, 1.3.1 – 1.3.3 and 1.5.1 – 1.5.3

hold and the infimum in the risk lower bound be attained within a compact set K ⊂ B× D.

Let v̂n = (v̂1,n, v̂2,n) solve

inf
(v1,v2)∈K

sup
s∈R̂n

E
{
lM

(
φ̂′n(Ĝ∗n + v1 + s)− φ̂′n(s) + v2

) ∣∣∣∣ Xn
1

}
, (1.17)

where θ̂n denotes the efficient (best regular) estimator for θ0, Ĝ∗n =
√
n(θ̂∗n − θ̂n) denotes the

bootstrap process, and the expectation is taken conditional on the data. Then, the estimator

φ̂n = φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n

14More precisely, it suffices to show that d(v̂n,V0) = oP (1), where v̂n = (v̂1,n, v̂2,n) and V0 denotes the set
of minimizers of Q.
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attains the risk lower bound:

lim
M→∞

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
lM

(√
n(φ̂n − φ(θ(Pn,h)))

)}
6 inf

(v1,v2)∈K
sup

s∈S(G0)

E {l (φ′0(G0 + s+ v1)− φ′0(s) + v2)} .

Two comments are in order. First, the role and numerical values of the optimal adjust-

ment terms depend on the chosen loss function. In particular, for real-valued parameters

φ(θ0), choosing the squared loss function allows to select the adjustment terms that balance

the bias-variance trade-off. Second, calculating the optimal adjustment terms amounts to

solving the optimization problem in (1.17). This min-max problem may be computation-

ally hard, because the objective function is not convex-concave, and evaluating it at each

(v1, v2, s) requires bootstrap approximation. However, in many common applications, simple

computational heuristics can speed up the optimization, as discussed in Section 1.5.4.

1.5.2.1 Euclidean Parameters

Consider θ0 ∈ Rdθ and φ(θ) ∈ Rdφ . Let Σθ denote the variance lower bound for θ and R(Σθ)

denote its range. According to Corollary 1.1.1 and Remark 1.1, the risk lower bound is given

by

inf
(v1,v2)∈Rdθ+dφ

sup
s∈R(Σθ)

E
{
lM(φ′0(G0 + v1 + s)− φ′0(s) + v2)

}
. (1.18)

Let Σ̂n denote a
√
n-consistent estimator of Σθ, and σj and σ̂j denote the j-th columns of

Σθ and Σ̂n correspondingly. Define, with λn = o(
√
n),

Rn =

{
t =

dθ∑
j=1

αjσj ∈ Rdθ

∣∣∣∣ ||α|| 6 λn

}
,

R̂n =

{
t =

dθ∑
j=1

αjσ̂j ∈ Rdθ

∣∣∣∣ ||α|| 6 λn

}
.

(1.19)

Then, R̂n and Rn satisfy Assumption 1.5.3, and the following Corollary holds.
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Corollary 1.2.1 (Optimal Estimation of Euclidean Parameters). Consider θ0 ∈ Rdθ , φ :

Rdθ → Rdφ. Let Assumptions 1.2.1, 1.3.1 - 1.3.3, 1.5.1 (i), and 1.5.2 hold with B = Rdθ and

D = Rdφ; define R̂n as in Equation (1.19). Assume that the infimum in (1.18) is attained

within a compact set K ⊆ Rdθ+dφ and let (v̂1,n, v̂2,n) solve

inf
(v1,v2)∈K

sup
s∈R̂n

E
{
lM(φ̂′n(G∗n + v1 + s)− φ̂′n(s) + v2)

∣∣∣∣Xn
1

}
. (1.20)

If Σθ is full-rank, the supremum in (1.20) can be taken over Rdθ . Then, the estimator

sequence

φ̂n ≡ φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n

attains the risk lower bound:

lim
M→∞

sup
If⊂T (P )

lim inf
n→∞

sup
h∈If

EPn,h
{
lM

(√
n(φ̂n − φ(θn(h)))

)}
6 inf

(v1,v2)∈Rdθ+dφ
sup

s∈R(Σθ)

E {l (φ′0(Z + s+ v1)− φ′0(s) + v2)}

1.5.2.2 Infinite-Dimensional Parameters

Next, consider estimating the support S(G0) according to Assumption 1.5.3 in the settings

when θ ∈ B is infinite-dimensional. I will discuss two different approaches.

The first approach is “brute-force” and uses the fact that S(G0) equals the closure of

θ′0(T (P )) in B. Let g1, g2, . . . denote a complete sequence in L2(P ), in a sense that for

any f ∈ L2(P ) and any ε > 0, there exist an m ∈ N, and α1, . . . , αm ∈ R such that

||f −
∑m

j=1 αjgj||2,P < ε. For example, the space of continuous functions supported on

compact sets is dense in L2(P ), and the space of polynomials is dense within that space,

by the Stone-Weierstrass theorem. Therefore, g1, g2, . . . can be chosen as properly truncated

polynomials. The idea is to use the gj-s to construct a sequence of compact sieves in the

closure of θ′0(T (P )). To illustrate, suppose that T (P ) = L0
2(P ). Let hj = gj −EP (gj) denote

the projection of gj onto L0
2(P ), and ĥj = gj − n−1

∑n
i=1 gj(Xi) be its sample analog. Let

θ̂′n : L0
2(P ) → B be a suitable estimator for the path-wise derivative map, and define, for
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ln ∈ N and λn ∈ R+, the sets

R̂n =

{
ln∑
j=1

αj θ̂
′
n(ĥj)

∣∣∣∣ ||α|| 6 λn

}
,

Rn =

{
ln∑
j=1

αjθ
′
0(hj)

∣∣∣∣ ||α|| 6 λn

}
.

(1.21)

The following Lemma provides primitive conditions under which R̂n and Rn defined above

satisfy Assumption 1.5.3.

Lemma 1.1 (Estimating the Support via Projections). Assume that:

1.
∣∣∣∣∣∣θ̂′n(1)− θ′0(1)

∣∣∣∣∣∣
B

= oP (1) and λn ·max
j6ln

∣∣∣∣∣∣θ̂′n(gj)− θ′0(gj)
∣∣∣∣∣∣
B

= oP (1)

2. λn ·
√

ln
n
·maxj6ln ||gj||2,P = o(1)

Then R̂n and Rn defined in (1.21) satisfy Assumption 1.5.3.

Assumption 1 is a point-wise and uniform consistency requirement on θ̂n, which can be

verified via a suitable maximal inequality or with the sample splitting technique. Assumption

2 is a rate condition, which relates the number and “size” of elements in the construction of

Rn with n. Similar primitive conditions can be formulated in settings where the tangent set

T (P ) is restricted.

The second approach is similar in spirit to the Euclidean case, and is based on charac-

terizing the support of a Gaussian process G0 via its covariance kernel. The main idea is

illustrated below in the example where G0 is a Gaussian process with S(G0) = Cb([0, 1])

endowed with the sup-norm. The technical details are deferred to Remark 1.2. Let K :

[0, 1] × [0, 1] → R defined by K(s, t) = E(G0(t)G0(s)) denote the covariance kernel of G0,
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and K̂n denote a suitable estimator. Denote:

Rn =

{
f(s) =

ln∑
j=1

αjK(tj, s)

∣∣∣∣ 0 6 t1 < · · · < tln 6 1; ||α|| 6 λn

}
,

R̂n =

{
f(s) =

ln∑
j=1

αjK̂(tj, s)

∣∣∣∣ 0 6 t1 < · · · < tln 6 1; ||α|| 6 λn

}
.

(1.22)

The following Lemma provides a primitive condition under which R̂n and Rn satisfy As-

sumption 1.5.3.

Lemma 1.2 (Estimating the Support via Covariance Kernel). Let Rn and R̂n be defined in

(1.22) with ln ∈ N, and λn ∈ R+. Suppose that K̂n : [0, 1]× [0, 1]→ R satisfies

λn max
j6ln
||K̂n(tj, ·)−K(tj, ·)||∞ = oP (1).

Then, Rn and R̂n satisfy Assumption 1.5.3.

Remark 1.2 (Support of a Gaussian Measure and Cameron-Martin Space). The exposition

below follows Bogachev (1998). Since G0 is tight, it concentrates on the separable subspace

of B, which I denote B0, and induces a centered Radon Gaussian measure γ on (B0,B(B0))

(see Theorem 7.1.7. in Bogachev, 2007). The support of G0 is equal to the closure of H(γ)

in B0, where H(γ) denotes the Cameron-Martin space of γ, constructed as follows (Theorem

3.6.1. in Bogachev, 1998). Each element of the continuous dual B∗0 is a Normal random

variable defined on (B0,B(B0), γ). This allows to view B∗0 as a subset of L2(γ). Let B∗γ
denote the L2(γ)-closure of B∗0. For each h ∈ B0, let Lh : B∗γ → R denote the evaluation

map Lh(b
∗) = b∗(h). The Cameron-Martin space of γ is defined as H(γ) = {h ∈ B0 :

Lh is continuous w.r.t ||·||2,γ}. Next, for each b∗ ∈ B∗γ, let K(b∗, ·) : B∗γ → R be defined by

K(b∗, c∗) =

∫
B

b∗(x)c∗(x)dγ(x) = E(b∗(G0)c∗(G0)).

By Theorem 3.2.3 in Bogachev (1998), for each b∗ ∈ B∗γ, there is hb∗ ∈ H(γ) such that

K(b∗, c∗) = c∗(hb∗) for all c∗ ∈ B∗γ. In this sense, every element of B∗γ can be associated with
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a unique element of H(γ). Therefore, the set H(γ) can be mapped out by choosing different

b∗ and finding the associated h∗b .

For example, let B0 = Cb([0, 1]) be a set of continuous bounded functions on [0, 1], and G0

denote a Gaussian process with covariance kernel K(s, t) ≡ E(G0(s)G0(t)). Recall that the

continuous dual B∗0 is the set of all finite Borel measures on [0, 1] so that b∗(x) =
∫
x(t)dµb∗(t).

With the help of Fubini’s theorem, one can verify that hb∗(s) =
∫
K(s, t)dµb∗(t). Further,

the set of finitely-supported Borel measures {
∑J

j=1 αjδtj : αj ∈ R, tj ∈ [0, 1], J ∈ N}, where

δt denotes the Dirac measure with mass at t, is weak-star dense in B∗0 meaning that any such

hb∗(s) can be approximated by a sequence of the form
∑

j αjK(s, tj) point-wise in s, and

therefore uniformly since s ∈ [0, 1]. This motivates the definition of Rn in (1.22).

1.5.3 Examples Revisited

Example 1. Focus on the upper bound φ(θ0) = minj6d(θ0,j) with θ0 ∈ Rd. Here, estimating

the directional derivative (see Equation 1.7) amounts to selecting θj that are sufficiently close

to each other, which is essentially an inequality selection problem. One way to proceed is

to test a set of hypotheses H0 : θ0,j 6 θ0,i for all i, j (following e.g. Romano et al. (2014)),

collect all j-s for which the null is not rejected into the set B̂n, and set

φ̂′n(h) = min
j∈B̂n

(hj)

Then, if the test size approaches zero as n approaches infinity, φ̂′n(h) = φ′0(h) for all h ∈ Rd,

with probability approaching one, so that the resulting estimator satisfies Assumption 1.5.2.

�

Example 3. Suppose again that N = 2, and let θ̂n = (ψ1(Ĝ1:2), ψ2(Ĝ2:2)) where Ĝj:2, for

j = 1, 2 are the empirical CDFs of order statistics of bids. The form of the directional

derivative in Equation (1.24) suggests a natural sample counterpart. For a positive sequence
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κn ↓ 0, define the sets

Ŝ1,n = {v ∈ [v, v] : ψ1(Ĝ1:2(v)) < ψ2(Ĝ2:2(v))− κn},

Ŝ2,n = {v ∈ [v, v] : ψ2(Ĝ2:2(v)) < ψ1(Ĝ1:2(v))− κn},

Ŝ0,n = {v ∈ [v, v] : |ψ1(Ĝ1:2(v))− ψ2(Ĝ2:2(v))| 6 κn},

(1.23)

and set, for any h ∈ D([v, v], [0, 1])2,

φ̂′n(h)(v) = h1(v)1(v ∈ Ŝ1,n) + h2(v)1(v ∈ Ŝ2,n) + min(h1(v), h2(v))1(v ∈ Ŝ0,n). (1.24)

Then, if κn
√
n → ∞, one can show that the resulting estimator satisfies Assumption 1.5.2

even with Rδ
n replaced by D([v, v], [0, 1])2. �

1.5.4 Computation

In some special cases, computation of the adjustment terms can be substantially simplified

by splitting the optimization problem into several independent sub-problems or using ap-

proximate closed-form solutions. More generally, I discuss computational heuristics that can

be applied to speed-up the optimization.

The main factor that slows down the optimization problem in (1.20) is that the objective

function is costly to evaluate. The approach discussed below aims to reduce the number of

evaluations. I focus on the finite-dimensional parameters for simplicity, but similar ideas can

be applied in infinite-dimensional settings as well, after selecting suitable sieves. The lower

bound from Corollary 1.1.1 can be equivalently written as

inf
(v1,v2)∈Rdθ+dφ

sup
s∈B

sup
λ>0

E {l (φ′0(Z + λs+ v1)− λφ′0(s) + v2)} , (1.25)

where B denotes the unit ball in Rdθ . For a fixed v1, v2 and s, consider a function

g(λ) = E {l (φ′0(Z + λs+ v1)− λφ′0(s) + v2)}

that traces the value of the objective function along the ray passing through s. A useful

property that appears to hold in practice but turns out to be hard to prove theoretically is
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that g(λ) is maximized at zero or infinity. Therefore, for each (v1, v2), the supremum can be

calculated by selecting a set of directions (i.e., values of s) on the unit ball and evaluating

the function g(λ) at zero and some large value of the argument in each direction. Since the

directional derivative is typically a partially linear function with a small number of different

slopes, this approach allows to reduce the number of evaluations of the objective function

dramatically.

In special cases, such as φ′0(h) = maxj6d(hj) with the squared loss function, following the

above line of thought allows to formulate an approximate closed-form solution. In such cases,

v2 = 0 without loss of generality (for any loss function). Imposing an additional assumption

that v1 = (v, . . . , v)T ∈ Rd and elaborating on the arguments above suggests the folowing

solution

v∗ =
1

2
max

I⊂{1,...,d}

(
E((maxj∈I Zi)

2)− E(Z2
i∗)

E(maxj∈I Zj)

)
, (1.26)

where i∗ = argmaxi6d E(Z2
i ) and the maximum over empty set is set to be equal to zero,

which guarantees v∗ > 0. Similarly, with φ′0(θ) = minj6d(θj) and the squared loss, the

solution is given by

v∗ =
1

2
min

I⊂{1,...,d}

(
E((minj∈I Zi)

2)− E(Z2
i∗)

E(minj∈I Zj)

)
. (1.27)

Extensive simulations suggest that these closed-form adjustment terms actually attain the

global minimum in (1.25), although the corresponding formal result is hard to establish.

Recalling that Z ∼ N(0,Σ) with Σ consistently estimated by Σ̂n suggests the following

procedure: (i) draw Z∗1 , . . . , Z
∗
B ∼ N(0, Σ̂n) for some large B and (ii) replace expectations

with sample averages in the expressions above.

The above formulas can be applied in other settings as well. Consider Example 1 with

θ = (θ1, θ2) ∈ Rd1 × Rd2 that do not have any common components and φ′0 : Rd1+d2 → R2

given by φ′0(h) = (minj6d1(h1,j),maxk6d2(h2,k))
T . Then, with the quadratic loss function

l : R2 → R+ defined as l(x1, x2) = x2
1 + x2

2, the optimization problem can be separated into
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two independent subproblems:

inf
(v1,v2)∈Rd1+d2+2

sup
s∈Rd1+d2

E {l (φ′0(Z + s+ v1)− φ′0(s) + v2)}

= inf
(v11,v12)∈Rd1+1

sup
s1∈Rd1

E
{

(min(Z1 + s1 + v11)−min(s1) + v12)2}
+ inf

(v21,v22)∈Rd2+1
sup
s2∈Rd1

E
{

(max(Z2 + s2 + v21)−max(s2) + v22)2} .
Then, v∗12 = v∗22 = 0 and the approximate solutions (v∗11, v

∗
21) to each of the problems are

given by equations (1.27) and (1.26) correspondingly. Similar arguments can be applied in

the setting of Example 3 if the loss function l : D([v, v])→ R+ is given by l(x) =
∑d

i=1 x(vi)
2

for some fixed v1, . . . , vd ∈ [v, v].

1.6 Simulation Study

I illustrate the finite-sample performance of the proposed estimator by comparing it with

the simple “plug-in” estimator and the existing bias correction approaches. For simplicity, I

focus on the upper bound from Example 1: φ(θ) = minj6d(θj) with θ ∈ Rd. The results for

the lower bound and for both bounds together are similar.

I start by discussing the existing bias-correction approaches. The first approach, con-

sidered in Kreider and Pepper (2007), is to use bootstrap bias correction (Tibshirani and

Efron, 1993; Horowitz, 2001). It is implemented as follows: (i) Draw B bootstrap samples

{X∗1 , . . . , X∗n}, and calculate X̄∗b = 1
n

∑n
i=1 X

∗
i ; (ii) Estimate the bias by b̂∗n = 1

B

∑B
b=1 φ(X̄∗b )−

φ(θ̂n), and compute the adjusted estimator

φ̂Bootstrap
n ≡ φ(θ̂n)− b̂∗n = 2φ(θ̂n)− 1

B

B∑
b=1

φ(X̄∗b ).

Kreider and Pepper (2007) found that this method performs well in practice, even though it

is not fully theoretically justified.15 Studying the asymptotic properties of such estimator is

15The standard arguments for consistency of the procedure rely on the differentiability of the function φ,
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beyond the scope of this paper.

The second approach is due to Chernozhukov et al. (2013). The authors propose a half-

median unbiased estimator which lies above the true value with probability at least one half

asymptotically.16 The estimator takes the form

φ̂CLR
n ≡ φ(θ̂n + ĉn),

where ĉn is the adjustment term calculated in two steps. The first step performs inequality

selection, picking the components of θ0 that are sufficiently close to each other, and the

second step focuses on the selected components to choose the appropriate adjustment term.

Although the form of φ̂CLRn is very similar to the estimator proposed in this paper, the two

approaches are very different. The adjustment term ĉn is chosen to reduce the bias of the

“plug-in” estimator, and may lead to large LAM risk, while the adjustment terms proposed

in this paper minimize the risk and do not target the bias directly.

Next, consider the implementation of the proposed estimator. Let Z ∼ N(0,Σ), denote

the weak limit of the efficient estimator sequence
√
n(θ̂n − θ0). To approximate the law of

Z in accord with Assumption 1.5.1, one may pick a consistent estimator Σ̂n for Σ and chose

Z∗n to be a random vector distributed as N(0, Σ̂n), conditional on the data. To construct a

suitable estimator for the directional derivative, one may follow the procedure described in

Section 1.5.3 and obtain φ̂′n(h) = minj∈B̂n(hj). Then, calculate the adjustment term v̂1,n by

minimizing

inf
v1∈Rd

sup
c∈Rd

E
(

(φ̂′n(Z∗n + v1 + c)− φ̂′n(c))2

∣∣∣∣Xn
1

)
and set

φ̂LAM ≡ φ

(
θ̂n +

v̂1,n√
n

)
.

which, in the present setting, may fail. See Tibshirani and Efron (1993).

16This criterion is considered beacuse the results of Hirano and Porter (2012) suggests that median-
unbiased estimators do not exist.
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In this special case the second adjustment term is not required and the optimization problem

is simplified. Moreover, the squared loss function allows to choose v̂1,n to balance the bias-

variance trade-off, and compute approximate closed-form solutions as discussed in Section

1.5.4.

The simulation setup is as follows. The data X1, . . . , Xn are i.i.d. from N(θ0,Σ) in R3,

so that θ0 = EP (X). I consider an ordinary covariance matrix Σ with different variances and

non-zero correlations, and set θ(∆) = (0,∆/
√
n, 2∆/

√
n)T so that ∆ plays the role of the

local parameter. That is, ∆ equal to zero corresponds to the point θ0 = (0, 0, 0)T , where the

full differentiability of φ fails, and varying ∆ allows to “walk across” the local neighborhood

of this point.17 For each value of the local parameter ∆ on a grid chosen to scale, I perform

M = 5000 simulations, with B = 2000 bootstrap draws and sample size n = 300. For every

draw, indexed by m, I generate a random sample Xm
1 , . . . , X

m
n from N(θ0,Σ), and calculate

φ̂Plug-in
m = φ(X̄m), and φ̂Bootstrap

m , φ̂CLR
m and φ̂LAM

m according to the formulas above. Then, I

compute the average bias, 1
M

∑M
m=1(φ̂m − φ(θ(∆))), and risk, 1

M

∑M
m=1(φ̂m − φ(θ(∆)))2, for

each of the four estimators and plot the results as a function of ∆.

The results presented in Figure 1.2 require several comments. First, Panel (a) suggests

that the LAM estimator does not reduce the bias as much as the other methods. This is

not surprising, since the LAM estimator was constructed targeting the mean-squared error

(i.e., variance plus bias squared), rather than the bias directly. Larger reduction in bias

can be achieved by using a different loss function, such as l(x) = |x|α for 0 < α < 2.

Second, Panel (b) suggests that the LAM estimator has the lowest worst-case risk, which

is consistent with the asymptotic results of Theorems 1.1 and 1.2. Note that while the risk

of the plug-in estimator is maximized at zero (i.e., at the point of non-differentiability) the

maximum risks of the bias-corrected estimators are attained away from zero. Moreover,

the LAM estimator outperforms the bias-correction methods in terms of risk everywhere

17There are many other curves that pass through θ0 = (0, 0, 0), and this particular choice is made only
for illustrative purposes. The last coordinate of θ0 is multiplied by two only for aesthetic reasons, to ensure
that the graphs are symmetric and properly scaled.
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Figure 1.2: Finite-Sample Bias, Risk, and Relative Risk.

(a)

(b)

(c)

Notes: The horizontal axis corresponds to the local parameter ∆. Panels (a) and (b) are

in absolute terms. Panel (c) shows the efficiency gains (or losses) of the estimators relative

to the “Plug-in” estimator.
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except for a small neighborhood of zero. Finally, Panel (c) shows relative risks in percentage

terms, suggesting that the bias-corrected estimators may have a substantially larger risk

than the Plug-in, depending on the value of ∆, while the LAM estimator does not. Since ∆

is unknown and cannot be consistently estimated, the LAM estimator can be interpreted as

cautious.

Extensive additional simulations suggest that the amount of bias and risk reduction of

the LAM estimator (relative to Plug-in) increase in the dimension of θ, and decrease in the

correlation between the components of θ̂n.

1.7 English Auctions with IPV

In this section, I revisit the model of English auctions with independent private values from

Haile and Tamer (2003). I apply the developed theory to construct efficient estimators for the

bounds on the distribution of valuations and the implied bounds optimal reserve price, and

compare the results with Haile and Tamer (2003). Using empirically calibrated simulations,

I find that the proposed estimator, on average, yields substantially sharper bounds.

1.7.1 Model and Identification

Consider a symmetric English auction. Suppose that there are N bidders, and each bidder

j draws his valuation Vj ∈ [v, v], independently of the others, from a distribution with a

cumulative distribution function denoted by F . Let Bj denote the final bid of player j and

Bj:N denote the j-th lowest final bid in a given auction. Assume that the reserve price is

below v, and let ∆ > 0 denote the minimal bid increment.
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1.7.1.1 CDF of Valuations

The main primitive parameter of interest in this setting is the marginal distribution of

valuations F . The knowledge of this distribution allows to forecast the expected revenue and

bidders surplus and study the effects of a counterfactual change in the auction design, such

as setting a different reserve price. To relate this distribution with the observed distribution

of bids, one has to make assumptions on the bidding behavior. Haile and Tamer (2003)

assume that each player: (i) does not bid above his valuation and (ii) does not let the others

win at a price he is willing to pay. Assumption (i) states that Bj 6 Vj for each j 6 N ,

implying that the order statistics satisfy Bj:N 6 Vj:N for each j 6 N , and

Fj:N(v) 6 Gj:N(v),

where Fj:N and Gj:N denote the distributions of the j-th order statistics of valuations and

bids correspondingly. Assumption (ii) implies that VN−1:N 6 BN :N + ∆, and, therefore,

FN−1:N(v) > GN :N(v −∆).

It is well-known that the distribution of any order statistic of a collection of i.i.d. random

variables uniquely determines the parent distribution: for each j 6 N , there is a strictly

increasing and differentiable function ψj : [0, 1] → [0, 1] such that F (v) = ψj(Fj:N(v))18.

Applying ψj to both sides of the two previous displays for every j 6 N and intersecting the

results, Haile and Tamer (2003) obtain the following point-wise bounds:

ψN−1(GN :N(v −∆)) 6 F (v) 6 min
j6N

ψj(Gj:N(v)). (1.28)

While these bounds are not sharp (Chesher and Rosen, 2017), they can be sufficiently infor-

mative.

18Specifically, ψj(t) is defined implicitly through t = n!/((n − j)!(i − j)!)
∫ ψi

0
sj−1(1 − s)n−jds; see e.g.

Arnold et al. (2008).
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1.7.1.2 Optimal Reserve Price

One of the main policy variables for the seller is the reserve price. Haile and Tamer (2003)

show that, under suitable assumptions on the distribution of valuations and bidding strate-

gies in counterfactual auctions, informative bounds on the optimal reserve price can be

obtained directly from the bounds on the distribution of valuations derived above. Specif-

ically, assume that F is strictly increasing and continuously differentiable, and such that

the function π(p;F ) defined below is strictly pseudo-concave. Then, in any feasible auction

mechanism that is revenue equivalent to the second-price sealed-bid auction in the sense of

Myerson (1981), the optimal reserve price maximizes

π(p;F ) = (p− v0)(1− F (p)),

where v0 denotes the value of the unsold good to the seller. Denoting the bounds on the

CDF by FL(v) 6 F (v) 6 FU(v), it follows that π(p;FU) 6 π(p;F ) 6 π(p;FL) for all p. As

illustrated in Figure 1.3, this implies the following bounds [pL, pU ] on the optimal reserve

price:

pL = inf
{
p ∈ [v, v] : π(p;FL) > maxp′∈[v,v] π(p′;FU)

}
,

pU = sup
{
p ∈ [v, v] : π(p;FL) > maxp′∈[v,v] π(p′;FU)

}
.

Note that, even if the bounds on the CDF of valuations and expected profit are relatively

tight, the implied bounds on the optimal reserve price may still be fairly wide.

1.7.2 Estimation

It is assumed that the researcher observes an i.i.d. sample of auction data which includes

bids {Bi}ni=1 where Bi = (B1,i, . . . , BN,i). Such data can be used to estimate the empirical

CDFs of order statistics of bids.19 Consider estimating the upper bound on the distribution

19The analysis can be performed conditional on auction characteristics and the number of participants.
To apply the results of this paper, the auction characteristics must be discrete (or discretized) to ensure that
the conditional CDF-s of the bids can be regularly estimated (see Section 1.3.2.2). Note that, since the IPV
assumption is imposed conditional on the auction characteristics, focusing on discrete characteristics may
be restrictive.
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(a) Bounds on the true profit function (b) Implied bounds on the maximizer

Figure 1.3: Identification of the Optimal Reserve Price.

of valuations from Equation (1.28). For a fixed v ∈ [v, v], the upper bound takes the form

φ(θ(v)) = minj6d(θd(v)), where θ(v) is a vector of smooth transformations of the CDFs of

bids evaluated at v. Haile and Tamer (2003) propose to approximate the minimum by a

sequence of smooth functions, chosen to reduce the finite-sample bias. Specifically, they

consider the function

φ̃(θ; ρ) =
d∑
j=1

θj
exp(ρ · θj)∑d
k=1 exp(ρ · θk)

,

where ρ is the smoothness parameter. This function satisfies φ̃(θ; ρ) > minj6d(θj) for any

ρ ∈ R, and limρ→−∞ µ(θ; ρ) = minj6d(θj). Letting θ̂n denote an estimator for θ0 and ρn →

−∞ denote an appropriate sequence of smoothing parameters,20 they set

φ̂HTn ≡ φ̃(θ̂n; ρn) =
J∑
j=1

θ̂j
exp(ρn · θ̂j,n)∑J
k=1 exp(ρn · θ̂k,n)

.

Such estimator has the same asymptotic properties as φ̂Plug-in
n = minj6d(θ̂j,n), with the ad-

vantage of providing bias-correction in finite-samples.21

20To ensure a suitable amount of bias-correction, the sequence should not diverge too fast. On the other
hand, it cannot diverge too slow, or the bias will become infinite. Haile and Tamer (2003) derive the
asymptotic properties of their estimator with ρn diverging faster than log

√
n.

21From the asymptotic efficiency perspective, the two estimators are equivalent.
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While the above estimator is computationally simple and provides sufficient bias-correction,

it may be inefficient: Attempting to reduce the bias by choosing ρn close to zero may dispro-

portionally increase the variance of the resulting estimator. Additionally, this estimator does

not account for the fact that θ(v) is estimated with different precision at different points of

the support (unless one somehow selects a different smoothing parameter for each v ∈ [v, v]).

In turn, with a suitable choice of the loss function, the proposed estimator can optimally

balance the bias-variance trade-off and automatically adapt to the precision of the estimates

of θ(v). It can also be implemented in computationally simple way and computed within

several seconds, as discussed below.

Construction of the proposed estimator in this setting has been discussed in Example 3

throughout the paper. The parameter of interest is a pair of CDF-type functions, φ(θ0) ∈

D([v, v], [0, 1])2, representing the bounds on F in Equation (1.28). To focus on the bias-

variance trade-off in estimation and simplify the computation of the adjustment terms, I

consider the squared loss function that focuses on a finite grid of points v1, . . . , vK ∈ [v, v].

Specifically, the loss function l : D([v, v], [0, 1])2 → R+ is given by l(x1, x2) =
∑K

k=1(x1(vk)
2 +

x2(vk)
2). Then, as discussed in Section 1.5.4, the optimization problem can be split into

several simple subproblems that have approximate closed-form solutions.

1.7.3 Results

I compare the performance of the two estimation methods on simulated data. To mimic the

empirical results of Haile and Tamer (2003), the true distribution or valuations is taken to

be Log-Normal with parameters µ = 4 and σ = 0.5, the minimal bid increment is ∆ = 5,

and jump bids (substantially exceeding the bid increment) are allowed. The bidding process

is designed to satisfy Assumptions (i) and (ii) above, and may substantially differ from the

standard button auction model. Only the final bid of each participant is recorded.

Figure 1.4 presents the results. First, since the lower bound equals to ψN−1(GN :N(v−∆)),

no smoothing or adjustment is required and the two estimation methods yield the same
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Table 1.1: Estimated Bounds on the Optimal Reserve Price

Parameters µ = 4, σ = 0.5 µ = 3, σ = 1 µ = 5, σ = 0.25

True p∗ 42.1 27.2 112.6

F (p∗) 0.3 0.62 0.13

Mean LAM bounds [34.0, 59.6] [14.8, 75.5] [97.3, 139.3]

Mean HT bounds [27.5, 68.9] [8.3, 84.6] [91.3, 141.4]

LAM / HT width 61.5% 79.5% 83.3%

Note: Valuations are drawn from the Log-Normal distribution with parameters µ and σ.

The number of bidders is N = 6, sample size is n = 200.

results. The estimated lower bound is fairly tight throughout the support since the minimal

bid increment is relatively small and jump bidding is not too common. Second, the LAM

estimates for the upper bound are, on average, substantially tighter than the HT estimates.

In particular, the 95th quantile for the LAM estimate (red dotted line) is consistently below

the average HT estimate (black dashed line) across simulations. At the same time, there is

some downward bias in the LAM estimates around the lower part of the support. This issue,

caused by the fact that the highest bids in that region are very rarely observed, disappears

with smaller N and/or sufficiently large n.

Table 1.1 presents the implied bounds on the optimal reserve prices for different param-

eters of the Log-Normal distribution. While the bounds estimated with both methods are

fairly wide, the LAM estimates are, on average, substantially tighter.
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Figure 1.4: Estimated Bounds on the CDF of Valuations

Note: The number of bidders is N = 6, the sample size is n = 200. The dashed lines

represent the average estimates for the bounds across simulations. The lower bound is the

same for both estimation methods. The dotted lines represent the 5-th and 95-th quantiles

across simulations.
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1.8 Extension to Convex Cones

In the settings where the tangent set T (P ) is a convex cone, the lower bound in Theorem

1.1 holds with S(G0) replaced by θ′0(T (P )). Such settings typically arise in the presence

of moment inequality restrictions that are binding at P . Common examples include point-

or over-identifying moment inequality models, or regression models with binding sign con-

straints. However, such settings are theoretically problematic: when T (P ) is a convex cone,

the optimal estimators proposed by Convolution and Minimax Theorems may often be in-

admissible, even for differentiable parameters.22 To illustrate, I consider a simple example,

similar to Imbens and Manski (2004).

Suppose that the parameter of interest θ0 ∈ R is partially identified, and the bounds are

given by θL,0 = θL(P ) and θU,0 = θU(P ), which are “smooth” functionals (i.e., differentiable

in the sense of Definition 1.4) of the distribution P of the observable random vector X. The

model is given by:23

P = {P : θL(P ) 6 θU(P )}

What is an efficient estimator for the identified set [θL,0, θU,0]? In this example, stimating

the identified set amounts to estimating a two-dimensional vector of bounds. First, consider

a situation when θL(P ) < θU(P ). In this case, the tangent set is unrestricted, i.e., T (P ) =

L0
2(P ), and the classical efficiency theory suggests that the “plug-in” estimator, defined by

θ̂L,n ≡ θL(P̂n) and θ̂U,n ≡ θU(P̂n), where P̂n denotes the empirical distribution, is optimal.

Intuitively, the bounds can be estimated separately because they are not informative about

each other. On the other hand, suppose that θL(P ) = θU(P ). In this case, the estimators θ̂L,n

and θ̂U,n target the same parameter, so the intuition suggests that they may be combined to

produce a more efficient estimator. For example, assuming that the asymptotic variances of

22More specifically, if T (P ) is a cone but lin T (P ) = L0
2(P ), the optimal estimator suggested by the

Convolution and Minimax Theorems will be the same as the estimator when T (P ) = L0
2(P ), e.g. van der

Vaart (1988).

23The model may be required to satisfy some other restrictions omitted here for simplicity.
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θ̂L,n and θ̂U,n are the same, the optimal GMM would suggest using (θ̂L,n+ θ̂U,n)/2 to estimate

both θL and θU . However, due to the tangent set being a cone, the existing semiparametric

efficiency theory suggests otherwise. More precisely, denoting the path-wise derivatives by

θ′0,L(h) = EP (ψLh) and θ′0,U(h) = EP (ψUh) for some ψL, ψU ∈ L0
2(P ), the tangent set is given

by

T (P ) = {h ∈ L0
2(P ) : EP ((ψL(X)− ψU(X))h(X)) 6 0}

Then, since lin T (P ) = L0
2(P ), both the Convolution Theorem and LAM Theorem sug-

gest that the “plug-in” estimator [θ̂L,n, θ̂U,n] is still optimal, which contradicts the above

intuition.24

The above example shows that the existing semiparametric efficiency theory cannot prop-

erly capture binding inequality constraints. Although dealing with such inconsistency is

beyond the scope of this paper, it is an interesting question for further research.

1.9 Conclusion

In many econometric models, certain parameters of interest are represented via directionally

differentiable functionals. The potential lack of full differentiability has raised concerns in

regard to choosing “good” estimators for such parameters. This paper proposed a solution

by deriving Locally Asymptotically Minimax estimators within a class of plug-in estimators

with additive adjustment terms. In contrast with fully differentiable settings, the optimal

estimator depends on the chosen loss function, suggesting that it must be tailored to specific

applications. The proposed estimators typically do not reduce the bias as much as some of the

existing methods, but avoid large fluctuations in risk around the points where differentiability

fails. Empirical relevance of the proposed method was demonstrated in an application to

English auctions with independent private values.

24The Convolution Theorem continues to hold under the assumption that T (P ) is a convex cone if formu-
lated with lin T (P ) instead of T (P ).
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1.10 Appendix: Proofs from the Main Text

1.10.1 Known Results for Reference

The following results refer to Definitions 1.4 and 1.5.

Theorem 1.3 (Convolution Theorem for Euclidean Parameters. Theorem 25.20 in van der

Vaart (2000)). Assume that θ(P ) ∈ Rdθ is differentiable relative to a tangent set T (P ) with

the path-wise derivative θ′0 : T̄ (P )→ Rd. Then, for any regular estimator sequence θ̂n,

√
n(θ̂n − θ0)

Pn,0
 Z +W,

where Z is a centered Gaussian random vector in Rdθ , and W is a tight random vector

in Rdθ independent from Z. The covariance matrix of Z is given by Σ = E(θ̃θ̃T ), where

θ̃ = (θ̃1, . . . , θ̃dθ)
T is the efficient influence function for θ(P ). That is, θ̃j ∈ T (P ), for

j = 1, . . . , dθ, are such that θ′0(h) = EP (θ̃h) for all h ∈ T (P ). Moreover, the distribution of

Z concentrates on the range of Σ.

To state the Convolution Theorem for infinite-dimensional parameters, some new nota-

tion is required. For each b∗ ∈ B∗ (the continuous dual of B), b∗ ◦ θ′0 is a continuous linear

map from T̄ (P ) into R. By the Riesz Representation Theorem (Theorem ??), there is an

element θ̃b∗ ∈ T̄ (P ) such that b∗ ◦ θ′0(h) = EP (θ̃b∗h) for any h ∈ T̄ (P ). Such θ̃b∗ is called the

canonical gradient of θ in the direction b∗.

Theorem 1.4 (Convolution Theorem. Theorem 3.11.2. in van der Vaart and Wellner

(1996)). Assume that θ(P ) ∈ B is differentiable relative to a tangent set T (P ) with the

path-wise derivative θ′0 : T̄ (P )→ B. Then, for any regular estimator sequence θ̂n,

√
n(θ̂n − θ0)

Pn,0
 G0 + W,

where G0 is a tight centered Gaussian random element in B and W is a tight random element

in B independent from G0. The distribution of G0 is such that (b∗1, . . . , b
∗
K) ◦ G0 is a cen-
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tered Gaussian random vector with Cov(b∗i (G0), b∗j(G0)) = E(θ̃b∗i θ̃b∗j ) for any b∗1 . . . b
∗
K ∈ B∗.

Moreover, the distribution of G0 concentrates on the closure of θ′0(T (P )).

Theorem 1.5 (Continuous Mapping Theorem. Theorem 1.3.6. in van der Vaart and Wellner

(1996)). Let a map between two metric spaces g : B → D be continuous at every point of a

set B0 ⊂ B. If Xn  X and X takes its values in B0, then g(Xn) g(X) .

Theorem 1.6 (Prohorov’s Theorem. Theorem 1.3.9. in van der Vaart and Wellner (1996)).

If the sequence Xn is asymptotically tight and asymptotically measurable, then for any sub-

sequence Xn′ there is a further sibsequence Xn′′ that converges weakly to a tight Borel law.

Let (X, ρ) denote a metric space and B ⊂ X be an arbitrary subset of X. For each

x ∈ X define ρ(x,B) = inf{ρ(x, y)|y ∈ B}, which may be infinite.

Lemma 1.3 (Suprema of Lower Semi-Continuous Functions In Polish Spaces).

Let (X, ρ) be a separable metric space, B ⊂ X be an arbitrary non-empty subset and f :

X → R be a lower semi-continuous function. Then B is separable and

sup
B
f(x) = sup

B◦
f(x),

where B◦ denotes a countable dense subset of B.

Proof. First, I show that B is separable. Let E = {e1, e2, . . . } denote a countable dense

subset of X. Fix ε > 0. Define E ′ = {ej ∈ E|ρ(ej, B) 6 ε/3} = {e′1, e′2, . . . } which is

non-empty since E is dense in X. For every such e′j ∈ E ′ there is xj ∈ B with ρ(e′j, xj) 6

ρ(e′j, B) + ε/3 6 2ε/3. Let B◦ denote a set of all xj ∈ B obtained this way. Since E is

dense in X, for any x ∈ B there is ek ∈ E with ρ(ek, x) 6 ε/3. Since ρ(ek, B) 6 ρ(ek, x) by

definition, it must be that ek = e′j for some e′j ∈ E ′ and ρ(e′j, x) 6 ε/3. For such e′j there is

xj ∈ B◦ with ρ(e′j, xj) 6 2ε/3. By triangle inequality, ρ(x, xj) 6 ρ(x, e′j) + ρ(e′j, xj) 6 ε so

that B◦ is a countable dense subset of B.

For the second part of the statement, it is clear that supB◦ f(x) 6 supB f(x). For the

reversed inequality, it suffices to show supB f(x) 6 supB◦ f(x) + ε for an arbitrary ε > 0.
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Pick x′ ∈ B such that supB f(x) 6 f(x′) + ε. Since B◦ is dense in B, there is a sequence

(xn)n>1 ∈ B◦ such that ρ(xn, x
′) → 0. It follows from lower semi-continuity of f that

lim infn→∞ f(xn) > f(x′). Therefore, supB f(x) 6 lim infn→∞ f(xn) + ε 6 supB◦ f(x) + ε,

and the proof is complete.

�

Lemma 1.4 (Uniform Convergence of Lipchitz Functions). Let (X, ρ) denote a compact

metric space and fn : X → R be a uniformly Lipchitz sequence of functions, that is, for some

constant C independent of n,

|fn(x)− fn(x′)| 6 C · ρ(x, x′).

If fn(x) converges point-wise ti some f : X → R, then f is Lipchitz with the same constant

and supx∈X |fn(x)− f(x)| → 0.

Proof. First, I show that f satisfies:

|f(x)− f(x′)| 6 Cρ(x, x′)

for any x, x′ ∈ K. Fix δ > 0. Choose n1 and n2 such that |fn(x)− f(x)| < δ for all n > n1

and |fn(x′)− f(x′)| < δ for all n > n2. Then, for any n > max{n1, n2},

|f(x)− f(x′)| 6 |f(x)− fn(x)|+ |fn(x)− fn(x′)|+ |fn(x′)− f(x′)| 6 Cρ(x, x′) + 2δ.

Since δ was arbitrary, the desired conclusion follows.

Next, fix some ε > 0. SinceK is compact, there are x1, . . . , xJ such thatK ⊂
⋃J
j=1B(xj, ε).

Let π : K → {x1, . . . , xJ} be defined by π(x) = argminj6j{ρ(x, xj)}, so that ρ(x, πx) 6 ε for

any x ∈ X. Then

supx∈K |fn(x)− f(x)| 6 supx∈K |fn(x)− fn(πx)| (I)

+ supx∈K |fn(πx)− f(πx)| (II)

+ supx∈K |f(πx)− f(x)|. (III)

Note that (I) 6 Cε and (III) 6 Cε by construction, and (II) = maxj6J |fn(xj)− f(xj)| =

o(1). Letting n→∞ followed by ε→ 0 concludes the proof. �
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1.10.2 Auxiliary Lemmas

Lemma 1.5 (Lipchitzness of the Asymptotic Risk). Let lM be a loss function satisfying

Remark 1.1, and φ be a directionally differentiable function satisfying Assumption 1.2.1. Let

(D, ||·||D) and (B, ||·||B) denote Banach spaces and Z denote a tight random element in B.

Then a function f : D× B× B→ R defined as

f(v, w, r) = E (lM(v − φ′0(Z + w + r) + φ′0(r)))

is jointly Lipchitz, i.e. |f(v, w, r) − f(ṽ, w̃, r̃)| 6 CM,φ · (||v − ṽ||D + ||w − w̃||B + ||r − r̃||B)

for all (v, w, r), and (ṽ, w̃, r̃), for some CM,φ <∞.

Proof. Let ∆f = f(v, w, r)− f(ṽ, w̃, r̃) and CM,φ = max(CM , 2CMCφ). By Jensen’s inequal-

ity, the assumed Lipchitzness of lM and φ′0, and triangle inequality:

|∆f | 6 E (|lM(v − φ′0(Z + w + r) + φ′0(r))− lM(ṽ − φ′0(Z + w̃ + r̃) + φ′0(r̃))|)

6 CM (||v − ṽ||D + ||φ′0(r)− φ′0(r̃)||D + E (||φ′0(Z + w + r)− φ′0(Z + w̃ + r̃)||D))

6 CM ·
(
||v − ṽ||D + Cφ ||r − r̃||B + Cφ(||w − w̃||B + ||r − r̃||B)

)
6 CM,φ · (||v − ṽ||D + ||w − w̃||B + ||r − r̃||B) .

�

Lemma 1.6 (Approximating Sub-Convex Loss Functions). Any subconvex loss function l

(see Assumption 1.3.3) can be approximated by a sequence of bounded Lipschitz functions lM

pointwise monotonically from below.

Proof. First, note that the sequence of bounded step functions {lr} defined as

lr(x) =
1

2r

22r∑
i=1

1

{
x : l(x) >

i

2r

}
=

22r∑
i=1

i

2r
· 1
{
x :

i

2r
< l(x) 6

i+ 1

2r

}
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converges to l pointwise monotonically from below. Next, introduce the setsAi =
{
x : i

2r
< l(x) 6 i+1

2r

}
and Bi = ∪j6iAj and let FM,i = {x ∈ Ai : d(x,Bi) > 1/M}. For a fixed r, consider a se-

quence of functions, {lM,r}, defined as

lM,r(x) =
22r∑
i=1

(
i− 1

2r
+

d(x,Bi)

d(x,Bi) + d(x, FM,i)

)
· 1(x ∈ Ai)

Every such function is bounded by 2r and the part d(x,Bi)/(d(x,Bi) + d(x, FM,i)) smoothes

out the jumps in lr, such that the resulting function is Lipschitz continuous with Lipschitz

constant equal to M/2r. Indeed, let y ∈ Aj, x ∈ Ai with j > i

lM,r(y)− lM,r(x) =
j − i

2r
+

1

2r

(
d(y,Bj)

d(y,Bj) + d(y, FM,j)
− d(x,Bi)

d(x,Bi) + d(x, FM,i)

)
First, let i = j. Then

|lM,r(y)− lM,r(x)| = 1

2r

∣∣∣∣ d(y,Bi)d(x, FM,i)− d(x,Bi)d(y, FM,i)

(d(y,Bi) + d(y, FM,i))(d(x,Bi) + d(x, FM,i))

∣∣∣∣
=

1

2r

∣∣∣∣d(y,Bi)(d(x, FM,i)− d(y, FM,i)) + d(y, FM,i)(d(y,Bi)− d(x,Bi))

(d(y,Bi) + d(y, FM,i))(d(x,Bi) + d(x, FM,i))

∣∣∣∣
(a)

6
1

2r
· (d(y,Bi) + d(y, FM,i)) · d(x, y)

(d(y,Bi) + d(y, FM,i))(d(x,Bi) + d(x, FM,i))

(b)

6
M

2r
· d(x, y) (1.29)

Where (a) follows from the reverse triangle inequality, i.e. |d(y,Bi) − d(x,Bi)| 6 d(x, y)

and similar for FM,i, and (b) follows from the fact that d(x,Bi) + d(x, FM,i) > 1/M by

construction. The same upper bound can be obtained in a straightforward way when j >

i + 1 by considering four different cases when y ∈ FM,j or y ∈ Aj\FM,j and x ∈ FM,i or

x ∈ Ai\FM,i. �

Lemma 1.7 (Point-wise Consistency of Set Extremum Estimators). Let (V , d) be a metric

space. Let Q̂n(v) and Q(v) denote the empirical and population criterion functions, corre-

spondingly. Let V0 denote the set of maximizers of the population criterion function and v̂n
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denote any “almost maximizer” of Q̂n over a sieve space Vk(n), i.e.

Q̂n(v̂n) > sup
v∈Vk(n)

Q̂n(v)−OP (ηk(n))

Assume that the following conditions hold.

1. (Identification) For each v0 ∈ V0:

Q(v0)− sup
{v∈Vk: d(v,V0)>ε}

Q(v) > δ(k) · g(ε) for all k > 1 and ε > 0

for a positive non-increasing function δ(k) and positive g(ε).

2. (Sieve Approximation) The sieve spaces Vk ⊂ Vk+1 ⊂ . . . are compact under d and

grow dense in V in a sense that there is a sequence of maps πk : V → Vk such that for

each v0 ∈ V0 it holds that d(v0, πkv0)→ 0 as k →∞.

3. (Continuity) Q(v) is upper semi-continuous on all Vk with |Q(v0)−Q(πkv0)| = o(δ(k))

for each v0 ∈ V0.

4. (Uniform Convergence and Quality of Maximization)

(a) for each fixed k > 1: sup
v∈Vk
|Q̂n(v)−Q(v)| = oP (1) as n→∞

(b) sup
v∈Vk(n)

∣∣∣Q̂n(v)−Q(v)
∣∣∣ ≡ ĉk,n = oP (δ(k(n)))

(c) ηk(n) = o(δ(k(n)))

Let V̂n denote the set of “almost maximizers” of Q̂n. Then, ~dH(V̂n,V0) = oP (1), where

~dH(A,B) = supa∈A infb∈B d(a, b) denotes the directed Hausdorff distance.

Proof. Let (Ωn,An, Pn) denote a sequence of probability spaces. The maps Q̂n(v) : Ωn → R

are not required to be measurable, and, throughout the proof, the “events” defined via Q̂n

are thought of as subsets of Ωn rather than elements of An, and all probabilities are outer

probabilities.
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Some familiar properties of probability hold for outer probability as well. In particular,

let A,B,C,D ⊂ Ωn. Then for A ⊂ B it holds that P ∗(A) 6 P ∗(B), and if C ∩ D = ∅, it

holds that P ∗(C ∪D) 6 P ∗(C) + P ∗(D). See Lemmas 1.2.2 and 1.2.3 in van der Vaart and

Wellner (1996) for the details.

Notice that d(v̂n,V0) > ε implies that Q̂n is almost-maximized (at v̂n) at least ε-away

from V0. Let Vεk(n) = {v ∈ Vk(n) : d(v,V0) > ε}, which, by Condition 2, is a compact set.

Therefore,

P (d(v̂n,V0) > ε) 6 P

(
sup

v∈Vε
k(n)

Q̂n(v) > sup
v∈Vk(n)

Q̂n(v)−OP (ηk(n))

)

6 P

(
sup

v∈Vε
k(n)

Q̂n(v) > Q̂n(πk(n)v0)−OP (ηk(n))

)
where the second inequality is valid for all v0 ∈ V0. Call the latter event An and write is as:

An =

{
sup

v∈Vε
k(n)

Q(v)−Q(πk(n)v0) +OP (ηk(n))

> Q̂n(πkv0)−Q(πk(n)v0) + sup
v∈Vε

k(n)

Q(v)− sup
v∈Vε

k(n)

Q̂n(v)

}
Consider a sequence of events (Bn)n>1 defined as

Bn =

{
sup

v∈Vε
k(n)

∣∣∣Q̂n(v)−Q(v)
∣∣∣ > ŵk(n)

}
for some sequence ŵk(n) to be chosen later. Note that Bc

n implies

{∣∣∣∣∣ sup
v∈Vε

k(n)

Q̂n(v)− sup
v∈Vε

k(n)

Q(v)

∣∣∣∣∣ 6 ŵk(n)

}
=⇒


sup

v∈Vε
k(n)

Q(v) > sup
v∈Vε

k(n)

Q̂n(v)− ŵk(n)

Q̂n(πk(n)v0) > Q(πk(n)v0)− ŵk(n)

With the above notation, write P (An) 6 P (Bn) + P (An ∩Bc
n) to obtain:

P (An) 6 P (Bn) + P

(
sup

v∈Vε
k(n)

Q(v)−Q(πk(n)v0) +OP (ηk) > −2ŵk(n)

)

6 P (Bn) + P

(
2ŵk(n) +OP (ηk(n)) + |Q(v0)−Q(πk(n)v0)| > Q(v0)− sup

v∈Vε
k(n)

Q(v)

)
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Consider, specifically, ŵk(n) = ĉk,n = oP (δ(k(n))). Then P (Bn) = 0 by the definition of

ĉk,n in Condition 4, and the second probability converges to zero by the choice of ŵk(n) and

Conditions 1, 3 and 4. Since the upper bound does not depend on the choice of v̂n ∈ V̂n, it

follows that ~dH(V̂n,V0) = oP (1).

�

Lemma 1.8 (Replacing The Feasible Set). Let (B, ||·||B) be a Banach space, K ∈ B be a

compact set and fn : B × B → R be a sequence of random functions satisfying, for each

x1, x2 ∈ B,

sup
v∈K
|fn(x1; v)− fn(x2; v)| 6 Cn · ||x1 − x2||B

for a possibly random positive sequence Cn = OP (1). Further, let (Ân)n>1 and (An)n>1

denote sequences of measurable sets in B such that supx∈Ân fn(x; v) and supx∈An fn(x; v) are

attained at some points for each n. If dH(Ân, An) = oP (1), then:

sup
v∈K

∣∣∣∣∣ sup
x∈Ân

fn(x; v)− sup
x∈An

fn(x; v)

∣∣∣∣∣ = oP (1)

Proof. Let ∆̂n denote the left-hand side of the preceding display and take any x̂n and xn that

attain the suprema of f over Ân and An correspondingly. By assumption, for each ε > 0,

||x1 − x2||B < δn implies supv∈K |fn(x1; v)− fn(x2; v)| < ε where δn = ε/Cn.

Note that dH(Ân, An) < δn implies that (1) for x̂n ∈ Ân, there is x̃n ∈ An with

||x̂n − x̃n||B < δn and (2) for xn ∈ An, there is x′n ∈ Ân with ||xn − x′n||B < δn. Then,

by Lipschitz continuity of fn, for each v it holds that (1) fn(x̃n; v) > fn(x̂n; v) − ε and

therefore fn(xn; v) > fn(x̂n; v)− ε and (2) fn(x′n; v) > fn(xn; v)− ε and therefore fn(x̂n; v) >

fn(xn; v) − ε. These inequalities combined give supv∈K |fn(x̂n; v) − fn(xn; v)| = ∆̂n < ε.

Therefore, taking contrapositive,

P (∆̂n > ε) = P (sup
v∈K
|fn(x̂n; v)− fn(xn; v)| > ε) 6 P (dH(Ân, An) > δn)→ 0

as n→∞, which completes the proof.

�
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1.10.3 Proof of Theorem 1.1

Consider an estimator sequence of the form

φ̂n = φ

(
θ̂n +

v̂1,n√
n

)
+
v̂2,n√
n
, (1.30)

where θ̂n is the best regular estimator for θ0 in the sense of the Convolution Theorem (1.4),

and v̂1,n, v̂2,n are adjustment terms depending on the data. To calculate the LAM risk of

this estimator sequence, it is necessary to study its distributional limits under the “local

perturbations” Pn,h (see Definition 1.5).

Let v1 ∈ B and v2 ∈ D denote the probability limits of v̂1,n and v̂2,n under Pn,h cor-

respondingly, which are the same as under Pn,h by contiguity; see Lemma 6.4 in van der

Vaart (2000). Since θ̂n is the best regular estimator,
√
n(θ̂n − θ(Pn,h))  Pn,h G0 for all

h ∈ T (P ). Since θ(P ) is differentiable,
√
n(θ(Pn,h)− θ0) = θ′0(h) for any h ∈ T (P ). By the

Prohorov’s Theorem, for any subsequence, there is a further subsequence, still denoted by n

for simplicity, such that:

√
n
(
θ̂n + v̂1,n√

n
− θ0

)
=
√
n
(
θ̂n − θ(Pn,h)

)
+ v̂1,n +

√
n(θ(Pn,h)− θ0)

Pn,h
 G0 + v1 + θ′0(h)

as random elements in B. The assumed differentiability of θ(P ) allows to write θ(Pn,h) =

θ0 + θ′0(h)/
√
n + o(1/

√
n), in B. By the directional differentiability of φ and Delta-method

for directionally differentiable functions,25

√
n
(
φ̂n − φ(θ(Pn,h))

)
=
√
n(φ(θ̂n + v̂1,n√

n
)− φ(θ0))−

√
n(φ(θ(Pn,h))− φ(θ0)) + v̂2,n

Pn,h
 φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2

as random elements in D. Let lM 6 l be a loss function satisfying Remark 1.1. Then, by the

Portmanteau Theorem,

EPn,h
{
lM

(√
n
(
φ̂n − φ(θ(Pn,h))

))}
→ E {lM (φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2)}

25If
√
n(γ̂n − γ0) Z and f is Hadamard directionally differentiable at γ0 with directional derivative f ′,

then
√
n(f(γ̂n)− f(γ0)) f ′(Z). See Shapiro (1990).
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as n→∞, uniformly in h in any finite set I ⊂ T (P ). Therefore,

sup
I⊂T (P )

lim inf
n→∞

sup
h∈I

EPn,h
{
l
(√

n(φ̂n − φ(θn(h)))
)}

> sup
h∈T (P )

E {lM (φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2)} . (1.31)

The supremum in the second line of the above display can be equivalently taken over s ∈

θ′0(T (P )) and further over the closure of this set in B (by Lemma 1.3), which is equal to

S(G0). Then, the result follows by passing to a limit as M → ∞, invoking the Monotone

Convergence Theorem, and then taking an infimum with respect to all v1, v2.

1.10.4 Proof of Theorem 1.2

I will show that v̂1,n, v̂2,n converge in probability (along subseqences) to some minimizers of

the lower bound. In view of Lemma 1.7, it suffices to show that Assumptions 1 (identification

condition) and 4 (uniform convergence) there are satisfied. Since K is compact and the

criterion function is continuous, the identification condition is immediate, so I will show the

uniform convergence. Denote:

ĝn(b, v, s) = lM(φ̂′n(b+ v1 + s)− φ̂n(s) + v2),

g(b, v, s) = lM(φ′0(b+ v1 + s)− φ′0(s) + v2).

Note that for any v ∈ K, b ∈ B, c ∈ B

|ĝn(b, v, s)− g(b, v, s)|

6 CM

(∣∣∣∣∣∣φ̂′(b+ v1 + s)− φ′0(b+ v1 + s)
∣∣∣∣∣∣+

∣∣∣∣∣∣φ̂′n(s)− φ′0(s)
∣∣∣∣∣∣) . (1.32)

Let:

Q̂1,n(v) = sup
s∈R̂n

E
(
ĝn

(
Ĝ∗n, v, s

) ∣∣∣∣Xn
1

)
,

Q̂2,n(v) = sup
s∈Rn

E
(
ĝn

(
Ĝ∗n, v, s

) ∣∣∣∣Xn
1

)
,
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Q̂3,n(v) = sup
s∈Rn

E
(
g
(
Ĝ∗n, v, s

) ∣∣∣∣Xn
1

)
,

Q4,n(v) = sup
s∈Rn

E (g (G0, v, s)) ,

Q(v) = sup
s∈S(G0)

E (g(G0, v, s)) .

First, supv∈K |Q̂1,n(v) − Q̂2,n(v)| = oP (1) follows immediately from Lemma 1.8 and the

fact that dH(R̂n, Rn) = oP (1) by Assumption 1.5.3. To show that Lemma 1.8 can be applied

with fn(s; v) = E(ĝn(Ĝ∗n, v, s) | Xn
1 ), note that

sup
v∈K
|fn(s1; v)− fn(s2; v)| 6 CM · Cφ̂′n · ||s1 − s2|| .

Second, supv∈K |Q̂2,n(v)−Q̂3,n(v)| = oP (1) follows from the assumed uniform consistency

of φ̂′n in Assumption 1.5.2. Indeed, note that Assumption 1.5.1 implies that Ĝ∗n converges

weakly to G0 unconditionally (see Lemma S.3.1. in the supplemental appendix to Fang and

Santos, 2019). Next, fix any ε > 0 and η > 0. Since G0 is tight, there is a compact set

S ⊂ B such that P (G0 /∈ S) 6 εη. Then, by the Portmanteau Theorem, for any δ > 0

lim sup
n→∞

P (Ĝ∗n /∈ Sδ) 6 P (G0 /∈ S) 6 εη

Therefore, by Markov’s inequality and Fubini’s Theorem (Lemma 1.2.6. in van der Vaart

and Wellner, 1996),

lim sup
n→∞

P (P (Ĝ∗n /∈ Sδ|Xn
1 ) > η) 6 lim sup

n→∞

P (Ĝ∗n /∈ Sδ)
η

6 ε

implying that P (Ĝ∗n /∈ Sδ|Xn
1 ) = oP (1). Further, note that

E
(∣∣∣ĝn(Ĝ∗n, v, s)− g(Ĝ∗n, v, s)

∣∣∣ ∣∣∣∣Xn
1

)
6 2M · P (Ĝ∗n /∈ Sδ|Xn

1 ) + sup
b∈Sδ
|ĝn(b, v, s)− g(b, v, s)| (1.33)
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and, therefore,

sup
v∈K
|Q̂2,n(v)− Q̂3,n(v)| 6 sup

v∈K
sup
s∈Rn

E
(∣∣∣ĝn(Ĝ∗n, v, s)− g(Ĝ∗n, v, s)

∣∣∣ ∣∣∣∣ Xn
1

)
+ oP (1)

6 sup
b∈Sδ

sup
v∈K

sup
s∈Rn
|ĝn(b, v, s)− g(b, v, s)|+ oP (1)

6 2CM sup
s∈Kδ

n

∣∣∣∣∣∣φ̂′n(s)− φ′0(s)
∣∣∣∣∣∣+ oP (1)

where Kn = S + K + Rln,λn . The latter supremum converges in probability to zero by

Assumption 1.5.2.

Third, note that supv∈K |Q̂3,n(v) − Q̂4,n(v)| = oP (1) due to the assumed bootstrap con-

sistency, since G = {g(·; v, s) : v ∈ K, s ∈ B} is a family of bounded Lipschitz functions.

Indeed, uniformly in v, s:

|g(b; v, s)| 6 BM ,

|g(b1; v, s)− g(b2; v, s)| 6 CM · Cφ · ||b1 − b2|| .

Therefore, the class of functions G = {g(b; v, s) : v ∈ K, s ∈ B} is a subset of the class of

bounded Lipchitz functions with Lipchitz constant CM ·Cφ and bounded by BM . Therefore

sup
v∈K
|Q̂2,n(v)− Q̂3,n(v)| 6 sup

g∈G

∣∣∣E(g(Ĝ∗n)|Xn
1 )− E(g(G0))

∣∣∣ = oP (1).

Fourth, supv∈K |Q4,n(v) − Q(v)| = o(1), since Q4,n is a uniformly Lipchitz sequence of

functions converging point-wise on a compact set. Indeed, for all n and all v ∈ K, Q4,n(v)

is bounded by BM . Moreover, uniformly in b, s ∈ B,

|g(b, v, s)− g(b, v′, s)| 6 CM (||φ′0(b+ v1 + s)− φ′0(b+ v′1 + s)||+ ||v2 − v′2||)

6 C ||v − v′|| ,

and therefore

|Q4,n(v)−Q4,n(v′)| 6 sup
b∈B

sup
c∈B
|g(b, v, s)− g(b, v′, s)| 6 C ||v − v′|| ,
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so that {Q4,n} is a uniformly Lipschitz sequence of functions. For the pointwise convergence,

first note that Q4,n(v) 6 Q(v) for each v ∈ K. To show the reversed inequality, fix a v ∈ K

an any ε > 0. Then, there is s0 ∈ S(G0) such that

sup
s∈S(G0)

E(g(G0, v, s)) 6 E(g(G0, v, s0)) + ε 6 sup
s∈Rn

E(g(G0, v, s)) + Cε

for large enough n and some constant C independent of n, where the second inequality

follows from the Lipschitz-continuity of s 7→ E(g(G0, v, s)) (Lemma 1.5) and Assumption

1.5.3. By Lemma 1.4, a uniformly Lipschitz sequence of functions converging pointwise on

a compact set also converges uniformly. Therefore, supv∈K |Q4,n(v)−Q(v)| = o(1).

It follows from the preceding discussion that supv∈K |Q̂n(v)−Q(v)| = oP (1) and, there-

fore, Lemma 1.7 implies that ~dH(V̂n,V0) = oP (1), where V̂n and V0 denote the sets of

minimizers of Q̂n and Q(v) correspondingly within K.26 By contiguity, it also holds that

~dH(V̂n,V0) = oPn,h(1) for any h ∈ T (P ). Now, let v̂n ∈ V̂n be an arbitrary minimizer of Q̂n.

By Prohorov’s theorem, for any subsequence, there is a further subsequence, denoted by n′,

such that v̂n′ converges weakly under Pn′,h to some v. Such v satisfies P (v ∈ V0) = 1, its

distribution does not depend on h, and it is independent from G0 since any remaining ran-

domness is due to selecting the minimizer, which is done independently of the data. Then,

arguing as in the proof of Theorem 1,

lim inf
n′→∞

sup
h∈I

EPn′,h
{
lM

(√
n′(φ̂n′ − φ(θn′(h)))

)}
6 sup

h∈T (P )

E {lM (φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2)} . (1.34)

The supremum in the second line of the above display can be equivalently taken over s ∈

θ′0(T (P )) and further over the closure of this set in B (by Lemma 1.3), which is equal to

S(G0). Let V0 be the set of minimizers, within a compact set K ⊆ D× B, of

Q(v) = sup
s∈S(G0)

E {lM (φ′0(G0 + v1 + θ′0(h))− φ′0(θ′0(h)) + v2)}

26Here ~dH(A,B) = supa∈A d(a,B) denotes the directed Hausdorff distance.
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Assuming that v1, v2 ∈ V0 and are independent of G0, it follows from (1.34) that

lim inf
n′→∞

sup
h∈I

EPn′,h
{
lM

(√
n′(φ̂n′ − φ(θn′(h)))

)}

6 Ev

(
sup

s∈S(G0)

EG0 {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)}

)

= inf
(v1,v2)∈K

sup
s∈S(G0)

E {lM (φ′0(G0 + v1 + s)− φ′0(s) + v2)} . (1.35)

Since (1.35) holds along subsequences v̂n′ , it must hold for the entire sequence as well, and

by taking the supremum over all finite I ⊆ T (P ), the proof is complete.
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CHAPTER 2

Selecting Inequalities for Sharp Identification in

Models with Set-Valued Predictions

2.1 Introduction

Partially-identified models have dramatically gained popularity in the recent literature. They

allow to relax some of the less credible assumptions required for point-identification while

delivering sufficiently informative results and revealing a clear connection between the as-

sumptions and conclusions. Naturally, these advantages come with some conceptual and

practical challenges. One of them is that the identified set is often described by a very large

number of moment inequalities. While excluding inequalities from the analysis may lead to

losing identifying information, adding uninformative and/or poorly estimated inequalities

may distort inference. Therefore, some inequality selection procedures are required.

In this paper, I propose a criterion for inequality selection in a large class of partially-

identified models with set-valued predictions. Specifically, I consider models with the fol-

lowing structure. There is an observed outcome variable Y ∈ Y , covariates X ∈ X , latent

variables U ∈ U , and unknown parameters θ. Given X and θ, the model delivers a set

of predictions G(U,X; θ) ⊆ Y . The researcher does not observe G(U,X; θ) but maintains

the assumption that Y ∈ G(U,X; θ).1 Examples of such models include entry games with

1Chesher and Rosen (2017) established an equivalent representation: given X, Y , and θ, the model
delivers a set of latent variables G(Y,X; θ) ⊆ U such that, by assumption, U ∈ G(Y,X; θ). In applications,
one characterization might be more convenient than the other. The results of this paper apply similarly in
both cases.
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multiple equilibria (Tamer, 2003; Ciliberto and Tamer, 2009), network formation models

(De Paula et al., 2018; Sheng, 2020; Gualdani, 2021), auctions (e.g., Haile and Tamer, 2003;

Aradillas-López et al., 2013b), generalized IV models (Chesher and Rosen, 2017, and others),

and discrete choice models with heterogeneous or counterfactual choice sets (Manski, 2007;

Barseghyan et al., 2021).

Identified sets in such models can be characterized using a special kind of moment in-

equalities, obtained as follows. Fix some value X = x and consider an arbitrary measurable

subset A ⊆ Y . Since Y ∈ G(U, x; θ), the event G(U, x; θ) ⊆ A implies Y ∈ A. Therefore,

P (Y ∈ A|X = x) > P (G(U, x; θ) ⊆ A|X = x; θ), (2.1)

for all measurable subsets A ⊆ Y . Then, a parameter value θ is included in the identified set if

it satisfies all of the above inequalities. Using the result from Artstein (1983) on distributions

of random sets, one can show that the above inequalities exhaust all of the information

contained in the data and maintained assumptions, so that the resulting identified set is

sharp. In practice, the total number of the inequalities in (2.1) may be very large or even

infinite, in which case checking all of them is infeasible and the researcher faces the problem

of inequality selection. Additionally, many of these inequalities do not actually add any

information, and, to improve performance of the inference procedures, it may be desirable

to exclude them from the analysis.2

To address inequality selection, following the literature, I focus on core-determining

classes (Galichon and Henry, 2011; Chesher and Rosen, 2017; Luo and Wang, 2018; Molchanov

and Molinari, 2018). A class of C of subsets of Y is core-determining, if verifying the inequal-

ities in (2.1) for all C ∈ C is sufficient to conclude that they hold for all A ⊆ Y . I provide

a simple analytical criterion to determine if an inequality associated with a certain subset

2In general, one can construct examples where two moment inequalities imply the third one in the
population, and yet it might desirable to use all three of them in finite samples. For instance, let Y1, Y2
denote two random variables such that Var(Y1) � Var(Y2), and suppose it is known that E(Y1 − θ) 6 0,
E(Y2) 6 E(Y1), and E(Y2 − θ) 6 0. Although the first two inequalities imply the third one, they involve Y1
which may be estimated poorly in small samples, so the third inequality can prove valuable for inference.
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A ⊆ Y is redundant, given the other inequalities. In a series of examples, I show that the

proposed criterion can substantially reduce the size of the core-determining classes compared

with existing literature and, in settings where the total number of inequalities is finite, find

the smallest possible core-determining class. I find that the smallest core-determining class

depends only on the structure of the correspondence G(u, x; θ), and does not directly depend

on the probability distribution of u|X = x or the value of θ. Therefore, in applications, this

class only has to be computed once before carrying out the rest of the analysis. For that

purpose, I propose a simple computational procedure using graph propagation techniques.

This paper contributes to the literature on partial identification using random set theory

(see Molinari, 2020; Chesher and Rosen, 2020, for a deatiled review). The most closely

related papers are Chesher and Rosen (2017), and Luo and Wang (2018). Chesher and Rosen

(2017) propose a general analytical criterion for constructing core-determining classes. Their

procedure consists of two steps. First, restrict attention to the set of all unions of elements of

the support of G(y,x; θ), and, second, exclude all unions of suitably disjoint “small” sets. In

this paper, I show that one can also exclude all intersections of suitably overlapping “large”

sets. In a series of examples, I show that this extra step allows to substantially reduce the

size of the core-determining class. Moreover, in settings where the outcome space is finite,

I demonstrate that the remaining sets form the smallest possible core-determining class. A

result similar to the latter also appears in a working paper by Luo and Wang (2018). While

a careful comparison suggests that both approaches lead to the same core-determining class,

the characterization in this paper is simpler and more intuitive, and allows to compute the

smallest core-determining class more efficiently.

The rest of the paper is organized as follows. Section 2.2 presents motivating examples,

provides a formal setup and necessary background and recites known results. Section 2.3

presents new theoretical results, provides an algorithm that can be used to efficiently compute

the smallest core-determining class, and discusses using redundant inequalities for inference

procedures. Section 1.9 concludes.
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2.2 Models with Set-Valued Predictions

2.2.1 Motivating Examples

First, I present several examples, which I revisit throughout the paper to fix ideas and

illustrate the main results. The first example is a version of a static entry game studied in

Tamer (2003), Ciliberto and Tamer (2009), and Beresteanu et al. (2011), among others.

Example 2.1 (Static Entry Game). Consider a static market entry game with N firms.

Firm j chooses Yj ∈ {0, 1}, where Yj = 1 represents entry, and receives the payoff

πj(Y, εj; θ) = Yj(αj + δj(N(Y )− 1) + εj),

where Y = (Y1, . . . , YN) ∈ {0, 1}N = Y represents entry decisions, N(Y ) is the total number

of entrants, U = (ε1, . . . , εN) ∈ RN , distributed according to some unknown CDF F , are

latent payoff shifters, and (αj, δj) are payoff parameters. Covariates can be included in the

model by letting αj = α(xj), etc., but are omitted here for simplicity. The firms are assumed

to have complete information and play a Nash Equilibrium. The researcher observes Y but

not U , and does not specify any particular equilibrium selection mechanism in situations

where multiple equilibria are possible. Let θ = (α, δ, F ) denote all of the model’s parameters.

The model delivers a set-valued prediction corresponding to the set of pure strategy Nash

Equilibria:

G(U ; θ) = {Y ∈ {0, 1}N : Yj = 1(αj + δj(N(Y )− 1) + εj > 0), for all j = 1, . . . , N}.

Figure 2.1 presents possible realizations of G(U ; θ) when N = 2 and δj < 0. The sharp

identified set is given by:

ΘI = {θ : P (Y ∈ A) > P (G(U ; θ) ⊆ A|θ) for all A ⊆ Y},

With N players, the cardinality of the outcome space is 2N , so there are 22N − 2 nontrivial

subsets, each corresponding to a moment inequality. As argued in Section 2.3, most of these
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inequalities are redundant, but for N > 5, sharp identified sets remain computationally

intractable so additional inequality selection is necessary. �

Figure 2.1: Set-Valued Prediction in a Static Entry Model with N = 2 and δj < 0.

The following example is a version of an English auction model studied in Haile and Tamer

(2003), Aradillas-López et al. (2013b), Chesher and Rosen (2017), and Molinari (2020),

among others.

Example 2.2 (English Auctions). Consider a symmetric ascending auction with N bidders.

For simplicity, assume that there is no reserve price and no minimal bid increment. Let

Vj ∈ [0, v] and Bj ∈ [0, v] denote the valuation and bid of player j, and Vj:N and Bj:N denote

the j-th smallest valuation and bid correspondingly. Let F denote the joint distribution

of B = (V1:N , . . . , VN :N), which is supported on S = {v ∈ [0, v]N : v1 6 · · · 6 vN}. The
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Figure 2.2: Set-Valued Prediction in an English Auction with Two Players

researcher observes B = (B1:N , . . . , BN :N) and wants to learn about θ = F .3 It is assumed

that bidders (i) do not not bid above their valuation, and (ii) do not let their opponents win at

an acceptable price. Then, (i) implies Bj:N 6 Vj:N for all j, and (ii) implies VN−1:N 6 BN :N ,

so that the set-valued prediction is given by

G(V ; θ) = S ∩
N−1∏
j=1

[0, Vj:N ]× [VN−1:N , VN ].

Figure 2.2 presents an example realization of G(V ; θ) with N = 2. The sharp identified set

is given by:

ΘI = {θ : P (B1:N ∈ A) > P (G(V ; θ) ⊆ A|θ) for all A ⊆ S},

In this example, the total number of moment inequalities is infinite. As discussed in Section

2.3, the novel core-determining class excludes (infinitely) many redundant inequalities, but

additional arguments are required to select among the remaining ones. �

3In symmetric auctions, ordered statistics of bids contain the same amount of information ad the bids
themselves. For simplicity, I keep θ = F as the primitive parameter, even though in practice one is typically
interested in simpler objects, such as the marginal distribution of valuations in the IPV setting, or marginal
distributions of two highest valuations in the setting with affiliated private values. See Haile and Tamer
(2003) and Aradillas-López et al. (2013b) and references therein.
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The next example is a discrete choice model with endogeneity and instrumental variables

studied in Chesher et al. (2013) and Tebaldi et al. (2019), among others.

Example 2.3 (Discrete Choice with Endogeneity and IV). Consider a model in which indi-

viduals choose one of M+1 alternatives, Y ∈ {y0, y1, . . . , yM}, and choosing yj delivers utility

vj(X) + εj, where v0(X) = 0, X ∈ X are explanatory variables and εj are option-specific

utility shifters. Individuals are assumed to know the utility of each alternative and choose

the one that delivers maximum utility. Some components of X may be correlated with the

latent payoff shifters ε = (ε0, ε1, . . . , εM) but the nature of this dependence is left unspecified.

The econometrician observes the choice made, Y = yj∗ , where j∗ = argmaxj{vj(X) + εj},

and the explanatory variables X, and has access to instrumental variables Z ∈ Z which are

independent of ε. Components of Z may either correspond to exogenous components of X

or be excluded from the choice problem. In this example, it is more convenient to work in

the space of latent variables. Note that Y = yj if and only if vj(X) + εj > vk(X) + εk for all

k 6= j. Letting Uj ≡ εj − ε0 for all i 6= j and U = (U1, . . . , UM) ∈ RM with distribution F ,

we have that Y = yj happens if and only if U belongs to the set of latent variables induced

by the model:

G(yj, X; θ) =


{u : uj − uk > vk(X)− vj(X), for all k 6= j} j > 1

{u : uk < −vk(X), for all k > 1} j = 0

where θ = (v1, . . . , vM , F ). Now, define G(Y,X; θ) =
∑

j G(yj, X; θ)1(Y = yj). Since

U ∈ G(Y,X; θ) and Z is independent from U , we have

P (U ∈ S|Z = z; θ) > P (G(Y,X; θ) ⊆ S|Z = z)

for all z ∈ Z. Figure 2.3 illustrates possible values G(Y,X; θ) for a given value of X when

M = 2. The sharp identified set is given by

ΘI = {θ : P (U ∈ S|Z = z; θ) > P (G(Y,X; θ) ⊆ S|Z = z) for all S ⊆ RM−1, z ∈ Z}.
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Figure 2.3: Sets of Latent Variables in Discrete Choice Model with M = 2.

If X and Z are discrete, the total number of moment inequalities for each θ is finite, but

often very large. Identifying redundant inequalities analytically becomes cumbersome, but,

if the support of X and Z is of moderate size, the algorithm proposed in Section 2.3 comes

to the rescue. If X or Z are continuous, one can bin them or impose further restrictions on

vk(x), such as linearity, to reduce the number of inequalities. In both cases, the resulting

identified sets become valid outer regions for ΘI .

The next example, studied in Manski and Sims (1994); Manski (2003) and Molinari

(2020), concerns identifying conditional distributions of interval-observed outcome data.

Example 2.4 (Interval-Observed Outcome Data). Let Y ∈ Y ⊆ R denote the outcome

variable and X denote explanatory variables. Suppose that Y is not directly observable, but

one observes YL and YU such that P (YL 6 Y 6 YU) = 1, and the parameter of interest is the

conditional distribution of Y given X = x, denoted θ = PY |X=x. In this example, it is again

more convenient to work in the latent-variable space. The set of latent variables induced by

the model is G(YL, YU) = Y ∩ [YL, YU ]. Then, for any A ⊂ R,

P (Y ∈ A|X = x) > P (G(YL, YU) ⊆ A|X = x).
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Letting PY denote the set of all distributions supported on Y , the sharp identified set for θ

is:

ΘI = {θ ∈ PY : θ(A) > P (G(YL, YU) ⊆ A|X = x)}.

As argued below, if Y = [y, y], it suffices to consider all intervals A = [a, b] with y 6 a 6

b 6 y. If, additionally, P (YU − YL > κ|X = x) = 0, it suffices to consider only “half-lines”

[y, a], [b, y], and “short” intervals [a, b] with b−a 6 κ. Notably, one cannot obtain the sharp

identified set using only the marginal distributions of YU and YL given X = x.

2.2.2 Random Sets and Core-Determining Classes

In all of the above examples, the imposed assumptions produce a random set of predictions.

Naturally, to study such models, it is convenient to employ tools from the theory of random

sets. I briefly introduce the necessary concepts below and refer the reader to Molchanov and

Molinari (2018) for an accessible textbook treatment. To simplify notation, I abstract away

or condition on) the covariates.

Let (Ω,F , P ) be a probability space and (Y ,A) be a measurable space. A closed random

set is a measurable correspondence G : Ω⇒ Y such that each G(ω) is closed.4 The support

of G, denoted supp(G), is the set of all possible values of G, i.e., a set of sets. For each

A ∈ A, denote:

G−(A) = {ω ∈ Ω : G(ω) ⊆ A},

G−1(A) = {ω ∈ Ω : G(ω) ∩ A 6= ∅}.
(2.2)

Then, the distribution of G can be described by its containment functional CG or capacity

functional TG, defined as

CG(A) ≡ P (G−(A)) = P (G ⊆ A),

TG(A) ≡ P (G−1(A)) = P (G ∩ A 6= ∅).

4Measurability requires G−1(A) ∈ F for every closed set A ∈ A, with G−1(A) defined in (2.2).
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Note that CG(A) = 1 − TG(Ac). A selection of a random set G is any random variable Y

that satisfies Y (ω) ∈ G(ω) P -almost surely. The collection of distributions of all selections

of G, denoted Sel(G), is called the core.

With these definitions at hand, the identification argument in models with set-valued

predictions can be formulated as follows: a parameter value θ is consistent with the data if

and only if the observed distribution PY of Y belongs to the core of a random set G(U ; θ)

for such θ.5 The following result, due to Artstein (1983), provides a simple characterization.

Lemma 2.1 (Artstein’s Inequalities). Let µ denote a probability distribution on (Y ,A).

Then:

{µ ∈ Sel(G)} ⇐⇒ {µ(A) > CG(A), for all A ∈ A},

or, equivalently,

{µ ∈ Sel(G)} ⇐⇒ {µ(A) 6 TG(A), for all A ∈ A}.

That is, the core of a random set is completely characterized by moment inequalities with

this special structure. In many applications, verifying the inequalities for only a “relatively

small” subclass of A is sufficient. Such subsets are called core-determining classes. The

notion originated in Galichon and Henry (2011), and the subsequent contributions include

Chesher and Rosen (2017, 2020), and Molinari (2020).

Definition 2.1 (Core-determining Class). A class C ⊆ A of measurable subsets of Y is

core-determining, if for any probability distribution µ on (Y ,A),

{µ(A) > CG(A) ∀A ∈ C} =⇒ {µ(A) > CG(A) ∀A ∈ A}.

5When covariates are present, the requirement is that the conditional distribution PY |X=x of Y given
X = x belongs to the core of a random set G(U, x; θ) for all x ∈ X . An equivalent formulation requires
that the conditional distribution PU |X=x;θ of latent variables U given X = x and θ belongs to the core of a
random set G(Y, x; θ) for all x ∈ X . Appropriate modifications are introduced when instrumental variables
Z are present, as in Example 2.3.
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In what follows, I propose a new general criterion for finding core-determining classes.

The construction proceeds by identifying redundant sets in three consecutive steps, of which

the first two are borrowed from Chesher and Rosen (2017). First, for each A ⊆ Y , define a

set Ã =
⋃
{C : C ⊆ A,C ∈ supp(G)}. Then, provided that µ(Ã) > CG(Ã),

µ(A) > µ(Ã) > CG(Ã) = CG(A),

so that A is redundant given Ã. This means that one can restrict attention to sets that can be

written as unions of elements of supp(G). Second, suppose that, for some A ∈ UG, there are

sets A1, A2 ⊆ UG such that A1∩A2 = ∅, A1∪A2 = A and G−(A1∪A2) = G−(A1)∪G−(A2).

Then, provided that µ(A1) > CG(A1) and µ(A2) > CG(A2),

µ(A) = µ(A1) + µ(A2) > CG(A1) + CG(A2) = CG(A),

so that A is redundant given A1 and A2. Combining these two observations yields the

following result, which is a version of Theorem 3 in Chesher and Rosen (2017).

Lemma 2.2 (Core-Determining Class from CR17). Let UG denote the set of all unions of

elements of supp(G). Let C ⊆ UG be a class of sets such that for every A ∈ UG\C there

exist A1, A2 ∈ C such that (i) A1 ∩ A2 = ∅; (ii) A1 ∪ A2 = A; and (iii) G−(A1 ∪ A2) =

G−(A1) ∪G−(A2). Then, C is core-determining.

All three conditions of the Lemma are easy to verify in practice. However, since the

Lemma places no restrictions on the structure of the random set or underlying probability

spaces, the resulting characterization is high-level in a sense that some “hands-on” work is

required to see what the resulting inequalities are in practice.
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2.3 A New Core-Determining Class

2.3.1 General Case

The core-determining class from Lemma 2.2 can be further refined even further. Suppose

that, for some A ∈ UG, there are sets A1, A2 ⊆ UG such that A1∩A2 = A, A1∪A2 = Y , and

G−(A) = G−(A1) ∩G−(A2). Then, provided that µ(A1) > CG(A1) and µ(A2) > CG(A2),

1 + µ(A) = µ(A1) + µ(A2) > CG(A1) + CG(A2) = 1 + CG(A),

implying that µ(A) > CG(A). Therefore, A is redundant given A1 and A2. Complementing

Lemma 2.2 with this argument yields the first main result of this paper.

Theorem 2.1. Let UG denote the set of all unions of elements of supp(G). Let C ⊆ UG

denote a class of sets such that, for each A ∈ UG\C at least one of the following conditions

hold:

1. There are A1, A2 ∈ C such that: A1 ∩ A2 = ∅, A1 ∪ A2 = A, and G−(A1 ∪ A2) =

G−(A1) ∪G−(A2).

2. There are A1, A2 ∈ C such that: A1 ∩ A2 = A, A1 ∪ A2 = Y, and G−(A) = G−(A1) ∩

G−(A2), or, equivalently, G−1(Ac) = G−1(Ac1) ∪G−1(Ac2).

Then C is core-determining. If there exist a partition Y = Y1 ∪ Y2 such that Y1 ∩ Y2 = ∅

and G−1(Y1) ∩G−1(Y2) = ∅, then, for A ⊆ Yj one can take A1, A2 ⊆ Yj.

Heuristically, while Lemma 2.2 states that unions of disjoint “small” sets are redundant,

Theorem 2.1 adds that intersections of sufficiently overlapping “large” sets are redundant as

well. In many applications, this allows to substantially reduce the size of the core-determining

class and may also be beneficial for the inference procedures, as discussed in Section 2.3.3.

Below, I illustrate applications of Theorem 2.1 in settings where the total number of inequal-

ities is infinite.
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2.3.1.1 Examples Revisited

Example 1 (Continued). For simplicity, consider N = 2. Figure 2.4 presents some examples

of redundant sets A ∈ UG and sets A1 and A2 that satisfying conditions (1) or (2) of Theorem

2.1. In the upper panel, A1∩A2 = ∅, A1∪A2 = A, and G−(A1∪A2) = G−(A1)∪G−(A2). In

the lower panel, A1∩A2 = A, A1∪A2 = Y , and G−(A) = G−(A1)∩G−(A2). These examples

generalized to settings with N > 2 in a straightforward manner. In this setting, even after

deleting all redundant inequalities indentified by Theorem 2.1, one is left with an infinite

number of inequalities, and, depending on the specific functional of interest, the resulting

identified set may be fairly large. To this end, one can impose additional restrictions such as

requiring the distribution of valuations to be positively affiliated, as in Aradillas-López et al.

(2013b), independent, as in Haile and Tamer (2003), or explicitly model auction specific

heterogeneity as in Chesher and Rosen (2017), among others.

Example 4 (Continued). Assuming that Y = [y, y], the set UG contains all sets that can

be expressed as an interval, or a union of disjoint intervals included in [y, y]. Note that for

any A = A1 ∪A2 = [a1, b1] ∪ [a2, b2] with a1 6 b1 < a2 6 b2, one has G−(A1) ∩G−(A2) = ∅.

Therefore, such A is redundant given A1 and A2. The same argument applies to any other

collection of disjoint intervals. Therefore, C = {[a, b] : y 6 a 6 b 6 y} satisfies Condition

1 of Theorem 2.1, so it is a core-determining class (see Theorem 2.25 in Molchanov and

Molinari, 2018). In the absence of other restrictions on the distribution of (YL, YU), this

set cannot be improved. Now, suppose additionally that P (YU − YL > κ) = 0 for some κ.

Then, any A = [a, b] with b− a > κ is redundant, because A1 = [y, b] and A2 = [a, y] satisfy

A1∩A2 = A, A1∪A2 = Y , and G−1(Ac) = G−1(Ac1)∪G−1(Ac2). Therefore, C = {[y, a], [a, y] :

y 6 a 6 y}∩ {[a, b] : b− a 6 κ} is core-determining. Note that, in any case, the core cannot

be described using only marginal distributions of YL and YU .
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(a) “Small” sets

(b) Redundant union of “small” sets

(c) “Large” sets

(d) Redundant intersection of “large” sets

Figure 2.4: Application of Theorem 2.1 to English Auction Model with Two Players.
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2.3.2 Finite Outcome Space

In the settings where the outcome space Y is finite, the core is characterized by a finite

number of inequalities.6 Then, it is natural to look for the core-determining class with the

smallest cardinality. In this section, I show that conditions of Theorem 2.1 actually identify

the smallest possible core-determining class, and propose a simple algorithm to compute it

in practice.

According to Lemma 2.1, the set of selectionable distributions is a convex polytope

defined by a finite number of inequalities:

Sel(G) = {µ ∈ ∆(Y) : µ(A) > CG(A) for all A ⊆ Y},

where ∆(Y) denotes the set of all probability distributions on Y . For A = ∅ and A = Y , the

inequalities hold trivially, so I will exclude them from the analysis below. Identifying non-

redundant inequalities is a well-known task in linear programming. Specifically, for every

subset A ⊆ Y , define the quantity:

λ(A) = min
p∈∆(Y)

{
p(A)

∣∣∣∣ p(Ã) > CG(Ã), for all Ã ⊆ Y , Ã 6= A

}
. (2.3)

If λ(A) < CG(A), then A cannot be implied by any collection of other inequalities and,

therefore, it must belong to any core-determining class. It follows from the literature on

redundancy in linear programming (e.g., Telgen, 1983), that the class of all such sets:

C∗ = {A ⊆ Y : λ(A) < CG(A)} (2.4)

is the smallest core-determining class. Figure 2.5 illustrates.

This characterization illustrates that the smallest core-determining class is well-defined.

However, it cannot be used directly for identification arguments. First, even for Y of rel-

atively small size, solving 2|Y| linear optimization problems may be computationally hard.

6Assuming that covariates and instruments are either discrete or conditioned on.
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Figure 2.5: Redundant Inequalities Identified by Linear Programming.

Comment: Inequalities depicted in orange are redundant. Inequalities depicted in blue form

the smallest core-determining class.

Second, C∗ may depend on θ via CG(A) = P (G(U ; θ) ⊆ A), meaning that one would have to

repeat the procedure for each θ. Below, I provide an alternative characterization that clar-

ifies conditions under which C∗ does not depend on θ, simplifies computation, and directly

relates to Theorem 2.1.

Consider a discrete random setG : Ω⇒ Y , where Ω = {ω1, . . . , ωK} and Y = {y1, . . . , yS},

with support supp(G) = {G(ω1), . . . , G(ωK)}. Such G can be represented with an undirected

bipartite graph BG with vertices in Ω and Y and edges (ωk, ys) for all ys ∈ G(ωk). An exam-

ple is given in Figure 2.6. Conditions of Theorem 2.1 can be translated into the properties

of the graph BG. First, consider sets A = {y1, y2} and Ã = {y1}. Note that, A /∈ UG, so

that A is redundant given Ã by the argument preceding Lemma 2.2. Note that in this case,

the subgraph of BG induced by the vertices (A,G−(A)) is disconnected. Second, consider

sets A = {y1, y3}, A1 = {y1}, and A2 = {y3}. Note that, A = A1 ∪ A2, A1 ∩ A2 = ∅, and

G−(A1)∩G−(A2) = ∅. Then, by part (1) of Theorem 2.1, A is redundant given A2 and A3.

In this case, the subgraph of BG induced by (A,G−(A)) is disconnected. Finally, consider

sets A = {y3, y4}, A1 = {y1, y2, y3, y4}, and A2 = {y3, y4, y5}. Note that A = A1 ∩ A2,

Ac1 = {y5}, and Ac2 = {y1, y2}, so that G−1(Ac1) ∩ G−1(Ac2) = ∅. In this case, the subgraph

of BG induced by (Ac, G−1(Ac)) is disconnected.

82



y1 y2 y3 y4 y5

ω1 ω2 ω3 ω4 ω5 ω6

Figure 2.6: Example of a Bipartite Graph Associated with a Random Set.

Theorem 2.1 and the above discussion suggest that all sets A, for which the subgraphs

induced by either (A,G−(A)) or (Ac, G−1(Ac)) are disconnected, are redundant. The follow-

ing theorem shows that by eliminating all such sets at once we obtain a core-determining

class, which is, in fact, equal to C∗.

Theorem 2.2. Let G : Ω⇒ Y, where Ω = {ω1, . . . , ωK} and Y = {y1, . . . , yS} be a discrete

random set with a bipartite graph BG. Suppose that the probability distribution P on Ω

satisfies P (ωk) > 0 for all k. Let C be a class of subsets A ⊆ Y such that:

1. The subgraph of BG induced by (A,G−(A)) is connected;

2. The subgraph of BG induced by (Ac, G−1(Ac)) is connected.

Then, C is the smallest core-determining class, i.e., C = C∗ given by (2.3)–(2.4).

Applications of this Theorem in identification arguments require an auxiliary partitioning

of the space of latent variables. Let PU |θ denote the distribution of latent variables U ∈ U for

a given θ. If the outcome space is finite, Y = {y1, . . . , yS}, so is the support of the random set,

supp(G(U ; θ)) = {G1, . . . , GK}. Partition the space of latent variables as Uθ = {u1, . . . uK},

where uk = {u ∈ U : G(u; θ) = Gk}, and define a measure Pθ on Uθ by Pθ(uk) = PU |θ({u :

G(u; θ) = Gk}) for all k. Then, instead of G(U ; θ) one can work with a discrete random set

G : (Uθ, Pθ)⇒ Y defined on a discrete probability space.
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Applying Theorem 2.2 with Ω = Uθ and P = Pθ as defined above, one obtains the

smallest set of inequalities exhausting all information about θ. Typically, the support of

G(U ; θ), and therefore the network structure of BG does not depend on θ, even though the

partition Uθ and the measure Pθ do. That is, applying Theorem 2.2 for different θ certainly

requires calculating the probabilities Pθ(uk) and may also require re-labeling of the parts

uk = {u : G(u; θ) = Gk}, the smallest set of non-redundant inequalities only has to be

computed once.7 Also note that latent variables u ∈ U are typically assumed to have full

support, which implies that the induced probability distribution Pθ on Uθ will satisfy the

assumption of the Theorem.

To compute the class C from Theorem 2.2 given the bipartite graph BG, one can use the

following algorithm.8

Algorithm.

0. If BG has several disconnected components, the following steps should be applied to

each component separately (still denoting the outcome space by Y).

1. List nontrivial subsets of Y by their size k = 1, . . . , |Y|− 1. Initialize C = ∅ (or C = Y

if it is one of the disconnected components).

2. For each k = 1, . . . , |Y| − 1, do:

− Pick a subset A with |A| = k.

− If k 6 |Y|/2, first check that the subgraph induced by (A,G−(A)) is connected.

If so, check that the subgraph induced by (Ac, G−1(Ac)) is connected.

− If k > |Y|/2, do the above in reverse order.

7In some cases, as in Example 2.1, no re-labeling is required and the corresponding probabilities have
simple closed-form expressions. In other cases, as in Example 2.3, re-labeling and re-calculating probabilities
is less straightforward, but can be performed relatively fast.

8Calculating the computational complexity of this algorithm and improving upon it is left for further
research.
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− If both subgraphs are connected, append A to C.

3. Return C.

The following examples illustrate various applications of Theorem 2.2.

2.3.2.1 Examples Revisited

Example 1 (Continued). First, assume that δj < 0 so that the firms compete against each

other upon entering the market. Then, it is well-known that the set of Nash Equilibria

cannot contain two equilibria with different numbers of entrants. The outcome space can be

partitioned into disjoint subsets accordingly Y =
⋃N
n=0 Yn. This property allows to reduce the

number of nonredundant inequality dramatically. Specifically, Theorem 2.2 (or Lemma 2.2)

immediately implies that all sets of the form A =
⋃N
n=0An, where An ⊆ Yn, are redundant.

Then, the second criterion of Theorem 2.2 can be applied to each subset Yn separately, as well

as the above Algorithm. In this example, the appropriate partition of the latent variables

space is easy to construct; Figure 2.1 illustrates the game with N = 2. Note that even

though the regions in the partition, as well as their corresponding probabilities, change with

θ, the corresponding bipartite graph does not; see Figure 2.7. That is, the core-determining

class only needs to be computed once. For N = 2, there are 14 inequalities in total and and

5 in the smallest class. For N = 3, there are 254 inequalities in total and 15 in the smallest

class. For N = 4, there are 65534 inequalities in total and 94 in the smallest class. For

N = 5, the largest Yn has approximately 0.6 billion subsets, so the problem is very hard

computationally. Next, consider an entry game with complementarities, i.e., δj > 0. One

can verify that in this case the set of Nash Equilibria only contains equilibria with different

numbers of entrants. For N = 2 the results are the same as before. For N = 3, there are 254

inequalities in total, 85 inequalities in the class from Lemma 2.2, and only 36 inequalities in

the smallest class delivered by Theorem 2.2. For N = 4, there are 65534 inequalities in total,

18667 inequalities in the class from Lemma 2.2, and only 553 inequalities in the smallest
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(0, 0) (0, 1)(1, 0) (1, 1)

u1 u2 u3 u4 u5

Figure 2.7: Bipartite Graph for the Entry Game in Example 2.1 with N = 2

class. N > 5 is computationally infeasible.

Example 2.5 (Network Formation. Adapted from Gualdani (2021)). There are N firms

forming directed links with each other. For each player j, define a local game Γj in which

the other N − 1 players decide whether to link with player j. Let the payoffs in the local

game be the same as the payoffs in the entry game with complementarities in Example 2.1.

The outcome variable in this example is a network Y = (Yij)
N
i,j=1 where each Yij ∈ {0, 1}.

Then, under appropriate restrictions on payoffs, one can show that a network Y is an Nash

Equlibrium (with complete information) of the entire game Γ if and only if (Yij)i 6=j is a

Nash Equilibrium in the local game Γj, for all j. Assuming additionally that the equilibrium

selection rules in local games are independent and letting C(Γj) denote a core-determining

class in Γj, one can show that C(Γ) =
⋃N
j=1 C(Γj). To find the smallest core-determining class,

one can apply Theorem 2.2 to each Γj separately. Then, maintaining the above assumptions,

for N = 3, there are 254 inequalities in total and 15 in the smallest class. For N = 4, there

are ≈ 264 inequalities in total and only 144 in the smallest class. For N = 5, there are ≈ 21024

inequalities in total, and only 2212 in the smallest class.

Example 3 (Continued). Consider the case when y ∈ {y0, y1, y2} and x ∈ {x1, x2}. The

first step is to construct an appropriate partition of the space of latent variables. Elements

of the partition take the form
⋂
i,j G(yi, xj; θ) where G(yj, xi; θ) is the set of (U1, U2) for
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which, given xi, the optimal choice is yi.
9 Figure 2.8a presents one possible configuration.

Numbers 0, 1, and 2 next to each point indicate the regions of latent variables for which

the optimal choice is y ∈ {y0, y1, y2}, for a given x ∈ {x1, x2}. Figure 2.8b presents the

corresponding bipartite graph. In this example, the partition may look quite different for

different values of θ = (v1(x1), v1(x2), v2(x1), v2(x2)), but the structure of the corresponding

bipartite graph remains the same up to relabeling of u1, . . . , u6. If x ∈ {x1, . . . , xK}, there will

be (K + 1)(K + 2)/2 elements in the partition, and many different configurations (positions

of the points (v1(x), v2(x)) relative to each other). For example, for K = 2, 3, 4, there are 64,

512, and 4096 inequalities in total, while the smallest core-determining class consists only of

12, 42, and 94 inequalities correspondingly.

2.3.3 Redundant Inequalities for Inference

Theorems 2.1 and 2.2 identify inequalities that are redundant for identification. However, for

the sake of testing hypotheses and constructing confidence intervals, one does not necessarily

want to exclude inequalities deemed redundant in the population if they can be estimated

with higher precision than the ones that imply them in finite samples. Here, I investigate

whether such inequalities should also be avoided for inference.

The null hypothesis of interest is:

Hθ : P (Y ∈ A) > P (U ∈ G−(A)|θ) for all A ⊆ Y (2.5)

A variety of different tests for (2.5) have been proposed in the literature, as reviewed in Canay

and Shaikh (2017). The tests are based on sample counterparts of the inequalities in (2.5).

The left-hand side of each inequality can be estimated by P̂n(Y ∈ A) = n−1
∑n

i=1 1(Yi ∈ A),

while the right-hand side can either be computed analytically or simulated with arbitrary

precision by drawing from a hypothesized distribution of latent variables U for a given θ. If

9Conceptually, it is the same as the Minimal Relevant Partition from Tebaldi, Torgovitsky, and Yang
(2021), although their approach to identification is different.
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(a) Partition of The Space of Latent Variables in Example with x ∈ {x1, x2}

(y2, x2) (y2, x1) (y0, x2) (y0, x1) (y1, x2) (y1, x1)

u1 u2 u3 u4 u5 u6

(b) Bipartite Graph with x = {x1, x2}

Figure 2.8: Illustrations for Discrete Choice Model in Example 2.3
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using all of the inequalities in (2.5) is practically impossible, suppose that sets A0, A1, . . . , AM

have been selected, and the test will be based on those. In what follows, I denote pm = P (Y ∈

Am), p̂m,n = P̂ (Y ∈ Am), and λm = P (U ∈ G−(Am)|θ) and treat the latter as known.

Consider a test statistic:

T̂n = max

{
max

06m6M

√
n(λm − p̂m,n)√
p̂m,n(1− p̂m,n)

, 0

}
. (2.6)

The critical values with which to compare T̂n can be constructed in a number of different

ways. To this end, define:

Jn(x, sn) = P

(
max

{
max

06m6M

√
n(pm − p̂m,n)√
p̂m,n(1− p̂m,n)

+
sm,n√

p̂m,n(1− p̂m,n)
, 0

}
6 x

)
(2.7)

where sn = (sm,n)Mm=1. One can derive useful estimators of (2.7) using bootstrap, subsam-

pling, or asymptotic approximation, and the tests proposed in the literature differ in their

choice of sn and the approximation method. Letting Ĵ−1
n,1−α(sn) denote the corresponding

critical value, tests of the form

φ̂n = 1
(
T̂n > Ĵ−1

n,1−α(sn)
)
. (2.8)

have been shown to achieve uniform size control and can be more or less conservative for

specific choices of sn; see Canay and Shaikh (2017) and Bugni (2016).

Now, suppose that A0 is redundant given A1, A2 in a sense of Theorem 2.1. Should one

use such A0 when testing the hypothesis in (2.5)? Below, I argue that the answer may

depend on whether the inequalities corresponding to A1 and A2 hold or not. For simplicity,

I will omit all other inequalities, and consider only least-favorable tests corresponding to

sn = 0 in (2.7). The conclusions remain the same when the remaning inequalities are added,

or other valid tests are used.

Let φ̂+
n be the test defined by (2.6)–(2.8) using m = 0, 1, 2, and φ̂−n be defined similarly

using only m = 1, 2. It is instructive to compare the two tests is in terms of local asymptotic

power functions. Let Pθ
0 = {PY ∈ P : Hθ holds} and consider a sequence of distributions
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Ph,n, indexed by a parameter h, approaching some distribution on the boundary of Pθ
0, i.e.,

a distribution for which some of the inequalities in (2.5) are binding. The local asymptotic

power function is defined as:

κ(h) = lim
n→∞

Ph,n(φn = 1).

Denoting σm =
√
λm(1− λm) for m = 0, 1, 2, consider a sequence Ph,n such that

√
n(λm −

pm,n)/σm = hm, for m = 1, 2. Then,
√
n(λ0,n − p0,n)/σ0 = σ1h1/σ0 + σ2h2/σ0. Moreover,

note that Pn,h ∈ Pθ
0 for h1, h2 6 0, and Pn,h /∈ P0,θ otherwise. Then, an application of

Lindeberg-Feller CLT, Slutsky’s Theorem, and Continuous Mapping Theorem yields:

κ+(h) = P (Z+
max(h) > Q1−α(Z+

max(0)))

κ−(h) = P (Z−max(h) > Q1−α(Z−max(0)))
,

where

Z+
max(h) = max

{
Z1 + h1, Z2 + h2,

σ1
σ0

(Z1 + h1) + σ2
σ0

(Z2 + h2), 0
}

Z−max(h) = max {Z1 + h1, Z2 + h2, 0}
,

Q1−α(·) denotes the 1 − α-quantile of its argument, and (Z1, Z2) have joint Normal distri-

bution with E(Z2
m) = 1 for m = 1, 2, and E(Z1Z2) = −(λ1λ2)1/2/((1 − λ1)(1 − λ2))1/2 for

λ1 + λ2 < 1 and E(Z1Z2) = −((1− λ1)(1− λ2))1/2/(λ1λ2)1/2 for λ1 + λ2 > 1.

Note that, for h 6 0, one has Z∗max(h) 6 Z∗max(0) and therefore κ∗(h) 6 α for ∗ ∈ {+,−}.

Moreover, if h1, h2 � 0, it is very likely that Z+
max(h) = Z−max(h), and therefore κ−(h) >

κ+(h). Finally, it can be shown that the region of values of h for which κ−(h) < κ+(h) is

contained in the half-space {h : h1 + h2 > 0}. Otherwise, it is hard to draw conclusions

analytically, so I refer to simulations.

I compare the power functions using N = 105 draws of (Z1, Z2), for six different values

of λ1, λ2. The regions of interest are depicted in Figure 2.9 and depend on the relations

between σ0, σ1, and σ2. Dashed lines with slopes 2 or 1/2 define the regions where σ1 6 σ0

and σ2 6 σ0 correspondingly. Note that the blue region corresponds to case (1) of Theorem

2.1, and the orange region corresponds to case (2). Simulation results presented in Figure
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Figure 2.9: Regions of values of (λ1, λ2) used in local power comparisons.

2.10, where each plot depicts contour sets for κ−(h)− κ+(h), suggest interesting takeaways

that may be used to motivate inequality selection for inference in finite samples.

First, note that for h1, h2 6 0 and all values of λ1, λ2, one has α > κ−(h) > κ+(h). This

may suggest that adding a redundant inequality when both of the non-redundant inequalities

support Hθ can only make the test unnecessarily conservative. On the other hand, for

all h1, h2 > 0 and all values of λ1, λ2, one has κ+(h) > κ−(h). This may suggest that

adding a redundant inequality when both of the non-redundant inequalities are violated can

only increase the power of the test, even if the redundant inequality is estimated relatively

imprecisely. Proposing a finite-sample inequality selection procedure that would take the

above conclusions into account is an interesting direction for further research.

2.4 Conclusion

A common practical problem in many partially-identified models is that sharp identified

sets are characterized by a very large (or infinite) number of moment inequalities. At the

same time, many of those inequalities may be redundant. To motivate and guide inequality
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(a) (λ1, λ2) = (0.2, 0.2) (b) (λ1, λ2) = (0.1, 0.6)

(c) (λ1, λ2) = (0.4, 0.4) (d) (λ1, λ2) = (0.6, 0.6)

(e) (λ1, λ2) = (0.8, 0.4) (f) (λ1, λ2) = (0.9, 0.9)

Figure 2.10: Local Power Comparisons. Contour sets for κ−(h)− κ+(h).
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selection, the literature has focused on characterizing core-determining classes, i.e., sets

of inequalities of smaller size that suffice for extracting all of the information from the

data and maintained assumptions. In this paper, I proposed a novel general analytical

criterion for constructing core-determining classes, and illustrate its utility in a series of

popular applications. In settings where the outcome space is finite, I showed that no further

improvement is possible and provided an efficient algorithm to compute the smallest possible

core-determining classes in applications.

2.5 Appendix: Proofs from the Main Text

2.5.1 Auxiliary Lemmas

Lemma 2.3 (Farkas Lemma). Let A be an arbitrary n×m real matrix and b be an arbitrary

n× 1 real vector. Then exactly one of the following holds

1. There is λ > 0 ∈ Rm such that Aλ = b

2. There is µ ∈ Rn such that µ′A > 0 and µ′b < 0

That is, either a vector b belongs to the convex cone of the columns of A or it can be

separated from the cone by a hyperplane. I apply Farkas Lemma to show the following

result.

Lemma 2.4. Let A be an arbitrary n×m real matrix and b be an arbitrary n×1 real vector.

Let C = {1, . . . , K} with K < n, AC be a submatrix of A composed from the first K rows,

and bC be the corresponding subvector of b. Let a′k denote the k-th row of A, and 1m ∈ Rm

denote a vector of ones. Then, the following are equivalent:

(1)

{x ∈ Rm
+ | Ax > b, x′1m = 1} = {x ∈ Rm

+ | ACx > bC , x
′1m = 1}
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(2) For every j /∈ C, there is λ1, . . . , λK > 0 and λ ∈ R such that

aj >
∑K

k=1 λkak + λ1m

bj =
∑K

k=1 λkbk + λ

Proof. Suppose that (1) holds. Fix some j /∈ C and apply Farkas Lemma to:

Ã =

 a1 a2 . . . aK Im 1m −1m

−b1 −b2 . . . −bK 0m −1 1


︸ ︷︷ ︸

(m+1)×(K+m+2)

, b̃ =

 aj

−bj


︸ ︷︷ ︸
(m+1)×1

,

where Im denotes the identity matrix of size m. There are two possible cases.

Case 1. There exists λ ∈ RK+m+2
+ such that Ãλ = b̃, that is,

λ1a1 + · · ·+ λKaK +
∑m

i=1 λK+iei + λK+m+1 − λK+m+2 = aj

λ1b1 + · · ·+ λKbK + λK+m+1 − λK+m+2 = bj

where ei is the i-th column of Im. Denoting λ = λK+m+1 − λK+m+2, since all λK+i are

non-negative, yields

aj >
∑K

k=1 λkak + λ1m

bj =
∑K

k=1 λkbk + λ

Case 2. There exists µ ∈ Rm+1 such that µ′Ã > 0 and µ′b̃ < 0, that is,

µi > 0 for i = 1, . . . ,m∑m
i=1 µi = µm+1∑m

i=1 µiaki > µm+1bk for k = 1, . . . , K∑m
i=1 µiaji < µm+1bj

Note that µm+1 > 0 and define x = µ−1
m+1 · (µ1, . . . , µm) ∈ Rm

+ . Then,

x′ak > bk

x′1m = 1

x′aj < bj

which contradicts (1). Therefore, this case is impossible, and Case 1 must hold.
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Next, suppose that (2) holds. It suffices to show that RHS ⊆ LHS in (1). Pick some

x ∈ RHS. Since x > 0 and x′1m = 1, for any j /∈ C we have

a′jx >
K∑
k=1

λk(a
′
kx) + λ(x′1m) >

C∑
k=1

λkbk + λ > bj

Therefore, x ∈ RHS, and the proof is complete. �

2.5.2 Proof of Theorem 2.1

By the argument preceding Lemma 2.2, the class UG is core-determining. So, it remains

to show that all A ∈ UG\C are redundant given C. By definition of C, for any such A,

at least one of the conditions of the Theorem must hold. If the first condition holds, A is

redundant given C by the argument immediately Lemma 2.2. If the second condition holds,

A is redundant given C by the argument preceding Theorem 2.1. �

2.5.3 Proof of Theorem 2.2

The inclusion C∗ ⊆ C is obvious. Indeed, if A /∈ C, it must be redundant by one of the

arguments preceding Theorem 2.1. Then, it cannot be that λ(A) < CG(A) as defined in

(2.3), and, therefore, A /∈ C∗.

Next, I will show C ⊆ C∗, or, equivalently, (C∗)c ⊆ Cc. Denote M = |Y| and N = 2M − 2.

Identify each A ⊆ Y with a vector 1A = (1(ym ∈ A))Mm=1 ∈ {0, 1}M (excluding A = ∅ and

A = Y). Let {1, . . . , K} enumerate the inequalities in C∗. Since C∗ is core-determining,

{
x ∈ RM

+

∣∣ 1Tx = 1,1TAkx > P (G−(Ak)) for k = 1, . . . , K
}

=
{
x ∈ RM

+

∣∣ 1Tx = 1,1TAjx > P (G−(Aj)) for j = 1, . . . , N
}
,

where 1 = (1, . . . , 1) ∈ RM . For an arbitrary Aj /∈ C∗, I will show that Aj /∈ C. If Aj /∈ UG,

then certainly Aj /∈ C, so for the rest of the proof I will assume that Aj ∈ UG. By Lemma
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2.4, there exist λ1, . . . , λK > 0 and λ ∈ R such that

1Aj >
K∑
k=1

λk1Ak + λ1

P (G−(Aj)) =
K∑
k=1

λkP (G−(Ak)) + λ

(2.9)

Without loss of generality, assume that λk > 0 for all k = 1, . . . , K (or drop the sets for

which λk = 0).

The first step of the proof is to show that the first line in (2.9) holds with equality. Note

that (2.9) implies 1(G(ω) ∈ Aj) >
∑K

k=1 λk1(G(ω) ⊆ Ak) + λ. Then, writing P (G−(Aj)) =∑
ω∈Ω P (ω)1(G(ω) ⊆ Aj),

∑
ω∈Ω

P (ω)

(
1(G(ω) ⊆ Aj)−

K∑
k=1

λk1(G(ω) ⊆ Ak)− λ

)
= 0.

Since each P (ω) > 0 and the terms in parentheses are non-negative, in fact,

1(G(ω) ⊆ Aj) =
K∑
k=1

λk1(G(ω) ⊆ Ak) + λ. (2.10)

Now, suppose that 1(y ∈ Aj) >
∑K

k=1 λk1(y ∈ Ak) +λ for some y. Since Aj ∈ UG, if y ∈ Aj,

there is some ω such that y ∈ G(ω) ⊆ Aj. Then,

1(G(w) ⊆ Aj) =
∑K

k=1 λk1(G(ω) ⊆ Ak) + λ

6
∑K

k=1 λk1(y ∈ Ak) + λ

< 1(y ∈ Aj),

which states that 1 < 1, a contradiction. If y /∈ Aj, the same argument applied to any ω

such that y ∈ G(ω) leads to 0 < 0, a contradiction. Therefore,

1(y ∈ Aj) =
K∑
k=1

λk1(y ∈ Ak) + λ. (2.11)

Note that since λk > 0, evaluating the above at any y /∈ Aj implies that λ 6 0.

The second step of the proof starts with the key observation that for any ω such that

G(ω) ⊆ Aj and all y ∈ G(ω), one has y ∈ Ak if and only if G(ω) ⊆ Ak, for all k = 1, . . . , K.
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Indeed, suppose that, for some k, y ∈ G(ω) ∩ Ak but G(ω) * Ak. Evaluating (2.10) at ω

and (2.11) at y yields

1 =
∑

l:G(ω)⊆Al λl + λ

1 > λk +
∑

l:G(ω)⊆Al λl + λ,

which cannot hold since λk > 0. Therefore, for all ω such that G(ω) ⊆ Aj, it must be either

G(ω) ⊆ Ak or G(ω) ⊆ Aj\Ak.

It remains to consider two cases.

1. Suppose that λ = 0. Then, (2.11) and the fact that all λk > 0 imply that Aj =
⋃K
k=1Ak,

and also that Ak1 ⊆ Ak2 cannot hold for k1 6= k2. By the key observation, for all

ω such that G(ω) ⊆ Aj, either G(ω) ⊆ Ak or G(ω) ⊆ Aj\Ak must hold. Since

Ak 6= Aj for all k, and the sets Ak cannot be nested, it follows that Ak1 ∩Ak2 = ∅ and

G−(Ak1) ∩ G−(Ak2) = ∅ for all k1, k2 ∈ {1, . . . , K}, so that the subgraph induced by

(Aj, G
−(Aj)) must be disconnected.

2. Suppose that λ < 0. Then, (2.11) and the fact that λk > 0 imply that each element

of Aj must be included in at least one Ak, and
⋃K
k=1Ak = Y . By the key observation,

for any ω such that G(ω) ⊆ Aj, either G(ω) ⊆ Ak or G(ω) ⊆ Aj\Ak must hold. If

Aj\Ak 6= ∅ for at least one k, there is no G(ω) that would connect Ak and Aj\Ak.

Then, the subgraph induced by (Aj, G
−(Aj)) must be disconnected. If Aj\Ak = ∅ for

all k, then Aj ⊆ Ak for all k. Then, by (2.11),
∑K

k=1 λk + λ = 1, and there cannot be

any y ∈
⋂K
k=1 Ak but y /∈ Aj, or, in other words, Aj =

⋂K
k=1Ak. Then, one can re-write

(2.11) and (2.10) as:

1(y ∈ Acj) =
∑K

k=1 λk1(y ∈ Ack),

1(G(ω) ∩ Acj 6= ∅) =
∑K

k=1 λk1(G(ω) ∩ Ack 6= ∅).

For any ω such that G(ω) ∩ Acj 6= ∅ and all y ∈ G(ω) ∩ Acj, the above implies

K∑
k=1

λk(1(y ∈ Ack)− 1(G(ω) ∩ Ack 6= ∅)) = 0.
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Since all λk > 0, the above implies that for all such ω and y, G(ω) ∩ Ack 6= ∅ holds if

and only if y ∈ Ack. Since Acj =
⋃K
k=1A

c
k, the above holds, specifically, for any ω such

that G(ω)∩Ack 6= ∅ and all y ∈ G(ω)∩Ack. Therefore, G(ω)∩Ack 6= ∅ happens if and

only if G(ω)∩Acj ⊆ Ack. In words, if G(ω) “hits” Ack, its restriction on Acj must be fully

included in Ack. Now, define A−1 =
⋂K
k=1Ak and note that Ac1∩Ac−1 = ∅. Then, by the

previous discussion, there cannot be a ω such that G(ω)∩Ac1 6= ∅ and G(ω)∩Ac−1 6= ∅,

meaning that the subgraph induced by (Acj, G
−1(Acj)) must be disconnected, and the

proof is complete.
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CHAPTER 3

Model Selection for Doubly-Robust Policy Learning

3.1 Introduction

When treatment effects are heterogeneous, an important question is to find out how to best

assign treatment to individuals based on their observable characteristics, i.e. find a good

policy rule π(x) that maps a vector of characteristics x to a treatment. For example, a

job training program might only benefit workers of certain education level; some drugs may

only work on patients of certain age or with certain medical history; variant advertisement

styles lift sales differently depending on customer demographics. In these scenarios, the

decision maker might want to look beyond the average treatment effect and search for a good

policy rule. Given either experiment or quasi-experiment data, researchers can formulate a

statistical decision problem and evaluate policy rules by their expected regret (Manski, 2004;

Dehejia, 2005; Stoye, 2009; Bhattacharya and Dupas, 2012; Armstrong and Shen, 2015;

Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2021).

The problem could be described as follows. A population of agents with observed char-

acteristics X ∈ X is to be treated according to a rule π : X → D selected from a class

of available rules (or interventions) π ∈ Π. Each treatment rule will result in an outcome

Y ∈ R (interpreted as utility). Our goal is to learn a treatment rule that maximizes the

expected value of Y , denoted V (π). For that purpose, we attempt to estimate V (π) with

V̂n(π) using available data on the outcomes Yi, treatments Ti, covariates Xi, and optional

auxiliary variables Zi. Specifically, we have access to a collection W n
1 = {Wi}ni=1 of i.i.d.
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samples Wi = (Yi, Ti, Xi, Zi) distributed according to P ∈ P. We note that the space of

observed treatments Ti ∈ T may not be the same as the space of interventions D.

The literature has pointed out that in many situations, the set of rules that a policy

maker can choose from is constrained by various practical concerns such as budget, fairness,

or simplicity. We notice that this constrained set of rules, call it Π, could nevertheless be

ambiguous to a practitioner. For example, regulations may dictate that only certain variables

could be included in the determination of treatment assignment and a decision tree up to

depth four should be employed, but whether to use all of the variables and what exact depth

of trees to consider is still up to the practitioner to decide. A better policy π would very likely

exist in a larger class Π, but a too complex Π might not work well with the limited amount of

data. Just like in many statistical estimation problems, there is a trade-off between bias and

variance. Hence, picking a right class Π is a model selection problem for the practitioner.

In this chapter, we focus on the following question: if a practitioner can choose between

several different classes of policy rules, denoted Πk for k > 1, which class should they choose?

To answer this question, we need a criterion to compare different data-dependent treatment

rules. In line with the literature on statistical treatment rules, we evaluate the performance

of treatment rules in terms of their expected regret, E[R(π̂n)], where regret is defined as

R(π) = max
π′∈Π∗

V (π′)− V (π).

relative to some ideal policy class Π∗ that may be infeasible, unknown or arbitrarily set. In

the aforementioned example, Π∗ could be thought as the largest set of rules allowed under

the regulation. Now, to see the trade-off in picking the class, let π̂n,k denote the optimal

treatment rule chosen from a class Πk, the regret can be written as:

R(π̂n,k) = max
π∈Π∗

V (π)−max
π∈Πk

V (π)︸ ︷︷ ︸
Approximation Error

+ max
π∈Πk

V (π)− V (π̂n,k)︸ ︷︷ ︸
Estimation Error

.

Intuitively, we see that: more complex rules have a better chance of reducing the approxi-

mation error, but, for a given sample size, might have larger estimation error.
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We adapt and extend two recent methods proposed in Mbakop and Tabord-Meehan

(2021) and Athey and Wager (2021). Mbakop and Tabord-Meehan (2021) introduces the

penalized welfare maximization (PWM) rule, which itself is an extension to the empirical

welfare maximization (EWM) rule proposed in Kitagawa and Tetenov (2018). The PWM

rule adds penalization to the EWM rule to achieve model selection. The authors establish a

finite-sample upper bound on the expected regret of the PWM rule. The bound converges

to zero at n−1/2 rate, which is proved to be optimal. A limitation to both EMW and PWM

is that when the propensity score is unknown and has to be estimated, these methods would

no longer be rate-optimal. Athey and Wager (2021) propose a method that could retain the

n−1/2 rate even with estimated propensity scores by leveraging doubly robust estimation, but

their method does not incorporate model selection. In this chapter, we propose a method

that could achieve both.

Following the aforementioned two papers, we propose the following procedure to select

the best class. Define the penalized empirical welfare function:

Qn,k(π) = V̂n(π)− Ĉn,k(π),

where V̂n(π) is a doubly robust estimate of V (π) and Ĉn,k(π) represents a penalty for model

complexity, which, informally speaking, estimates how much the model overfits the data.

For each k, solve for

π̂n,k = argmax
π∈Πk

V̂n(π),

choose

k̂ = argmax
k

Qn,k(π̂n,k),

and set

π̂n ≡ π̂n,k̂.

Our main result is to show that such π̂n is adaptive in a sense that it automatically picks up

the “right” class and has the optimal rate of convergence in terms of expected regret. Our

regret bounds hold in finite samples, are tighter than the bounds available in the literature

101



and easily generalize to arbitrary discrete policy rules. Moreover, since the welfare estimation

V̂n(π) is based on doubly robust scores, our method retains the optimal n−1/2 rate in general

setups including quasi experiments where the propensity scores have to be estimated.

In Section 3.2, we further describe the setup and introduce our assumptions. In Section

3.3, we revisit known results from the literature and present modified and refined versions of

them. Our main results are in Section 3.4, where we formally introduce our new algorithm,

the robust penalized welfare maximization (RPWM) rule. We present bound on expect

regret of the RPWM rule and prove that it is rate-optimal. Section 3.5 presents a simulation

study and Section 3.6 concludes. Proofs are collected in the Appendix, Section 3.7.

3.2 Setup

We consider the standard potential outcomes framework (Neyman, 1923; Rubin, 1974).

Specifically, let Yi(t) denote an outcome that we would have observed if the treatment had

been set to Ti = t, and Y = Y (T ) denote the observed outcome. Let θ = E[τ(X)] denote

the average treatment effect. Our main assumption, following Athey and Wager (2021) and

Chernozhukov et al. (2016), is that we can identify θ via a doubly-robust moment condition.

Assumption 3.2.1 (Identification). Let m(x, t) = EP [Y (t)|X = x] ∈ M. Assume that

m(x, t) induces a treatment effect function τm(x, t) such that:

1. The welfare function can be expressed as V (π) = EP [π(X)τ(X)], where τ(X) =

EP [τm(X,T )|X].

2. The map m 7→ τm is linear and there is a weighting function g(x, z) such that for any

m̃(x, t) ∈M

EP [τm̃(X,T )− g(X,Z)m̃(X,T )|X] = 0.

The auxiliary variable Z could be an instrumental variable, or equals to X when X is

exogeneous. We illustrate this setting with three important examples borrowed from (Athey
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and Wager, 2021).

Example 3.1 (Binary Treatments with Selection on Observables). Under conditional ignor-

ability assumption T ⊥ (Y (1), Y (0))|X, condition 2 in Assumption 3.2.1 is satisfied with

g(x, t) =
t− e(x)

e(x)(1− e(x))
, τm(x) = m(x,1)−m(x,0),

where e(x) = P (T = 1|X = x) is the propensity score. Then the welfare function is

V (π) = EP [π(X)τ(X)] = EP [Y (π(X))]− EP [Y (0)],

which corresponds to our utilitarian welfare objective.

Example 3.2 (Endogenous Binary Treatments with Binary Instruments). Assume that Z

is a valid instrument conditional on X in the sense of Assumption 2.1 of Abadie (2003), and

further assume that conditional average treatment effect equals conditional local average

treatment effect, then we can have

τm(x) = m(x, 1)−m(x, 0) =
Cov[Y, Z|X = x]

Cov[T, Z|X = x]
.

Then condition 2 in Assumption 3.2.1 is satisfied with

g(x, z) =
1

∆(x)

z − Ξ(x)

Ξ(x)(1− Ξ(x))
,

Ξ(x) = P [Z = 1|X = x],

∆(x) = P [W = 1|Z = 1, X = x]− P [W = 0|Z = 1, X = x]

Since τm(x) is the same as in the Example 3.1, the resulting welfare function is the same.

Example 3.3 (Continuous Treatments). Suppose the treatment variable T is continuous

and exogenous, i.e. {Y (t)} ⊥ T |X, then we let

τm(x, t) =
d

dv
m(x, t+ v)

∣∣∣∣
v=0

.
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Under regularity conditions, condition 2 of Assumption 3.2.1 is then satisfied with a function

g(X,T ) derived via integration by parts (Powell et al., 1989)∫ ∫
d

dt
m(X,T )

∣∣∣∣
t=T

dFT |XdFX =

∫ ∫
d

dt
g(X,T )m(X,T )dFT |XdFX ,

g(X,T ) =− d

dt
log(f(t|X))

∣∣∣∣
t=T

.

In this case the welfare function is

V (π) =
d

dv
E[Y (T + vπ(X))]

∣∣∣∣
v=0

,

which is the average effect of a nudge following policy π(x).

In the above settings, Chernozhukov et al. (2016) proposed estimating θ by

θ̂n =
1

n

∑
i=1

Γ̂i, Γ̂i = τm̂(Xi, Ti) + ĝ(Xi, Zi)(Yi − m̂(Xi, Ti)),

where ĝ(·) and m̂(·) are preliminary estimates of the nuisance functions g(·) and m(·). Using

cross-fitting and Neyman orthogonality of the moment condition θ = E[Γ(W ;m, g)], the

authors show that θ̂n is
√
n-consistent and asymptotically Normal, provided that ĝ(·) and

m̂(·) converge sufficiently fast, and may also be semiparametrically efficient (Newey, 1994b).

Athey and Wager (2021) proposed using the orthogonal scores Γ̂i for policy learning.

Specifically, under Assumption 3.2.1, V (π) = E(π(X)Γ(W )), so that a feasible sample ana-

log can be constructed as V̂n(π) = n−1
∑n

i=1 π(Xi)Γ̂i. Then, by establishing that V̂n(π)

approximates V (π) uniformly well over π ∈ Π, Athey and Wager (2021) show that π̂n =

argmaxπ∈Π V̂n(π) is rate-optimal in terms of expected regret.1

In section 3.4, we propose our method that complements their results with model selec-

tion. Specifically, we propose a procedure that selects the “best” class of treatment rules to

choose from in a data-driven fashion. It resolves the trade-off between approximation and

1Athey and Wager (2021) work with A(π) = 2V (π) − E(τ(X)) = E((2π(X) − 1)τ(X)) and its feasible
analog, but the modification here changes neither the problem nor the solution.
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estimation error described earlier and can also be extended to handle policy classes of infi-

nite VC-dimension as in Mbakop and Tabord-Meehan (2021). Another difference between

our results to theirs is that our bounds hold in finite sample while they derived asymptotic

bounds.

Now, we state the high-level assumptions on the first stage estimation that provides us

with Γ̂i.

Assumption 3.2.2 (DGP and First-stage Estimators). In the setting of Assumption 3.2.1,

assume that EP [m2(X,T )] ∨ EP [τ 2
m(X,T )] ∨ E[g2(X,Z)] < ∞, and we have access to esti-

mators m̂(x, d), τm̂(x, d), and ĝ(x, z) depending on the data W n
1 and satisfying the following

conditions. For some 0 < ζm, ζg < 1, with ζm + ζg > 1, and a positive sequence a(n)→ 0 as

n→ 0,

EP [(m̂(X,T )−m(X,T ))2] ∨ EP [(τm̂(X,T )− τm(X,T ))2] 6
a(n)

nζm
,

EP [(ĝ(X,Z)− g(X,Z))2] 6
a(n)

nζg
,

where (X,D,Z) is an independent test sample drawn from P , for all P ∈ P.

The above assumptions on first stage estimation is weaker than the equivalent in Athey

and Wager (2021) as we do not assume uniform consistency. Next, we assume that the policy

classes have finite VC dimensions.

Assumption 3.2.3 (Policy Rules). The class of available policy rules is Π =
⋃K
k=1 Πk, for

some finite K, and each Πk has a finite VC dimension denoted V C(Πk). The no-treatment

rule, π(x) = 0 for all x ∈ X , is included in each Πk.

At last, we assume that the function g(x, z) is bounded away from zero.

Assumption 3.2.4 (Overlap Condition). There is an η > 0 such that the weighting function

satisfies supx,z |g(x, z)| 6 η−1 for all P ∈ P.

105



3.3 Related Results

In this section, we revisit some closely related known results in the literature and present

modified and improved version of them.

First, we revisit regret bounds of Kitagawa and Tetenov (2018). Assume that we are

in the setting of Example 3.1 and the propensity score is known. Then, the welfare can be

expressed as

V (π) = E
[
π(X)

(
Y T

e(X)
− Y (1− T )

1− e(X)

)]
,

where e(X) = P (T = 1|X) denotes the propensity score, with a sample counterpart

V̂ E
n (π) =

1

n

n∑
i=1

π(Xi)

(
YiTi
e(Xi)

− Yi(1− Ti)
1− e(Xi)

)
. (3.1)

Kitagawa and Tetenov (2018) consider the Empirical Welfare Maximization (EWM) rule,

defined as

π̂EWM
n = argmax

π∈Π
V̂ E
n (π).

They derive the upper bound on the worst-case expected regret of this rule over all distri-

butions with bounded outcomes and propensity scores. In the following theorem, we extend

and sharpen their result allowing for unbounded outcomes.2 Define a set of distributions:

PB,η = {P ∈ P : η 6 P (T = 1|X) 6 1− η a.s.,EP [Y 2] 6 B2}.

Theorem 3.1 (EWM Revisited). Assume that treatments are binary, T = {0, 1}, un-

confoundedness holds, (Y (0), Y (1)) ⊥ T |X, and the propensity score e(X) is known. Let

π̂EWM
n = argmaxπ∈Π V̂

E
n (π), with V̂ E

n (π) defined in (3.1), denote the EWM rule. Then,

sup
P∈PB,η

EP [R(π̂EWM
n )] 6 C

B

η

√
V C(Π)

n
,

where C 6 58 is a universal constant.

2In addition to allowing unbounded outcomes, we obtain a substantially smaller constant. Kitagawa and
Tetenov (2018) assume that Y ∈ [−M/2,M/2] and derive an upper bound of the form KMη−1

√
V C(Π)/n.

A careful examination of the proof of their Theorem 1 suggests that the result holds with K ≈ 68. To
compare, note that for any distribution P such that Y ∈ [−M/2,M/2], we have (EP [Y 2])1/2 6M/2. Then,
our Theorem 3.1 implies that the expected regret bound holds with C/2Mη−1

√
V C(Π)/n, where C/2 = 29.
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We complement this result with a tight lower bound to show, in particular, that the

EWM rule with known propensity scores is rate-optimal.

Theorem 3.2 (New Regret Lower Bound). Under the assumptions of Theorem 3.1, for all

fixed n > 4V C(Π)/η,

inf
π̂n

sup
P∈PB,η

EP [R(π̂n)] > 0.07 · B
η

√
V C(Π)− 1

n
− κn,

where κn = 0.14B/η · (V C(Π)− 1)/n, and the right-hand side is positive.

Remark 3.1 (Unknown Propensity Score). One important limitation of the above result is

the assumption that the propensity score is known. If the propensity score is unknown and

has to be estimated, one can plug the estimator in (3.1) and maximize the corresponding

objective function. Then, a result similar to Theorem 3.1 holds with an additional O(φ−1
n )

term, where φn is the rate of convergence of the propensity score estimator, which is generally

slower than
√
n. In such cases, π̂EWM

n is no longer rate-optimal.

In the same setting, Mbakop and Tabord-Meehan (2021) propose a treatment rule that

accounts for model selection, called Penalized Welfare Maximization (PWM). Here, for sim-

plicity, we only revisit the so-called holdout procedure defined as follows:

1. Let l = d(1−s)ne and r = n− l for some s ∈ (0, 1), and call W1, . . . ,Wl the estimating

sample, and Wl+1, . . . ,Wn the test sample. We use subscripts l, r, and n for quantities

that depend on the estimating sample only, on the test sample only, and on the entire

sample.

2. Compute the EWM rules π̂l,k ≡ argmaxπ∈Πk
V̂ E
l (π) for each Πk using the estimating

sample. Evaluate each π̂l,k by computing the penalized welfare Qn,k(π̂l,k) = V̂ E
l (π̂l,k)−

Ĉn,k where the penalty is Ĉn,k = V̂ E
l (π̂l,k)− V̂ E

r (π̂l,k).

3. Select k̂ = argmaxkQn,k(π̂l,k), and define3 π̂PWM
n ≡ π̂n,k̂.

3A slight abuse of notation here: π̂n,k̂ is obtained by plugging in k = k̂ into π̂l,k. However, we replace
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This procedure is natural: we estimate each π̂l,k using the estimating sample, evaluate

their performance by computing the empirical welfare on the test sample, Qn,k = V̂r(π̂l,k),

and select the best estimator. The following result shows that such estimator automatically

selects the best class and attains the optimal rate of convergence.4

Theorem 3.3 (PWM Revisited). Assume that treatments are binary, T = {0, 1}, uncon-

foundedness holds, (Y (0), Y (1)) ⊥ T |X, and the propensity scores are known. Let π̂n denote

the PWM rule computed with the holdout penalty as described above. Then, for any P ∈ PB,η,

EP [R(π̂PWM
n )] 6 inf

k6K

{
V ∗Π − V ∗Πk + EP [Ĉn,k]

}
+Rn

where V ∗Π and V ∗Πk denote the maximum welfare attainable within the corresponding classes

(both depend on P ), and Rn = B/η ·K/
√
sn.

Moreover, letting PkB,η ⊂ PB,η be a set of distributions such that V ∗Π = V ∗Πk ,

sup
P∈PkB,η

EP [R(π̂PWM
n )] 6

B

η

(
C

√
V C(Πk)

(1− s)n
+K

√
1

sn

)

where C 6 58 is a universal constant.

To gain interpretation, recall that selecting the best Πk amounts to balancing the ap-

proximation error V ∗Π − V ∗Πk and the estimation error V ∗Πk − V (π̂l,k). The estimation error is

at the same rate as E[Ĉn,k] under the hold-out penalty (Mbakop and Tabord-Meehan, 2021).

Also, intuitively, one could think that the term Ĉn,k = V̂ E
l (π̂l,k) − V̂ E

r (π̂l,k) as an estimator

for V ∗Πk − V (π̂l,k), or at least a measure of over-fitting. Therefore, the above result shows

the oracle property of π̂PWM
n : it behaves as if we knew the right class ex ante and used it to

compute the optimal treatment rule.

the l by n here (didn’t write π̂l,k̂ ) to stress that the rule now depends on the whole sample as k̂ depends on

the whole sample.

4Our result refines Theorem 3.1. and Corollaries 3.2 and 3.3. of Mbakop and Tabord-Meehan (2021) for
holdout penalty and a finite number of policy classes.
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The difference in V ∗Πk − V (π̂l,k) is in π but the difference in V̂ E
l (π̂l,k) − V̂ E

r (π̂l,k) is in

the way how V is estimated, so I don’t see why V̂ E
l (π̂l,k) would be estimating V ∗Πk but not

V̂ E
r (π̂l,k). Ideally we should have V̂ E

l (π∗k), then you would say π̂l,k is estimating π∗k, but then

what about V̂ E
r (π̂l,k), why is this not estimating V̂ E

r (π∗k) and then in turn also estimating

V ∗Πk

The goal of this chapter is to construct an estimator with a similar oracle property in a

more general setting of Section 3.2 by combining doubly-robust welfare estimator and model

selection.

3.4 Main Results

We return to the general setting introduced in Section 3.2. Under Assumption 3.2.1, the

welfare can be written as

V (π) = E[π(X)Γ(W )],

and the feasible sample analog is given by

V̂n(π) =
1

n

n∑
i=1

π(Xi)Γ̂i.

We further require that the estimated orthogonal scores Γ̂i are computed using J-fold cross-

fitting, defined as follows. Split the sample into J evenly sized folds of size bn/Jc distributing

the remaining observations uniformly, and let j : {1, . . . , n} → {1, . . . , J} be a function that

identifies the fold j(i) to which observation i belongs. Then, let ĝ(−j(i)), m̂(−j(i)), and τ
(−j(i))
m̂

denote the first-stage estimators computed using (1− J−1)n observations excluding the fold

j(i), and compute

Γ̂i = τ
(−j(i))
m̂ (Xi, Ti) + ĝ(−j(i))(Xi, Zi)(Yi − m̂(−j(i))(Xi, Ti)).

Following Athey and Wager (2021), we define a Doubly-Robust EWM estimator as

π̂REWM
n = argmax

π∈Π
V̂n(π).
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Our first goal is to bound its expected regret in finite samples. To this end, we define:

Ṽn(π) =
1

n

n∑
i=1

π(Xi)Γi,

and show that, under Assumption 3.2.1-2 and appropriate moment conditions,

E
[
sup
π∈Π
|Ṽn(π)− V (π)|

]
6 C̃

√
V C(Π)

n
E
[
sup
π∈Π
|V̂n(π)− Ṽn(π)|

]
= o(n−1/2).

That is, not knowing the propensity scores (and other nuisance parameters) only comes at

a o(n−1/2) price, meaning that π̂REWM
n has the optimal rate of convergence.

Here, we impose more explicit restrictions on the distributions of the data, in line with

our Assumptions 3.2.2 and 3.2.4. Specifically, we define:5

PBτ ,B,η =

P ∈ P :

EP [τ 2
m(X,T )] 6 B2

τ

EP [(Y −m(X,T ))2|X,T ]
a.s.

6 B2

supx,z |g(x, z)| 6 η−1

 , (3.2)

and prove the following result.

Theorem 3.4 (Doubly-Robust EWM). Let Assumptions 3.2.1 – 3.2.4 hold and π̂REWM
n

denote the Doubly-Robust EWM estimator defined above, with the first stage estimators for

the nuisance parameters constructed using a J-fold cross-fitting. Then,

sup
P∈PBτ ,B,η

EP [R(π̂REWM
n )] 6 C

√
B2
τη

2 +B2

η

√
V C(Π)

n
+Rn,

where C 6 58 is a universal constant, and Rn = 2(R1,n +R2,n +R3,n) with

R1,n = C

√
(J + 2)B2 · V C(Π)a((1− J−1)n)

n1+ζg
,

R2,n = C

√
(J + 2)

2(η2 + 1)

η2
· V C(Π)a((1− J−1)n)

n1+ζm
,

R3,n =

√
a((1− J−1)n)2

nζm+ζg
.

5To relate this with the set PB,η defined prior to Theorem 3.1, recall from Example 3.1 that τm(X,T ) =
m(X, 1) −m(X, 0) so that E(τ2m) 6 4B2 provided that EP [(Y −m(X,T ))2|X,T ] 6 B2. The latter neither
implies nor is implied by EP [Y 2] 6 B2.
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It is instructive to compare this result with Theorem 3.1 in the context of binary treat-

ments under unconfoundedness (see Example 3.1). Recall that when the propensity scores

are unknown, the analog of Theorem 3.1 holds with an additional O(φ−1
n ) term, where φn is

a rate of convergence of the propensity score estimator. The latter is generally slower than

root-n, meaning that π̂EWM
n is not rate-optimal. On the other hand, under the assumptions

of Theorem 3.4, the extra term in the upper bound is Rn = o(n−1/2). Therefore, π̂REWM
n

is rate-optimal, whether the propensity score is known or not, which illustrates the main

advantage of using robust welfare estimates.

Next, we present our main result which adds model selection. We propose using a Robust

Penalized Welfare Maximization (RPWM) treatment rule, defined as follows.

1. Let l = d(1−s)ne and r = n− l for some s ∈ (0, 1), and call W1, . . . ,Wl the estimating

sample, and Wl+1, . . . ,Wl+r the test sample. We use subscripts l, r, and n for quantities

that depend on the estimating sample only, on the test sample only, and on the entire

sample.

2. Compute the RWM rules π̂l,k ≡ argmaxπ∈Πk
V̂l(π) for each Πk using the estimating

sample with Γ̂i computed using a J-fold cross-fitting. Evaluate each π̂l,k by computing

the penalized welfare Qn,k(π̂l,k) = V̂l(π̂l,k)− Ĉn,k where the penalty is Ĉn,k = V̂l(π̂l,k)−

V̂r(π̂l,k).

3. Select k̂ = argmaxkQn,k(π̂l,k), and define π̂RPWM
n ≡ π̂n,k̂.

The following result shows that such estimator automatically selects the best class and

attains the optimal rate of convergence.

Theorem 3.5. Let Assumptions 3.2.1 – 3.2.4 hold and π̂RPWM
n denote the Doubly-Robust

PWM estimator defined above, with the first stage estimators for the nuisance parameters

constructed using a J-fold cross-fitting. Then:

EP
[
R(π̂RPWM

n )
]
6 inf

k6K
{V ∗Π − V ∗Πk + E[Ĉn,k]}+ Sn,
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where V ∗Π and V ∗Πk denote the maximum welfare attainable within the corresponding policy

classes (both depend on P ), and Sn = O(
√
B2
τη

2 +B2/η · 1/
√
sn).

Moreover, letting PkBτ ,B,η ⊂ PBτ ,B,η be a set of distributions such that V ∗Π = V ∗Πk ,

sup
P∈PkBτ ,B,η

EP [R(π̂RPWM
n )] 6

√
B2
τη

2 +B2

η

(
C

√
V C(Πk)

(1− s)n
+K

√
1

sn

)
+ Sk1,n + S2,n

where C 6 58 is a universal constant, Sk1,n = Rk
1,(1−s)n + Rk

2,(1−s)n + R3,(1−s)n, where Rk
1,n,

Rk
2,n, and R3,n are given in Theorem 3.4 with Πk instead of Π, and S2,n = o(n−1/2).

Note that this theorem is comparable to Theorem 3.3. It shows the same oracle property

as PWM discussed in Section 3.3. Moreover, by incorporating the doubly robust score,

RPWM can retain the n−1/2 rate in more general settings as the REWM rule. Hence, we

are able to get the benefit of both worlds.

3.5 Simulation

In this section, we conduct a simple simulation to demonstrate how RPWM rule balances

between approximation error and estimation error.

We generate a random sample of size n with the following DGP.

Y (0) = 0.7(X3 +X4 + ε0),

Y (1) = X2 −X1 + 0.7(X3 +X4 + ε1),

P (T = 1|X) = Λ(log(0.5) + (X1 +X2 +X3 +X4)(log(2)− log(0.5))/4).

where all covariates follow U [0, 1] and errors follow N(0,1) independently. The Λ(·) denotes

the logistic function so the propensity score is in between 1
3

to 2
3
. Under this DGP, the

average treatment effect is zero. However, There is heterogeneous treatment effect and

E[Y (1)− Y (0)|X] = X2 −X1,
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which suggest that the first best treatment policy is 1{X2 ≥ X1}. Consider the [0, 1]×[0, 1] ⊂

R2 square where (X1, X2) belongs, the 45 degree diagonal line across this square would be

the boundary of the first best treatment policy.

Now, for policy rule learning, suppose we arbitrarily decided to focus on decision trees

that only splits on X1 and X2 and up to depth 4. We compare three different algorithms,

the first one only considers depth 2 trees, the second one only considers depth 4 trees, and

then an adaptive one which chooses across depths 2, 3 and 4 using the hold-out penalty.

The last algorithm corresponds to RPWM and the first two REWM. We run Monte Carlo

simulations with n ∈ {200, 400, 800, 1200, 1600, 2000} and plot the regrets in Figure 3.1. 200

simulations were run for each sample size.

We see that when sample size is small, the estimation error would dominate, hence focus-

ing on depth 2 trees leads to less regret. When the sample size is large, the approximation

error would dominate so depth 4 trees become more favorable. The adaptive RPWM rule

should ideally trace the lower envelope of the other two curves. That is similar to what it

behaves in this simulation. We do notice a relatively poorer performance when sample size

is small. This might be due to the fact that hold-out penalty effectively reduce sample size.

At last, we show some policy rules learned from the depth 2 and 4 trees at n = 200 and

2000 in Figure 3.2. We can see that the depth 4 tree behaves poorly at n = 200 due to

over-fitting while does a good job approximating the first best policy rule when n = 2000.

3.6 Conclusion

In this chapter, we studied model selection in doubly robust policy learning. Following

Mbakop and Tabord-Meehan (2021) and Athey and Wager (2021), we added hold-out penalty

to the doubly robust policy learning algorithm. The resulting method could achieve data-

driven model selection while retaining optimal n−1/2 rate under general setups including

quasi-experiments where propensity scores are unknown. By deriving finite sample upper
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(a) A depth 2 tree with n = 200. (b) A depth 4 tree with n = 200.

(c) A depth 2 tree with n = 2000. (d) A depth 4 tree with n = 2000.

Figure 3.2: Examples of Policy Trees Learned with n = 200 and 2000.
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bounds on expected regret, we show that the algorithm can automatically balance approx-

imation error with estimation error. We also refined some related results in the literature

and derived a new finite sample lower bound to show that the n−1/2 rate is indeed optimal.

3.7 Appendix

3.7.1 Known Results for Reference and Some Refinements

First, we recite a well-known symmetrization inequality. See, e.g., Lemma 2.3.1. in van der

Vaart and Wellner (1996).

Lemma 3.1 (Symmetrization). Let W1, . . . ,Wn be an i.i.d. sample. Then for any class of

measurable functions F ,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Wi)− E(f(Wi))

∣∣∣∣∣
]
6 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(Wi)

∣∣∣∣∣
]

where ξ1, . . . , ξn are i.i.d. Rademacher random variables independent from W1, . . . ,Wn.

Let ψ be a strictly increasing, convex function with ψ(0) = 0 and X be a random variable.

Then the Orlisz norm ||X||ψ is defined as

||X||ψ = inf

{
C > 0 : E

(
ψ

(
|X|
C

))
6 1

}
.

Then, the following maximal inequality holds.

Lemma 3.2 (Maximal Inequality with Orlisz Norms). For any random variables X1, . . . , Xn

and any strictly increasing, convex function ψ,

E
[
max
j6m
|Xj|

]
6 ψ−1(m) max

j6m
||Xj||ψ

Proof. For any C > 0,

ψ
(
E
[
maxj6m

|Xj |
C

])
6 E

[
maxj6m ψ

(
|Xj |
C

)]
6 mmax

j6m
E
[
ψ
(
|Xj |
C

)]
,
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where the first inequality holds because ψ is convex and non-decreasing. Therefore, for any

C such that maxj6m E [ψ (|Xj|/C)] 6 1, we have

E
[
max
j6m
|Xj|

]
6 Cψ−1(m).

Choosing C = maxj6m ||Xj||ψ concludes the proof. �

The following result is Theorem 2.6.4. from Van der Vaart and Wellner (1996) with a

precisely pineed down universal constant.

Lemma 3.3 (Covering Numbers for VC classes). For any VC-class C of sets, any probability

measure Q, any r > 1, and 0 < ε < 1,

N(ε, C, Lr(Q)) 6
1

2
√
e
V (C)(4e)V (C)

(
1

ε

)r(V (C)−1)

.

Proof. We closely follow the proof of Theorem 2.6.4. in van der Vaart and Wellner (1996). We

start by referencing the main steps and introducing the necessary notation. First, note that

||1C − 1D||Q,r = Q1/r(C4D), so an εr-cover under L1(Q) produces an ε-cover under Lr(Q).

Therefore, the result for r > 1 follows immediately from the result for r = 1. Second, one

can argue that it suffices to consider empirical type measures Q supported on a large enough

finite set of distinct points {x1, . . . , xn}. Third, it is more convenient to bound the packing

number D(ε, C, L1(Q)) first and use the fact that N(ε, C, L1)(Q)) 6 D(ε/2, C, L1(Q)).

Each set C ∈ C can be identified with a binary vector 1C = (1(xi ∈ C))ni=1, and the

collection C can be identified with a binary matrix Z of size n ×#Z. Define d(1C1 ,1C2) =

n−1
∑n

i=1 |1C1−1C2|. Then, recalling that Q places probability 1/n on each xi, Q(C14C2) =

d(1C1 ,1C2), so that D(ε, C, L1(Q)) = D(ε,Z, d). For simplicity of notation, assume that Z

is ε-separated with respect to d, so the goal is to bound its size #Z in terms of the VC

dimension V (C).

Denote S = V (C) − 1 and fix an integer m such that S 6 m < n. For a subset

J ⊂ {1, . . . , n} of size #J = m, let ZJ denote the projection of Z onto {0, 1}J , and #ZJ
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denote the average size of ZJ over all subsets J or size m. Then, following the proof on Page

138 of van der Vaart and Wellner (1996) we arrive to the bound

#Z 6 #ZJnε(m+ 1)

εn(m+ 1)− 2(n−m)S
6

ε(m+ 1)#ZJ
ε(m+ 1)− 2S

6
εm#ZJ
εm− 2S

,

which holds without any extra constants. The number of points in any ZJ is equal to the

number of subsets picked out by C from the points {xi : i ∈ J}. By the Sauer-Shelah Lemma,

this is bounded by
∑S

j=0

(
m
j

)
, which is smaller than (em/S)S for m > S.6 Therefore,

#Z 6
( e
S

)S mS+1ε

mε− 2S

holds for all integers m such that S 6 m < n. Denote the right-hand side of the preceding

display by f(m). This function is strictly decreasing until m∗ = 2(S + 1)/ε and strictly

increasing afterwards. Therefore, the optimal unconstrained choice is m = m∗, for which

f(m∗) = (2e/ε)S(S + 1)(1 + S−1)S. However, the argument leading to the upper bound on

#Z only applies to integer m such that S 6 m < n. To ensure that a similar bound holds

for an integer value of m, we can simply use f(m∗− 1) since somewhere between m∗− 1 and

m∗ there must be an integer, and f(m) is decreasing on this interval. We have

f(m∗ − 1) =
(
e
S

)S (2(S + 1)/ε− 1)S+1ε

(2(S + 1)/ε− 1)ε− 2S

=
(

2e
ε

)S 1
1−ε/2(S + 1− ε/2)

(
1 + 1−ε/2

S

)S
6
(

2e
ε

)S
(S + 1) 1

1−ε/2 exp(1− ε/2)

6
(

2e
ε

)S
(S + 1) · 2

√
e,

for all ε ∈ (0, 1) since the function g(ε) = (1−ε/2)−1 exp(1−ε/2) is monotonically increasing.

Therefore, we obtain the bound

#Z 6
(

2e

ε

)S
(S + 1) · 2

√
e,

6Indeed, for t ∈ (0, 1),
∑S
j=0

(
m
j

)
6
∑S
j=0

(
m
j

)
tj

tS
6 (1+t)m

ts . Set t = S
m and use (1 + S/m)m 6 eS .
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and it remains to check that this bound still holds when m∗ − 1 < S or m∗ > n. Note that

m∗ − 1 > S for all ε ∈ (0, 1). If m∗ > n, by the Sauer-Shelah Lemma

#Z 6
S∑
j=0

(
n

j

)
6
(en
S

)S
6

(
em∗

S

)S
6 e

(
2e

ε

)S
,

which certainly implies the bound in the previous display. Therefore, recalling that #Z =

D(ε, C, L1(Q)),

N(ε, C, L1(Q)) 6 D(ε/2, C, L1(Q))

6
(

4e
ε

)S
(S + 1) · 2

√
e

=
(

4e
ε

)V (C)−1
V (C) · 2

√
e

= 1
2
√
e
V (C)(4e)V (C) (1

ε

)(V (C)−1)
,

and the desired result follows.

�

Next, we state and prove two simple lemmas about a specific VC-subgraph class of

functions. A subgraph of a function f : X → R is defined as

Cf = {(t, x) ∈ R×X : t < f(x)}.

A class of functions F is VC-subgraph if the class of all subgraphs

CF = {Cf : f ∈ F}

has a finite VC dimension. In this case we denote V (F) = V (CF).

The next result is Theorem 2.6.7. from van der Vaart and Wellner (1996). It is a direct

consequence of the result for sets and holds with the same universal constant.

Lemma 3.4 (Covering Number for VC-subgraph Classes). For a VC-class of functions with

measurable envelope function F and r > 1, one has for any probability measure Q with

||F ||Q,r > 0,

N(ε ||F ||Q,r ,F , Lr(Q)) 6
1

2
√
e
V (F)(16e)V (F)

(
1

ε

)r(V (F)−1)

,

for 0 < ε < 1.
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Next, we refine the above result for a particular VC-subgraph class of functions.

Lemma 3.5 (A Simple VC-Subgraph Class). Let G denote a class of subsets of X with a

finite VC dimension V (G), and F : X → R be an arbitrary function. Define a class of

functions:

F = {1(x ∈ G)F (x) : G ∈ G}.

Then, F is VC-subgraph with V (F) 6 V (G).

Proof. Let V C(G) = d and D = {(t1, x1), . . . , (td, xd+1)} ⊂ R × X be an arbitrary set of

points. By definition, D is shattered by F if for every subset {(tj, xj) : j ∈ J} there is a

function f with subgraph Cf such that Cf ∩ D = {(tj, xj) : j ∈ J}. Equivalently, D is

shattered by F if for every subset J ⊂ {1, . . . , d+ 1} there is a set G ∈ G satisfying

tj < 1(xj ∈ G)F (xj) for j ∈ J

tk > 1(xk ∈ G)F (xk) for k /∈ J
(3.3)

We will argue that D cannot be shattered by F .

First, if there is (tj, xj) such that tj < 0 and tj < F (xj), then tj < 1(xj ∈ G)F (xj) holds

for all G ∈ G. In this case, any subset of D that does not include tj, xj cannot be picked out,

so D cannot be shattered by F . Similarly, if there is (tk, xk) such that tk > 0 and tk > F (xk),

then tk > 1(xk ∈ G)F (xk) holds for all G ∈ G. So, any subset of D that includes this point

cannot be picked out and D cannot be shattered by F . Therefore, we will assume that each

(tj, xj) satisfies either tj < 0, F (xj) > 0 or tj > 0, F (xj) < 0 for j = 1, . . . , d+ 1.

Recall that G does not shatter {x1, . . . , xd+1}, meaning that there exist a subset {xj}j∈J

that G cannot pick out. Then, for every G ∈ G we have either xj /∈ G for some j ∈ J or

xk ∈ G for some k /∈ J . If the inequalities in (3.3) do not hold for this J for any G, then

{(tj, xj)}j∈J cannot be picked out and D cannot be shattered by F . Suppose the inequalities

in (3.3) hold for some G ∈ G. If xj /∈ G for some j ∈ J , it must be that tj < 0 and, according

to the previous discussion, F (xj) > 0. Then the set J ′ = J\(tj, xj) cannot be picked out. If
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xk ∈ G for some k /∈ J , it must be that tk > 0 and F (xk) < 0, so the set J ′′ = J ∪ k cannot

be picked out. Therefore, D cannot be shattered by F and V C(F) 6 V C(G).

�

Lemma 3.6 (Covering Numbers for Special VC-Subgraph Classes). Let G denote a class of

subsets of X with a finite VC dimension V (G), and F : X → R be an arbitrary function.

Define a class of functions:

F = {1(x ∈ G)F (x) : G ∈ G}.

Then, for any r > 1, probability measure Q with ||F ||Q,r > 0, and 0 < ε < 1,

N(ε ||F ||Q,r ,F , Lr(Q)) 6
1

2
√
e
V (F)(4e)V (F)

(
1

ε

)r(V (F)−1)

.

Proof. By Lemma 3.5, F is VC-subgraph. For r = 1, note that:

||f1 − f2||Q,1 = EQ[|1G1 − 1G2||F |] = P (Cf14Cf2) ||F ||Q,1 ,

where P = λ×Q/ ||F ||Q,1 is a probability measure on R× X and λ is a Lebesgue measure

on R. Then, by Lemma 3.3,

N(ε ||F ||Q,1 ,F , L1(Q)) = N(ε, CF , L1(P )) 6
1

2
√
e
V (F)(4e)V (F)

(
1

ε

)(V (F)−1)

.

For r > 1, note that:

||f1 − f2||rQ,r = EQ(|1G1F − 1G2F ||F |r−1) =
||f1 − f2||R,1
||F ||R,1

EQ(|F |r),

for the probability measure R with density |F |r−1/EQ(|F |r−1) with respect to Q. Therefore,

||f1 − f2||Q,r =

(
||f1 − f2||R,1
||F ||R,1

)1/r

||F ||Q,r ,

so that by the previous argument applied to R instead of Q

N(ε ||F ||Q,r ,F , Lr(Q)) 6 N(εr ||F ||R,1 ,F , L1(R)) 6
1

2
√
e
V (F)(4e)V (F)

(
1

ε

)r(V (F)−1)

�
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3.7.2 Auxiliary Lemmas

Now we are ready to state and prove three auxiliary lemmas that give our main results.

Lemma 3.7 (Finite-Sample Bound on Rademacher Complexity). Let W1, . . . ,Wn be an i.i.d.

sample and ξ1, . . . , ξn be i.i.d. Rademacher random variables independent of W1, . . . ,Wn.

1. Let F be a VC-subgraph of functions with f0(w) = 0 ∈ F , a finite VC dimension

V C(F), and a measurable envelope F such that S = E(F 2) <∞. Then:

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(Wi)

∣∣∣∣∣
]
6 C

√
V C(F)S

n
,

where C = 4
√

12
∫ 1

0

√
1/(2e3/2) + log(16e) + 2 log(1/u)du 6 34.

2. In the special case when F = {f(x) = 1(x ∈ G)F (x) : G ∈ G}, for a VC-class of sets

G and an arbitrary measurable function F with S = E(F 2) <∞, the above holds with

C = 4
√

12
∫ 1

0

√
1/(2e3/2) + log(4e) + 2 log(1/u)du 6 29.

Proof. Denote G0
n(f) = n−1/2

∑n
i=1 ξif(Wi). By the Law of Iterated Expectations,

E
[
sup
f∈F

∣∣∣∣ 1√
n
G0(f)

∣∣∣∣] =
1√
n
EWn

1

[
Eξn1

[
sup
f∈F

∣∣G0(f)
∣∣]] (3.4)

We will use a simple chaining argument to bound the right hand side of (3.4). Let η =

2 ||F ||2,n, and define F0 = {f0} and Fj contain centers of the balls in the minimal η2−j-cover

of F under ||·||2,n, so that |Fj| = N(η2−j,F , ||·||2,n). Let φj : F → Fj be a map that for a

given f finds the closest element of Fj. For any fk ∈ Fk define a chain fk−l = φk−l(fk−l+1)

for l = 1, . . . , k. Then,

G0
n(fk) =

k∑
j=1

(G0
n(fj)−G0

n(fj−1)) 6
k∑
j=1

max
g∈Fj
|G0

n(g)−G0
n(φj−1(g))|,

Let ψ2(x) = ex
2 − 1 and ||·||ψ2

denote the corresponding Orlisz norm. By Lemma 2.2.7. in

van der Vaart and Wellner (1996), conditional on W n
1 , the process G0

n(f) is sub-Gaussian
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for the metric dn(f1, f2) = ||f1 − f2||2,n, and satisfies ||G0
n(f)−G0

n(g)||ψ2
6
√

6 ||f − g||2,n.

By Lemma 3.2 and the above discussion,

Eξn1

[
max
g∈Fj
|G0

n(g)−G0
n(φj−1(g))|

]
6 ψ−1

2 (|Fj|) maxg∈Fj ||G0
n(g)−G0

n(φj−1(g))||ψ2

6
√

6 · ψ−1
2 (N(η2−j,F , ||·||2,n)) · η2−(j−1)

Therefore,

Eξn1

[
sup
f∈Fk
|G0

n(f)|
]
6
√

6
k∑
j=1

ψ−1
2 (N(η2−j,F , ||·||2,n))η2−(j−1)

(a)

6 4
√

6

∫ η/2

0

ψ−1(N(ε,F , ||·||2,n))dε

= 4
√

6

∫ ||F ||2,n
0

√
log(N(ε,F , ||F ||2,n) + 1)dε

(b)

6 4
√

12

∫ ||·||2,n
0

√
logN(ε,F , ||·||2,n)dε,

where (a) follows from rearranging rectangles under the curve ε 7→ ψ−1
2 (N(ε,F , ||·||2,n)), and

(b) follows from log(x + 1) 6 2 log(x) for x > 2. Since, conditional on W n
1 , the process G0

n

is separable, by letting k →∞ in the previous display we conclude that

Eξn1

[
sup
f∈F
|G0

n(f)|
]
6 4
√

12

∫ ||F ||2,n
0

√
logN(ε,F , ||·||2,n)dε. (3.5)

Denote V ≡ V C(F) and K = (2
√
e)−1. Applying Lemma 3.4 (or Lemma 3.6 for the special

case) with r = 2 and Q = Pn,

logN(ε,F , ||·||2,n) 6 log(KV ) + V log(16e) + 2(V − 1) log
(
||F ||2,n

ε

)
= V

(
K log(KV )

KV
+ log(16e) + 2V−1

V
log
(
||F ||2,n

ε

))
6 V

(
K/e+ log(16e) + 2 log

(
||F ||2,n

ε

))
,
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where the last line uses the fact that log(t)/t 6 1/e for all t > 0. Therefore,

||F ||2,n∫
0

√
logN(ε,F , ||·||2,n)dε 6

||F ||2,n∫
0

√
K/e+ log(16e) + 2 log

(
||F ||2,n /ε

)
dε ·
√
V

6

1∫
0

√
K/e+ log(16e) + 2 log(1/u)du

√
V ||F ||22,n,

(3.6)

where the second line follows from a change of variables u = ε/ ||F ||2,n. Combining (3.5)

and (3.6), we obtain

Eξn1

[
sup
f∈F
|G0

n(f)|
]
6 C

√
V ||F ||22,n

where C = 4
√

12
∫ 1

0

√
K/e+ log(16e) + 2 log(1/u)du (or the same expression with 4e instead

of 16e in the special case). By (3.4) and Jensen’s inequality,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(Wi)

∣∣∣∣∣
]
6 C

√
V C(F)S

n
,

which concludes the proof.

�

3.7.3 Proofs of Theorems 3.1, 3.2, and 3.3

3.7.3.1 Proof of Theorem 3.1

To keep notation simple, we write π̂n instead of π̂EWM
n . Let π∗ denote a rule such that

V (π∗) = V ∗Π = supπ∈Π V (π). Note that

R(π̂n) = V (π∗)− V (π̂n)

= V (π∗)− V̂n(π̂n) + V̂n(π̂n)− V (π̂n)

6 V (π∗)− V̂n(π∗) + V̂n(π̂n)− V (π̂n),

and, therefore,

E[R(π̂n)] = E[V̂n(π̂n)− V (π̂n)] 6 E[supπ∈Π |V̂n(π)− V (π)|].
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Define a class of functions

F =

{
f(w) = π(x)

(
yt

e(x)
− y(1− t)

1− e(x)

)
: π ∈ Π

}
,

so that

sup
π∈Π
|V̂n(π)− V (π)| = sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Wi)− E[f(Wi)]

∣∣∣∣∣ .
Applying Lemma 3.1 and part 2 of Lemma 3.7,

E

[∣∣∣∣∣sup
f∈F

1

n

n∑
i=1

f(Wi)− E[f(Wi)]

∣∣∣∣∣
]
6 2C

√
V C(F)S

n
,

where C 6 29 is a universal constant and S = E[f(W )2]. By Lemma 3.5, V C(F) 6 V C(Π),

and for any P ∈ PB,η,

EP [f(W )2] 6 EP
[
Y 2T

e(X)2
+

Y 2(1− T )

(1− e(X))2

]
6
B2

η2
,

so the desired result follows.

3.7.3.2 Proof of Theorem 3.3

To keep notation simple, we write π̂n = π̂n,k̂ instead of π̂PWM
n , and V̂n instead of V̂ E

n . The

subscripts n, l, and r, indicate the the corresponding objects depend on the entire sample,

only the estimating sample, and only the test sample correspondingly. For example, while

π̂l,k depends only on the estimating sample, π̂n,k̂ depends on the entire sample by the choice

of k̂. Let π∗k denote a rule such that V (π∗k) = V ∗Πk = maxπ∈Πk V (π). Recall that, by definition,

Qn,k(π̂n,k̂) = V̂l(π̂n,k̂)− Ĉn,k̂ = V̂r(π̂n,k̂).

Write

R(π̂n) = V ∗Π − V ∗Πk
+ V (π∗k)−Qn,k̂(π̂n,k̂)

+ Qn,k̂(π̂n,k̂)− V (π̂n,k̂)
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By the definitions of k̂ and π̂l,k, for any k,

V (π∗k)−Qn,k̂(π̂n,k̂) 6 V (π∗k)−Qn,k(π̂l,k) 6 V (π∗k)− V̂l(π∗k) + Ĉn,k,

so that

E[V (π̂∗k)−Qn,k̂(π̂n,k̂)] 6 E[Ĉn,k].

Next, write

E[V̂r(π̂n,k̂)− V (π̂n,k̂)] 6 r−1/2E
[
max
k6K

√
r|V̂r(π̂l,k)− V (π̂l,k)|

]
, (3.7)

and, working conditional on the estimating sample W l
1,

E
[
max
k6K

√
r|V̂r(π̂l,k)− V (π̂l,k)|

∣∣∣∣ W l
1

]
6 K max

k6K
E
[√

r|V̂r(π̂l,k)− V (π̂l,k)|
∣∣∣∣ W l

1

]
. (3.8)

Denoting fk(w) = π̂m,k(x)(yt/e(x)− y(1− t)/(1− e(x))), we have:

E
[
√
r|V̂r(π̂l,k)− V (π̂l,k)|

∣∣∣∣ W l
1

]
= E

[∣∣∣r−1/2
∑

j fk(Wj)− E[fk(Wj)]
∣∣∣ ∣∣∣∣ W l

1

]
6 E

[(
r−1/2

∑
j fk(Wj)− E[fk(Wj)]

)2
∣∣∣∣ W l

1

]1/2

6 E[fk(Wj)
2 | W l

1]1/2

6 B
η
,

where the last inequality follows in the same fashion as in Theorem 3.1. Since this bound

does not depend on k, taking expectations on both sides of (3.8) and recalling that r = ln,

we obtain:

E[V̂r(π̂n,k̂)− V (π̂n,k̂)] 6
B

η

K√
ln
.

Combining the above results, we conclude that

E[R(π̂n)] 6 V ∗Π − V ∗Πk + E[Ĉn,k] +
B

η

K√
ln
, (3.9)
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holds for all k 6 K, so that

E[R(π̂n)] 6 inf
k6K
{V ∗Π − V ∗Πk + E[Ĉn,k]}+

B

η

K√
ln
,

and the first part of the statement follows.

For the second part of the statement, note that by the Law of Iterated Expectations

E[Ĉn,k] = E[V̂l(π̂l,k)− V (π̂l,k) + V (π̂l,k)− V̂r(π̂l,k)]

= E[V̂l(π̂l,k)− V (π̂l,k)].

Then, repeating the proof of Theorem 3.1 with Πk instead of Π and m instead of n, we

obtain

E[Ĉn,k] 6 C
B

η

√
V C(Πk)

(1− s)n
.

Plugging this in Equation (3.9) and recalling that V ∗Π = V ∗Πk for all P ∈ PkB,η, we conclude

that

sup
P∈PkB,η

EP [R(π̂PWM
n )] 6

B

η

(
C

√
V C(Πk)

(1− s)n
+K

√
1

ln

)
,

and the proof is complete.

3.7.3.3 Proof of Theorem 3.2

We consider a particular subclass of PB,η for which the worst-case regret can be bounded

from below by a term proportional to B/η
√
d/n. The construction proceeds as follows.

Let x1, . . . , xd, where d = V C(Π) − 1, be a set shattered by Π with the largest possible

cardinality. Let
X ∈ {x1, . . . , xd}, P (X = xj) = 1

d
;

T ∈ {0, 1}, P (T = 1) = p, T ⊥ (X, Y0, Y1);

Y0 = 0,

and, given a parameter vector c = (c1, . . . , cd) ∈ {−1, 1}d,

Y1|X = xj =


A w.p. 1

2
(1 + cj

γ
A

)

−A w.p. 1
2
(1− cj γA)

,

127



where γ/A 6 1. Then, for Y = TY1 + (1− T )Y0,

E(Y 2) = pA2,

τ(xj) = E[Y1 − Y0|X = xj] = γcj.

For every c ∈ {−1, 1}d, the joint distribution of W = (Y,X, T ) constructed above belongs

to PB,η as long as p ∈ [η, 1− η] and pA2 6 B2. We will specify such p and A later.

Let C = (C1, . . . , Cd) consist of i.i.d. random variables Cj ∈ {−1, 1} such that P (Cj =

1) = 1/2. The joint distribution of W = (Y,X, T ) given C = c is

P (Y = y,X = xj, T = t|C = c) =


(1− p)1

d
y = 0, t = 0

1
2
(1 + cj

γ
A

)p
d

y = A, t = 1

1
2
(1− cj γA)p

d
y = −A, t = 1

.

We shall also derive the posterior probability P (Cj = 1|W n
1 ) which will play a crucial role

in deriving the lower bound.

We have

P (Y = y,X = xj, T = t) =


(1− p)1

d
y = 0, t = 0

1
2
p
d

y = A, t = 1

1
2
p
d

y = −A, t = 1

,

and

P (Y = y,X = xk, T = t|Cj = 1) = 1(k 6= j)P (Y = y,X = xj, T = t)

+ 1(k = j)


(1− p)1

d
y = 0, t = 0

1
2
(1 + γ

A
)p
d

y = A, t = 1

1
2
(1− γ

A
)p
d

y = −A, t = 1

.
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Therefore,

P (Wi|Cj = 1)

P (Wi)
= 1(Xi 6= xj) + 1(Xi = xj)


1 Yi = 0, Ti = 0

1 + γ
A

Yi = A, Ti = 1

1− γ
A

Yi = −A, Ti = 1

,

and

P (Cj = 1|W n
1 ) =

P (W n
1 |Cj = 1)P (Cj = 1)

P (W n
1 )

=
1

2

(
1 +

γ

A

)N+
j
(

1− γ

A

)N−j
, (3.10)

where

N+
j = #{i : Xi = xj, Yi = A, Ti = 1}

N−j = #{i : Xi = xj, Yi = −A, Ti = 1},

so that a tuple (N+
j , N

−
j , n−N+

j −N−j ) has a multinomial distribution:

P (N+
j = k1, N

−
j = k2|Cj = 1)

=

(
n

k1

)(
n− k1

k2

)(
1

2
(1 +

γ

B
)
p

d

)k1 (1

2
(1− γ

B
)
p

d

)k2 (
1− p

d

)n−k1−k2
. (3.11)

Now we turn to the main part of the proof. Let PC = {PW |C=c : c ∈ {−1, 1}d} ⊂

PB,η denote the set of distributions of W = (Y,X, T ) constructed above, and µ denote the

distribution of C. Let π∗P denote the first-best treatment rule when the distribution of the

data is P , and write π∗c = π∗PW |C=c
for brevity. By construction, π∗c (xj) = 1(cj = 1), and

π∗c ∈ Π since the class Π shatters {x1, . . . , xd}. Note that:

V (π∗c )− V (π̂n) =
γ

d

d∑
j=1

cj(π
∗
c (xj)− π̂n(xj)) =

γ

d

d∑
j=1

1(π∗c (xj) 6= π̂n(xj)).

Then,
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sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > max
P∈PC

EP [V (π∗P )− V (π̂n))]

>
∫

EPWn
1 |C=c

[V (π∗c )− V (π̂n))]dµ(c)

=
γ

d

d∑
j=1

∫ ∫
1(π∗c (xj) 6= π̂n(xj))dPWn

1 |C=cdµ(c)

=
γ

d

d∑
j=1

PWn
1 ,Cj

(1(Cj = 1) 6= π̂n(xj))

> γ · inf
π
PWn

1 ,Cj
(1(Cj = 1) 6= π(W n

1 )).

(3.12)

Note that PWn
1 ,Cj

(1(Cj = 1) 6= π(W n
1 )) is the probability of misclassification of 1(Cj = 1)

using W n
1 . By Theorem 2.1. in Devroye and Lugosi (1996), the infimum is attained by the

Bayes Classifier, π∗(W n
1 ) = 1(P (Cj = 1|W n

1 ) > 0.5), and is equal to

P (1(Cj = 1) 6= π∗(W n
1 )) = 1

2
P ( P (Cj = 1|W n

1 ) 6 0.5 |Cj = 1)

+ 1
2
P ( P (Cj = 1|W n

1 ) > 0.5 |Cj = −1).

Denote a = γ/A, and work conditional on Cj = 1 from now on. Recalling (3.10),

P (P (Cj = 1|W n
1 ) 6 0.5) = P ((1 + a)N

+
j (1− a)N

−
j 6 1)

> P ((1− a2)N
+
j 6 1|N+

j 6 N−j ) · P (N+
j 6 N−j )

= P (N+
j 6 N−j ).

Let D+
i = 1(Xi = xj, Yi = A, Ti = 1) and D−i = 1(Xi = xj, Yi = −A, Ti = 1). Then,

E[D+
i −D−i ] = ap/d, Var[D+

i −D−i ] = p/d− (ap/d)2, and E[(D+
i −D−i )3] = p/d. Letting Zn

denote the studentized version of n−1
∑n

i=1(D+
i −D−i ) and Φ denote the Standard Normal

CDF, using Berry-Esseen inequality we obtain

P (N+
j 6 N−j ) = P ( 1

n

∑n
i=1(D+

i −D−i ) 6 0)

= P

(
Zn 6

−
√
nap/d√

p/d−(ap/d)2

)
> Φ

(
−
√
nap/d√

p/d−(ap/d)2

)
− K√

n
1

(p/d)1/2(1−a2p/d)3/2
,
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where K < 0.469 (Shevtsova, 2013). Choosing a = γ/A ≡ c/
√
n
√
d/p for some c ∈ (0, 1),

assuming n is large enough to satisfy γ/A 6 1, we obtain

P (N+
j 6 N−j ) > Φ

(
− c√

1− c2/n

)
− K√

n

1√
p/d(1− c2/n)3/2

.

Choosing p = η, A = B/
√
η so that γ = c ·B/η

√
d/n, we have, for n > 3,

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > γ
2
· P (N+

j 6 N−j |Cj = 1)

> 1
2
B
η

√
d
n
· c · Φ

(
− c√

1−c2

)
− K

2
√
η
· B
η
d
n

c
(1−c2/3)3/2

Choosing c = 0.5162, and plugging in K = 0.469 gives the final result

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > 0.07 · B
η

√
d

n
− 0.14
√
η
· B
η

d

n
.

For n > 4d/η, the right-hand-side in the preceding display is positive, and γ/A 6 1 is also

satisfied.

3.7.4 Proofs of Theorems 3.4 and 3.5

The proof of Theorem 3.4 is based on the following two lemmas. The first Lemma gives a

maximal inequality in terms of the VC-dimension of the class of policy rules Π, the number

of observations n, and the second moment of the orthogonal score Γ.

Lemma 3.8 (Uniform Concentration Bound for Ṽn). Suppose that the class Π has VC-

dimension V C(Π) and includes the no-treatment policy π0(x) = 0 for all x. Then,

E
[
sup
π∈Π
|Ṽn(π)− V (π)|

]
6 C

√
V C(Π)S2

n
,

where C 6 58 is a universal constant and S2 = E(Γ2
i ).

Proof. Define a class of functions F = {f(w) = π(x)Γ(w) : π ∈ Π}, which is a VC-subgraph

class with V C(F) 6 V C(Π) and envelope |Γ|. Then, by Lemmas 3.1, 3.5, and the second
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part of Lemma 3.7,

E
[
sup
π∈Π
|Ṽn(π)− V (π)|

]
6 2E

[
sup
π∈Π

∣∣∣∣∣ 1n
n∑
i=1

ξiπ(Xi)Γi

∣∣∣∣∣
]
6 2C

√
V C(Π)S2

n
.

where C 6 29 is a constant from Lemma 3.7. �

The second Lemma establishes that V̂n and Ṽn are uniformly close in π ∈ Π. It is a finite-

sample version of Lemma 4 from Athey and Wager (2021) proven under slightly weaker

assumptions.

Lemma 3.9 (Uniform Coupling). Let assumptions 3.2.1 – 3.2.4 hold, and assume that

E((Y −m(X,D))2|X,D) 6 B2 almost surely. Suppose that Γ̂i are computed using a J-fold

cross-fitting. Then,

E
[
sup
π∈Π
|V̂n(π)− Ṽn(π)|

]
6 R1,n +R2,n +R3,n,

where C 6 58 is a universal constant, and

R1,n = C

√
(J + 2) ·B2 · V C(Π)a((1− J−1)n)

n1+ζg

R2,n = C

√
(J + 2) · 2(η2 + 1)

η2
· V C(Π)a((1− J−1)n)

n1+ζm
,

and

R3,n =

√
a((1− J−1)n)2

nζm+ζg
.

Proof. Let m̂(−j), τm̂(−j) and ĝ(−j) denote the estimators computed on observations exclud-

ing j-th fold. Denote the indices of the observations included in j-th fold by Ij. For an

observation i ∈ Ij, write the difference Γ̂i − Γi as a sum of three terms

Γ̂i − Γi = (Yi −m(Xi, Ti))(ĝ
(−j)(Xi, Ti)− g(Xi, Ti))

+ τm̂(−j)(Xi, Ti)− τm(Xi, Ti)− g(Xi, Zi)(m̂
(−j)(Xi, Ti)−m(Xi, Ti))

− (ĝ(−j)(Xi, Zi)− g(Xi, Zi))(m̂
(−j)(Xi, Ti)−m(Xi, Ti))

132



and denote the corresponding summands in V̂n(π)− Ṽn(π) by D1(π), D2(π), and D3(π). We

will bound each term separately.

First Term. Write D1(π) =
∑J

j=1 D
(j)
1 (π), where n

nk
D

(j)
1 (π) is equal to

1

nj

∑
i∈Ij

π(Xi)(Yi −m(Xi, Ti))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi)).

Note that, by the law of iterated expectations,

E[π(Xi)(Yi −m(Xi, Ti))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi)) | ĝ(−j)] = 0,

and denote the conditional second moment by

V1,n(j) = E
[
π(Xi)

2 · E[(Yi −m(Xi, Ti))
2|Xi, Ti] · (ĝ(−j)(Xi, Zi)− g(Xi, Zi))

2 | g(−j)] .
Applying, conditional on ĝ(−j), Lemma 3.8 with (Yi −m(Xi, Ti)) · (ĝ(−j)(Xi, Zi)− g(Xi, Zi))

in place of Γi, we get:

n

nj
E
[
sup
π∈Π
|D(j)

1 (π)|
∣∣∣∣ ĝ(−j)

]
6 2C

√
V C(Π)V1,n(j)

nj

Using Assumption 3.2.2, π(Xi)
2 6 1, and the bound on the conditional variance of Y ,

E(V1,n(j)) 6 B
a((J−1

J
)n)

nζg

By the last two displays, the law of iterated expectations, and Jensen’s inequality,

E
[
sup
π∈Π
|D(j)

1 (π)|
]
6 2C

√
nj
n

√
B
V C(Π)a((1− J−1)n)

n1+ζg

Since nj/n 6 1/(J − 1) and supremum is sub-additive,

E
[
sup
π∈Π
|D1(π)|

]
6 2C

√
(J + 2)B · V C(Π)a((1− J−1)n)

n1+ζg

Second Term. As before, write D2(π) =
∑J

j=1 D
(j)
2 (π), where n

nj
D

(j)
2 (π) is equal to

1

nj

∑
i∈Ij

π(Xi)(τm̂(−j)(Xi, Ti)− τm(Xi, Ti)− g(Xi, Zi)(m̂
(−j)(Xi, Ti)−m(Xi, Ti)))
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Denote the individual summands in the previous display by f(Wi; π). Note that

E(f(Wi; π)|m̂(−j), τm̂(−j)) = 0

by part (2) of Assumption 3.2.1 and the law of iterated expectations. Denote V2,n(j) =

E(f(Wi; π)2|m̂(−j), τm̂(−j)). Applying, conditional on m̂(−j) and τm̂(−j) , Lemma 3.8 with

(τm̂(−j)(Xi, Ti)− τm(Xi, Ti)− g(Xi, Zi)(m̂
(−j)(Xi, Ti)−m(Xi, Ti))) in place of Γi, we get:

n

nj
E
[
sup
π∈Π
|D(j)

2 (π)|
∣∣∣∣ ĝ(−j)

]
6 2C

√
V C(Π)V2,n(j)

nj

Using (a+ b)2 6 2(a2 + b2), π(Xi)
2 6 1, and Assumptions 3.2.2 and 3.2.4, we get:

E(V2,n(j)) 6 2

(
a((1− J−1)n)

nζm
+

1

η2

a((1− J−1)n)

nζm

)
=

2(η2 + 1)

η2

a((1− J−1)n)

nζm
.

By the last two displays, the law of iterated expectation, and Jensen’s inequality:

E
[
sup
π∈Π
|D(j)

2 (π)|
]
6 2C

√
nj
n

√
2(η2 + 1)

η2

V C(Π)a((1− J−1)n)

n1+ζm

Since nj/n 6 1/(J − 1) and supremum is sub-additive,

E
[
sup
π∈Π
|D1(π)|

]
6 2C

√
(J + 2)

2(η2 + 1)

η2

V C(Π)a((1− J−1)n)

n1+ζm

Third Term. Let j(i) denote the fold in which observation i belongs. We have:

D3(π) = − 1

n

n∑
i=1

π(Xi)(ĝ
(−j(i))(Xi, Zi)− g(Xi, Zi))(m̂

(−j(i))(Xi, Ti)−m(Xi, Ti))

By Cauchy-Schwartz inequality and π(Xi)
2 6 1,

|D3(π)| 6
√

1
n

∑n
i=1(ĝ(−j(i))(Xi, Zi)− g(Xi, Zi))2

×
√

1
n

∑n
i=1(m̂(−j(i))(Xi, Ti)−m(Xi, Ti))2,

where we note that the right hand side does not depend on π. Taking expectations on both

sides, using Cauchy-Schwartz inequality one more time, and recalling Assumption 3.2.2, we

obtain

E
[
sup
π∈Π
|D3(π)|

]
6

√
a((1− J−1)n)2

nζm+ζg
,

and the proof is complete. �
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3.7.4.1 Proof of Theorem 3.4

To keep the notation simple, we write π̂n instead of π̂REWM
n and write E instead of EP for a

fixed distribution P ∈ PBτ ,B,η. Let π∗ ∈ Π be such that V (π∗) = maxπ∈Π V (π). Note that:

R(π̂n) = V (π∗)− V (π̂n)

= V (π∗)− V̂n(π̂n) + V̂n(π̂n)− V (π̂n)

6 V (π∗)− V̂n(π∗) + V̂n(π̂n)− V (π̂n).

Then, writing

V (π∗)− V̂n(π∗) = V (π∗)− Ṽn(π∗) + Ṽn(π∗)− V̂n(π∗)

V̂n(π̂n)− V (π̂n) = V̂n(π̂n)− Ṽn(π̂n) + Ṽn(π̂n)− V (π̂n),

and using E[V (π∗)− Ṽ (π∗)] = 0, we obtain:

E[R(π̂n)] 6 E[sup
π∈Π
|Ṽn(π)− V (π)|] + 2E[sup

π∈Π
|V̂n(π)− Ṽn(π)|]. (3.13)

By Lemma 3.8, the first term is bounded by 2C
√
V C(Π)S2/n, where S2 = E[Γ2]. By the

Law of Iterated Expectations and P ∈ PBτ ,B,η,

E[Γ2] = E[(τm(X,T ) + g(X,Z)(Y −m(X,T )))2]

= E[τ 2
m(X,T )] + E[g(X,Z)2(Y −m(X,T ))2]

6 B2
τ + η−2B2.

The second term in (3.13) is bounded by Lemma 3.9, so the desired result follows.

Before proving the main result of the paper, we include another technical lemma for

easier reference.

Lemma 3.10 (Addendum to Lemma 3.9). Let W l
1 denote the estimating sample with l =

(1− s)n. In the notation of Lemma 3.9:

1. For every fixed π ∈ Π:

E[V̂l(π)− Ṽl(π)] 6 R3,l.
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2. For any π̂l,k computed using the estimated sample W l
1,

E[V̂r(π̂l,k)− V̂r(π̂l,k)] 6 R3,l.

Proof. To prove the first claim, we apply the same argument as in Lemma 3.9. The expec-

tations of the first two corresponding terms, denoted there by D1(π) and D2(π), are equal

to zero, and the expectation of the third term is shown to be less than R3,l.

The proof of the second claim is easier, since we do not need to separate the contributions

of different folds. Replacing the arguments of the functions with the index of the observation

(from the test sample) to which they are applied, we can expand Γ̂i − Γi as a sum of three

terms:

Γ̂i − Γi = (τm̂,i − τm,i − gi(m̂i −mi)) + (Yi −mi)(ĝi − gi)− (m̂i −mi)(ĝi − gi).

Let D1, D2 and D3 denote the corresponding terms in V̂r(π̂l,k)− Ṽr(π̂l,k). Then, by Assump-

tion 3.2.1-2 and the Law of Iterated Expectations,

E[D1|W l
1] = E

[
π̂l,k(Xi) · E[(τm̂,i − τm,i − gi(m̂i −mi))|Xi,W

l
1]
∣∣ W l

1

]
= 0.

Further, by the Law of Iterated Expectations and the exclusion restriction on Zi,

E[D2|W l
1] = E

[
π̂l,k(Xi) · E[Yi −mi|Xi, Ti,W

l
1] · (ĝi − gi)

∣∣ W l
1

]
= 0.

Finally, by Cauchy-Schwartz inequality and π̂l,k(Xi)
2 6 1,

D3 6
√

1
r

∑
i(m̂i −mi)2 ·

√
1
r

∑
i(ĝi − gi)2.

Taking expectations on both sides, applying Cauchy-Schwartz inequality again, and using

the Law of Iterated Expectations, we obtain

E[D3] 6
√

E[(m̂i −mi)2] · E[(ĝi − gi)2] 6 R3,l,

�
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3.7.4.2 Proof of Theorem 3.5

To keep the notation simple, we write π̂n,k̂ instead of π̂RPWM
n and E instead of EP for a fixed

distribution P ∈ PBτ ,B,η. The subscripts l, r, and n indicate that the corresponding object

depends only on the estimating sample, only on the test sample, or on the entire sample.

For example, while π̂l,k only depends on the estimating sample, π̂n,k̂ depends on the entire

sample due to the choice of k̂. Let π∗k ∈ Πk be such that V (π∗k) = V ∗Πk . Write:

V ∗Π − V (π̂n,k̂) = V ∗Π − V ∗Πk + VΠk −Qn,k̂(π̂n,k̂)︸ ︷︷ ︸
(I)

+Qn,k̂(π̂n,k̂)− V (π̂n,k̂)︸ ︷︷ ︸
(II)

. (3.14)

First, since Qn,k̂(π̂n,k̂) > Qn,k(π̂l,k), and V̂l(π̂l,k) > V̂l(π
∗
k), we can bound:

(I) 6 V (π∗k)−Qn,k(π̂l,k)

6 V (π∗k)− V̂l(π∗k) + Ĉn,k

= V (π∗k)− Ṽl(π∗k) + Ṽl(π
∗
k)− V̂l(π∗k) + Ĉn,k.

Here, E[V (π∗k)− Ṽl(π∗k)] = 0 and, by Lemma 3.10, E[Ṽl(π
∗
k)− V̂l(π∗k)] 6 R3,l. Therefore,

E[(I)] 6 E[Ĉn,k] +R3,l.

Next, consider

(II) = V̂r(π̂n,k̂)− Ṽr(π̂n,k̂) + (Ṽr(π̂n,k̂)− V (π̂n,k̂)).

The first summand can be bounded by

E
[
V̂r(π̂n,k̂)− Ṽr(π̂n,k̂)

]
6 E

[
maxk6K |V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
6 K maxk6K E

[
|V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
.

As in the proof of Lemma 3.9, we can expand:

Γ̂i − Γi = (τm̂,i − τm,i − gi(m̂i −mi)) + (Yi −mi)(ĝi − gi)− (m̂i −mi)(ĝi − gi),

so that:
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E
[
|V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
= E

[
|1
r

∑
i π̂l,k(Xi)(Γ̂i − Γi)|

]
6 1√

r
E
[
| 1√

r

∑
i π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))|

]
+ 1√

r
E
[
| 1√

r

∑
i π̂l,k(Xi)(Yi −mi)(ĝi − gi)|

]
+ E

[
|1
r

∑
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)|

]
By Assumption 3.2.1-2 and the Law of Iterated Expectations,

E[π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))|W n
1 , Xi] = 0.

Using E[|W |]2 6 E[W 2], the Law of Iterated Expectations, π̂2
l,k(Xi) 6 1, and Assumption

3.2.2, we obtain:

E
[
| 1√

r

∑
i π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))|

]2

6 E
[

1
r

∑
i(τm̂,i − τm,i − gi(m̂i −mi))

2
]

= E[(τm̂,i − τm,i − gi(m̂i −mi))
2]

6 2(E[(τm̂,i − τm,i)2] + E[g2
i (m̂i −mi)

2])

6 2η
2+1
η2

a((1−J−1)l)
lζm

.

A similar argument and the bound E[(Yi −mi)
2|Xi, Ti] 6 B2 yield:

E
[
| 1√

r

∑
i π̂l,k(Xi)(Yi −mi)(ĝi − gi)|

]2

6 E[(Yi −mi)
2(ĝi − gi)2] 6 B2 · a((1−J−1)l)

lζg
.

Next, by Cauchy-Schwartz inequality and π̂2
l,k(Xi) 6 1,

|1
r

∑
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)| 6

√
1
r

∑
i(m̂i −mi)2 ·

√
1
r

∑
i(ĝi − gi)2

Taking expectations on both sides, applying Cauchy-Schwartz inequality and the Law of

Iterated Expectations,

E[|1
r

∑
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)|] 6

√
E[(m̂i −mi)2] · E[(ĝi − gi)2] 6

√
a((1−J−1)l)

lζm+ζg

Combining the above results, we obtain:

E
[
|V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
6
√

1
s(1−s)ζm∧ζg

√
2(η2+1)
η2
∨B2

√
a((1−J−1)(1−s)n)

n1+ζm∧ζg +R3,(1−s)n
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For the second summand in (II), arguing as in the proof of Theorem 3.3 (see Equations (3.7),

(3.8), and the following argument and recall that V̂n in that proof plays the same role as Ṽr

in this one),

E
[
Ṽr(π̂n,k̂)− V (π̂n,k̂)

]
6
√
B2
τ + η−2B2 K√

sn
= K

√
B2
τη

2+B2

η

√
1
sn
.

Let R3,(1−s)n denote the rate Lemma 3.9 with (1− s)n instead of n. Defining

S2,n ≡
√

1
s(1−s)ζm∧ζg

√
2(η2+1)
η2
∨B2

√
a((1−J−1)(1−s)n)

n1+ζm∧ζg + 2R3,(1−s)n (3.15)

and

Sn ≡ K

√
B2
τη

2+B2

η

√
1
sn

+ S2,n, (3.16)

we conclude that

E[(I) + (II)] 6 E[Ĉn,k] + Sn.

Therefore, for any k 6 K,

E[R(π̂n,k̂)] 6 V ∗Π − V ∗Πk + E[Ĉn,k] + Sn, (3.17)

and the first statement of the Theorem follows from taking an infimum over k 6 K.

To prove the second statement, it remains to bound E[Ĉn,k]. To this end, write:

Ĉn,k = Ṽl(π̂l,k)− V (π̂l,k) + V̂l(π̂l,k)− Ṽl(π̂l,k)

+ Ṽr(π̂l,k)− V̂r(π̂l,k)

+ V (π̂l,k)− Ṽr(π̂l,k).

By Lemmas 3.8 and 3.9, for any P ∈ PBτ ,B,η,

E[Ṽl(π̂l,k)− V (π̂l,k)] 6 C

√
B2
τη

2+B2

η

√
V C(Πk)
(1−s)n ,

E[V̂l(π̂l,k)− Ṽl(π̂l,k)] 6 Rk
1,(1−s)n +Rk

2,(1−s)n +R3,(1−s)n,

where Rk
j,(1−s)n, for j = 1, 2, 3, are defined in Lemma 3.9 with Πk instead of Π and (1− s)n

instead of n. Finally, by Lemma 3.10, E[Ṽr(π̂l,k) − V̂r(π̂l,k)] 6 R3,(1−s)n, and by the Law of
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Iterated Expectations, E[V (π̂l,k)− Ṽr(π̂l,k)] = 0. Plugging the above into (3.17), and noting

that for every P ∈ PkBτ ,B,η, we have V ∗Π = V ∗Πk ,

sup
P∈PkBτ ,B,η

EP [R(π̂n,k̂)] 6
√
B2
τη

2+B2

η

(
C
√

V C(Πk)
(1−s)n +K

√
1
sn

)
+ Sk1,n + S2,n,

where Sk1,n = Rk
1,(1−s)n +Rk

2,(1−s)n +R3,(1−s)n, and S2,n is given in Equation 3.15.
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Aradillas-López, A., Gandhi, A., and Quint, D. (2013b). Identification and inference in

ascending auctions with correlated private values. Econometrica, 81(2):489–534.

Armstrong, T. and Shen, S. (2015). Inference on optimal treatment assignments.

Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N. (2008). A first course in order statistics.

SIAM.

Artstein, Z. (1983). Distributions of random sets and random selections. Israel Journal of

Mathematics, 46(4):313–324.

141



Athey, S. and Wager, S. (2021). Policy learning with observational data. Econometrica,

89(1):133–161.

Barseghyan, L., Coughlin, M., Molinari, F., and Teitelbaum, J. C. (2021). Heterogeneous

choice sets and preferences. Econometrica, 89(5):2015–2048.

Bassett, G. and Koenker, R. (1982). An empirical quantile function for linear models with

iid errors. Journal of the American Statistical Association, 77(378):407–415.

Beresteanu, A., Molchanov, I., and Molinari, F. (2011). Sharp identification regions in models

with convex moment predictions. Econometrica, 79(6):1785–1821.

Beresteanu, A. and Molinari, F. (2008). Asymptotic properties for a class of partially iden-

tified models. Econometrica, 76(4):763–814.

Bhattacharya, D. and Dupas, P. (2012). Inferring welfare maximizing treatment assignment

under budget constraints. Journal of Econometrics, 167(1):168–196.

Bickel, P. J., Klaassen, C. A., Ritov, Y., and Wellner, J. A. (1993). Efficient and adap-

tive estimation for semiparametric models, volume 4. Johns Hopkins University Press

Baltimore.

Blumenthal, S. and Cohen, A. (1968). Estimation of the larger translation parameter. The

Annals of Mathematical Statistics, pages 502–516.

Blundell, R., Gosling, A., Ichimura, H., and Meghir, C. (2007). Changes in the distribution

of male and female wages accounting for employment composition using bounds. Econo-

metrica, 75(2):323–363.

Bogachev, V. I. (1998). Gaussian measures. Number 62. American Mathematical Soc.

Bogachev, V. I. (2007). Measure theory, volume 1. Springer Science & Business Media.

142



Bontemps, C., Magnac, T., and Maurin, E. (2012). Set identified linear models. Economet-

rica, 80(3):1129–1155.

Brown, B. W. and Newey, W. K. (1998). Efficient semiparametric estimation of expectations.

Econometrica, 66(2):453–464.

Bugni, F. A. (2016). Comparison of inferential methods in partially identified models in

terms of error in coverage probability. Econometric Theory, 32(1):187–242.

Cai, T. T. and Low, M. G. (2011). Testing composite hypotheses, hermite polynomials and

optimal estimation of a nonsmooth functional. The Annals of Statistics, 39(2):1012–1041.

Canay, I. A. and Shaikh, A. M. (2017). Practical and theoretical advances in inference for

partially identified models. Advances in Economics and Econometrics, 2:271–306.

Chamberlain, G. (1987). Asymptotic efficiency in estimation with conditional moment re-

strictions. Journal of econometrics, 34(3):305–334.

Chamberlain, G. (1992). Efficiency bounds for semiparametric regression. Econometrica:

Journal of the Econometric Society, pages 567–596.

Chen, X. and Santos, A. (2018). Overidentification in regular models. Econometrica,

86(5):1771–1817.

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M. (2016).

Locally robust semiparametric estimation. arXiv preprint arXiv:1608.00033.

Chernozhukov, V., Fernández-Val, I., and Galichon, A. (2010). Quantile and probability

curves without crossing. Econometrica, 78(3):1093–1125.

Chernozhukov, V., Lee, S., and Rosen, A. M. (2013). Intersection bounds: estimation and

inference. Econometrica, 81(2):667–737.

143



Chesher, A. and Rosen, A. M. (2017). Generalized instrumental variable models. Economet-

rica, 85(3):959–989.

Chesher, A. and Rosen, A. M. (2020). Generalized instrumental variable models, methods,

and applications. In Handbook of Econometrics, volume 7, pages 1–110. Elsevier.

Chesher, A., Rosen, A. M., and Smolinski, K. (2013). An instrumental variable model of

multiple discrete choice. Quantitative Economics, 4(2):157–196.

Ciliberto, F. and Tamer, E. (2009). Market structure and multiple equilibria in airline

markets. Econometrica, 77(6):1791–1828.
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