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Abstract

Cells execute specific responses to diverse environmental cues by encoding information in 

distinctly compartmentalized biochemical signaling reactions. Genetically encoded fluorescent 

biosensors enable the spatial and temporal monitoring of signaling events in live cells. Temporal 

and spatiotemporal computational models can be used to interpret biosensor experiments in 

complex biochemical networks and to explore hypotheses that are difficult to test experimentally. 

In this review, we first provide brief discussions of the experimental toolkit of fluorescent 

biosensors as well as computational basics with a focus on temporal and spatiotemporal 

deterministic models. We then describe how we used this combined approach to identify and 

investigate a protein kinase A (PKA) – 3′,5′-cyclic adenosine monophosphate (cAMP) – Ca2+ 

oscillatory circuit in MIN6 β cells, a mouse pancreatic β cell system. We describe the application 

of this combined approach to interrogate how this oscillatory circuit is differentially regulated 

in a nano-compartment formed at the plasma membrane by the scaffolding protein A-Kinase 

Anchoring Protein 79/150 (AKAP79/150). We leveraged both temporal and spatiotemporal 

deterministic models to identify the key regulators of this oscillatory circuit, which we confirmed 

with further experiments. The powerful approach of combining live-cell biosensor imaging with 

quantitative modeling, as discussed here, should find widespread use in the investigation of 

spatiotemporal regulation of cell signaling.

Abstract Figure Description.

Complex cross-regulation between cAMP, PKA, and calcium in β cells leads to coordinated 

oscillatory behavior, which can be measured in individual cells using genetically encoded 

fluorescent biosensors. Furthermore, subcellular targeting of genetically encoded fluorescent 
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biosensors enables the detection of compartment-specific, coordinated oscillations of signaling 

components in cells. The underlying mechanisms behind the coordinated oscillations can be 

investigated using temporal (ODE) and spatiotemporal (PDE) computational models. This figure 

was made using Biorender.com.

Compartmentalized Signaling

Cell signaling is spatially compartmentalized to coordinate specific and diverse cellular 

responses to environmental cues. Mechanisms of spatial compartmentalization include 

intrinsic membrane compartments, molecular assemblies, and dynamic regulatory fencing. 

Membranes divide eukaryotic cells into intrinsic compartments, such as the plasma 

membrane, the nucleus, the endoplasmic reticulum, the Golgi apparatus, vesicles, and 

lysosomes, which each can contain distinct signaling environments. Alternative to 

membrane partitioning, proteins and other signaling molecules can assemble into molecular 

assemblies. Multivalent scaffolding proteins can form molecular assemblies by tethering 

together different proteins and anchoring the assembly to different subcellular locations. 

Molecular assemblies can also form by liquid-liquid phase separation (LLPS), in which 

certain biomolecules separate from the general intracellular environment and become 

enriched in distinct liquid-like droplets called biomolecular condensates or membraneless 

organelles. Finally, within the context of reaction-diffusion systems, competing regulatory 

enzymes can impose dynamic spatial boundaries on diffusible signals, a phenomenon we 

call dynamic regulatory fencing, which often yields spatial signaling gradients. For a more 

extensive discussion of compartmentalized signaling, please refer to our other reviews 

(Mehta and Zhang 2021; J. F. Zhang et al. 2021).

Genetically Encoded Fluorescent Biosensors

Genetically encoded fluorescent biosensors are protein-based probes that convert a 

biochemical signaling event into a change in the sensor’s fluorescent properties, which 

can then be measured optically. These biosensors are particularly useful for investigating 

compartmentalized signaling, as they can be targeted to different subcellular compartments. 

Biosensors have been developed to detect the presence of intracellular messengers, 

metabolites, and other analytes, or track changes in the localization, conformation, and 

activity of signaling proteins. Biosensors typically consist of two functional regions—a 
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sensing unit and a reporting unit. The sensing unit can either bind directly to the target 

of interest or be chemically modified by the target, which induces a change in the 

reporting unit. Sensors can be broadly categorized by two different reporting mechanisms: 

reporting by changes in cellular location or changes in fluorescence signal (please see E. C. 

Greenwald et al. 2018 for a more comprehensive review of genetically encoded biosensors).

Genetically encoded sensors that report by changes in cellular location generally consist of 

a fluorescent protein (FP) fused to a sensing protein that can bind to the target molecule 

of interest. When the reporter translocates and binds to the target molecule, the resulting 

redistribution of fluorescence to a particular location indicates the local generation of the 

target molecule. One example of this reporter design involves tethering the binding-domain 

of an endogenous effector protein to an FP. This design has been used to sense membrane 

lipids (Várnai et al. 1999) as well as GTP-loaded Ras and Rap GTPases (Bivona and 

Philips 2005). Alternative to endogenous effector proteins, “nanobodies” or heavy chain-

only antibodies that bind to the target of interest, or even a specific conformation of a target 

protein, can also be tagged with an FP to visualize endogenous target proteins (de Beer and 

Giepmans 2020). For example, a GFP-labeled nanobody that selectively binds to agonist-

bound and thus activated β2-adrenoceptor has been used to visualize the internalization and 

trafficking of activated receptor in live cells (Irannejad et al. 2013). Kinase translocation 

reporters (KTRs) represent another type of location-based reporters that translocate to 

a particular subcellular region in response to a stimulus (Kudo et al. 2018). The KTR 

sensing domain consists of a kinase substrate motif fused to a bipartite nuclear localization 

signal (bNLS) and a nuclear export signal (NES). When the KTR is phosphorylated by the 

kinase of interest, the negatively charged phosphate groups will decrease bNLS function, 

causing the KTR to translocate out of the nucleus and into the cytoplasm. KTRs have been 

developed for several different kinases, including Extracellular-Signal Regulated Kinase 

(ERK), c-Jun N-terminal Kinase (JNK), p38 kinases, and Protein Kinase A (PKA) (Regot et 

al. 2014).

In addition to translocation-based sensors, biosensors can report detection of the target 

molecule via a change in fluorescence. Typically, the target can either post-translationally 

modify or simply bind to the sensing unit, causing a conformational change that alters the 

fluorescence output of the reporting unit. A sensing unit that undergoes a conformational 

change in response to a stimulus is also referred to as a molecular switch. This design can 

be implemented by incorporating a molecular switch directly into the β-can of a single 

FP (Nasu et al. 2021). When the molecular switch interacts with the target molecule, it 

undergoes a conformational change that alters the FP structure, which in turn changes 

the fluorophore properties, such as increasing or decreasing the fluorescence intensity or 

shifting the peak excitation or emission wavelength. This single-fluorophore design has been 

used in genetically encoded calcium indicators (GECIs) and in biosensors for membrane 

potential, cAMP and cGMP, and kinase activities (E. C. Greenwald et al. 2018).

Another implementation consists of a molecular switch sandwiched between two fluorescent 

proteins capable of Förster resonance energy transfer (FRET), a radiationless energy transfer 

via dipole coupling from a donor fluorophore to an acceptor fluorophore (J. F. Zhang et al. 

2021). This energy transfer causes a decrease in donor fluorescence and a corresponding 
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increase in acceptor fluorescence upon donor excitation, which can be reported as the 

ratio of acceptor to donor emission intensity or detected as a donor fluorescence lifetime 

change. This FRET-based design has been used in biosensors for metal ions, intracellular 

messengers, phosphoinositides and kinase activities (J. F. Zhang et al. 2021). For FRET-

based kinase activity reporters, the molecular switch contains a kinase substrate motif 

connected to a phosphoamino-acid binding domain by a flexible linker. When the kinase 

of interest phosphorylates the substrate motif on the biosensor, the phosphoamino-acid 

binds to phosphorylated substrate motif, causing a conformational change in the sensor that 

modulates the FRET readout.

Each biosensor design approach has pros and cons that should be weighed carefully before 

experiments are conducted. When measuring small changes in signaling activities, it is 

best to select a biosensor with the highest sensitivity, i.e., high signal-to-noise ratio and 

high affinity for the target (Palmer et al. 2011). However, sometimes the highest-affinity 

sequences may suffer from reduced selectivity and can sense other molecules than the 

desired target (Palmer et al. 2011). When investigating differences in kinase activity in 

different subcellular compartments, KTRs would be less desirable as they use translocation 

as a readout of kinase activity and thus cannot be readily used to probe the activity in 

different compartments. If the research question involves probing the interplay between 

multiple signaling molecules, intensiometric single-FP sensors would be attractive since 

they occupy less spectral space and can be used in multiplexed imaging of many different, 

spectrally orthogonal biosensors. However, variability in protein expression and illumination 

intensity can affect fluorescence intensity independent of target activity, making it difficult 

to quantitatively measure signaling activities (Germond et al. 2016).

Finally, when detecting compartmentalized signaling activities, one must also consider the 

potential effects of subcellular compartments on biosensor reporting. When targeted to 

acidic environments such as endosomes and lysosomes, biosensors should employ specific 

fluorescent proteins that are insensitive to acidic pH (Betolngar et al. 2015; Burgstaller 

et al. 2019). When targeted to oxidative environments in the secretory pathway, such as 

the endoplasmic reticulum and Golgi, biosensors should use fluorescent proteins that are 

resistant to forming disulfide bonds that may cause misfolding of the fluorescent protein 

(Costantini et al. 2015).

Computational Modeling

Due to the complexity of spatiotemporal signaling networks, mathematical modeling can 

aid in investigating network compositions and mechanisms that are too complex to infer 

from biosensor imaging data alone. Mathematical models can also be applied to test 

conditions that are difficult to achieve experimentally. Modeling based on experimental 

data is an iterative process, starting with a hypothesized network topology (or multiple 

topologies). A model is built with reactions based on this hypothesized network and 

then applied to generate predictions (J. H. Yang and Saucerman 2011). Next, model 

predictions are compared against experimental results, and if they do not match, the model 

topology requires refinement, initiating the process again. Even models that do not match 

experimental results provide useful information, as they indicate that processes outside 
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of those included in the model are important in the observed experimental phenomenon, 

generating new avenues of investigation.

Two main types of models are deterministic models, which are differential equation-based 

models and will yield the same results for a set of given initial conditions, or stochastic 

models, which incorporate randomness or uncertainty to represent noise and as a result, 

yield different results for each simulation. Stochastic models are better suited for low protein 

numbers, low volumes, and noisy systems. For this review, we focus on deterministic 

models, and readers are referred to other reviews for more information on stochastic 

modeling (Gonze et al. 2018; Székely and Burrage 2014; Tyson et al. 2019). In deterministic 

models, one can examine the biochemical activity in cells by using ordinary differential 

equation (ODE)-based models, in which the concentration or number of molecules varies 

only in time, or by using partial differential equation (PDE)-based models, in which the 

concentration or number of molecules varies in both time and space. As PDE models contain 

more independent variables than ODE models, they are typically more complex and more 

difficult to solve.

There are some alternative models for representing complex biological signaling processes. 

In particular, rule-based or agent-based models treat individual signaling molecules as 

“agents”, and their properties such as biomolecular interactions and diffusion are represented 

as local rules (Chylek et al. 2014; Soheilypour and Mofrad 2018). Bayesian network 

models represent probabilistic dependence between signaling network components, which 

may imply a functional connection between them (Sachs et al. 2005). Since Bayesian 

models are probabilistic, they are more robust to noisy biological data, and they are useful 

for identifying the most probable network topologies from a collection of hypothesized 

signaling networks (Sachs et al. 2002, 2005).

Temporal Kinetic Models using Ordinary Differential Equations (ODEs)

Temporal ODE-based models answer questions about how the concentration of a component 

of interest changes in time in a well-mixed compartment. ODE models are useful in 

mechanistically investigating complex temporal activity and regulation in large biochemical 

systems containing many signaling components and reactions. For example, Zhang et al. 

created an ODE model to investigate the mechanism behind the biphasic RhoA response 

to histamine stimulation observed using a FRET-based RhoA activity sensor and found that 

the first phase of biphasic RhoA activation depended on both p63 Rho Guanine Nucleotide 

Exchange Factor (RhoGEF) and continuously active histamine receptor, while the second 

phase depended on p115 RhoGEF, independent of histamine receptor activity (J. Z. Zhang, 

Nguyen, et al. 2020).

In another example, Ryu et al. measured the kinetics of growth factor-stimulated 

Extracellular Signal-Regulated Kinase (ERK) activity in single cells using a FRET-based 

ERK biosensor and observed a heterogeneous mix of transient and sustained ERK kinetics 

across different cells in response to sustained growth factor stimulation (Ryu et al. 2015). 

On the other hand, when they applied pulsed growth factor stimulation instead of sustained 

stimulation, they observed homogeneous ERK transients across a population of cells. To 

investigate the mechanism behind the heterogenous responses across different cells, they 
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built a semi-deterministic ODE model, in which individual cells were simulated by assigning 

initial signaling component concentrations taken randomly from a log-normal distribution 

corresponding to the distribution of protein abundances across the cell population. From 

this model, they identified that a receptor activity-dependent, feed-forward mechanism from 

ERK on an upstream kinase in the signaling cascade is responsible for the heterogenous 

ERK kinetics and that this mechanism is bypassed during pulsed growth factor stimulation.

ODEs assume that concentrations are uniform throughout the volume, which may differ 

greatly from physiological conditions. Compartmental ODE models can therefore be 

implemented to account for differing signaling activities and concentrations in different 

subcellular locations. While compartmental ODE models still assume the components within 

each compartment are well mixed, they can offer some insight into differences in signaling 

activities between different spatial compartments while maintaining simplicity compared 

to PDE models. Compartmental ODE models can be used to probe signaling behaviors 

in multiple subcellular compartments, such as different organelles or even microdomains 

within the same organelle.

For example, Yang et al. implemented a compartmental ODE model to investigate the 

mechanism behind kinetic and sensitivity differences in β-adrenergic receptor agonist-

stimulated PKA activity in the nucleus compared to the cytosol in cardiomyocytes, which 

they observed using a FRET-based PKA activity biosensor. Their model predicted that 

the slower and weaker PKA activity in the nucleus is due to the slow diffusion of PKA 

catalytic subunit into the nucleus and that the sensitivity differences are regulated by nuclear 

expression of protein kinase inhibitor (PKI) (J. H. Yang et al. 2014). In experiments using 

a nuclear-targeted PKA activity biosensor, they measured a further decrease in nuclear 

PKA activity when nuclear transport was inhibited, confirming that slow diffusion of PKA 

catalytic subunit into the nucleus rate-limits nuclear PKA activity. They also confirmed via 

immunostaining that PKI was localized exclusively to the nucleus in the cardiomyocytes.

In another example, using both biosensor experiments and a compartmental ODE model, 

Agarwal et al. investigated whether cAMP production differs at the plasma membrane in 

lipid rafts, a plasma membrane microdomain enriched in cholesterol, versus in non-raft 

domains, since cAMP-stimulating receptors and proteins are non-uniformly distributed 

between these microdomains (Agarwal et al. 2014). Using FRET-based cAMP reporters 

localized to these different regions, they observed a greater maximal cAMP biosensor 

response to receptor activation in lipid-raft regions than in non-raft regions of the plasma 

membrane. Adenyl cyclase inhibition alone caused a decrease in the biosensor response only 

in the non-raft regions, indicating that this difference in maximal cAMP responses was due 

to higher basal cAMP in non-raft plasma membrane regions. Through their compartmental 

ODE model, they found that limited diffusion of cAMP between these microdomains was 

integral to the observed cAMP compartmentation at the plasma membrane.

Spatiotemporal Kinetic Models using Partial Differential Equations (PDEs)

While compartmental ODE models can be used to investigate signaling activity within 

different compartments, to investigate the effect of spatial concentration gradients and cell 

morphology on signaling dynamics, one needs to implement PDE-based models, as these 
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explicitly measure changes in the concentration or number of molecules in space as well as 

time. While PDEs can include variables for all three spatial dimensions, simplifying to only 

one to two spatial dimensions can reduce computational complexity.

For example, Lohse et al., investigated whether phosphodiesterases can create cAMP nano-

compartments by creating a FRET-based cAMP biosensor fused to the phosphodiesterase 

PDE4A1, which enables the measurement of cAMP concentrations in the immediate vicinity 

of the enzyme (Lohse et al. 2017). They observed experimentally with this sensor that 

phosphodiesterase activity can create a local cAMP sink. However, their computational 

PDE-based model of cAMP concentration with respect to time and radial distance from the 

sensor predicted that phosphodiesterase activity alone cannot generate the experimentally 

observed cAMP compartmentation.

In another example, Takano et al. investigated whether RhoA and Rho-kinase contribute to 

the formation of a single axon from many minor neurites in polarized neurons (Takano et 

al. 2017). Using photoactivatable RhoA and Rho-kinase, they found that polarized activation 

of RhoA and Rho-kinase is sufficient to cause minor neurites to retract. They built a 

PDE-based model of Rho-kinase diffusion along minor and long neurites, which predicted 

greater accumulation of Rho-kinase in minor neurites compared to the long neurite. They 

validated this prediction experimentally using immunostaining.

Considerations for Constraining Computational Models with Biosensor Data

When fitting computational models to biosensor data, one must first determine how to 

quantitatively relate the changes in biosensor fluorescence signal to the signaling activity 

being measured. Depending on the biosensor target and the existence of pathway activators 

and inhibitors, calibration can be performed in cells or using purified sensors in vitro. 

Ideally, calibration performed using techniques as close to the physiological conditions as 

possible will yield the most accurate results.

One calibration approach is to normalize the experimentally measured biosensor signal 

to minimum and maximum activation in cells. This normalization requires being able to 

experimentally obtain the minimal activity from low basal activity, inhibitors, or negative-

control mutant sensors and maximal activity from activators, as well as inhibition of signal 

degraders, to calculate the fraction of total biosensors that are active (E. Greenwald et 

al. 2014; Regot et al. 2014). Sensors for membrane-impermeable analytes or pH can 

be calibrated in cells using chemicals that permeabilize the membrane to the analyte so 

that its intracellular concentration equilibrates with the applied extracellular concentration 

(Arosio et al. 2010; Chin et al. 2021). When maximal stimulation is not experimentally 

feasible for sensors that detect post-translational modifications or GTP loading, calibration 

can be performed by immunoblotting of activated sensor and total sensor (Fujioka et 

al. 2006; Gillies et al. 2020). For smaller molecules or ions that cannot be detected by 

immunoblotting, biosensors can also be purified and calibrated with known concentrations 

of analyte in vitro. However, calibration of the sensors in vitro assumes that the maximal 

sensor response is similar in vitro and in cells, which may not be applicable across various 

primary cell types (Börner et al. 2011).
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The next consideration is whether to explicitly incorporate the biosensor and its activating 

reactions into the computational model or to relate the fluorescence signal to the active 

species in the model. If the model is constrained such that the range of signaling activities 

are within the detection limits of the biosensors, i.e., the biosensors do not become saturated, 

the biosensor signal can be directly related to the parameters of activated species in the 

model (Fujita et al. 2014; J. Z. Zhang, Nguyen, et al. 2020). However, if the sensor kinetics 

differ from the signaling event being detected, such as delayed onset kinetics or delayed 

signal decay kinetics, this modeling approach might not yield accurate predictions. In such a 

case, a correction factor that relates biosensor kinetics to actual signaling kinetics could be 

calculated to compensate for such discrepancies (Lai et al. 2007).

A final consideration is that genetically encoded biosensors may perturb endogenous 

signaling activities. For example, when biosensors bind their targets, they can sequester the 

analyte and thus decrease the overall cell concentration, a phenomenon known as buffering 

(E. Greenwald et al. 2014). Buffering can be minimized as long as biosensor expression 

levels are kept low (E. Greenwald et al. 2014). Alternatively, biosensor expression levels can 

be estimated, and the sensor concentration explicitly included in the model to account for 

buffering effects (Falkenburger et al. 2010).

Probing Temporal and Compartmental Behavior of a Ca2+-cAMP-PKA 

Oscillatory Circuit in MIN6 Cells

Temporal phase regulation of a Ca2+-cAMP-PKA oscillatory circuit

In our previous work, we combined biosensor experiments with computational modeling to 

investigate complex cross-regulation of cAMP/PKA and Ca2+ signaling in MIN6 cells, a 

mouse pancreatic β-cell line (Ni et al. 2011). Cytosolic Ca2+ oscillations trigger pulsatile 

insulin secretion in pancreatic β-cells, which is an important function that is dysregulated 

in type 2 diabetes (MacDonald and Rorsman 2006). Ca2+ oscillations depend on Ca2+ 

influx across the plasma membrane, which is regulated by voltage-dependent Ca2+ channels 

(VDCCs), and Ca2+ release from internal stores in the endoplasmic reticulum, which is 

controlled by inositol triphosphate receptors (IP3Rs). PKA can modulate Ca2+ signaling by 

phosphorylating and activating both VDCCs (Ammala et al. 1993) and IP3Rs (Desouza 

et al. 2002). Ca2+ and its downstream effectors can also modulate cAMP levels and 

PKA, which is activated by cAMP, by activating or inhibiting adenyl cyclases (ACs) and 

phosphodiesterases, which catalyze the production and degradation of cAMP, respectively 

(Seino and Shibasaki 2005). Our study focused on specifically measuring the dynamics of 

PKA activity in this system and investigating the role of PKA dynamics on this complex 

feedback system with Ca2+ (Figure 1A).

While kinases are typically thought of as on-off switches, when we visualized PKA 

activity with a FRET-based A kinase activity reporter (AKAR) in MIN6 cells treated with 

tetraethylammonium (TEA), an agent that depolarizes the plasma membrane to trigger Ca2+ 

influx, we observed oscillations in PKA activity. Fluorescent biosensor imaging enabled the 

detection of these oscillations that population-based methods such as immunoblotting could 

not resolve due to asynchronous oscillations among individual cells. We then investigated 

Posner et al. Page 8

J Physiol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the correlation between Ca2+ and PKA activity oscillations by multiplexing the Ca2+ dye 

Fura-2 with AKAR or the FRET-based cAMP sensor Indicator of cAMP using Epac (ICUE) 

and found synchronized oscillations between all three signaling activities (Figure 1B - 

D). We observed that Ca2+ oscillations are antiphase with cAMP oscillations (Figure 1D) 

and that the Ca2+ peak onset lags behind PKA activity peak onset (Figure 1C), hinting 

at PKA-mediated activation of VDCCs and/or IP3Rs. We also observed that PKA activity 

decay was correlated with the onset of Ca2+ spikes, suggesting cAMP/PKA regulation by 

Ca2+-dependent ACs or PDEs.

To investigate the mechanism of interplay between Ca2+, cAMP and PKA, we built a 

minimal ODE model that was sufficient to recapitulate the experimental findings (Figure 

1E and F). We first performed topology analysis and determined that the inclusion of Ca2+-

bound calmodulin (CaM)-mediated activation of PDEs was sufficient to computationally 

reproduce the experimentally observed antiphase Ca2+ and cAMP oscillations. The final 

model used reactions and parameters from previously published models, but we tuned 

parameters affecting Ca2+ oscillation frequency such that the model predicted Ca2+ 

oscillations that matched this experimental system, as previous values were derived from 

other cell lines with different Ca2+ oscillation frequencies. We also explicitly included 

Fura-2, ICUE, and AKAR in the model, with their reaction parameters estimated from 

previous studies, to enable direct comparison between model predictions and experimental 

results. The combined experimental and modeling data led to the discovery of an oscillatory 

circuit consisting of Ca2+, cAMP and PKA.

We used this model to evaluate the role of PKA in this oscillatory system. Inhibiting 

PKA in the model abolishes Ca2+ oscillations (Figure 2A), while activating PKA increases 

oscillation frequency (Figure 2B). We confirmed this experimentally by adding H89, an 

ATP-competitive PKA inhibitor, (Figure 2C) or 3-isobutyl-1-methylxanthine (IBMX), a 

phosphodiesterase inhibitor that indirectly activates PKA by increasing cAMP levels (Figure 

2D). Furthermore, model sensitivity analysis identified that the frequency, but not amplitude, 

of Ca2+ oscillations was sensitive to PKA activity, indicating that PKA acts as a Ca2+ 

frequency modulator in this circuit.

We next asked whether direct activation of PKA can trigger the oscillations of this signaling 

system. We found that sufficiently strong PKA feedback can tune as well as initiate 

oscillations even when the model branch involving Ca2+ and membrane potential is initially 

inactive (Figure 2E). To experimentally verify this prediction, we applied a low dose (1–

3 μM) of 8-bromoadenosine-3′, 5′-cyclic monophosphate acetoxymethylester (8-Br-cAMP-

AM), a cell-permeable cAMP analog that preferentially activates PKA, to cells expressing 

AKAR and found that this low PKA input signal triggered oscillatory changes in PKA 

activity (Figure 2F). Higher doses (10–20 μM) of 8-Br-cAMP-AM induced a different 

PKA behavior – smaller amplitude and higher frequency oscillations superimposed on a 

monotonic activity increase (Figure 2F). Our model predictions qualitatively matched these 

results (Figure 2E).

We then investigated the functional consequences of these varying PKA oscillations under 

low and high stimulation conditions. We found that low doses of the cAMP analog induced 
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oscillations in the cytosol without affecting nuclear PKA activity, which we determined by 

measuring PKA phosphorylation of a nuclear substrate, the endogenous transcription factor 

CREB. High doses of the analog, on the other hand, caused a gradual increase in PKA 

activity with superimposed high-frequency oscillations and led to an increase in nuclear 

PKA activity and CREB phosphorylation.

Our results suggest that oscillatory PKA activity enabled by the Ca2+-cAMP-PKA circuit 

can serve as a distinct mechanism for achieving signaling diversity. The frequency of PKA 

activity oscillation can encode specific signaling information, based on the identities and 

doses of input signals, and generate specific functional output – depending on the frequency 

of oscillations, the system may switch from a local (cytosol only) to a global (cytosol plus 

nucleus) signaling mode. Furthermore, we discovered that PKA also controls the oscillatory 

patterns of other key components in the signaling circuit, such as Ca2+. Our findings indicate 

that complex cell functions may depend on the coordination and synchronization of multiple 

oscillating signaling components.

While the model in this study was sufficient to qualitatively reproduce the Ca2+-cAMP-

PKA oscillations, discrepancies between the predicted PKA and Ca2+ oscillation behavior 

(Figure 1E) and the experimental observations (Figure 1C) are apparent, highlighting 

the potential for further refinement of the model. The discrepancy is likely because we 

evaluated the possible minimal model topologies using two criteria that only relate cAMP 

and Ca2+ oscillations. Re-evaluating these hypothesized topologies with a 3rd criterion that 

the Ca2+ and PKA oscillations are in-phase may improve performance. Simplifications 

and assumptions within the model, such as the simplified interactions between the Ca2+ 

and cAMP modules and the assumption that calmodulin modulates adenylyl cyclases and 

phosphodiesterases in the same manner, may also need to be adjusted to satisfy this 3rd 

criterion. This improved model would aid in further investigation into the mechanism of 

PKA regulation of Ca2+ oscillations.

Spatially compartmentalized phase regulation of the Ca2+-cAMP-PKA oscillatory circuit

Considering that cAMP and Ca2+ are differentially regulated at different spatial 

compartments, we expanded on our previous discovery of the Ca2+-cAMP-PKA oscillatory 

circuit to investigate how this circuit is regulated at a distinct plasma membrane localized 

nano-compartment formed by the scaffolding protein AKAP79/150. AKAP79/150 has been 

previously demonstrated to be important in this pathway, as knocking-out AKAP79/150 

functionally impaired glucose-stimulated insulin secretion in β-cells (Hinke et al. 2012). 

Since AKAP79/150 tethers a unique combination of key oscillatory circuit components, i.e. 

VDCC, adenylyl cyclase 8 (AC8), and PKA (Tenner et al. 2020), we hypothesized that the 

AKAP79/150 scaffold creates a compartment with fine-tuned Ca2+-cAMP-PKA oscillatory 

circuit dynamics.

We first experimentally investigated this hypothesis by targeting a FRET-based cAMP 

biosensor (Epac1-camps) to either the AKAP79/150 compartment or the general plasma 

membrane and performed multiplexed imaging along with a red-fluorescent Ca2+ biosensor 

(RCaMP) (Figure 3A and B). We observed at the general plasma membrane that cAMP 

oscillations were out-of-phase with Ca2+ oscillations (Figure 3A), consistent with the 
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behavior observed in the cytoplasm in our previous study, but at the AKAP79 compartment, 

cAMP was found to oscillate in-phase with Ca2+ oscillations (Figure 3B).

To gain a more quantitative understanding of the regulation of the cAMP-Ca2+ phase 

relationship at the AKAP79 compartment, we created a simplified well-mixed model 

based on our previous model to investigate the role of ACs and phosphodiesterases. 

This simplified model contained reactions for Ca2+, cAMP, Ca2+-stimulated AC8 and the 

phosphodiesterase PDE1 (Figure 3C). The model predicted that the phase relationship 

between cAMP and Ca2+ can be tuned by altering the relative strength between ACs and 

phosphodiesterases. When AC8 dominates, cAMP and Ca2+ oscillate in phase; conversely, 

when PDE1 dominates, oscillations are out of phase. We experimentally confirmed this 

prediction by knocking down AC8, which caused the previously in-phase cAMP-Ca2+ 

oscillations in the AKAP79/150 compartment to shift out of phase. Conversely, when we 

increased AC8 levels at the plasma membrane by overexpressing AC8, cAMP oscillations 

outside the AKAP79/150 compartment shifted in phase with Ca2+ oscillations.

cAMP must be distinctly regulated within the AKAP79/150 nano-compartment and the 

general plasma membrane compartment to produce the observed differences in cAMP 

oscillations within these proximal compartments. The mechanisms that regulate cAMP 

compartmentation, however, are not completely understood, especially considering that 

single cAMP-producing ACs and cAMP-degrading phosphodiesterase enzymes have 

relatively low catalytic efficiency (Bock et al. 2020; Conti et al. 2014; J. Z. Zhang, 

Lu, et al. 2020). Previously, we found that AKAP79/150 forms nanometer-scale clusters 

along the plasma membrane (Mo et al. 2017). Because AKAP79/150 and AC8 are known 

to interact (Willoughby et al. 2012), we hypothesized that AC8 may similarly form 

plasma membrane nanoclusters to compartmentalize cAMP production. We tested this 

hypothesis by performing super-resolution imaging of AKAP79/150 and AC8 and found 

that AKAP79/150 forms clusters, as previously observed (Mo et al. 2017), and that AC8 also 

forms clusters as well. We calculated the mean radius and average nearest neighbor spacing 

for both molecules and performed Fluorescence Recovery after Photobleaching (FRAP) to 

measure the diffusivity of AC8.

We then used these data to build a spatial model using the simplified model reactions to test 

whether the nano-scale organization of AKAP79/150 and AC8 is important for mediating 

in-phase oscillations. We created a hexagonal prism with one immobile AKAP79/150:AC8 

cluster in the center of the plasma membrane face and PDE1 well mixed throughout 

the volume to represent cytosolic PDE1 (Figure 3D). The spatial model successfully 

recapitulated the experimentally observed in-phase Ca2+ and cAMP oscillations at the 

center of the AKAP79/150:AC8 cluster and out-of-phase oscillations at the general plasma 

membrane or in the cytosol (Figure 3E).

Further, assuming AC8 clustering was driven by AKAP79/150 clustering and 

AKAP79/150:AC8 interactions, the model predicted that decreasing AC8:AKAP79/150 

interactions would lead to a decrease in local AC8 concentration in the nanoclusters 

(Figure 4A) and a reduction of the spatial domain of in-phase oscillations (Figure 4B). 

We experimentally verified this prediction by overexpressing the N-terminal 106 residues 
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of AC8 (AC81−106), which competes with full-length AC8 and disrupts the interaction with 

AKAP79/150. We found that overexpressing AC81−106 caused a decrease in the number 

of AC8 molecules within AC8 nanoclusters, as measured via super-resolution microscopy 

(Figure 4C), and an increase in the number of cells with out-of-phase cAMP oscillations at 

the AKAP79/150 compartment measured via cAMP imaging (Figure 4D).

We then applied this spatial model to explore the functional role of spatially 

compartmentalized cAMP-Ca2+ phase regulation. Our model predicted that cAMP 

oscillations also cause PKA oscillations, which we experimentally confirmed by 

multiplexing AKAR and RCaMP. Furthermore, perturbing the precise nano-compartment 

phase relationship by inhibiting AC8:AKAP interactions using AC81−106 disrupted the 

strength and timing of Ca2+ oscillations, likely due to defective PKA regulation of VDCCs 

(e.g., CaV1.2). These data indicate that the compartmentalization of cAMP- Ca2+ oscillatory 

phase regulates global Ca2+ oscillation frequency, regularity, and sustainability.

In this work, we demonstrated the phase relationship between two key components in an 

oscillatory signaling circuit can be spatiotemporally regulated, representing a novel mode 

of information encoding. We further show that disruption of the nano-scale compartment 

regulation impacts global Ca2+ oscillations, demonstrating the functional importance of 

maintaining this organization. The in-phase cAMP and Ca2+ oscillations at the AKAP79/150 

compartment may play an important role in insulin secretion in β cells, as AKAP79/150 

associates with insulin secretory granules via CaV1.2 (Murphy et al. 2014). This form of 

information encoding may be a strategy employed by other compartmentalized signaling 

networks to enable diverse cell signaling responses to stimuli.

Conclusion and Future Perspectives

Combining computational models with fluorescent biosensor imaging enables the 

quantitative and mechanistic investigation of complex signaling phenomena. Even models 

that are not able to reproduce key experimental results provide some value, as they indicate 

the importance of other signaling molecules not defined in the model. Fluorescent biosensor 

imaging provides both spatial and temporal readouts on the seconds to minutes time scale 

that are useful for both constructing models and validating model predictions, particularly 

for models that account for compartmentalized or spatial signaling. Further, fluorescent 

biosensors can be multiplexed in single cells, which enables the visualization and analysis 

of correlations between dynamics of multiple signaling components that would be obscured 

from population-level measurements.

New experimental techniques enable enhanced throughput for quantitative, single-cell 

dynamic measurements (E. Greenwald et al. 2023) as well as investigations of many 

different signaling components simultaneously, such as improvements in biosensor 

multiplexing strategies in single cells (Mehta et al. 2018) or biosensor barcoding schemes 

in populations of cells (J. M. Yang et al. 2021). With increased information, computational 

models can serve as a quantitative framework to integrate datasets and enable investigation 

of complex network behaviors. Studies combining these two approaches will further enable 

a systems approach to elucidating large and complex spatiotemporal crosstalk mechanisms.
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For example, Yang et al. demonstrated the ability to infer feedback loops of various 

networking components in their biosensor barcoding approach by inhibiting one signaling 

component at a time and measuring the effects on all other biosensor signals (J. M. 

Yang et al. 2021). Their approach assumes that the responses of the mixed population 

of differentially barcoded cells are synchronized to a shared stimulation and environment, 

but this approach would fail to capture complex signaling behavior such as asynchronous 

oscillations. In such a case, multiplexing the same sensors in single cells would be a better 

alternative, but fewer signaling activities can be simultaneously detected compared to the 

barcoding approach. In either case, the data indicate positive or negative cross-regulation 

between signaling components but do not illuminate the mechanism. A computational 

model could be used to investigate possible mechanisms underlying experimentally observed 

cross-regulation. This would entail building computational models containing hypothesized 

crosstalk reactions and evaluating which reactions are sufficient for the model to reproduce 

the experimental results from multiplexed or barcoded biosensor imaging.
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Figure 1. Interplay between cAMP, PKA, and Ca2+ in β cells.
A) Key components in the computational model of the cAMP, PKA, and Ca2+ circuit. 

PKA can modulate Ca2+ flux into the cytosol from extracellular or intracellular sources 

by phosphorylating and activating Voltage Dependent Calcium Channels and IP3 receptors, 

respectively. Calcium can modulate cAMP by activating or inhibiting adenylyl cyclase or 

phosphodiesterases (PDEs), which produce and degrade cAMP, respectively. B) Schematics 

of the PKA Activity biosensor (AKAR-GR) and cAMP biosensor (ICUE-YR) used in 

co-imaging experiments. When PKA phosphorylates the PKA substrate sequence on 

AKAR-GR, FHA1 will bind to the phosphorylated residue, causing a conformational 

change in the sensor that increases FRET. cAMP binds to Epac-1 region of ICUE-YR, 

causing a conformational change in the sensor that decreases FRET. C & D) Multiplexing 

experimental results with Fura-2 and AKAR-GR (C) or Fura-2 and ICUE-YR (D). Co-

imaging Fura-2 and AKAR-GR shows in-phase PKA-Ca2+ oscillations (C). Co-imaging 

Fura-2 and ICUE-YR reveals out-of-phase cAMP-Ca2+ oscillations (D). E & F) To 

investigate the cAMP, PKA, and Ca2+ circuit, we built a minimal ordinary differential 

equation (ODE) model to qualitatively match the experimental results observed in C and D. 

The model qualitatively recapitulates in-phase PKA-Ca2+ oscillations (E) and out-of-phase 

cAMP-Ca2+ oscillations (F). Panel A was made using Biorender.com. Panels C-F were taken 

from figures in Ni et al. 2011.
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Figure 2. PKA Tunes Ca2+ Oscillations, and PKA Activity Oscillates upon Direct Activation.
A) The model predicts that inhibiting PKA activity (shaded region) will abrogate Ca2+ 

oscillations. B) The model predicts that increasing PKA activity (shaded region) will tune 

the frequency of Ca2+ oscillations. C) Fura-2 calcium imaging with PKA inhibition by 10 

μM H89, an ATP-competitive PKA inhibitor, confirms that PKA inhibition blocks Ca2+ 

oscillations. D) Fura-2 calcium imaging with indirect PKA activation by 100 μM IBMX, 

a phosphodiesterase inhibitor, confirms that PKA activation increases the frequency of 

Ca2+ oscillations. E) The model predicts that activating PKA activity with a low dose 

of activator yields lower frequency oscillations in PKA activation while a high dose 

induces higher frequency oscillations in PKA activation. F) FRET imaging of the AKAR 

biosensor confirms a low dose (1–3 μM) of 8-bromoadenosine-3′, 5′-cyclic monophosphate 

acetoxymethylester, a PKA-specific cAMP analog, yields lower-frequency oscillations in 

PKA activity while a high dose (10–20 μM) induces higher-frequency oscillations in PKA 

activity. This figure was created using figures in Ni et al. 2011.

Posner et al. Page 19

J Physiol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3. Biosensor Targeting and Spatial Modeling Reveals Distinct Tuning of the Ca2+-cAMP-
PKA Oscillatory Circuit within AKAP79/150 Compartment.
A) Schematic of the cAMP biosensor targeted to the plasma membrane and the 

experimental results showing out-of-phase oscillations between cAMP and Ca2+ at the 

plasma membrane. Oscillations were induced by the application of tetraethylammonium 

(TEA), which depolarizes the plasma membrane to trigger Ca2+ influx. B) Schematic 

of the cAMP biosensor tethered to AKAP79/150 for measuring cAMP levels at the 

AKAP79/150 compartment and experimental results showing in-phase oscillations between 

cAMP and Ca2+ at the AKAP79/150 compartment. C) The simplified model network 

of cAMP, Ca2+, and Ca2+-activated AC8 and PDE1, which produce and degrade cAMP, 

respectively. D) Spatial model dimensions and shape. The center of the top face of the 

hexagonal prism contains one immobile AKAP79/150:AC8 cluster, and the cytosol contains 

a uniform concentration of PDE1. E) Model predicted oscillations in phase at center of 

the AKAP79/150 compartment and out of phase outside of the compartment at the general 

plasma membrane or in the cytosol, matching experimental data obtained using biosensors. 

This figure was made in part using Biorender.com. Graphs in Panels A, B, and E were 

created from figures in Tenner et al. 2020 and is licensed by CC BY.
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Figure 4. AKAP79/150:AC8 Interaction Strength Important in AC8 Localization and cAMP-
Ca2+ Oscillation Phase Relationship.
A) Spatial model prediction that the disruption of the AKAP79/150:AC8 interaction causes 

redistribution of AC8 from within the cluster to the plasma membrane (measured as percent 

Gaussian) shown as half-Gaussian cross-sections in graph on the left and representative 

AC8 concentration heat maps of the hexagonal plasma membrane surface of 3D model 

on the right. B) Heatmap of the spatial model prediction that decreasing AC8 localization 

within the cluster or increasing distance from the cluster increases the time lag between 

cAMP and Ca2+ oscillations. C) Representative super-resolution image (scale 5 μM, inset 

500 nm) of over-expression of AC81−106, which disrupts AKAP79/150:AC8 clustering by 

competitively interacting with AKAP79/150, and quantification of decrease in the percent of 

AC8 localizations that fall into AKAP nanoclusters with AC81−106 overexpression compared 

to wild type. D) In agreement with model predictions, the disruption of AKAP79/150:AC8 

interaction by overexpression of AC81−106 leads to an increase in time lag between cAMP 

and Ca2+ oscillations at the AKAP79/150 compartment as measured using FRET biosensor 

imaging. This figure was created from figures in Tenner et al. 2020 and is licensed by CC 

BY.
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