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Radiology is the glue that holds every hospi-
tal together. Without X-rays, CT scans, and 

MRIs, it would be very difficult to glean much more 
than a surface-level understanding of a patient case. 
We put our faith in radiologists to correctly interpret 
our medical images so that we know what is wrong 
with our bodies, and we expect them to be right.

Contrary to what one would hope, radiologist er-
rors are all too common, an estimated day-to-day rate 
of 3-5%.1 And these mistakes can be very costly. Of 
course, misdiagnosis is most damaging to patients—
late identification of a disease like cancer can be fa-
tal. However, misdiagnosis can also cost radiologists 
and their hospitals through malpractice claims. In 
fact, radiologists are involved in a disproportionately 
large number of malpractice suits. Despite being the 
eighth-largest group of American physicians, they 
are the fourth highest in terms of cases closed against 
them.2 Moreover, the most common cause of these 
suits is misdiagnosis, especially of breast cancer.3 It’s 
clear that misdiagnosis hurts all parties involved: the 
hospital, the physician, and most importantly, the pa-
tient. But what can be done?

CLINICAL 
ORACLE:

MACHINE 
LEARNING IN 

MEDICINE
BY SAAHIL CHADHA



The field of radiology is steadily march-
ing towards improved diagnoses, largely 
due to automation. In 1957, the automated 
film-processor substantially increased ra-
diologists’ efficacy.4 By automating the im-
age development process, X-ray technicians 
were, both literally and figuratively, brought 
out of the darkroom and into the light. This 
eliminated a tedious, mechanical task that 
had previously been a large part of the ra-
diologists’ daily lives, which allowed them 
to commit more time to interpreting scans. 
Additionally, this success represented the in-

ception of a larger trend towards increased 
automation and precision in radiology. 
Modern developments take this trend a step 
further.

The cutting edge of research includes 
applying the computer science field of ma-
chine learning (ML) to medical images to 
make diagnoses. A study in the journal 
Radiology showed that receiving a second 
opinion on medical image screening can 
significantly increase the accuracy of read-
ings.5 In fact, this study highlighted breast 
cancer as an area where a second reader is 
particularly helpful, which is important be-
cause breast cancer misdiagnosis is the most 
common cause of malpractice suits against 
radiologists. ML models use sophisticated 
pattern-detection to identify irregularities 
in medical images and then create highly ac-
curate diagnoses. These reports could act as 
second opinions, supplementary to a prima-
ry radiologist. However, in order to evaluate 
the current state of ML within radiology, it is 
necessary to first develop a base-level under-
standing of the discipline. 

THE HISTORY OF ML

The term “machine learning” was coined 
in 1959 by Arthur Samuel.6 It is the subset 

of artificial intelligence that seeks to answer 
the question: “How can computers learn to 
solve problems without being explicitly pro-
grammed to do so?” Samuel pioneered the 
use of machine learning in programming a 
computer to play checkers. Not only was his 
device capable of comparing choices to pick 
the one that would bring it closest to win-
ning, but, by remembering every position it 
had encountered before, the computer was 
able to learn and improve itself over time. 
Eventually, Samuel’s computer was able to 
put up a good fight against amateur checker 
players.7 This was revolutionary. Computers 
no longer acted simply as mindless calcula-
tors that used rules written into their code 
to perform predictable operations. Rather, 
these machines were now able to rival hu-
mans in matters of intellect through their 
own form of complex processing.

Today, ML has grown and branched off 
in a plethora of different directions. Impres-
sively, ML has become ubiquitous in our 
daily lives.8 Examples include autocomplete 
while texting, targeted advertisements on 
Amazon, and custom Google search results. 
Each of these instances of ML seeks to pre-
dict something about us: what we’re going 
to type, what we want to buy, and what we 
want to know. This idea of prediction, creat-

Figure 1: A general pipeline for creating an ML model. This involves three steps: (1) pre-processed training data is fed into the ML algorithm 
with input features (e.g. medical images) and their associated output classes (e.g. malignant or benign), (2) the ML algorithm finds trends 
between the inputs and outputs, and (3) a model is created to predict the output classes for new inputs.9

“Studies show that 
receiving  a second 
opinion on medical 

image screening can 
significantly 
increase the 
accuracy of 
readings.”
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ing actionable insights from large amounts 
of data, lies at the heart of ML. Though ML 
has mostly been used to personalize the cus-
tomer and company relationship, its oppor-
tunities for clinical application are similarly 
abundant.

ML AND MEDICAL IMAGING

ML could define the future of medi-
cine.10 Since the price of data collection has 
plummeted in recent years, hospitals and in-
surance companies have jumped on the op-
portunity to gather and store huge amounts 
of patient information. However, much of 
this information remains unused. Research-
ers are actively investigating how to harness 
this information for good, and one of the 
most notable achievements in this area has 
been with breast cancer detection.

Computer-aided diagnosis (CAD) from 
medical images follows a two-step process. 
First, relevant high-level information is ex
tracted from images; then, the extracted in
formation is run through a previously-made 
ML model that outputs a prediction of which 
one of many classes the inputted features be-
long to.11

For example, microcalcifications (MCs) 
are small calcium deposits that show up 
brightly on mammograms, and clustered 
MCs are good predictors of breast cancer.12 
Thus, one possible CAD pipeline for this 
case would be first identifying the relative 
locations, sizes, brightness, and shapes of 
MCs, and then using that information to 
predict whether cancer is present. 

Because ML models are able to find 
patterns across a vast array of different im-
ages and cases, they are much more accu-
rate than their human counterparts. In fact, 
Enlictis, a startup applying deep learning to 
medicine, developed a tool to identify ma-
lignant lung tumors.13 When the accuracy 
of diagnosis was compared to that of  three 
expert radiologists, the company’s model 
outperformed humans by 50%. Additional-
ly, in an NPR interview, UCSF radiologists 
in training worried that “they could be re-
placed by machines” because “computers are 
awfully good at seeing patterns.”14 However, 
we should view ML as a tool that helps ra-
diologists do their jobs better rather than 
another machine that is going to take jobs 
away from hard-working Americans. This is 
where content-based image retrieval (CBIR) 

comes into play.11

Conventionally, ML models don’t give 
explanations for their decisions. These mod-
els take in a patient’s scans and other relevant 
information and output a percent likelihood 
value of malignancy. As a second opinion, 
these models are only useful if they are able 
to justify their outputs. CBIR bridges this 
gap by acting like Google’s “search by image” 
function. 11 In addition to presenting a diag-
nosis, a system that includes CBIR returns 
relevant training data most similar to the 
case being considered. This function greatly 
improves the model’s utility and allows for 
its use by radiologists in a clinical setting.

Misdiagnosis is a critical issue in radiol-
ogy. It costs patients tremendous amounts 
of pain and suffering and costs physicians 
monetarily in the form of malpractice suits. 
ML presents a solution to this problem. By 
gleaning insights from more scans than any 
one physician could consider in a lifetime, 

these models are able to be more accurate 
and powerful than their human counter-
parts. Because of this potential as well as 
their novelty, many physicians have been 
reluctant to adopt them into their daily rou-

Figure 2: Microcalcifications in a breast scan.15 Microcalcifications are seen in this scan as the 
white dots in the bottom right of the image. They are a reliable early indicator of breast cancer, 
and radiologists usually decide whether further tests are needed based on their size, density, 
and distribution. 

“When the accuracy 
of ML diagnosis was 
compared to that of 

three expert 
radiologists, the 

company’s model 
outperformed 

humans by 50%.”
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tines. But, if integrated into medical prac-
tice, ML does not have to replace jobs. On 
the contrary, radiologists would be able to 
increase their relevance by specializing in 
cases that ML cannot effectively tackle. Thus, 
the new technology represents a major step 
in automation and has the potential to rev-
olutionize medicine. By taking advantage of 
ML as a tool, radiologists can assure that pa-
tients receive the best care.
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Figure 3: View of Moscow, Russia. This photograph was edited using Deep Dream Generator 
(https://deepdreamgenerator.com/)—a computer vision program that allows us to see what a 
deep neural network is seeing when it is looking at a given image.




