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Diagrammatic Re-codification of Probability Theory:
A Representational Epistemological Study

Peter C-H. Cheng (p.c.h.cheng@sussex.ac.uk)
Department of Informatics/COGS

University of Sussex, Falmer, Brighton, BN1 9QH, UK

Abstract

It is claimed that the current representations used for prob-
ability theory provides a poor codification of that knowledge.
The limitations of the representations and how they encode
the knowledge causes conceptual difficulties and makes
problem solving difficult. Probability Space diagrams con-
stitute a new representational system that provides a simpler
and more coherent codification of probability theory, which
effectively supports problem solving. The two approaches are
contrasted, which demonstrates that the effects of representa-
tions on advanced forms of cognition extend beyond problem
solving and impacts on the conceptual understanding and
learning of bodies of knowledge.

Introduction
Inventing new representational systems is one of the pinna-
cles of human intellectual endeavors. The history of science
and mathematics is replete with examples of the critical role
of the invention of new representations in discovery (e.g.,
Cheng & Simon, 1995). Effective representational systems
are fundamental to the progression and accumulation of
knowledge and vital to its acceptance and use by future gen-
erations. For instance, the Hindu-Arabic numeration system
is a prime example of an effective representation (Zhang &
Norman, 1994). It competed with dozens of other systems
(Roman, Greek, Mayan, Chinese, etc) that were invented
over thousands of years, but through a process akin to natu-
ral selection, it is now dominant worldwide.

In contrast, the representational systems used in most
technical fields have only existed for a relatively short time
and have had few, if any, competitors. The way many sub-
jects are currently codified appears to be due to historical
accident rather than deliberated design – they do not have
the evolutionary pedigree of the Hindu-Arabic numeration
system. Thus, the representational systems that codify
knowledge in some subjects may be far from optimal, not
only in terms of their suitability for problem solving but in
their support for learning.

The importance of the representations for higher cogni-
tion is underscored by established findings in cognitive sci-
ence. Work on problem isomorphs has shown that the diffi-
culty of solving a problem can vary by over an order of
magnitude with different representations of the same task
(Kotovsky, Hayes, & Simon,1985). Alternative informa-
tionally equivalent representations may demand quite dif-
ferent amounts of computation (Larkin & Simon, 1987).
Zhang (1997) argued that there is a form of representational
determinism in which the nature of the representation used
substantially determines what information can be perceived,

what processes can be activated, and what structures can be
discovered.

It has been argued that such representational effects im-
pact the process of scientific discovery (Cheng, 1996). Pre-
vious work has also shown that by re-codifying knowledge
of complex conceptual domains, using alternative represen-
tational systems, it is possible to significantly enhance
learning. For the domain of particle collisions in physics,
using the diagrams that the original physicists invented in
order to discover the laws of momentum and energy conser-
vation, students gained a better understanding compared to
others using the modern algebraic approach (Cheng, 1999a).
By inventing a new diagrammatic representation that en-
codes the laws of basic electricity (Cheng, 2002) it was
found that students could obtain a better conceptual under-
standing of that apparently difficult topic compared to stu-
dents learning using the current algebraic approach (Cheng,
2002; Cheng & Shipstone, 2003).

The term representational epistemology may be used to
denote studies that examine the fundamental role of repre-
sentational systems in the advanced cognition (problem
solving, learning, discovery) of complex knowledge-rich
domains. There are at least four stages in such studies.
First, the content and problem classes of a target domain are
analyzed to reveal the underlying conceptual structure of the
knowledge, which includes the ontologies, perspectives,
scale levels, laws, models, prototypes and extreme cases of
the domain. Second, the current domain representations are
examined to understand how effectively, or otherwise, they
support conceptual understanding and problem solving, for
instance using task analyses. Third, a new representational
system is invented (or a historical representation revived)
that provides an alternative encoding of the conceptual
structure of the domain and an alternative approach to
problem solving. Fourth, empirical evaluations to compare
problem solving and learning with the new representations
and the conventional representations are conducted.

One aim of such representational epistemological studies
is to discover principles of representational design (e.g.,
Cheng, 1999a, 2002). Such principles will support the fur-
ther analysis of the effectiveness of extant representations
and may be used as heuristics for the design of better repre-
sentational systems for other domains.

This paper reports a representational epistemological
study on basic probability theory. It is claimed that the ex-
isting representations used to encode the knowledge of
probability is poor. Much of the difficulty of understanding,
problem solving and learning this topic is caused by inher-
ent limitations of the current representations. Support for
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this claim comes from an analysis of the difficulties of the
conventional approach (next section) and by contrasting it
with a new representation – Probability Space (PS) dia-
grams – that has fewer limitations (following section).

The study addressed probability theory at upper high
school level. To give a sense of this level, consider a prob-
lem that will be used as running example throughout this
paper – the Card problem.

There are three cards in a bag. One card has both sides
green, one card has both sides blue, and the third card
has a green side and a blue side. You pull a card out,
and see that one side is blue. What is the probability
that the other side is also blue?

Students often find this problem counter intuitive and fail to
solve it correctly (Shaughnessy, 1992). It reflects the diffi-
culties of the conventional approach well. One indication of
the value of PS diagrams is that they provide simple expla-
nations of such apparently paradoxical problems. (The an-
swer is 2/3.)

Conventional Approach
The first stage of this representational epistemological study
was to characterize the conceptual structure of the domain,
identify the extant representations used and the typical pro-
cedures for problem solving. For probability theory this
was done by examining established, well regarded, student
texts (e.g., Greer, 1995; McColl, 1992). These cognitive
artifacts presumably reflect how expert teachers consider the
topic should be understood.

The identification of the representations was straightfor-
ward. The texts all included Venn diagrams, tree diagrams,

tables of outcomes, algebra and, of course natural language
descriptions. In the more advanced texts set theory notation,
contingency tables and probability density distribution
graphs were found.

The conceptual structure of a domain concerns the major
conceptual dimensions of that domain – the primary mean-
ingful distinctions, categories of things, universal invariants
and overarching relations. This is not equivalent to a state-
ment of the axioms of probability nor is it the same as the
ontological underpinnings argued over by philosophers
(e.g., Hacking, 1975). Rather the conceptual structure com-
prises the foundational components of knowledge upon
which the domain is based that student must master to fully
understand the domain.

Characterizing the conceptual organization of probability
theory as portrayed by the students texts was a surprisingly
difficult task. Although the division of topics into chapters
and sections in the texts suggested possible structures, these
were not consistent across texts and left many aspects
largely implicit. Nevertheless, Table 1 shows one possible
interpretation, with the main conceptual dimensions and
forms of relation shown using the nested columns and rows.
The numbers of events and whether they are joint, depend-
ent and equi-probable, or otherwise, are fundamental to this
encoding of the knowledge of probability theory. Although
equations are presented in the cells to stand for the specific
instances of concepts or propositions, examples of the other
representations listed above could have been used to illus-
trate the concepts.

Similarly, extracting the approach to problem solving em-
bodied in the texts was also difficult, largely because the
differences between solution procedures associated with

Table 1.  Conceptual structure of probability theory: laws for the main conceptual distinctions and relation types.

Singe events (A - event, U - universal set)

(T1*)  P(U)=1 (T2*)  0≤P(A)≤1 (T3)  P(A)=1-P(~A) (T4)  P(A)=P(A|U) @

Multiple events (A, B - events)

Joint

Relations Disjoint Independent Dependent

Conjunction (T5)  P(A and B)=0 (T6) P(A and B) =P(A)P(B) (T7)  P(A and B)=P(A)+P(B)-P(AorB)
(T8)  P(AandB)=P(A|B)P(B)

Disjunction (T9*) P(A or B)=P(A)+P(B) (T10) P(A or B)=P(A)+P(B)-P(AandB)
(T11) P(A or B) =1–P(~A and ~B)

(T12)  P(AorB)=P(A)+P(B)-P(AandB)

Conditional (T13)  P(A|B)=0, P(B|A)=0 (T14)  P(A|B)=P(A), P(B|A)=P(B) (T15)  P(A|B)=P(AandB)/P(B),
            P(B|A)=P(BandA)/P(A)

Complex     (T16)  P(A|B) =P(B|A)P(A)/P(B)

Equi-probable multiple events (N, M - possible outcomes)

(T17)  P(i)=1/N, SP(i)=1 (T18)  P(i,j)=1/(N.M), SSP(i,j)=1

Permutations†
(T19)  No. of outcomes = nk (T20)  No. of outcomes = k!

(n - k)!
Combination†

(T21)  No. of outcomes = (n + k -1)!
k!(n -1)!

(T22)  No. of outcomes = n!
k!(n - k)!

Note: * — Axioms of probability theory, @ — Not normally state explicitly, † — k selected objects from an initial set of n objects.
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alternative concepts were not made explicitly in the texts.
However, focusing on typical quantitative problems, which
involve finding the probability of a given situation, it was
possible to induce a generic solution approach, as shown in
Fig. 1. The approach is broken down into an analysis phase
and a calculation phase, each comprising of nested rules.
Analysis involves interpreting aspects of a problem in terms
of the main conceptual dimensions and identifying the
event(s) of interest, usually with the aid of the representa-
tions tailored to particular relations or concepts. Calculation
involves selection of the equations to compute the probabil-
ity of the target event. Different organizations of rules to
that in Fig. 1 are possible, with the dimensions occurring
higher or lower in the decision hierarchy. However, they
would not be as consistent with the texts and would likely
be as complex.

The difficulties of using Table 1 and Fig. 1 to solve prob-
ability problems is well illustrated by an ideal solution to the
Card problem, as shown in Fig. 2. It can be broken down
into seven steps:
1) Overall, this is a situation in which the events are joint

and occur in sequence, thus a tree diagram with depend-
ent branches is drawn, Fig. 1 (A.212).

2) One of three cards can be drawn from the bag at ran-
dom, so three disjoint events are listed and drawn as

branches (A.1111), and labeled with equal probabilities
using T17 (C.11)

3) For each of the three cards the color of the visible side
depends on the card being chosen, so the one or two pos-
sible conditional dependent events are shown by ex-
tending the branch or splitting it equally (A.212), and la-
beling them with their respective probabilities, using T15
(C.2121).

4) The color on the opposite side of each card is a condi-
tional event that depends on which side of that card is al-
ready showing, so the branches of the tree are further
extended (A.212) and label with unit probabilities, using
T15 (C.2121).

5) Each leaf of the tree is the independent result of series of
joint events (A.22). The probability of each leaf is cal-
culated separately using T6 (C.2112).

6) Overall initial chance of seeing a blue card is comprised
by the disjunction of the disjoint events of the blue sides
showing (A.122) using T9 (C.12).

7) Finally, the chance of turning over a blue side is de-
pendent and conditional upon the card and side already
showing (A.212). Calculate the probability using T15
(C2121).

The second stage of the representational epistemological
study was to consider the effectiveness of the conventional

Analyse
A.1) If outcomes disjoint, then consider number of events:
  A.11) if a single event, then consider nature of probabilities of out-

comes:
    A.111) if equal probabilities problem, then list items of interest:
    A.1111) if simple problem, then list all items & select target out-

come.
      A.1112) if complex problem, then list relevant items & select the

target outcome.
    A.112) if unequal probabilities problem, then consider individual

probability values:
      A.1121) if simple problem, then list selected items with associated

values and select target outcome.
      A.1122) if complex problem, then draw up a 1-way table outcome

table and select target outcome(s).
  A.12) if multiple events, then consider nature of the probabilities of

outcomes:
    A.121) if equal probabilities, then consider number of events:
      A.1211) if two events, then generate a systematic list or use a 2-

way outcome table and select target outcomes.
      A.1212) if many events, then use a recursive tree diagram to

enumerate relevant outcomes and select target outcomes.
    A.122) if unequal probabilities, then list relevant outcomes with

their probability values  and select the target outcomes.
A.2) If events joint, address the relation between events:
  A.21) if events dependent, then consider number of events:
    A.211) if one event, then consider the nature of probabilities of

outcomes:
      A.2111) if equal probabilities, then consider number of types of

outcomes:
        A.21111) if one type of outcome, then use a Venn diagram.
        A.21112) if two types of outcomes, then use a two-way table.
      A.2112) if unequal prob’s, then use a Venn diagram to elaborate

set relations and write target outcomes with probability values.

    A.212) if sequences of events, then use a tree diagram with
dependent branches and values and select target outcomes.

  A.22) if outcomes independent, then tree diagram with repeated
branches & values, or contingency table, to select the target
outcomes.

Calculation
C.1) If events are disjoint, then:
  C.11) if equal probabilities, then count number of outcomes of

interest and use T17 to find probability of each outcome.
  C.12) if unequal probabilities problem, then use T5, T9, T13

depending on target relation.
C.2) If events are joint, then consider the number of events and

outcomes:
  C.21) if the number of events and outcomes are small, then

consider nature of the relations between events:
    C.211) if independent events, then consider nature of prob-

abilities:
    C.2111) if outcomes are equi-probable, then compute number

of outcomes of interest and use T18 to find probability of each
outcome.

      C.2112) if unequal probabilities, then use T6, T10, T11 or T14
depending on target relation.

    C.212) if dependent outcomes, then consider complexity of
dependencies:

      C.2121) if simple dependencies, then use T7, T8, T12 or T15
depending on target relations.

      C.2122) if complex interconnected dependencies, then use
Bayes theorem, T16.

  C.22) if events and/or outcomes are numerous, then consider
nature of probabilities:

    C.221) if equal probabilities, then use T19-T22 depending on
the natures of dependencies and the target relations.

    C.222) if unequal probabilities, then use Bayes’ theorem, T16.

Notes: ‘T’ numbers refer to Equations in Table 1.  Rules at the same decimal level are disjunctive alternative (e.g., A.11 or A.12), and
rules with increasing decimal places are conjunctive sequences (e.g., A.11 then A.111 then A.1111).

Fig. 1.  General problem solving procedure for the conventional approach.
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approach. From analysis of this and other quantitative
problems and examining the structure of Table 1 and Fig. 1,
reasons for the difficulties of the conventional representa-
tion were identified. There are at least 7 reasons why the
current approach is poor. (a) For theoretically distinct con-
cepts, it uses terms that have similar common meanings
(e.g., joint versus dependent). (b) Some terms are ambigu-
ous. For instance, event has different meanings, including
experiment/trial and outcome. Examples of the simultane-
ous use of these different meanings within a single explana-
tion has even been found in some texts. (c) The conceptual
structure is not simply a set of orthogonal dimensions but
involves nested concepts within an asymmetric organiza-
tion; for instance, (in)dependence occurs under joint but not
under disjoint (Table 1). (d) Many different representations
are needed for modeling different classes or aspects of
situations. (e) The general procedure for solving simple
quantitative problems is complex, with multiple nested dis-
junctive sequences of rules (Fig. 1). (f) The procedure has
to be applied recursively to different parts of the problem,
which may involve switches of conceptualization within a
single problem (e.g., Card problem). (g) It is often neces-
sary to fully appreciate the inherent form of a problem be-
fore beginning so that a solution approach can be chosen.
For instance, the Card problem consists of joint independent
sequences of dependent events(!). However, the initial ran-
dom selection of cards may mislead one into seeing this as a
disjoint events problem and incorrectly drawing a Venn
diagram.

Given these difficulties it is no wonder that probability
theory is well acknowledged to be conceptually challenging
topic, which is both hard to understand and to learn.

Probability Space diagrams
The third stage of the representational epistemological study
was to invent a new representational system that attempts to
overcome the limitations of the conventional approach. The
representational principles outlined by Cheng (1999a, 2002)
were used as heuristics to constrain the search of possible
representational schemes. Probability Space diagrams were
the result (Cheng, 1999a, Cheng & Pitt, 2003). A key idea
in the design of PS diagrams was to provide a representa-
tional scheme with an orthogonal, or distinct, encoding the

primary conceptual dimensions that gives a coherent inter-
pretive scheme for the other concepts and relations. It was
found that such a scheme could be achieved by taking tri-
als/experiments and outcomes (of trials) as orthogonal foun-
dational dimensions which were used to defined a probabil-
ity space. Fig. 3 shows a schematic PS diagram. The space
encompasses the universe of interest (U) and its width has
unit probability by definition. The outcomes of each trial
are represented by grouped line segments. The lengths the
lines are in proportion to the probability of the represented
outcomes. The spatial and geometric relations among the
segments encode the axioms and laws of probability theory.
For instance in Fig. 3, outcomes A and B are the only mutu-
ally exclusive outcomes of trial E, so P(A)+P(B)=1. Over-
lapping segments represent non-mutually exclusive out-
comes (e.g., A and C) and the extent of the overlap is the
probability of both occurring.

Relations, or links, from one trial to another are encoded
by the horizontal alignment of outcomes across the trials.
For example, Q and R are possible outcomes in trial E2, if A
was the outcome of trial E1. P(A and Q) is given by the
length of Q (with respect to U). Thus, conjunctive and con-
ditional relations within and between trials are simply and
consistently encoded.

For small numbers of outcomes and trials, PS diagrams
encode all of the laws given in Table 1. See Cheng and Pitt
(2003) for discussion of the limitations of PS diagrams.

Fig. 4 shows a generic approach to solving quantitative
probability problems with PS diagrams, which was derived
by using PS diagrams to solve problems and to design cur-
riculums for teaching using the representation. The ap-
proach splits problem solving into distinct modeling, inter-
pretation and calculation phases. The modeling phase in-
volves drawing a PS diagram for the problem situation, in-
cluding one or more sets of lines for the trials and aligning
the outcomes across trials to encode the given links or con-
tingencies. The interpretation phase involves identifying the
target outcomes and the relations within the diagrammatic
model. The final calculation stage involves simple geome-
try to find the ratio of the length of the target to the appro-
priate space to give the required probability.

The solution to the Card problem illustrates the proce-
dure, Fig. 5:

card a

card b

card c

blue

blue

green

green

blue

green

green

green

1/3

1/3

1/3

1

1/2

1/2

1

1

1

1

1

1/3

1/6

P(blue given blue) =1/3/1/2 = 2/3

1

2 3 4 5

6 7P(blue) =1/3+1/6 =1/2

1/6

1/3

P(U)=1

A B

C

E1

E2

Q TR S

P(A)=1/2 P(B)=1/2

Fig. 2.  Tree diagram for solution to the card problem.  Bold
numbers with dashed lines are solution steps.

Fig. 3.  A schematic PS diagram.  E1, E2 – tri-
als/experiments; A, B, C and Q, R, S, T - outcomes of

E1 and E2.
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1a) A trial line showing all of the possible color outcomes
of selecting cards with either of their sides showing is
drawn (rules M.2a and M2b, Fig. 5).

1b) A second trial line is drawn showing how as each card
is turned over the color depends on the previously
showing color (M.2c2a).

2a) The outcomes for blue sides initially showing in the
first trial are highlighted, dashed target line, defining a
conditionalising subspace (I.b4).

2b) The outcomes for blue sides showing after the turn of
the card are highlighted within that subspace by the sec-
ond dashed target line (I.a21).

3) The desired probability is the ratio of the lengths of the
second to the first target lines (C.1).

This PS diagram is one that a user with some experience
with PS diagrams is likely to produce, grouping initial blue
sides outcomes together. Such users might omit the out-
comes to the right half of the second trial line, recognizing
that they are not relevant to the problem. Novice users may
not arrange the outcomes so conveniently but this does not

especially hinder the solution as the target outcomes will be
dispersed but the linking between each trial and the numbers
of outcomes will still be clear.

In contrast to the conventional approach, in both concep-
tual structure and task analytic terms, PS diagrams consti-
tute a better representational system for 8 reasons. (a) Dis-
tinct concepts have been given terms that are compatible
with their more common meanings (e.g., trial, outcomes,
linking, overlapping). (b) Ambiguous use of terms has been
avoided (cf. event). (c) The conceptual structure is rela-
tively simple with orthogonal primary dimensions (trials
versus outcomes) providing an overarching interpretive
scheme within which other concepts can be consistently
interpreted (horizontal relations within trials, vertical forms
of linking between trials). (d) The PS diagrams approach
uses a single representational system. This reduces the cog-
nitive load and learning demands of multiple representations
and mapping between them. PS diagrams in effect, combine
the functions of Venn diagrams, tree diagrams, set theory
notation, contingency and outcome tables, and algebra. (e)
The general procedure for solving simple quantitative prob-
lems has fewer steps and decision points (compare Figs. 2
and 4). (f) Problems can often be solved in a single pass
through the procedure, without the need for recursive appli-
cation. Thus a clear separation between modeling, inter-
pretation and calculation phases can be maintained in prob-
lem solving and instruction. (g) Problem solving can begin
without the user fully understanding overall structure of the
problem as the modeling phase allows the user to incre-
mentally build a PS diagram. (h) PS diagrams encode a
greater proportion of the problem solving information and
underlying laws of probability theory using visual properties
and geometric and spatial relations, rather than senten-
tial/propositional forms. Thus, more of the benefits of dia-
grams can be exploited (Larkin & Simon, 1987), including

Card A Card B Card C
side 1
blue

side 2
blue

side 1
blue

side 2
green

side 1
green

side 2
green

side 2
blue

side 1 
blue

side 2
green

side 1
blue

side 2
green

side 1
green

1a) Three cards selected at 
random with their possible 
sides showing

2a) Blue side initially showing
(conditionalising subspace)

1b) Color on other side of cards

2b) Blue on other side

3) P(Blue on opposite side given blue initially) = 2/3

Fig. 5.  PS diagram solution to the card problem

Modelling situation:
M.1) If single trial:
  M.11) identify all outcomes and construct line for the trial:
    M.111) if equal probabilities, then segments equal for outcomes.
    M.112) if unequal probabilities, then make segment proportional to

their probabilities.
M.2) If multiple trials:
  M.2a) choose an order of trials and consider each trial in turn:
  M.2b) draw first trial using rule M.1
  M.2c) for second and subsequent trials:
    M.2c1) if trials unlinked, then repeat the trial drawn to scale under

each outcome of previous trial.
    M.2c2) if trials linked, then draw the next trial under each outcome

consistent with local problem constraints:
      M.2c2a) if outcomes are linked across trials, then change the

possible set of outcomes.
      M.2c2b) if probabilities linked, then change relative length of

outcomes.
Interpretation:
I.a) Identify target outcome(s) or sequences of outcomes
  I.a1) if single trial, then select target outcome.

  I.a2) if multiple trials, then consider nature of outcomes of inter-
est:

    I.a21) if particular outcomes in some of the trials are of interest,
then select those outcomes.

    I.a22) if outcomes across trials are of interest, then consider
sequences down the diagram:

      I.a221) if permutations, then consider segments down diagram
in order.

      I.a222) if combinations or conjunctions, then consider columns
containing the target in any order.

I.b) select outcome relation of interest:
  I.b1) if outcome/sequence or its complement, then it is the target.
  I.b2) if union, then the target encompasses outcomes/sequences

of interest.
  I.b3) if intersection, then the target is the overlap of out-

comes/sequences.
  I.b4) if conditional, then identify subspace for target segment.
  I.b5) if permutation, then the target is the desired sequence.
Calculation:
C.1) Find probability by comparing the length of the target to width

of the (sub)space.
Notes: Rules ending with a number at the same level are disjunctive alternative (e.g., M.2c1 or M.2c2); rules with successive letters are
conjunctive sequences at the same level (M.2a then M.2b); rules with increasing decimal places are conjunctive sequences increasing in
detail (e.g., M.2c then M.2c2 then M.2c2a).

Fig. 4. Procedure for problem solving with PS diagrams.
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the use of spatial indexing of information to assist search
and perceptual operators to aid recognition of patterns, rela-
tions and even errors.

Discussion
From the comparison between the two approaches, based on
the examination of the structure of the alternative encodings
of the knowledge in each approach and the task analyses on
quantitative problems, overall it is clear that the PS dia-
grams provides a better encoding of the knowledge of basic
probability theory at the level targeted. Fuller analyses can
be found in Cheng (1999b). Further, an experiment in
which students learnt probability theory using the two ap-
proach, given the same curriculum content and instruction
time, has showed that PS diagrams significantly enhanced
conceptual learning and problem solving compared to the
conventional approach. That empirical study will be re-
ported elsewhere.

Why is the PS diagram approach better? An explanation
can be given in terms of the principles used to guide its de-
sign. The six principles are concerned either with making
the conceptual structure of knowledge readily apparent in
the structure of a representational system, semantic trans-
parency, or enhancing the efficiency of problem solving,
syntactic plasticity. The principles are outlined and dis-
cussed elsewhere (Cheng, 1999a, 2002).

The focus here is on more general representational epis-
temological claims. First, the conventional representations
used to embody the knowledge of probability theory, as
advocated by current student texts, constitute poor codifica-
tion of that knowledge. The approach provides a complex
conceptual structure and an elaborate procedure for problem
solving, which needs the support of diverse representations.
Second, it was possible to design a new representation that
appears to overcome much of the difficulties of the conven-
tional representation. PS diagrams provide a simpler en-
coding of the knowledge with a more straightforward prob-
lem solving approach using a single representational system,
in the main. It thus appears that some, perhaps much, of the
difficulty of understanding, using and learning probability
theory may be caused by the nature of the representations
used to encode that knowledge. This provides an alternative
perspective on the difficulties of understanding probability
theory, which complements accounts that either focus upon
the hard concepts at the core of the subject (Shaughnessy,
1995) or the adoption of (in)appropriate ontologies (cf.,
Gigerenzer & Hoffrage, 1995).

It is well established in cognitive science that alternative
representations used in problem solving will dramatically
influence the ease, and even the nature of, solution proc-
esses (Zhang, 1997). The representational epistemological
study presented here provides further support for the claim
that representational effects (determinism) can be found not
only at the level of problem representation but more gener-
ally in how the knowledge of a domain is codified.
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