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Brain aging is associated with hypometabolism and global
changes in functional connectivity. Using functional MRI (fMRI),
we show that network synchrony, a collective property of brain
activity, decreases with age. Applying quantitative methods from
statistical physics, we provide a generative (Ising) model for these
changes as a function of the average communication strength
between brain regions. We find that older brains are closer to a
critical point of this communication strength, in which even small
changes in metabolism lead to abrupt changes in network syn-
chrony. Finally, by experimentally modulating metabolic activity
in younger adults, we show how metabolism alone—independent
of other changes associated with aging—can provide a plausible
candidate mechanism for marked reorganization of brain network
topology.

fMRI | aging | neurometabolism | synchrony | criticality

One of the most fundamental questions in neuroscience is
how the familiar patterns of collective, brain-wide activity

arise from the properties of the constituent neurons and their
networks. Here, we study how the brain’s global activity patterns
change with age and how those changes might arise from the
reduced metabolic activity of constituent regions.

We draw on two types of experimental evidence. First, as
established using positron emission tomography, older brains
show reduced glucose metabolism (1–3). Second, as established
by functional MRI (fMRI), aging is associated with weakened
functional connectivity (FC; i.e., reduced communication [on
average] between brain regions) (4–6). Combining both obser-
vations suggests that impaired glucose metabolism may underlie
changes in FC (1, 7). Supporting this link are studies showing
disruptions similar to those seen with aging in type 2 diabetic
subjects (8, 9).

In healthy brains, resting-state brain activity (states during
which subjects are not engaged in any explicit task) alternates
between segregating computations within localized functional
domains and integrating this information across these domains
(7, 10–13). The metabolic cost of these activities increases in
proportion to the number and length of functional connections
between pairs of brain regions (14), making highly connected
(integrated) networks more energetically costly (10). Moreover,
connections with the highest cost are the first to weaken with
age (6, 7, 15, 16). Thus, it has been hypothesized that declining
glucose metabolism in older brains drives the loss of high-cost
(integrated) functional activities (14, 16). Yet, the relationship
between energetic constraints at the level of individual regions
and the apparent reorganization of the functional connectome is
still not well understood.

Statistical physics, which interprets the collective properties
of complex systems in terms of individual interactions between
the underlying parts, provides powerful tools for understand-
ing how brain networks reorganize under constraints (17, 18).
In particular, we employ an Ising model (19–21) to describe

how pairwise interactions between brain regions give rise to
specific profiles of network synchrony, a time-dependent aver-
age of the activity over the brain (22–24). The Ising model
is a simple yet powerful tool to capture ordered and disor-
dered phases and the transitions between them. It assumes
that two things matter in understanding the collective behav-
iors of a system of agents (brain regions in this case): the
topological relationships among the agents and their strength
of interaction. This perspective can provide insight into global
changes in FC observed in the data by assuming that brain
regions are fully connected with a single average interaction
strength.

While the Ising model provides a general tool for describing
the collective properties of complex systems, we adapt it to exam-
ine the specific relationship between brain aging and metabolic
activity. To achieve this, we analyzed four resting-state fMRI
datasets. We utilized two large-scale resting-state 3T (Tesla)
fMRI datasets to identify aging related effects: the Cambridge
Centre for Aging and Neuroscience Stage II Study (Cam-CAN;
ages 18 to 88, N =652) (25) and the Human Connectome
Project Aging fMRI dataset (HCP-A; ages 36 to 100, N =712)
(26). To assess metabolic effects, we used two 7T fMRI datasets
from the Protecting the Aging Brain fMRI data repository: a
Bolus dataset (PAgB Bolus; ages 21 to 48, N =38) consisting of
a within-subject experiment in which individuals were scanned
following separate administration of calorie-matched glucose
and ketones (D-β-hydroxybutyrate ketone ester [D-βHb]) and
a Diet dataset (PAgB Diet; ages 21 to 43, N =12) consisting
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of an independent within-subject experiment of healthy, young
adults scanned at resting state while on glycolytic and ketogenic
diets (27). Ketone bodies decrease the relative free energy of
adenosine triphosphate (ATP) production by approximately 27%
as compared with glucose (28). The additional efficiency of
ketone bodies as a cellular fuel source, observed even in healthy
subjects, has been shown to increase both cardiac efficiency (28)
as well as brain activity (27).

The significance of this work is threefold. First, we demon-
strate that the Ising model, with a fully connected topology,
provides a mechanism for how FC patterns change in quali-
tatively abrupt ways as a function of the average interaction
between brain regions (18). Second, we establish a direct link
between network synchrony and the relative frequencies of inte-
grated (high-cost) and segregated (low-cost) brain activities (10,
14). Finally, we suggest a precise relationship between differ-
ences in FC over the life span as well as in response to changes
in the brain’s access to energy.

Methods
Life Span and Metabolic Neuroimaging Datasets. The Cam-CAN life span
study was designed to identify neurobiological correlates of normal aging
and provides a roughly uniform coverage of age groups, allowing com-
parison between groups as well as a wide array of behavioral measures.
We excluded 10 subjects from analysis due to severe structural atrophy
that precluded coregistration to a standard brain template (N = 642, 321
female).

The HCP-A study of healthy adults was comparable with the Cam-CAN
dataset in terms of both its goals and design but differed in acquisition
parameters and preprocessing methods. Given these differences, we used
the HCP-A dataset to test the generalizability of our results with respect to
aging.

The PAgB Bolus study consisted of two within-subject conditions time
locked on separate days: 1) D-βHb ketone ester bolus following a 12-h
overnight fast (deltaG, TdeltaS Ltd, Thame, UK) and 2) glucose bolus fol-
lowing a 12-h overnight fast, breaking an overnight fast with a glucose
drink (Glucose Tolerance Test Beverages; Fisher Scientific, Inc.). The D-βHb
ketone ester was weight dosed for each participant at 395 mg/kg and calorie
matched between D-βHb ketone ester and glucose (detailed documentation
of the dataset may be found in ref. 27).

The PAgB Diet study scanned participants under three conditions: 1)
standard diet: following their standard diet without fasting; 2) fasting: fol-
lowing their standard diet with an overnight (12-h) fast; and 3) ketogenic
diet: following a ketogenic (high-fat, moderate-protein, low-carbohydrate
[<50-g/d]) diet for 1 wk, by which point all participants were in ketosis
(>0.6 mmol/L ketone blood concentration). Of these, we examined the stan-
dard (glycolytic) and ketogenic conditions to test the generalizability of our
results in the context of metabolism. All conditions were conducted at rest-
ing state. Detailed documentation of the two PAgB metabolic datasets may
be found in ref. 27.

MRI Acquisition. The Cam-CAN life span dataset contains multiple imag-
ing modalities, including blood oxygen level–dependent (BOLD) MRI and
magnetoencephalography (MEG). The neuroimaging experiments of the
Cam-CAN study were conducted in Cambridge, United Kingdom at the
Medical Research Council Cognition and Brain Sciences Unit. We focused
on the resting-state BOLD echo-planar imaging (EPI) scans collected at
3T field strength over 8 min and 40 s. The BOLD EPI imaging pro-
tocol consisted of repetition time (TR) = 1,970 ms, echo time (TE) =
30 ms, flip angle = 78◦, voxel size = 3× 3× 4.44 mm, slices = 32,
and number of measurements = 261. Further acquisition details can be
found in ref. 25.

The HCP-A dataset was collected at four different sites while using
identical equipment and parameters. Images were acquired at 3T field
strength through two separate sessions for each subject. We concatenated
the time series from the two sessions within each subject, resulting in a
total of 26 min of resting-state fMRI data. The BOLD EPI imaging proto-
col consisted of TR = 800 ms, TE = 37 ms, flip angle = 52◦, voxel size =
2× 2× 2 mm, slices = 72, number of measurements = 2 × 488 per
session, and 1,952 volumes in total. Further acquisition details can be
found in ref. 29.

The two PAgB metabolic datasets (PAgB Bolus and PAgB Diet) were
acquired at the Athinoula A. Martinos Center for Biomedical Imaging.

Images were collected at 7T field strength with identical parameters for
the two datasets. Resting-state BOLD images were 10 min long each and
involved a protocol quantitatively optimized, using a dynamic phantom,
for detection sensitivity to resting-state networks (30, 31). The BOLD EPI
imaging protocol consisted of TR = 802 ms, TE = 20 ms, flip angle =
33◦, voxel size = 2× 2× 1.5 mm, slices = 85, and number of measure-
ments = 740 in each resting-state session. Further acquisition details can be
found in ref. 27.

MRI Preprocessing. Aside from the HCP-A data, which were provided in an
already preprocessed form, we preprocessed all fMRI data using fMRIPrep
(20.0.6), which is based on Nipype 1.4.2 (32, 33). First, the T1-weighted
(T1w) structural images were corrected for intensity nonuniformity and
skull stripped. Brain tissue segmentation of cerebrospinal fluid (CSF), white
matter, and gray matter was then performed on the brain-extracted T1w
images. Subsequently, volume-based spatial normalization to one standard
space (ICBM 2009c Nonlinear Asymmetric template) was carried out through
nonlinear registration.

For each of the BOLD runs found per subject, images were skull stripped
and motion and slice-time corrected. A deformation field to correct for sus-
ceptibility distortions was then estimated based on fMRIPrep’s field mapless
approach. The BOLD images were then coregistered to the T1w structural
images using a boundary-based registration with nine degrees of freedom
and resampled into standard space. To control for nonneuronal systemic
effects associated with aging and ketosis, white matter and CSF, but not
global, signals along with six motion regressors were regressed out using
the nilearn package (https://nilearn.github.io).

Preprocessing of the fMRI images from the HCP-A dataset up to this point
involved a different procedure. We accessed these images in an already
preprocessed state, as per the steps described in refs. 34 and 35.

Finally, for all four datasets, the cleaned voxel space time series were
band-pass filtered to include the neuronal frequencies (0.01 to 0.1 Hz) and
were parceled into the Willard 498 functional regions of interest.

fMRI Binarization. In order to access the time-dependent network properties
of our data, we first binarize the fMRI time series. This method simplifies
the time series while preserving their FC patterns. In particular, the Pearson
correlation ρ(vi , vj) is widely used to estimate FC between arbitrary pairs of
variables (vi , vj):

ρ(vi , vj) =
Cov(vi , vj)√
Var(vi)Var(vj)

. [1]

Here, variables (vi and vj for example) are the nodes of a graph, and ρ is
the weight of the edge between them. However, these connection strengths
often change over time (36). To capture these changes, ρ is calculated over
each pair of successive time points (i.e., a window length of one), reducing
Eq. 1 to

ρ
∗(vi , vj , t) =

∆vi(t)∆vj(t)√
(∆vi(t))2(∆vj(t))2

= v̂i(t)v̂j(t)

BDM(vi , t) = v̂i(t), [2]

where v̂i and v̂j are the signs of the time derivatives of vi and vj , respectively,
and the time-dependent correlation, ρ∗, is their product. Thus, the binarized
derivative method (BDM) takes a raw signal vi(t) and binarizes it v̂i(t).

While the binarization v̂i(t) provides a simplified representation of the
raw time series vi(t), it still preserves FC (SI Appendix, Fig. S1). For each
subject in the life span dataset, we selected a random interval of fixed
length (the window size), computed the region–region correlation matrix
for both raw and binarized time series (Eq. 1), and then, computed the cor-
relation between both FC estimates. These estimates were highly correlated,
regardless of the number of time points (the averaging window) used (SI
Appendix, Fig. S1A) and the age of the subject (SI Appendix, Fig. S1B) (win-
dow size = 260 TR), suggesting that BDM can be used to simplify functional
signals while preserving their connectivity patterns. More broadly, the BDM
approach has two key advantages over previous methods (36, 37). First, it
simplifies complex, many-variable interactions in terms of dynamical pat-
terns of binary (+1 and −1) variables. Second, it is naturally compatible
with Ising models, which have been shown to be powerful tools in isolating
latent relationships within networks of neurons (21, 24).

Motivation for the Ising Model. Here, we provide the Ising model of the
network synchrony s and demonstrate it on a simple system of three
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Fig. 1. The Ising model predicts network probabilities from interactions between its nodes. (A) The Ising model maps binary variables onto a fully connected
network (Left). Each variable (i = 1, 2, . . . N) is a node with binary weight v̂i (represented by the colors red and blue), and each pair of nodes is connected by
an edge with weight λ. Here, we show the example of N = 3. The value of λ (> 0) describes the average interaction strength between nodes; the larger λ
is, the more likely the unknown value of v̂3 is to be similar to its neighbors (Right). (B and C) The probability of each network is determined by its synchrony
(s). (B) Multiple graphs give the same value of synchrony. Since there are three ways to have one blue node and two red nodes, there are three different
graphs that give s = 1/3 (red minus blue divided by N = 3). This degeneracy effectively triples the probability of s = 1/3. (C) The probability distribution of
s given by the Ising model is a function of λ and degeneracy. When λ (interaction) is large, the probability that |s|= 1 is large (Left). However, when λ is
small, degeneracy wins out, and the probability that |s|= 1/3 is large (Right).

interacting regions. Although first developed to describe ferromagnetism,
the Ising model can be more generally derived using maximum entropy
(19, 21, 24). For a set of binary nodes, such as what is provided by BDM,
synchrony s(t) is defined mathematically as

s(t) = N−1
N∑

i=1

v̂i(t), [3]

where v̂i(t) is the value of the ith binarized signal at time t (24). The Ising
model of the distribution of synchronies P(s) (as derived in SI Appendix,
Derivation of the Ising Model of fMRI Network Synchrony) is given by

P(s) = Z−1
( N

N(1 + s)/2

)
eN2λs2

Z =

s=1∑
s=−1

( N

N(1 + s)/2

)
eN2λs2

. [4]

Here, the normalizing constant Z is called the partition function, a famil-
iar quantity in statistical physics (20). To account for the multiple ways
a particular value of synchrony can occur, P(s) also contains the binomial
prefactor,

( N
N(1+s)/2

)
(Fig. 1). In statistical physics, P(s) is equivalent to a well-

known model of ferromagnets called the Curie–Weiss (or fully connected)
Ising model (38). Conceptually, Var(s) expresses the average correlation
across our N nodes. As a result, λ represents the average node-to-node
interaction strength (over N2 pairs) and is the basic mechanistic quantity
of our model (Fig. 1 A, Left). Small values of λ describe correlational net-
works in which interactions between nodes are weak and in which the

node weights are independent of each other. In contrast, large values of
λ describe networks in which interactions between nodes are strong and
node activities are highly correlated (Fig. 1 A, Right). As described earlier,
however, a given value of synchrony s may be obtained in many different
ways (i.e., it is degenerate) (Fig. 1B). Therefore, when λ is small, P(s) is deter-
mined by the degeneracy, and low synchronies are most likely. Conversely,
when λ is large, P(s) is determined by the interactions between nodes, and
higher synchronies are more likely. In particular, as λ is varied, the relative
importance of each of these terms changes. As can be seen in Fig. 1C, this
causes P(s) to change from a bimodal (Fig. 1 C, Left) to a unimodal (Fig. 1 C,
Right) distribution. For the Ising model, this shift occurs at the critical point
λc = 1

2N (38). To simplify our future analysis, we will now refer only to the
rescaled interaction Λ: Λ = (λ−λc)/λc.

Model Fitting. We next fit the Ising model to our data (Fig. 2). First, we took
the fMRI signal vi(t) for each region i and time t and binarized it using BDM.
The model assumes that all regions have, on average, similar FC strengths.
We tested this assumption by computing the total (over all pairs) FC for
each region, and we used the subject-averaged (over Cam-CAN and PAgB
Bolus) FC matrix as our reference (SI Appendix, Fig. S2). From these sig-
nals, we selected a subset of 100 positively correlated brain regions with
greatly elevated FC in younger (age < 45) compared with older (age > 64)
subjects. As validation, we find that our theory is robust to this choice (SI
Appendix, Fig. S3). For each subject, we then computed the time-dependent
synchrony s(t) using the binarized fMRI signals from the 100 selected regions
of the brain. We then took the histogram of s(t) for each subject to get
a distribution P(s), giving the variation in synchrony per individual. This
was then used to obtain Λ by fitting P(s) to the Ising model. Here, the

Fig. 2. How we obtain the Ising model parameter Λ from fMRI data. 1) The fMRI signal vi(t) from the ith brain region (of 100) as a function of time t. 2)
We binarize it to give v̂i(t). 3) The binarized signals are then averaged over all brain regions, giving that individual’s time-dependent synchrony s(t). 4) We
then histogram into P(s) the different s values over time to express the variations in an individual’s synchrony levels. 5) We find the value of Λ that best fits
P(s) for each individual. P(Λ|Data) expresses the Bayesian posterior probability (with a uniform prior distribution over Λ) that our data P(s) were generated
from an Ising model (Eq. 4) with relative interaction strength Λ.
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Fig. 3. The Ising model applied to brain synchrony. Shown is the proba-
bility distribution of synchrony (s) for different values of the dimensionless
quantity Λ, reflecting the distance of the actual interaction strength, λ from
the critical point λc: Λ = (λ−λc)/λc. For Λ< 0 (weak interactions), there is
a single unimodal population having a peak at s = 0 (blue line). For Λ> 0
(strong interactions), the population is bimodal, with peaks at s� 0 and
s� 0 (orange line). Above each peak is an example network; nodes are
brain regions, and colors are states (red +1, blue −1). Λ = 0 defines the
critical point, where s = 0 changes from a minimum to a maximum and P(s)
rapidly changes (red line). At the critical point, low- and high-synchrony
networks are equally probable.

precision of the fit is a function of the Bayesian posterior distribution
P(Λ|Data). We use a uniform (unbiased) prior distribution of Λ; thus, the
posterior is computed directly from the likelihood function P(Λ|Data) =∏

t P(s(t); Λ), with P(s; Λ) = P(s;λ) given by Eq. 4. In practice, we will sum-
marize this posterior by its peak (the maximum likelihood estimate) and its
width (error bars). Small relative error bars indicate high confidence in the
fitted values of Λ. For the Ising model, the maximum likelihood estimator
for Λ satisfies

1

T

∑
t

s(t)2
=

s=1∑
s=−1

s2P(s; Λ), [5]

where T is the number of time points used. To account for autocorrela-
tion within the fMRI time series (which effectively reduces the number
of independent samples available for each subject), we consider 0.01 like-
lihood ratio error bars for Λ. This approximately corresponds to one SE
with a maximum synchrony autocorrelation time of 10 TR (i.e., at mini-
mum, 10% of the samples are uncorrelated) or three SEs if all points are
independent.

Network Identification and Analysis. To establish the relationship between
Λ and brain network reorganization, we isolated specific functional pat-
terns associated with different values of synchrony. The binarized data
were combined across all Cam-CAN subjects (N = 642) and classified into
two categories of synchrony: low (s = 0) and high (|s|> 1/2). Time points
corresponding to intermediate values of synchrony were excluded (at
this stage only) in order to obtain a clear separation between groups.
Network connectivity was computed (separately for each group) as the
Pearson correlation between each pair of brain regions. During periods of
low synchrony, functional connections were found to be sparse, favoring
connections between local (segregated) networks of regions. In contrast,
periods of high synchrony were characterized by dense connections (inte-
grated) between multiple functional domains across the brain (10). Reflect-
ing these differences, we further refer to these networks as Seg and Int,
respectively.

To relate the occupation probabilities of these different networks to Λ,
we decomposed the FC matrix (Mi , computed over all synchronies) of each
subject i into a weighted contribution of Seg and Int:

Mi = W i
SegSeg + W i

Int Int.

The weights associated to each subject (W i
Seg and W i

Int) were then com-
puted using a least-squares fit. As a preprocessing step, we zeroed the
artificial, diagonal elements and then normalized both networks (by divid-
ing by the total correlation across all elements) to account for differences
in scale. To compare these weights across subjects and different values of Λ,
we only consider the ratio of these weights:

PSeg =
WSeg

WSeg + WInt
, PInt = 1− PSeg.

For each subject, PSeg represents the relative proportion of FC explained
by the Seg network. In other words, PSeg represents the fraction of time
spent in segregated networks as compared with integrated networks (PInt).

Results
Here, we analyze the collective properties of fMRI signals and how they
change with age and metabolic activity. The collective property of our
interest is the observed network synchrony s, a measure of the average
coordination between the 100 Willard Atlas brain regions selected for our
analysis (Model Fitting) (24, 39). In general, collective properties can often
be described using mean-field models, where every component of interest is
approximated as being connected to every other component with the same
strength (24, 40). In addition, the Ising model is known to describe how
pairwise interactions among microscopic, binary (±1) elements give rise to
macroscopic behaviors (20, 21). Thus, to model how the observed frequen-
cies P(s) of different synchronies vary across experimental conditions, we
utilize a mean-field Ising model, with a single average interactions strength
(assumed positive) between all pairs of brain regions (Fig. 1; SI Appendix,
Fig. S2 has further justification).

We find the value of the interaction strength, Λ, that best fits the
experimentally observed synchrony values for each subject (Fig. 2). This is
equivalent to choosing Λ such that the average value of s2 predicted by the
Ising model matches precisely with the empirical estimate for each subject
and condition (Eq. 5 and Methods). In addition, we find that this model
reasonably captures the full distribution of synchrony observed in the data

Λ

A B
Seg Int

C

-0.2 0 0.2
0

0.5

1

 P
se

g

0

0.5

1

 P
in

t

Fig. 4. Λ controls the balance between segregated (low s) and integrated (high s) networks. (A and B) FC (averaged over all Cam-CAN subjects) during low
(A) and high (B) synchrony, visualized using the BrainNet Viewer showing the top five percentages of connections (41). (A) Low synchrony (s = 0) reflects
segregation (Seg). (B) High synchrony (|s|> 1/2) reflects integration (Int). (C) The fraction of time each subject (each data point and the specific value of
Λ) spends in integrated (PInt ; orange) and segregated (PSeg; blue) networks. Λ< 0 corresponds to large PSeg and small PInt , while Λ> 0 corresponds to the
opposite. The cross-over in C occurs at the critical point, Λ = 0.
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Fig. 5. Λ significantly decreases with age and increases with a ketogenic
metabolism compared with a glycolytic metabolism. (A) Each point (as well
as the orange curve connecting them) reflects the median best-fit Λ values
for each (of five) equal width (14-y) age groups across Cam-CAN subjects.
Error bars represent the upper and lower quartiles. We used a Spearman
rank permutation test [N = 642, ρ(640) =−0.53, P = 3.0× 10−48] to test
significance of the nonlinear relationship between Λ and age. (B) Change
in Λ for each PAgB Bolus subject after a higher-energy ketone bolus (Ket)
compared with a lower-energy glucose (Glu) bolus. Error bars reflect a 0.01
likelihood ratio CI. A Wilcoxon one-sided signed rank test was used to test
if ketones significantly increased Λ (N = 38, W = 242, P = 3.2× 10−2). (C
and D) Independent replicates of our findings for both age and metabolism
using HCP-A (C) and PAgB Diet (D), respectively.

(SI Appendix, Fig. S4). Most importantly, the Ising model predicts the two
qualitatively distinct regimes present in the data: one characterized by a
unimodal distribution of synchrony and the other by a broad or bimodal
distribution of synchrony.

Ising models are useful in understanding how changes in smaller-scale
properties (such as the interactions between brain regions) can give rise
to abrupt and qualitatively distinct collective phenomena at larger scales.
Much like water at its boiling point, which discontinuously changes from
liquid to vapor, these changes occur at an intermediate value of the
interaction strength, called the critical point. Here, we use Λ to denote
the deviation from the critical interaction strength (Λ = 0) of the Ising
model. Fig. 3 illustrates how the distribution of synchronies (with exam-
ple brain networks shown for comparison) changes as a function of Λ,
from unimodal (low synchrony, s = 0; blue) when Λ< 0 to bimodal (high
synchrony, |s|� 0; orange) when Λ> 0. Here, the distributions (which are
discrete by nature) are smoothed to simplify the visualization. While both
low- and high-synchrony networks are equally likely at the critical point
(Fig. 3, red) (Λ = 0), small changes in Λ lead to large, abrupt changes in
this balance.

Different values of synchrony also correspond to different functional
network patterns (Fig. 4 and Network Identification and Analysis). In partic-
ular, low-synchrony patterns (near s = 0) reflect short-range, domain-specific
(segregated) activities (Fig. 4A). In contrast, high-synchrony patterns (|s|>
1/2) capture integration, or long-range communication between distant
regions (Fig. 4B). Consequently, just as with synchrony (Fig. 3), different val-
ues of Λ change the relative time spent in segregated (PSeg) and integrated
(PInt) networks (in Fig. 4C, each colored marker is a subject). When Λ< 0,
low synchronies (i.e., segregated networks) occur more frequently, while
the opposite holds when Λ> 0. In both cases, this balance rapidly shifts at
the critical point, Λ = 0.

Both age and metabolism-related changes in FC can be described by
changes in the region-to-region interaction strength Λ. In particular, we
find that Λ significantly decreases with age (Cam-CAN, Spearman rank per-

mutation test, P = 3.0× 10−48, N = 642) (Fig. 5A), suggesting that aging is
associated with a marked shift from integrated toward more segregated
network activities. In contrast, upon administration of a more metabolically
efficient (higher-energy) ketone bolus compared with a less metabolically
efficient (lower-energy) glucose bolus, Λ increases (PAgB Bolus, Wilcoxon
one-sided signed rank test, P = 3.2× 10−2, N = 38) (Fig. 5B) on average
by about 10% (Λ̄Glu = 0.082 to Λ̄Ket = 0.096) of the decrease seen over
the entire life span (28). Thus, by toggling the relative frequencies of
segregated and integrated networks, Λ reflects an average cost of func-
tional activity and as suggested by our metabolic manipulation, the energy
available to the brain. As aging brains gradually become less efficient
in metabolizing glucose, one way that they may conserve energy is by
decreasing Λ.

The application of the Ising model to fMRI is dependent on the
magnitude, rather than differences, in the functional connections mea-
sured from the data. Consequently, such an analysis could be sensitive
to differences in data acquisition, preprocessing, and head motion. To
assess reproducibility, we thus replicated our life span and metabolic
analyses on two independent resting-state datasets: HCP-A (Spearman
rank permutation test, P = 1.2× 10−22, N = 712) (Fig. 5C) and PAgB
Diet (Wilcoxon one-sided signed rank test, P = 8.8× 10−2, N = 12) (Fig.
5D), respectively. Both sets of analyses qualitatively replicated our orig-
inal findings, suggesting that our original results were robust to differ-
ences in processing pipelines and experimental design. Furthermore, we
tested and found no relationship between our results and head motion
(SI Appendix, Fig. S6).

Precisely because aging brains approach the critical point (Λ = 0), how-
ever, very small changes in the interaction strength between regions (Λ)
lead to a sharp transition in the ratio of integrated to segregated networks
(20, 21). Fig. 6 expresses this in terms of the probability distribution of s,
now viewed from the top down. Here, we observe that as brains age, from
younger (yellow; age 25± 7, N = 86) to older (red; age 81± 7, N = 130),
Λ [a proxy for metabolism (14)] decreases toward the critical point (black).
Consequently, aging induces a sharp reconfiguration of the distribution of
synchrony.

Discussion
Our results suggest that disrupted transitioning between integrated vs. seg-
regated networks, as seen with aging, can be quantitatively modeled by an
Ising model, in which the range of synchronies observed for each individ-
ual is controlled by an average interaction strength (Λ) between pairs of
brain regions. We find that Λ governs a trade-off between lower–metabolic
cost, segregated and higher–metabolic cost, integrated neural activity pat-
terns (16). Specifically, the observed link between global resting-state FC
patterns and synaptic activity, as measured through the local field poten-
tial (22), suggests that Λ reflects the average synaptic connectivity across
the brain. Indeed, synaptic connections weaken with age (42, 43) and are
particularly vulnerable to metabolic disruptions (44–47). Utilizing subject-
matched fMRI and MEG data provided by Cam-CAN, we also find Λ to be

Fig. 6. Older brains approach a critical point, a behavior we have shown
to be consistent with decreased metabolism. Shown is the probability dis-
tribution of synchrony (s) vs. Λ, viewed from the top down. At the critical
point (Λ = 0; black line), peak synchrony (indicated by a white line) changes
from low (s = 0) toward high (|s|> 1/2) values. Decreased metabolic activity
causes Λ [through associated decreases in FC (14)] to decrease toward a crit-
ical point. Thus, aging from younger (yellow) to older (red) induces a sharp
reconfiguration in the distribution of synchrony. Here, the plotted triangles
correspond to the Λ values (from Cam-CAN) centered at ages 25 (younger)
and 81 (older) (Fig. 5).
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significantly correlated with alpha-band MEG coherence, thus providing
a potential, more direct link between our findings and disrupted neural
dynamics in the aging brain (SI Appendix, Fig. S5) (25, 48). Consistent with
our findings, we hypothesize that Λ is decreased in older brains to com-
pensate for encroaching glucose hypometabolism. However, because older
brains approach a critical point, even very small metabolic changes will
result in large reconfigurations of FC.

Both aging and ketosis exert independent systemic effects that we con-
sidered in interpreting our results. For example, older subjects often have
cardiovascular changes that affect neurovascular coupling (49) and thus,
by extension, the BOLD response measured by fMRI. Likewise, ketosis has
systemic effects, such as diuresis and thus, lowered blood pressure, as well
as reduced cellular need for oxygen, all of which also could affect BOLD
(50). In addition, FC is known to be affected by changes in cerebrovascu-
lar reactivity (CVR), which in turn, decreases with age (51). However, there
are several reasons to suspect that these alternative mechanisms are not
the sole causal influence of shifts in Λ. First, we used a hybrid global sig-
nal regression on white matter and CSF voxels, but not gray matter, to
minimize the influence of nonneuronal confounds (52, 53). Second, while
systemic effects might introduce spurious global correlations across the
brain (54–56), they would not be expected to differentiate between inte-
grated and segregated networks. Third, both CVR and MEG alpha-power
are modulated by systemic CO2 (a by-product of cellular metabolism), sug-
gesting a common metabolic mechanism for these age-associated changes
(51, 57). Nevertheless, experimentally dissociating metabolic from more sys-
temic influences of aging and ketosis (e.g., by replicating our results using
M/EEG or arterial spin labeling in a large-scale life span dataset that also

experimentally modulates metabolism) is one important direction for future
research.

In conclusion, the Ising model provides a mechanism for how the brain
adapts to resource constraints, such as age-related glucose hypometabolism.
By shifting the balance between integration and segregation toward the
critical point, the brain may be able to modulate its fuel efficiency without
the need to invest in new synaptic connections (7, 14, 16). Thus, toggling Λ

may reflect an optimal strategy for the brain, enabling the greatest adapta-
tion for the smallest energetic cost. At the same time, the brain’s protective
strategy in conserving energy may produce discontinuous trajectories for
cognitive changes associated with aging.

Data Availability. Lifespan fMRI and MEG data are publicly avail-
able from Cam-CAN (25). Metabolic fMRI data are located on
OpenNeuro (https://openneuro.org/datasets/ds003453 and https://
openneuro.org/datasets/ds003437). fMRI data from the HCP-A dataset are
publicly available from ref. 26 and were accessed in an already preprocessed
state as described in refs. 34 and 35. Additional details, including links to cus-
tom MATLAB used in the analyses of data, can be found at GitHub (https://
github.com/lcneuro/synch).
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24. G. Tkačik et al., Searching for collective behavior in a large network of sensory
neurons. PLOS Comput. Biol. 10, e1003408 (2014).

25. J. R. Taylor et al., The Cambridge Centre for Ageing and Neuroscience (Cam-CAN)
data repository: Structural and functional MRI, MEG, and cognitive data from a cross-
sectional adult lifespan sample. Neuroimage 144 (Pt B), 262–269 (2017).

26. S. Y. Bookheimer et al., The lifespan Human Connectome Project in aging: An
overview. Neuroimage 185, 335–348 (2019).

27. L. R. Mujica-Parodi et al., Diet modulates brain network stability, a biomarker for
brain aging, in young adults. Proc. Natl. Acad. Sci. U.S.A. 117, 6170–6177 (2020)).

28. K. Sato et al., Insulin, ketone bodies, and mitochondrial energy transduction. FASEB
J. 9, 651–658 (1995).

29. M. P. Harms et al., Extending the Human Connectome Project across ages: Imaging
protocols for the lifespan development and aging projects. Neuroimage 183, 972–984
(2018).

30. D. J. DeDora et al., Signal fluctuation sensitivity: An improved metric for optimizing
detection of resting-state fMRI networks. Front. Neurosci. 10, 180 (2016).

31. R. Kumar et al., Ground-truth “resting-state” signal provides data-driven estimation
and correction for scanner distortion of fMRI time-series dynamics. Neuroimage 227,
117584 (2021).

32. O. Esteban et al., fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat.
Methods 16, 111–116 (2019).

33. K. Gorgolewski et al., Nipype: A flexible, lightweight and extensible neuroimaging
data processing framework in python. Front. Neuroinform. 5, 13 (2011).

34. M. F. Glasser et al., The minimal preprocessing pipelines for the Human Connectome
Project. Neuroimage 80, 105–124 (2013).

35. M. F. Glasser et al., Using temporal ICA to selectively remove global noise
while preserving global signal in functional MRI data. Neuroimage 181, 692–717
(2018).

36. R. M. Hutchison et al., Dynamic functional connectivity: Promise, issues, and
interpretations. Neuroimage 80, 360–378 (2013).

37. J. M. Shine et al., Estimation of dynamic functional connectivity using multiplication
of temporal derivatives. Neuroimage 122, 399–407 (2015).

38. S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathemati-
cal Introduction (Cambridge University Press, 2017).

39. A. Altmann, B. Ng, S. M. Landau, W. J. Jagust, M. D. Greicius; Alzheimer’s Disease Neu-
roimaging Initiative, Regional brain hypometabolism is unrelated to regional amyloid
plaque burden. Brain 138, 3734–3746 (2015).

40. L. D. Landau, E. M. Lifshitz, L. E. Reichl, Statistical physics, part 1. Phys. Today 34, 74
(1981).

41. M. Xia, J. Wang, Y. He, BrainNet Viewer: A network visualization tool for human brain
connectomics. PLoS One 8, e68910 (2013).

42. Y. Geinisman, L. deToledo-Morrell, F. Morrell, I. S. Persina, M. Rossi, Age-related loss
of axospinous synapses formed by two afferent systems in the rat dentate gyrus as
revealed by the unbiased stereological dissector technique. Hippocampus 2, 437–444
(1992).

43. T. C. Foster, C. M. Norris, Age-associated changes in Ca(2+)-dependent processes:
Relation to hippocampal synaptic plasticity. Hippocampus 7, 602–612 (1997).

44. J. J. Harris, R. Jolivet, D. Attwell, Synaptic energy use and supply. Neuron 75, 762–777
(2012).

6 of 7 | PNAS
https://doi.org/10.1073/pnas.2025727118

Weistuch et al.
Metabolism modulates network synchrony in the aging brain

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025727118/-/DCSupplemental
https://openneuro.org/datasets/ds003453
https://openneuro.org/datasets/ds003437
https://openneuro.org/datasets/ds003437
https://github.com/lcneuro/synch
https://github.com/lcneuro/synch
https://arxiv.org/abs/0912.5409
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025727118/-/DCSupplemental
https://doi.org/10.1073/pnas.2025727118


N
EU

RO
SC

IE
N

CE
PH

YS
IC

S

45. S. Camandola, M. P. Mattson, Brain metabolism in health, aging, and neurodegener-
ation. EMBO J. 36, 1474–1492 (2017).

46. F. Yin, A. Boveris, E. Cadenas, Mitochondrial energy metabolism and redox signal-
ing in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371
(2014).

47. D. Kapogiannis, M. P. Mattson, Disrupted energy metabolism and neuronal circuit
dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 10, 187–
198 (2011).

48. B. Sahoo, A. Pathak, G. Deco, A. Banerjee, D. Roy, Lifespan associated global patterns
of coherent neural communication. Neuroimage 216, 116824 (2020).

49. M. D’Esposito, L. Y. Deouell, A. Gazzaley, Alterations in the bold fMRI signal with
ageing and disease: A challenge for neuroimaging. Nat. Rev. Neurosci. 4, 863–872
(2003).

50. P. J. Cox et al., Nutritional ketosis alters fuel preference and thereby endurance
performance in athletes. Cell Metab. 24, 256–268 (2016).

51. J. J. Chen, C. J. Gauthier, The role of cerebrovascular-reactivity mapping in functional
MRI: Calibrated fMRI and resting-state fMRI. Front. Physiol. 12, 657362 (2021).

52. C. Windischberger et al., On the origin of respiratory artifacts in BOLD-EPI of the
human brain. Magn. Reson. Imaging 20, 575–582 (2002).

53. K. Murphy, R. M. Birn, P. A. Bandettini, Resting-state fMRI confounds and cleanup.
Neuroimage 80, 349–359 (2013).

54. J. Chen, P. Herman, S. Keilholz, G. J. Thompson, Origins of the resting-state fMRI
signal. Front. Neurosci. 14, 594990 (2020).

55. J. Billings, S. Keilholz, The not-so-global blood oxygen level-dependent signal. Brain
Connect. 8, 121–128 (2018).

56. T. T. Liu, A. Nalci, M. Falahpour, The global signal in fMRI: Nuisance or information?
Neuroimage 150, 213–229 (2017).

57. F. Xu et al., The influence of carbon dioxide on brain activity and
metabolism in conscious humans. J. Cereb. Blood Flow Metab. 31, 58–67
(2011).

Weistuch et al.
Metabolism modulates network synchrony in the aging brain

PNAS | 7 of 7
https://doi.org/10.1073/pnas.2025727118

https://doi.org/10.1073/pnas.2025727118



