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Abstract 
There is consistent debate over whether capacity in working memory (WM) is subject to an 
item limit, or whether an unlimited number of items can be held in this online memory 
system. The item limit hypothesis clearly predicts guessing responses when capacity is 
exceeded, and proponents of this view have highlighted evidence for guessing in visual 
working memory tasks (e.g, Adam et al., 2017; Zhang & Luck, 2008). Nevertheless, various 
models that deny item limits can explain the same empirical patterns by asserting extremely 
low fidelity representations that cannot be distinguished from guesses. To address this 
ambiguity, we employed a task for which guess responses elicited a qualitatively distinct 
pattern from low fidelity memories. Inspired by work from Rouder et al. (2014), we employed 
an orientation WM task that required subjects to recall the precise orientation of each of six 
memoranda presented one second earlier. The orientation stimuli were created by rotating 
the position of a “clock hand” inside a circular region that was demarcated by four colored 
quadrants. Critically, when observers guess with these stimuli, the distribution of responses 
is biased towards the center of these quadrants, creating a “banded” pattern that cannot be 
explained by a low precision memory. We confirmed the presence of this guessing pattern 
using formal model comparisons, and we show that the prevalence of this pattern matches 
observers’ own reports of when they thought they were guessing. Thus, these findings 
provide further evidence for guessing behaviors predicted by item limit models of WM 
capacity.  
 
  



 

Introduction 
Visual working memory (WM) enables the “online” retention of information for ongoing 
perception and cognition. Although there is broad agreement that WM capacity is subject to 
strong limits, there has been persistent debate regarding the nature of those limits. When 
tasked with remembering a single visual feature such as the orientation of a line or the color 
of a square, observers can reproduce the remembered feature value with very little error 
(Zhang & Luck, 2008). However, when the number of memoranda increases, observers’ 
responses become increasingly imprecise and error-prone, yielding a high proportion of 
apparently random responses at higher set sizes. Zhang and Luck (2008) showed that this 
empirical pattern was well explained by a model that presumes a mixture of target-related 
responses and random guesses, suggesting that observers failed to store more than about 
three items in visual WM. Nevertheless, debate has continued on the basic question of 
whether observers ever fail to store relevant items in working memory, because the 
empirical pattern discovered by Zhang and Luck (2008) can also be modeled by presuming 
a relatively high proportion of “memories” that are so imprecise that they resemble random 
guesses (e.g., Bays et al., 2009; van den Berg et al., 2012, 2014). Thus, it has been difficult 
to find evidence that can distinguish between random guesses and responses based on 
extremely low fidelity memories.  
 
Adam, Vogel and Awh (2017) offered new evidence that attempted to break this deadlock. 
They employed a whole report procedure in which observers recalled the color or orientation 
of all items presented, in whatever order they preferred. First, Adam et al. found that 
observers had a strong tendency to report items in descending order of memory quality. 
Thus, while the first response was highly precise, every response thereafter showed a 
monotonic rise in average error. Indeed, in trials with 6 memoranda, the fifth and sixth 
responses were best modeled with a completely random distribution of responses that had 
no relationship to the item to be recalled. This simple model (a uniform distribution with zero 
free parameters) provided a better fit than alternatives that attempted to explain performance 
without resorting to any guessing behaviors (such as with ultra-wide Von Mises 
distributions). Moreover, the prevalence of this guessing pattern precisely matched the 
prevalence with which observers self-reported that they were guessing as they performed 
these trials. Thus, these findings provided objective evidence for guessing that was strongly 
confirmed by subjects’ own reports that they had no information to recall for approximately 3 
out of 6 items.  
 
Although we view the Adam et al. (2017) findings as strong evidence for guessing behaviors, 
they are dependent on two critical features of the data. First, the relatively pure guessing 
behaviors that we observed for the fifth and sixth responses depended on a non-obligatory 
tendency of observers to report the items in descending order of memory quality. Although 
we will present a close replication of this finding in the present work, the fact remains that 
this strong bias in response order is likely determined by the observer’s response strategy 
rather than by any structural constraint in their recall of the memory items. In line with this, 
we are aware that at least one other study did not find the same “pure” evidence of guessing 
in the last responses of set size six trials (Oberauer, 2022), even though this study replicated 
the procedure used in Adam et al. (2017). One possibility is that the subjects in the Oberauer 
(2022) study simply chose a different strategy with regard to response order. This finding 
highlights the importance of methods that can enable a more confident interpretation of error 



 

distributions that contain a mixture of target-related and guess responses, rather than relying 
on the strong response bias observed by Adam et al. (2017).  
 
Our approach to this challenge was inspired by a method that was introduced by Rouder, 
Thiele, Province, Cusumano, and Cowan (2014). In their experiments, subjects were 
required to recall the angle of a “gem” on the circumference of an open ring. The possible 
positions of the gem varied from -60° to +60° surrounding the vertical midline at the top of 
the ring. A key contribution of the Rouder et al. (2014) study was to document a distinctive 
pattern of responses that could be directly linked with guessing. They identified this guessing 
pattern by including “false probes” that asked subjects to recall the position of the gem on 
items that had never been presented. These false probes elicited a distinctive pattern of 
responses that were strongly biased towards 30° and +30°, the positions occupying the 
midpoint of the regions on the left and right sides of the ring. Given that no angle had been 
presented at all, this response pattern could be used as an explicit signature of guessing in 
this task. Critically, Rouder et al. (2014) also conceived of an analysis that could reveal this 
guessing pattern during trials in which subjects were asked to recall the gem position of real 
memory items. To this end, Rouder et al. (2014) plotted the responses with the reported 
angle of the gem on the y-axis, and the studied angle on the x-axis. For trials in which 
subjects knew the position of the gem, the resulting values were concentrated on the main 
diagonal of the scatterplot. By contrast, responses to false probes yielded horizontal “bands” 
that were centered at -30° and +30° on the y-axis. Critically, the same horizontal “guess 
bands” were observed when observers attempted to recall the gem position from trials with 
larger numbers of items, strongly implying that subjects were forced to guess on a subset of 
those trials. A key virtue of this approach is that the observed guess bands were clearly 
distinct from the pattern expected if responses were guided by extremely low precision 
memories; low precision memories should simply increase the width of the observed 
diagonal rather than yielding discrete horizontal bands that do not vary with the studied 
angle. Thus, Rouder et al. (2014) introduced an approach that enables a clear discrimination 
between random guessing states with zero information and extremely low precision 
memories that are nevertheless centered around the studied angle.  
 
The present studies relied heavily on the insights from Rouder et al. (2014), but we also 
introduced some key changes to the procedure. First, we employed orientation stimuli in 
which a single “clock hand” could be presented anywhere in the 360-degree space around 
the circumference of a ring. We reasoned that this circular stimulus space would be more 
conducive to the kind of mixture modeling approaches introduced by Zhang and Luck 
(2008). In turn, this enabled a direct comparison between the prevalence of guessing 
inferred with the mixture modeling approach used by Zhang and Luck, and the prevalence of 
guessing as indicated by the presence of guess bands. Given that guess bands cannot be 
explained by reliance on extremely low precision memories, correspondence in the amount 
of guessing determined by the two approaches would provide strong leverage for 
interpreting the putative evidence for guessing in the Zhang and Luck analysis. Finally, in 
line with the Adam et al. (2017) whole-report approach, observers indicated with each 
response whether or not they thought they were guessing, enabling a test of whether 
objective evidence regarding the frequency of guessing would line up with the observers’ 
meta-knowledge of whether an item had been stored. 
 



 

To anticipate the results, the Rouder et al. (2014) analytic approach revealed guess bands in 
our procedure that were centered within each of the four quadrants defined by a colored 
background in each orientation stimulus. Interestingly, the location of the bias was largely 
driven by the background, such that rotating the angle of the background also yielded 
rotated guess bands. This finding suggests that the observed bias is apparently dependent 
on the specific stimulus context rather than determined by absolute angle or retinotopic 
position. Critically, the combined frequency of guess band responses and completely 
random responses was tightly correlated with the frequency with which observers reported 
that they were guessing, as well as with the guessing parameter obtained from the Zhang 
and Luck (2008) mixture modeling approach. These findings provide clear evidence for a 
large proportion of responses that are completely disconnected from the to-be-reported 
orientations, and easily distinguished from responses that are guided by imprecise 
memories. Thus, these results provide further evidence for guessing behaviors in visual 
working memory tasks. 
 
Experiment 1  
Methods 
40 participants from the University of Oregon completed the experiment for class credit or 
payment ($8/hour). All participants reported normal or corrected-to-normal vision, and 
provided informed consent according to procedures by the University of Oregon institutional 
review board. The experiment code and data, and analysis code and output are openly 
accessible at https://osf.io/64rdq/. 
 
Stimuli were generated using MATLAB (The MathWorks, Natick, MA) and PsychToolbox 
(Brainard, 1997; Pelli, 1997), and presented on a 17-inch CRT monitor with a 60 Hz refresh 
rate and a 1024 x 768 resolution. The viewing distance was approximately 60 cm. On each 
trial, participants were presented with six clock faces, each with a diameter of 2.7 degrees 
and depicting a different angle that was selected randomly, drawn in black on a mid-gray 
background for 200 msec. The spatial locations of each item were randomly generated 
within the region 8.5 degrees above and below fixation, and 11.9 degrees to the left and right 
of fixation. To minimize crowding, at least one item appeared in each quadrant of the screen 
and each item was separated by at least 0.65 degrees. In the ‘background’ condition, the 
clock faces appeared with a background of four red (RGB = 255, 102, 102) and green (RGB 
= 102,  255, 102) wedges centered on 45°, 135°, 225° and 315° from vertical, whereas in the 
‘no background’ condition, the clock faces appeared without the background (see Figure 1). 
After a retention interval of 1 second with a blank screen, participants were shown a screen 
with circle outlines at the locations of the memoranda. Participants clicked within the outline 
of the item to select it, reporting whether they were confident or guessing by responding with 
either the left mouse button or the right mouse button respectively. Participants then clicked 
at an angle away from the center of the item to make their response. Participants could 
freely select the order of items they responded to, finishing the trial once they responded to 
all items. This was followed by a one-second inter-trial interval. 
 
Participants completed four blocks of the orientation recall task without any colored 
background (‘standard’ condition), and then six blocks with the colored backgrounds 
(‘background’ condition). This condition order was not counterbalanced to avoid any carry-
over effects that may occur if participants were to complete the ‘background’ condition first. 



 

Each block had 20 trials each, making 80 trials in the no-background condition and 120 trials 
in the background condition per participant.  
 

 
Figure 1. A schematic of an experiment trial from the ‘standard’ condition (top) and the 
‘background’ condition (bottom). Six randomly selected angles are presented for 200 msec 
before a blank retention interval of 1000 msec. The locations of the memory array items 
were presented on the response screen. Participants clicked on which location they wanted 
to respond to and then moved the mouse cursor in the direction of the angle they wished to 
respond, and clicked down again to submit their response. Items with submitted responses 
were grayed out and the trial ended once all items had been responded to. 
 
Analysis 
We examined which of three models – the standard mixture model (Zhang & Luck, 2008), 
the variable precision and no-guessing model (van den Berg et al., 2014) and a parameter-
free uniform distribution – best-fit each individual’s recall error distribution, separately for 
each response. We used the MemFit function from the MemToolbox package for MATLAB 
(Suchow et al., 2013) to conduct the formal model comparison, selecting the best-fitting 
model by determining which has the lowest the Bayesian Information Criterion (BIC) value.  
 
We will also present the data as a scatterplot of the presented angle against the reported 
angle from the first to the sixth response. From visual inspection, one can see the main 
components of the dot distributions are a diagonal component (an accurate response based 
on memory) and horizontal bands (a response based on the colored quadrant backgrounds, 
and not based on any information held in memory). To verify this, we conducted a formal 



 

model comparison of the data for each of the six responses – both aggregated across all 
individuals, as well as each individual participants’ data separately. 
 
There were three possible components to our models - a memory response, a guess band 
response and a random response (see Figure 2). Firstly, memory responses will be centered 
on the presented angle but with some error dependent on the precision of the memory. We 
modeled this with a Von Mises distribution with its standard deviation as a free parameter 
(!mem). Secondly, participants may emit responses that are independent of the true angle, 
but biased towards the center of the colored quadrant backgrounds (a ‘guess band’ 
response). We modeled these responses with a combination of 4 Von Mises distributions 
with equal likelihood and standard deviation (!bands), each centered on the middle angle of a 
quadrant. Lastly, we examined whether there were also random responses that were not 
strongly biased by the background colors; these were modeled using a uniform distribution. 
We compared each possible combination of these components in our models, with n − 1 free 
parameters for the proportion of responses attributed to each component (Pmem and/or 
Pbands), where n is the number of components in a given model (Table 1). 
 
Table 1 
The components and number of free parameters of each of the compared models 

Model Components Number of parameters 

M1 Von Mises + Uniform (Zhang and Luck) 2: !mem, Pmem 

M2 Guess Bands + Uniform 2: !bands, Pbands 

M3 Von Mises + Guess Bands + Uniform 4: !mem, !bands, Pmem, Pbands 

M4 Guess Bands 1: !bands 

M5 Von Mises + Guess Bands 3: !mem, !bands, Pmem 

M6 Von Mises 1: !mem 

Note. The components of each model compared with the number of free parameters.  
 
Using custom probability distribution functions, we conducted likelihood maximization to find 
the best-fitting parameters of each model to the aggregated response data, as well as to 
each participant’s response data. Each instance of parameter estimation was repeated 100 
times, starting from random parameter estimates, using the MATLAB mle function for a 
maximum of 10,000 iterations. To conduct comparison of models with varying numbers of 
parameters, we compute the Bayesian Information Criterion (BIC), which applies a penalty 
for having an additional number of free parameters, for each model. The best-fitting model 
was selected by finding the lowest BIC value. 
 
We also compared the parameter estimates of guessing proportion of our model with the 
Zhang and Luck (2008) mixture model. Mixture modeling was conducted using the 
MemToolbox (Suchow et al., 2013). We also compared participant’s proportion of self-
reported guesses on each response with model estimates of guessing prevalence with linear 
mixed models using the lme4 (Bates et al., 2007) package in R (R Core Development Team, 



 

2013). The p-values for predictors were generated using the lmerTest package (Kuznetsova 
et al., 2017). 

 
Figure 2. A schematic with simulated data patterns for all components in the complete 
model (M3). The prevalence of memory responses, ‘guess band’ responses and uniform 
responses are estimated with free parameters (Pbands and Pmem). The leftmost scatterplot is 
simulated data from a Von Mises distribution. The precision of memory representations, the 
width of the diagonal, is modeled with a free parameter (!mem). The middle scatterplot is 
simulated data from a ‘guess band’ component. The width of the horizontal bands is 
modeled with a free parameter (!bands). The rightmost scatterplot is simulated data from a 
uniform distribution, indicating a random response. 
 
Results 
The aggregated data from the background condition of Experiment 1 are plotted as error 
distributions (Figure 3a), and as scatterplots of the reported angle as a function of the 
presented angle (Figure 3b) and similarly from the no background condition (Figure 4). From 
visual inspection of the data in the background condition, the first three responses have a 
clear diagonal component indicating a substantial amount of accurate recall. However, in the 
last four responses, there is a clear banded pattern across the scatter plot, indicating 
participants were clicking towards the center of the quadrant backgrounds regardless of the 



 

presented angle. We refer to these responses as ‘guess bands’. The first three responses of 
the no background (standard) condition show the same diagonal component indicating 
accurate memory recall. In contrast to the background condition, there is not an obvious 
banded pattern across the scatter plots of the last four responses.  
 

Figure 3. a) Response error distributions aggregated across all participants for each of the 
six responses in the background condition of Experiment 1. b) Scatterplots of the reported 
angle and the presented angle aggregated across all participants for each of the six 
responses in the background condition of Experiment 1. In early responses, there is a clear 
diagonal component produced by a substantial proportion of memory responses. In later 
responses, there is no longer a diagonal component but a banded pattern appearing at the 
center of the colored quadrant backgrounds (45˚, 135˚, 225˚ and 315˚). 
 



 

Figure 4. a) Response error distribution aggregated across all participants for each of the six 
responses in the ‘no background’ condition of Experiment 1. b) Scatterplots of the reported 
angle and the presented angle aggregated across all participants for each of the six 
responses. In early responses, there is a diagonal component produced by a substantial 
proportion of memory responses. In later responses, the diagonal component fades and 
responses appear to be mostly random.  
 
Formal Model Comparison of Individual Error Distributions 
We conducted a formal model comparison of each observer’s error distributions separated 
by response, in both the standard condition (Table 2 and 3) and the background condition 
(Table 4 and 5). In the standard condition, the standard mixture model (Zhang & Luck, 2008) 
best-fit the majority of individual’s first two responses of the background condition. For the 
third response, the uniform distribution was best-fitting model for most observers’ errors, and 
the standard mixture model was the best-fitting for the remaining observers. Strikingly, for 
the last three responses, the best-fitting model for all observers (except for two observers on 
their fourth responses) was the parameter-free uniform distribution. The model comparisons 
had the same pattern of results in the background condition; the first two responses were 
best-fit by the standard mixture model, and the uniform distribution was best-fitting for all 
participants in their last three responses. 
 
  



 

Table 2 
Model comparison results for the individual error distributions in the standard condition 
across responses in Experiment 1 

Response Standard Mixture 
model 

Variable Precision 
and no guessing 

model 

Uniform distribution 

1st 39 1 0 

2nd 39 0 1 

3rd 16 0 24 

4th 2 0 38 

5th 0 0 40 

6th 0 0 40 

Note. The number of participants for which each model was the best-fitting to their response 
data. The bolded number indicates the best-fitting model for the majority of participants for 
that response. While the early responses are best modeled by a standard mixture model for 
the majority of participants, the uniform distribution is the best-fitting from the 4th response 
onwards.  
 
Table 3 
BIC values of the formal model comparison for the individual error distributions in the 
standard condition across responses in Experiment 1 

Response Standard Mixture 
model 

Variable Precision 
and no guessing 

model 

Uniform distribution 

1st 741.50 +5.22 +200.27 

2nd 867.19 +6.98 +74.59 

3rd -2.91 +3.78 941.78 

4th +10.47 +16.83 941.78 

5th +11.48 +17.78 941.78 

6th +11.12 +17.57 941.78 

Note. The bolded number indicates the BIC value for the best-fitting model for the majority of 
participants for that response. The remaining values in each row are the mean difference in 
BIC values to the best-fitting model. 
 
 
  



 

Table 4 
Model comparison results for the individual error distributions in the background condition 
across responses in Experiment 1 

Response Standard Mixture 
model 

Variable Precision 
and no guessing 

model 

Uniform distribution 

1st 35 5 0 

2nd 36 1 3 

3rd 20 0 20 

4th 0 0 40 

5th 0 0 40 

6th 0 0 40 

Note. The number of participants for which each model was the best-fitting to their response 
data. The bolded number indicates the best-fitting model for the majority of participants for 
that response. While the early responses are best modeled by a standard mixture model for 
the majority of participants, the uniform distribution is the best-fitting from the 4th response 
onwards.  
 
Table 5 
BIC values of the formal model comparison for the individual error distributions in the 
background condition across responses in Experiment 1 

Response Standard Mixture 
model 

Variable Precision 
and no guessing 

model 

Uniform distribution 

1st 1067.7 +4.06 +344.98 

2nd 1276.3 +5.61 +136.37 

3rd 1406.2 +6.80 +6.47 

4th +11.94 +18.59 1412.7 

5th +12.21 +19.10 1412.7 

6th +11.95 +19.09 1412.7 

Note. The bolded number indicates the BIC value for the best-fitting model for the majority of 
participants for that response. The remaining values in each row are the mean difference in 
BIC values to the best-fitting model. 
 
Formal Model Comparison of Aggregated Stimulus Against Response Data  
For the first three responses of the background condition, the best-fitting model is M5 (Von 
Mises + Guess Bands) closely followed by M3 (Von Mises + Guess Bands + Uniform) (see 
Table 6 for BIC values of all models for each response). The best parameter estimates of the 



 

complete model from maximum likelihood estimation, and the calculated proportion of 
responses from each component (memory, guess bands and uniform) can be seen in Table 
7. The proportion of responses attributed to a memory representation decreased from first to 
third response before being essentially non-existent in the last three responses. The 
proportion of responses attributed to the guess band component from the quadrants is 
substantial after the second response, converging with visual inspection of the scatter plots 
(Figure 3).  
 
Table 6 
Results of model comparison on aggregated data across responses in Experiment 1 

BIC M1 M2 M3 M4 M5 M6 

1st +66 +13518 +9 +13510 42623 +2780 

2nd +217 +5085 +9 +5077 50994 +1332 

3rd +449 +436 +3 +432 55563 +4761 

4th +412 +105 55946 +109 +4 +7656 

5th +450 +191 55803 +230 +38 +7723 

6th +376 +272 55769 +284 +12 +7775 

Note. The Bayesian Information Criterion (BIC) values for the best-fitting iteration of each 
model to the aggregated data of each of the six responses. A lower BIC value indicates a 
better fit. The lowest BIC value for each whole-report response is bolded. For the first three 
responses, the best-fitting model is the Von Mises + Guess Bands (M5) and for the last three 
responses, the best-fitting model is the Von Mises + Guess Bands + Uniform (M3).  
 
Table 7 
Parameter estimates from the best-fitting complete model for each response in Experiment 1 

Response !mem !bands Pmem Pbands Punif 

1st 14.3225 21.6940 90.59% ± 0.57% 9.41% ± 1.15% 0% ± 0.58% 

2nd 23.7556 22.4566 66.03% ± 1.68% 33.97% ± 2.20% 0% ± 0.52% 

3rd 30.8256 17.7327 20.37% ± 0.63% 46.64% ± 
12.16% 

32.99% ± 
11.53% 

4th 0 16.3337 0.19% ± 0.09% 41.96% ± 8.29% 57.85% ± 8.20% 

5th 0 13.4376 0.30% ± 0.12% 35.78% ± 4.53% 63.92% ± 4.41% 

6th 0 15.2980 0.39% ± 0.12% 39.12% ± 6.25% 60.49% ± 6.13% 

Note. The estimates and 95% confidence interval for the prevalence of memory, guess 
bands and uniform components shown here were calculated from the best-fitting model 
parameters. The first three responses contain a substantial proportion of memory responses, 
whereas the last three responses contain a mixture of random guesses and strategic 
responses based on the quadrant backgrounds. 



 

 
One possible concern is whether the monotonic decline we observed across the six 
responses could be explained by output interference. Fortunately, Adam et al. (2017) 
examined this issue using almost identical orientation stimuli (minus the colored 
backgrounds used in the current work) and the same whole report procedure. To estimate 
the effect of output interference, Adam et al. (2017) measured performance in a computer-
guided whole report task in which observers were no longer free to choose the order of 
responses. Although the computer-guided procedure revealed a detectable decline across 
the six responses, the slope of the decline was only 16% of the slope that was observed 
when observers were free to choose response order themselves. Thus, output interference 
cannot explain 84% of the decline, and cannot be the reason why less than 1% of clicks had 
information about the target after the third response. 
 
Formal Model Comparison of Individual Stimulus Against Response Data 
We also conducted a model comparison of each individual’s data in the background 
condition, separated by each response. It should be noted that this significantly reduced the 
amount of data (120 trials per click response) for maximum likelihood estimation. In the early 
responses, the best-fitting model to most individuals’ response data was either the Von 
Mises + Uniform (M1) or Von Mises + Guess Bands (M5), before a notable switch to the 
Guess Bands only (M4) from the 4th response onwards (Table 8). This indicates that while 
there is some variation between individuals, the substantial majority do anchor to the 
background quadrants with their guesses in later responses. 
 
Table 8 
Model comparison for the individual data across responses in Experiment 1 

Response M1 M2 M3 M4 M5 M6 

1st 28 - - - 10 2 

2nd 19 - 1 2 18 - 

3rd 14 - 1 2 13 - 

4th 6 - - 30 4 - 

5th 5 2 2 25 6 - 

6th 6 1 2 23 8 - 

Note. The number of participants for which each model was the best-fitting to their response 
data. The bolded number indicates the best-fitting model for the majority of participants for 
that response. While the early responses are best modeled by either a Von Mises + Uniform 
(M1) or Von Mises + Guess Bands (M5) for the majority of participants, there is a notable 
switch to the Guess Bands only (M4) from the 4th response onwards.  
 
Comparison to Standard Mixture Modeling Approaches 
We compared the results of our analyses to those from the mixture modeling approach 
employed by Zhang and Luck (2008) to argue for the presence of random guessing 
responses in continuous report tasks. Typically, only a single item of the memory array is 
probed on each trial, and mixture modeling is performed on the error distribution of all trials. 



 

Here, we fit our general model (Von Mises + Guess Bands + Uniform) as well as the Zhang 
and Luck (2008) mixture model to the individual data aggregated across all responses on 
each trial (the same population that the single probe is sampling from). 
 
When the prevalence of guess bands and uniform responses (from the Rouder-style 
analysis) were considered separately, neither one correlated with the prevalence of guessing 
as estimated using the Zhang and Luck (2008) mixture model (guess bands: r = 0.06, p = 
0.70; uniform: r = 0.22, p = 0.17). However, when the combined frequency of guess bands 
and uniform responses was examined, there was a powerful correlation with the prevalence 
of guessing according to the Zhang and Luck analysis (r = 0.95, p < .001). Further, we 
conducted a linear mixed model predicting estimates of guess prevalence (i.e., combined 
prevalence of guess bands and uniform) with observers’ proportion of self-reported guesses 
across responses, allowing a random intercept for each participant (Figure 5). The 
proportion of self-reported guesses was a strong predictor of guessing prevalence (b = 
0.903, SEb = 0.032, t(213.64) = 28.33, p < .001). Thus, although subjects vary in the 
proportion of guesses that are strongly biased by the background, guess band responses 
can be directly linked with the uniform guessing distribution observed with the Zhang and 
Luck (2008) mixture model, as well as with observers’ own reports of how often they were 
guessing.   
 

 
Figure 5. Scatterplots of the relationship between model estimates of the prevalence of 
guessing and participants’ self-reports of guessing on each response click in Experiment 1.  
 
Experiment 2  
Experiment 2 had two primary purposes. First, we sought to replicate the patterns observed 
in Experiment 1. Second, we examined whether the bias towards the center of the colored 
quadrants was based on the absolute angle within the orientation stimulus (e.g., as might be 



 

expected if the bias were related to the oblique effect), or whether the bias was instead 
dependent on the specific stimulus that was presented. To this end, we rotated the 
quadrants by 45°, shifting the centers of the quadrants. To anticipate the results, the guess 
bands followed the position of the colored backgrounds, suggesting that they are determined 
by the specific backgrounds within each orientation stimulus, not a bias towards a specific 
set of orientation values. 
 
Methods 
The methods were identical to Experiment 1 except for the following details. 30 participants 
from the University of Oregon completed the experiment. Participants completed 8 blocks of 
20 trials with the colored quadrant backgrounds. The colored backgrounds were rotated 
such that they were centered at 0°, 90°, 180° and 270° from vertical. There were no trials 
without the colored background.  
 
Results 
We replicated the results from Experiment 1. The aggregated data of Experiment 2 are 
plotted as error distributions (Figure 6a), and as scatterplots of the reported angle as a 
function of the presented angle (Figure 6b). From visual inspection, the first three responses 
have a clear diagonal component indicating a substantial amount of accurate recall. As in 
Experiment 1, in the last four responses, there is an obvious band pattern across the scatter 
plot, indicating participants were clicking towards the center of the quadrant backgrounds 
(0°, 90°, 180°, 270° from vertical) regardless of the presented angle.  

 
Figure 6. a) Response error distributions aggregated across all participants for each of the 
six responses in the background condition of Experiment 2. b) Scatterplots of the reported 
angle and the presented angle aggregated across all participants for each of the six 
responses in the background condition of Experiment 2. 
 
Formal Model Comparison of the Individual Error Distributions 
As in Experiment 1, we analyzed individual’s error distributions for each response with a 
formal model comparison between the standard mixture model, variable precision and no-
guessing model, and a uniform distribution (Tables 9 and 10). For the first two responses, 
the best-fitting model for the majority of observers was the standard mixture model. It was a 



 

mixture for the third response, where the best-fitting model was the uniform distribution for 
the majority of observers’ error distributions and the standard mixture model for the 
remaining observers. But again, strikingly, for the last three responses, all observers’ error 
distributions (save for the fourth response of three observers) was best-fit by the uniform 
distribution. 
Table 9 
Model comparison results for the individual error distributions in Experiment 2 

Response Standard Mixture 
model 

Variable Precision 
and no guessing 

model 

Uniform distribution 

1st 37 3 0 

2nd 39 1 0 

3rd 15 0 25 

4th 3 0 37 

5th 0 0 40 

6th 0 0 40 

Note. The number of participants for which each model was the best-fitting to their response 
data. The bolded number indicates the best-fitting model for the majority of participants for 
that response. While the early responses are best modeled by a standard mixture model for 
the majority of participants, the uniform distribution is the best-fitting from the 4th response 
onwards.  
 
Table 10 
BIC values of the formal model comparison for the individual error distributions across 
responses in Experiment 2 

Response Standard Mixture 
model 

Variable Precision 
and no guessing 

model 

Uniform distribution 

1st 1444.2 +4.08 +430.67 

2nd 1695.0 +5.77 +179.89 

3rd -25.72 -19.01 1874.9 

4th +10.14 +17.31 1874.9 

5th +11.81 +19.08 1874.9 

6th +12.66 +19.94 1874.9 

Note. The bolded number indicates the BIC value for the best-fitting model for the majority of 
participants for that response. The remaining values in each row are the mean difference in 
BIC values to the best-fitting model. 
 



 

Formal Model Comparison of the Aggregated Stimulus Against Response Data 
We conducted a formal model comparison of the aggregated data in Experiment 2. This was 
the same comparison as in Experiment 1 (see Table 6), noting that the Von Mises 
distributions modeling the guess bands were centered at 0°, 90°, 180, 270° to reflect the 
rotation of the colored quadrant backgrounds. The best-fitting model to the first response 
was M1 (Von Mises + Uniform), to the second response was M5 (Von Mises + Guess 
Bands) and then M3 (Von Mises + Guess Bands + Uniform) for the remaining responses 
(Table 11), closely mirroring the results of Experiment 1 (Table 3). 
 
The best-fitting parameter estimates of the complete model (Von Mises + Guess Bands + 
Uniform) are reported in Table 12. According to this model, the estimated prevalence of 
memory responses gradually declined from the 1st to the 3rd response before reaching 
essentially zero from the fourth response onward. The prevalence of attributed to the ‘guess 
bands’ component is substantial from the third response onward, similarly to Experiment 1. 
 
Table 11 
Results of model comparison on aggregated data across responses in Experiment 2 

BIC M1 M2 M3 M4 M5 M6 

1st 43650 +12476 +6 +12535 +8 +3028 

2nd +22 +5069 +1 +5069 51075 +1409 

3rd +521 +556 55107 +572 +15 +4712 

4th +1128 +238 55120 +282 +41 +7720 

5th +1039 +123 55039 +190 +68 +8053 

6th +1072 +146 54968 +219 +71 +8312 

Note. The Bayesian Information Criterion (BIC) values for the best-fitting iteration of each 
model to the aggregated data of each of the six responses in Experiment 2. A lower BIC 
value indicates a better fit. The BIC value of the best-fitting model of each response has 
been bolded. For the first response, the best-fitting model is the Standard Mixture Model 
(M1). For the second response, the best-fitting model is Von Mises + Guess Bands (M5). For 
the third to sixth response, the best-fitting model is the Von Mises + Guess Bands + Uniform 
(M3).  
 
  



 

Table 12 
Parameter estimates from the best-fitting complete model for each response in Experiment 2 

Response !mem !bands Pmem Pbands Punif 

1st 14.3225 21.6940 87.84% ± 0.00% 0.64% ± 0.00% 11.52% ± 0.00% 

2nd 23.7556 22.4566 64.13% ± 1.18% 2.08% ± 0.90% 33.79% ± 2.08% 

3rd 30.8256 17.7327 21.07% ± 0.61% 37.26% ± 6.25% 41.67% ± 5.65% 

4th 0 16.3337 0.31% ± 0.11% 48.10% ± 6.02% 51.59% ± 5.91% 

5th 0 13.4376 0.21% ± 0.11% 48.70% ± 4.70% 51.09% ± 4.58% 

6th 0 15.2980 0.25% ± 0.11% 47.22% ± 4.35% 52.53% ± 4.24% 

Note. Estimates with the range of the approximate 95% confidence intervals for the 
proportion of memory, guess bands and random responses were calculated from the 
parameter estimates of the best-fitting complete model to the aggregated data of Experiment 
2. The first three responses contain a substantial proportion of memory responses, whereas 
the last three responses contain a mixture of random guesses and strategic responses 
based on the quadrant backgrounds. 
 
Formal Model Comparison of Individual Stimulus Against Response Data 
In addition, we conducted a model comparison of each individual’s data, separated by each 
response in the whole-report (1st to 6th). It should be noted that this significantly reduced the 
amount of data (160 trials) for maximum likelihood estimation. For the first two responses, 
the best-fitting model to most participants’ data was the M1 (Von Mises + Uniform) model. 
For the third response, it was the M5 (Von Mises + Guess Bands) model, and for the last 
three responses, the M4 (Guess Bands only) model was the best-fitting for the majority of 
participants (see Table 13). 
 
Table 13 
Model comparison for the individual data across responses in Experiment 2 

Response M1 M2 M3 M4 M5 M6 

1st 23 - 1 - 4 2 

2nd 17 - 3 - 10 - 

3rd 4 4 5 7 10 - 

4th 4 7 5 9 5 - 

5th 5 11 1 11 2 - 

6th 1 5 3 16 5 - 

Note. The number of participants for which each model was the best-fitting to their response 
data. While the early responses are best modeled by either a Von Mises + Uniform (M1) or 
Von Mises + Guess Bands (M5) for the majority of participants, there is a notable switch to 
the Guess Bands only (M4) model from the 4th response onwards.  



 

 
Comparison to Standard Mixture Model Approaches 
As in Experiment 1, we fit our general model (Von Mises + Guess Bands + Uniform) as well 
as the Zhang and Luck (2008) mixture model to the individual data aggregated across the 
click responses on each trial (the population that the single probe is sampling from). 
Considered in isolation, neither the prevalence of responses that were random (associated 
with a uniform distribution) nor the prevalence of guess bands correlated with the guess 
proportion estimates from the Zhang and Luck (2008) mixture model (uniform: r = 0.30, p = 
0.11; guess band: r = – 0.06, p = 0.75). However, the combined frequency of guess bands 
and random uniform responses was tightly correlated with the guess proportion estimates 
from the Zhang and Luck mixture model (r = 0.96, p < .0001; Figure 7). Further, we 
conducted a linear mixed model predicting prevalence of guesses with observers’ proportion 
of self-reported guesses on each response, allowing a random intercept for each participant. 
Proportion of self-reported guesses was a significant predictor of the prevalence of guessing 
(guess bands plus uniform) (b = 0.847, SEb = 0.038, t(165.47) = 22.35, p < .001). In line with 
the results of Experiment 1, these finding show that the ‘guess band’ responses are coming 
from the same population as the uniform distribution in the Zhang and Luck model, although 
subjects vary in the relative proportions of guess band and uniform responses. These 
findings provide clear evidence that a substantial proportion of the responses identified as 
guesses with the Zhang and Luck (2008) analysis can be attributed to a “guess band” 
pattern that is completely disconnected from the probed item’s orientation. 
 
 
 



 

 
Figure 7. Scatterplots of the relationship between model estimates of the prevalence of 
guessing and participants’ self-reports of guessing on each response click in Experiment 2.  
 
Discussion 
The central question in the current work is whether or not observers ever fail to store items 
that they wish to encode into working memory. If such storage failures occur, then there is a 
clear prediction that observers will be forced to guess when cued to recall that item. 
Although past work has presented evidence for such guessing responses (e.g. Adam et al., 
2017; Nosofsky & Donkin, 2016; Nosofsky & Gold, 2018; Rouder et al., 2008; Zhang & Luck, 
2008), the same empirical patterns can also be fit by models that eschew guessing but allow 
for “memories” so imprecise that they cannot be distinguished from storage failures (e.g. 
Bays & Husain, 2008; Fougnie et al., 2012; Schurgin et al., 2020; van den Berg et al., 2012). 
This theoretical impasse motivates analytic approaches that can distinguish between storage 
failures and extremely low fidelity memories. In this context, Rouder et al. (2014) 
demonstrated that observers have a strong tendency to cluster guess responses away from 
salient categorical boundaries in orientation space, without any link between these 
responses and any studied angle. The key virtue of this approach is that these “guess 
bands” can be easily distinguished from responses that are guided by very low precision 
memories, offering a potential resolution to the impasse described above.  
 
In the present work, we offer a conceptual replication of the Rouder et al. (2014) findings, 
while also providing two key extensions. First, we employed orientation stimuli with a circular 
stimulus space that afforded a direct comparison with the mixture model analyses that 



 

Zhang and Luck (2008) used to provide initial evidence for random guessing in a visual 
working memory task. Indeed, estimates of guessing frequency from the Zhang and Luck 
mixture modeling approach were tightly correlated with the combined frequency of guess 
bands and random responses in our primary analysis. Thus, our findings draw a direct link 
between the evidence for guessing from the Zhang and Luck (2008) approach and the guess 
bands observed using the Rouder et al. (2014) analysis. Given that the guess bands cannot 
be explained as responses guided by low precision memories, the present findings show 
that a substantial proportion of the uniform guessing distributions observed with the Zhang 
and Luck (2008) approach result from true guesses rather than low precision memories. The 
second extension provided by the current study was to validate our analytic estimates of 
guessing with observers’ self-reports of guessing. In line with the prior work from Adam et al. 
(2017), there was a tight correlation – at the single subject level – between the combined 
frequency of guess bands and random responses in our analysis, and the frequency with 
which observers reported that they were guessing. Thus, these guess bands corroborate 
Zhang and Luck’s (2008) interpretation of the uniform distributions observed during mixture 
modeling, and fall in line with observer’s self-reports that they are guessing for approximately 
3 items out of 6. 
 
Our formal model comparisons match those in a similar extension of Rouder et al. (2014) 
conducted by Nosofsky and Gold (2018). On a delayed color recall task, Nosofsky and Gold 
(2018) biased participants to respond with one of sixteen possible choices on a circular color 
wheel by giving it potential of a high reward. In their task paradigm, a mixed-state model 
(one that contains an item limit and guessing beyond this limit) predicts accurate recall when 
the participant had memory of the presented color, but if the participant had no memory, they 
would be compelled to guess with the high-reward choice. On the other hand, a variable-
precision and no guessing model predicts a range of responses between the presented color 
and high-reward choice, resulting from memories of various intermediary precision. Much 
like our results, their formal model comparisons showed their observed data was better-
explained by a mixed-state model than by a variable-precision model that denied guessing. 
 
One possibility that we did not explore is the existence of coarse categorical working 
memory representations (Bae et al., 2015; Hardman et al., 2017; Rouder et al., 2014; Souza 
et al., 2021). An intriguing possibility is that memory representations could be continuous or 
categorical in mixed proportions (Hardman et al., 2017). In the present study, the individual 
may remember the quadrant of the presented orientation but not the orientation itself for a 
proportion of responses. We did not include such a component in our formal model 
comparisons because of the overlap between the ‘guess bands’ component and what would 
be the step-like component for these categorical memories, and we lack the trials to be able 
to reliably distinguish these. From visual inspection of the scatter plots of Experiment 1 
(Figure 3), we do somewhat observe a step-like pattern in the first three responses, but for 
the remaining responses, we see a clear horizontal banded pattern, indicating guesses 
appear across the range of presented angles rather than being contained within a 
remembered quadrant category in a step-like manner. The step-like component is less clear 
in the scatter plots of Experiment 2 (Figure 6) perhaps because the center of the colored 
quadrants match the cardinal orientations (Pratte et al., 2017). 
We note that a recent article by Oberauer (2022) did not replicate the empirical pattern 
reported here and by Adam et al. (2017), whereby guesses (uniform distributions) are 
observed for the late response items. Oberauer (2022) reported that about half of their 



 

participants showed evidence consistent with zero-information states for the later responses, 
whereas the other half did not. Given that we have observed this empirical pattern in 
numerous independent samples of subjects (i.e., two in the Adam et al. (2017), two in the 
present study, and several additional experiments in an in-progress manuscript), we are 
unsure of the cause for this discrepancy. Oberauer raises the possibility that individuals may 
choose to guess despite having representations of some nontrivial precision for all array 
items, but he also noted that observers in his study may not have been as inclined to report 
the best remembered items first. Although extant data cannot discriminate between these 
possibilities, it is striking that the central question has shifted towards why observers are 
guessing, rather than whether they are guessing. Nevertheless, the discrepancy between 
Oberauer’s findings and our own highlights the importance of methods that enable strong 
inferences of guessing without relying on the purely uniform distributions that we have 
documented in the present work. Even within distributions that contain mixtures of target-
related and guessing responses, guess bands reveal a large proportion of responses that 
are wholly disconnected from the tested items without being confusable with response 
patterns guided by extremely low precision memories. 
 
Because evidence for guessing behaviors is the central issue in this paper, it is appropriate 
to discuss our working definition of “guessing”. Our use of the term refers to any response 
that is wholly unguided by information about the to-be-reported item. An alternate view of 
guessing is one in which “guessing” entails the use of a completely independent process for 
generating responses than the process that is used to report true memories. From this 
perspective, even if an observer has no information about the item to be recalled, the 
response is not considered to be a “guess” if the same retrieval operations are deployed as 
when a true memory of the item is available (Bays & Taylor, 2018; Schneegans et al., 2020; 
Schurgin et al., 2020). We disagree with this definition, because it obscures the fact that 
observers had no available memory of the reported attribute during recall. That said, this 
semantic debate about how guesses should be defined does not undermine the strong 
evidence for storage failures in visual working memory (the “guess bands”), an empirical 
pattern that disconfirms any model that posits non-zero memory guidance for all responses, 
regardless of the number of items to be stored (e.g. Bays & Husain, 2008; Fougnie et al., 
2012; Schurgin et al., 2020; van den Berg et al., 2012). 
 
That said, it is possible to conceive of strong modifications to continuous resource models 
that would enable tight fits with the response patterns we observed in the present work, at 
least when all responses are aggregated into a single distribution. For example, consider a 
continuous resource model in which there is always non-zero information about the target, 
but as the quality of the memory declines, the influence of an underlying prior increases. In 
this case, the observed ‘guess bands’ in the present study could be explained via an existing 
prior that contains bias towards the center of the quadrants, and an extremely fuzzy memory 
representation that cannot be detected. In this case, the modified continuous resource model 
could predict the emergence of guess bands that are wholly disconnected from the probed 
feature value. Here, it is critical to note that this modified continuous resource model predicts 
a large proportion of responses that are completely unrelated to the “remembered” item, an 
empirical pattern that fits our working definition of guessing. Thus, while this strong revision 
of continuous resource models would enable a tight fit with our observations, it requires an 
embrace of a “mixed state” model in which target-related responses are accompanied by a 
large proportion of responses with no discernable relationship to the probed value. 



 

 
We maintain a preference for a guessing interpretation of our results for several reasons. 
Firstly, in both experiments, the recall error distributions for the last three responses (fourth 
to sixth) were better modelled by a parameter-free uniform distribution rather than the 
standard mixture model (Zhang & Luck, 2008) or the variable precision and no guessing 
model (van den Berg et al., 2014). Thus, because of the strong bias for observers to report 
the best remembered items first, a pure guessing model was superior to models that 
presume extremely low precision memories. Secondly, Adam et al. (2017) demonstrated that 
such a variable precision model may in fact be mimicking guessing responses. Simulations 
by Adam et al. (2017) indicated that it would require at least a million noise-free samples to 
discriminate between a uniform distribution and a preposterously low quality memory 
(modeled with a von Mises distribution with a standard deviation of 193 degrees). 
Reservations about the falsifiability of such a model aside (Nosofsky & Donkin, 2016; van 
den Berg et al., 2014), Adam et al. (2017) found in their experimental data (using a near-
identical set-up to those in our studies, whole-report with clock face stimuli) that the 
estimated prevalence of these preposterously low quality memories was tightly correlated 
with guess rate estimates from the standard mixture models (Zhang & Luck, 2008). Lastly, 
as mentioned above, observers’ self-reports indicate they had no knowledge of the 
presented stimulus at a proportion that matches our model estimates of the prevalence of 
guessing, adding credence to that interpretation. Thus, while strong modifications of a 
continuous resource model could yield strong fits of these findings, models acknowledging 
the possibility of storage failures provide a simpler explanation that resonates with the 
observers’ own reports of when they have no information about the probed values. 
 
In conclusion, we found clear evidence for guessing behavior that could not have been 
guided by low precision memories. These responses were prevalent in the later responses 
of our whole-report task, and could be directly linked with observers’ self-reports of guessing. 
Thus, these findings provide further evidence for the guessing behaviors that are predicted 
by item-limit accounts of working memory capacity. 
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Supplementary Materials  
 
Table S1 
AIC values from model comparison for aggregated data across all responses in Experiment 
1 

AIC M1 M2 M3 M4 M5 M6 

1st +72 +13524 +2 +13522 42604 +2792 

2nd +223 +5091 +2 +5089 50975 +1344 

3rd +459 +446 55081 +448 +3 +4778 

4th +425 +118 55094 +128 +11 +7676 

5th +463 +204 55013 +249 +44 +7743 

6th +389 +285 54943 +304 +19 +7794 

Note. The AIC values of the best-fitting iteration from each model for aggregated data in 
Experiment 1. A lower AIC value indicates a better-fit to the observed data. The best-fitting 
model for each response is bolded. 
 
Table S2 
AIC values from model comparison for aggregated data across all responses in Experiment 
2 

AIC M1 M2 M3 M4 M5 M6 

1st +7 +12483 43630 +12549 +9 +3041 

2nd +34 +5081 51050 +5088 +5 +1428 

3rd +534 +569 55081 +591 +22 +4732 

4th +1141 +251 55094 +302 +48 +7739 

5th +1052 +136 55013 +210 +74 +8073 

6th +1084 +158 54943 +238 +77 +8330 

Note. The AIC values of the best-fitting iteration from each model for aggregated data in 
Experiment 2. A lower AIC value indicates a better fit to the observed data. The best-fitting 
model for each response is bolded. 
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