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Trent R. Northen1,3*

1 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA,
United States, 2 School of Integrative Plant Science, Cornell University, Ithaca, NY, United States, 3 Joint Genome Institute,
Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 4 Department of Microbiology, Cornell University,
Ithaca, NY, United States

Microorganisms have evolved various life-history strategies to survive fluctuating
resource conditions in soils. However, it remains elusive how the life-history strategies
of microorganisms influence their processing of organic carbon, which may affect
microbial interactions and carbon cycling in soils. Here, we characterized the genomic
traits, exometabolite profiles, and interactions of soil bacteria representing copiotrophic
and oligotrophic strategists. Isolates were selected based on differences in ribosomal
RNA operon (rrn) copy number, as a proxy for life-history strategies, with pairs of
“high” and “low” rrn copy number isolates represented within the Micrococcales,
Corynebacteriales, and Bacillales. We found that high rrn isolates consumed a greater
diversity and amount of substrates than low rrn isolates in a defined growth medium
containing common soil metabolites. We estimated overlap in substrate utilization
profiles to predict the potential for resource competition and found that high rrn
isolates tended to have a greater potential for competitive interactions. The predicted
interactions positively correlated with the measured interactions that were dominated
by negative interactions as determined through sequential growth experiments. This
suggests that resource competition was a major force governing interactions among
isolates, while cross-feeding of metabolic secretion likely contributed to the relatively rare
positive interactions observed. By connecting bacterial life-history strategies, genomic
features, and metabolism, our study advances the understanding of the links between
bacterial community composition and the transformation of carbon in soils.

Keywords: genomics, life-history strategy, exometabolomics, resource competition, cross-feeding, rrn copy
number

INTRODUCTION

The transformation of soil organic carbon (C) by microorganisms plays a critical role in
determining the long-term fate of soil C (Schimel and Schaeffer, 2012; Liang et al., 2017). To
improve soil C projections, global C cycle models have increasingly incorporated knowledge
of microbial life-history traits (Wieder et al., 2015). Trait-based theories can be used to
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classify microorganisms into ecologically relevant functional
groups, such as the zymogenous–autochthonous and r- vs.
K-selection strategists (Prosser et al., 2007). Analogous to
these concepts is the widely applied copiotroph–oligotroph
classification framework, where copiotrophs are thought to be
adapted to resource-rich conditions with higher nutrient demand
and faster growth rates while oligotrophs are thought to be better
adapted to resource-poor conditions and exhibit traits of slow but
efficient growth (Fierer et al., 2007; Roller and Schmidt, 2015).
The growth rate vs. efficiency trade-off between copiotrophic and
oligotrophic bacteria has been shown to associate with several
genomic features in bacteria (Lauro et al., 2009; Roller et al.,
2016). Specifically, ribosomal RNA operon (rrn) copy number
is positively correlated with growth rate which is negatively
correlated with efficiency, indicating the potential of using
genomic signatures to identify the life-history traits of bacteria
(Roller et al., 2016).

A limited number of studies have characterized how soil
microorganisms from different ecological groups differ in their
C metabolism, including consumption and production of diverse
simple organic molecules. The ability of microorganisms to
metabolize specific organic substrates can constrain their growth
rate and efficiency (Goldfarb et al., 2011; Saifuddin et al.,
2019; Muscarella et al., 2020). However, it remains not well-
understood how substrate use differs across the copiotroph–
oligotroph spectrum. On the one hand, copiotrophs are thought
to be able to access a wider range of substrates (Saifuddin
et al., 2019), yet, on the other hand, there is also evidence that
oligotrophs are more nutritionally flexible (Upton and Nedwell,
1989). Besides the mixed results on substrate utilization, less is
known about metabolite production among groups. Considering
the importance of metabolites in mediating species interactions
in microbial communities (Zengler and Zaramela, 2018; Niehaus
et al., 2019) and contributing to persistent soil C (Liang et al.,
2017; Lehmann et al., 2020), improving our understanding of
how microbial life-history traits relate to metabolic activities
is critical to understanding microbial contributions to soil C
dynamics (Muscarella et al., 2020; Barnett et al., 2021).

Traditionally, microbial metabolic capacities are characterized
by profiling the abilities of microorganisms to utilize a panel
of individual C substrates, for example, using Biolog plates
(Konopka et al., 1998). In these cases, the number of substrates
utilized by each organism is used to estimate their resource
niche width and the degree of overlapping growth-supporting
substrates is used to estimate niche overlap for predicting
resource competition between organisms (Wilson and Lindow,
1994; Dundore-Arias et al., 2019; Michalska-Smith et al., 2022).
In natural environments (e.g., soils), microorganisms often
encounter diverse substrates and can have different utilization
strategies (Wang et al., 2019). Yet, relatively few studies
have investigated microbial metabolic activities in mixtures of
ecologically relevant substrates.

Recent advances in mass spectrometry-based metabolomics
help fill this gap by enabling comprehensive analyses of
chemically diverse samples (Bauermeister et al., 2022). By
profiling changes of extracellular metabolites (“exometabolites”)
in medium before and after cultivation (i.e., control vs. “spent”

medium), we can characterize substrates that are preferentially
depleted as well as metabolites that are secreted by individuals
or communities of microorganisms (Silva and Northen, 2015;
de Raad et al., 2022). Using an exometabolomics approach, we
previously demonstrated that sympatric bacteria isolated from
biocrusts have divergent substrate preferences (Baran et al.,
2015). Furthermore, exometabolite profiles can be used to
make inferences about metabolic interactions (e.g., metabolite
competition or exchange) and facilitate the design of synthetic
consortia (Erbilgin et al., 2017; Kosina et al., 2018).

Here, we aimed at exploring how metabolite consumption
and production of bacteria differ among copiotrophic and
oligotrophic life-history strategists and how the differences
govern metabolic interactions between species. We selected
bacteria from genera that were found to be among the most
ubiquitous and abundant in soils, which belonged to the orders
Micrococcales, Corynebacteriales, and Bacillales. Isolates were
chosen to represent a contrast between species with low and high
rrn copy numbers, which differed broadly according to several
genomic traits (e.g., genome size, GC content, and prototrophy
for biosynthetic pathways). We characterized exometabolite
profiles of individual isolates grown in a defined medium
containing a mixture of common water-soluble soil metabolites
(Jenkins et al., 2017). By evaluating overlap in isolate substrate
utilization profiles, we estimated the potential for competitive
interactions among isolates, which was then tested by measuring
pairwise interactions through sequential growth experiments. We
predicted that rrn copy number would influence the metabolic
properties and interactions between bacteria.

RESULTS

Isolate Selection and Comparative
Genomics
We identified three bacterial species groups (phylotypes) based
on their high relative abundance and widespread occurrence in
a 16S rRNA gene-based survey of agricultural soils across the
United States (Wilhelm et al., 2022a,b). Representative sequences
for these phylotypes were classified to the genera Arthrobacter,
Bacillus, and Mycolicibacterium and were detected in 91%
(x = 1.2% of total reads), 65% (0.2%), and 61% (0.3%) of 778
samples, respectively. The Arthrobacter and Bacillus phylotypes
were among those that rapidly responded (i.e., increased in
relative abundance) in soils amended with dissolved organic C
(xylose or glucose), while Mycolicibacterium did not (Barnett,
2021). The Arthrobacter and Bacillus phylotypes were also more
abundant in agricultural soils than in less disturbed soils, such
as old field or forest soils (Supplementary Figure 1). These
observations led us to select members of these species groups
as representatives of copiotrophic (Arthrobacter and Bacillus)
and oligotrophic (Mycolicibacterium) soil populations. Isolate
genomes that had 100% 16S rRNA similarity to the Arthrobacter
and Bacillus groups had relatively high rrn copy number, while
genomes matching the Mycolicibacterium group had relatively
low rrn copy number (Figure 1A, isolates highlighted in
bold; Supplementary Table 1). We expanded the collection of
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isolates to include an equal number of phylogenetically related
isolates from neighboring families with contrasting rrn copy
numbers (“phylo-pair”). A total of 24 isolates were selected,
representing an even number of isolates with high and low
rrn copy numbers within each of the three bacterial orders:
Micrococcales, Corynebacteriales, and Bacillales (Figures 1A,B
and Supplementary Table 1).

Several genomic properties differed between high and low
rrn copy number groups. Bacillales and Micrococcales isolates
with high rrn copy number had significantly larger genomes
than low rrn copy pairs (Figure 1C). Within each phylogenetic
order, low rrn copy genomes had consistently higher coding
density and GC content than high rrn copy genomes, though
these differences were only significant among Corynebacteriales
(coding density; Figure 1D) and Micrococcales phylo-pairs (GC
content; Figure 1E). Bacillales and Corynebacteriales isolates
with low rrn copy numbers tended to be more auxotrophic than
high rrn copy pairs, with the difference being significant for
Corynebacteriales (Supplementary Figure 2).

Isolate Growth Characteristics
We compared the growth characteristics of isolates among
rrn copy and taxonomic groups by culturing individual strain
in a soil defined medium (SDM). The SDM was previously
constructed based on the water-soluble soil metabolite profiles
and has been shown to support the growth of a diverse range
of bacteria isolated from soil (Jenkins et al., 2017). Here,
we modified the SDM composition to include common soil
metabolites, root exudates, and essential cofactors, for a total of
89 organic compounds (Supplementary Table 2). Isolate growth
rate [F(2,13) = 4.4, p = 0.03] and doubling time [F(2,13) = 8.1,
p = 0.005] in the SDM differed primarily by taxonomic groups
as determined by analysis of covariance (ANCOVA), with
Corynebacteriales having the slowest rate (p = 0.01) and longest
doubling time (p = 0.002; Supplementary Figures 3A,B). Both
taxonomic [F(2,13) = 14, p < 0.0001] and rrn copy groups
[F(1,13) = 8.2, p = 0.01] had significant effects on the carrying
capacity, with carrying capacity being higher for isolates from the
high rrn than low rrn copy group (Supplementary Figure 3C).
When regressed against the absolute rrn copy number across
isolates, growth rate was significantly positively correlated with
rrn copy number (R = 0.53, p = 0.03), while doubling time
(R = −0.50, p = 0.04) was negatively correlated with rrn copy
number. Several isolates grew poorly in liquid SDM and were
not included in downstream analyses for substrate utilization
profiling (Supplementary Table 1).

Isolate Substrate Utilization
To determine the depletion of SDM components by each
isolate, we profiled isolate spent medium at the early stationary
phase using liquid chromatography-mass spectrometry (LC-
MS). In total, 78 out of the 89 compounds with equal molar
concentrations in the SDM were tracked (Supplementary
Table 3). Relative fold changes were calculated for compounds
that had significantly different peak heights in the spent medium
than in the uninoculated SDM control. Overall, isolates displayed
differential utilization for the components of SDM (Figure 2).

Each isolate depleted at least one substrate by over 97%. Isolate
taxonomic group [pseudo F(2,11) = 3.1, p = 0.009] and rrn copy
group [pseudo F(1,11) = 2.8, p = 0.04] each explained significant
variation in substrate utilization patterns, accounting for 23
and 10% of the total variation, respectively (as determined by
permutational multivariate analysis of variance, PERMANOVA).
The interaction between rrn copy group and taxonomic group
was significant, explaining an additional 17% of the variation
[pseudo F(2,11) = 2.3, p = 0.03].

To quantify differences in substrate utilization between
groups, we analyzed the following metrics for each isolate:
(1) the richness of substrates used (as the total number of
substrates depleted), (2) the abundance of substrates used (as the
sum of the percentages of depletion), and (3) the diversity of
substrate utilization using Simpson’s diversity index (specifically
the inverse of Simpson’s measure of concentration, which
considers both richness and evenness, with a higher index
indicating even utilization of multiple substrates and a lower
index indicating strong preference for a limited number of
substrates) (MacArthur, 1984; Zak et al., 1994). An ANCOVA
revealed that both rrn copy and taxonomic groups had significant
effects on the three metrics assessed (p < 0.05; Figures 3A–C). In
particular, substrate richness [F(1,13) = 6.9, p = 0.02], abundance
[F(1,13) = 5.2, p = 0.04], and diversity [F(1,13) = 8.6, p = 0.01]
were all significantly higher for isolates from the high rrn than the
low rrn copy group. When regressed against the absolute rrn copy
number across all isolates, the three metrics describing substrate
utilization were all significantly positively correlated with rrn
copy number (richness: R = 0.60; abundance: R = 0.52; diversity:
R = 0.60; all p < 0.05; Figure 3D). Additionally, there were
positive correlations between these metrics and the estimated
growth rate (richness: R = 0.55; abundance: R = 0.54; diversity:
R = 0.58; all p < 0.05; Figure 3D).

Predicting Competitive Interactions
From Substrate Utilization Patterns
Overlap in resource utilization can be used to estimate intensity of
competition between organisms (Schoener, 1974). We predicted
the potential strength of competition of each “influencer” isolate
to another “recipient” isolate by calculating the directional
overlap in their substrate use profiles (refer to the Section
“Materials and Methods,” Equation 1) (MacArthur and Levins,
1967; MacArthur, 1984). We found that the Micrococcales
and Bacillales isolates appeared to have a higher potential to
compete for substrates than the Corynebacteriales isolates, as
indicated by the clustering of influencer isolates with higher
predicted competition strengths (Figure 3E, top dendrogram).
Additionally, isolates from the high rrn group tended to have a
higher potential for resource competition than low rrn isolates.

We further estimated the competitive ranking of each isolate
based on the predicted competition strengths (refer to the
Section “Materials and Methods,” Equation 2) (Carrara et al.,
2015), where the higher the rank, the greater the potential
for competitive interactions with other isolates. We found the
predicted competitive rank was significantly positively correlated
with the three substrate utilization metrics (richness: R = 0.89;
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abundance: R = 0.97; diversity = 0.92; all p < 0.001) and
negatively correlated with isolate doubling time (R = −0.52,
p = 0.05; Figure 3D). The competitive ranking was also positively
correlated with isolate rrn copy number (R = 0.44, p = 0.08;
Figure 3D).

Testing Pairwise Interactions Using
Spent Media
To experimentally evaluate predicted interactions, we selected
eight isolates representing different clusters in substrate
utilization profiles (Figure 2) and potential competition

FIGURE 1 | Phylogenetic tree and genomic features of 24 isolates. Detailed information is summarized in Supplementary Table 1. (A) A maximum-likelihood
phylogenetic tree constructed from a multi-locus sequence alignment using “Insert Set of Genomes into Species Tree” in KBase. Bold isolates denote their genomes
had 100% 16S rRNA similarity to an amplicon sequence variant detected in soil samples. For each phylogenetic order, tree leaves and annotation dots are colored
based on order-specific rrn copy group. The size of each dot is scaled by absolute rrn copy number present in each genome. (B) Within each phylogenetic order,
isolates from high vs. low rrn groups had significant differences in rrn copy number. High and low rrn copy groups also differed according to (C) genome size, (D)
coding density, and (E) GC content. Asterisks denote statistically significant differences between high and low rrn copy groups within each phylogenetic order
according to a Student’s t-test (*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001).
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strengths (Figure 3E). The eight representatives consisted of four
Micrococcales and four Corynebacteriales, each set comprising
two low and two high rrn isolates (Supplementary Table 1).
As only one out of five isolates from the low rrn Bacillales
group grew during the exometabolomic experiment, Bacillales
isolates were excluded from this analysis to avoid unbalanced
comparisons. We characterized directional pairwise interactions
by conducting a sequential growth screening of each isolate
using spent media from all of the other isolates (Biggs et al.,
2017; Ratzke et al., 2020). Specifically, spent medium from the
first isolate (influencer) was collected and used to culture a
second isolate (recipient). Growth was assessed with two metrics,
namely, final optical density (OD) and cumulative respiration

of the culture. The effect of the influencer on the recipient
(i.e., interaction strength) was determined as the relative fold
change of recipient’s growth in the influencer’s spent medium
as compared with in SDM (refer to the Section “Materials and
Methods,” Equation 3). A negative or positive value indicates a
negative (e.g., competitive) or positive (e.g., facilitative) effect of
the influencer isolate on the recipient isolate, respectively.

Interactions were mostly negative, where recipient isolates had
decreased growth (lower final OD or reduced CO2 respiration)
in the influencer’s spent medium than in SDM (Figures 4A,B).
Positive interactions were also observed, including the increased
growth of Corynebacterium efficiens (iso6) in the spent medium
of Mycolicibacterium rutilum (iso19). Mycolicibacterium gilvum

FIGURE 2 | Relative fold changes of metabolite abundances in isolate spent media as compared with the soil defined medium control. Values are displayed as the
mean of three replicates. A positive (red) or negative (blue) value indicates isolate production or depletion of that compound in the soil defined medium, respectively.
For compound whose abundance did not differ significantly between spent and control media, relative fold change was 0 and shown in white (p > 0.05, one-way
ANOVA with post hoc Dunnett’s test). Metabolites are annotated by compound class. Isolates are annotated by phylogenetic order, order-specific rrn copy group
(i.e., high vs. low within each order), and absolute rrn copy number present in the genome.
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FIGURE 3 | Substrate utilization and competition potential. Differences in substrate utilization among taxonomic and rrn copy groups reflected by (A) the richness,
(B) abundance, and (C) diversity of substrates used by each isolate. All three substrate utilization metrics were significantly affected by rrn copy group and
taxonomic group (ANCOVA, p < 0.05). (D) Pearson correlation coefficients (R) between isolate substrate utilization metrics, predicted competitive ranking, genomic
features, and estimated growth parameters. Positive correlations are displayed in red and negative correlations in blue. Color intensity and size of the circles are
proportional to the correlation coefficients. Circles without triangles represent significance level p < 0.05; triangles represent 0.05 < p < 0.1. For insignificant
correlations (p > 0.1), the correlation coefficients are left blank. (E) Heatmap of directional pairwise competitive interaction strengths, predicted based on overlap in
substrate utilization profiles. In heatmap color bar, label “no” represents no overlap in substrate use profiles, predicting no competition between isolates; darker blue
color represents higher similarity in substrate use, predicting a higher potential that the influencer will compete with the recipient for resources.

(iso18) also had increased respiration when grown in iso19’s spent
medium, although the final OD was lower. Still, the interaction
strengths calculated using the two metrics (OD and respiration)
were positively correlated (R = 0.54, p < 0.001; Supplementary
Figure 4). The average interaction strengths were affected by the
rrn copy group, but not the taxonomic group, of the influencer
isolates, with influencers from the high rrn group having greater
negative effects on recipients than influencers from the low rrn
group [OD: F(1,5) = 5.5, p = 0.07; respiration: F(1,5) = 6.8, p = 0.05;
ANCOVA; Supplementary Figure 5].

The measured interaction strengths were significantly
positively correlated with those predicted based on
substrate use overlap (OD: R = 0.53; respiration: R = 0.55;
both p < 0.001; Figures 4C,D). The correlations were

particularly strong for isolates that mainly experienced negative
interactions (Supplementary Figures 6,7). This suggests that
substrate competition was a dominant mechanism for most
interacting pairs.

Untargeted Metabolite Profiling of Spent
Media
To further explore interaction mechanisms, especially the
potential role of metabolic secretion and exchange, we conducted
an untargeted exometabolite profiling of spent media before
and after the sequential growth experiments. Initial untargeted
analysis detected a list of LC-MS features, corresponding
to specific mass-to-charge ratio (m/z) and retention time
combinations (Supplementary Table 4). Only the features
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FIGURE 4 | Directional pairwise interaction strengths. Measured interaction strengths from sequential growth experiments based on (A) final OD and (B) cumulative
CO2 respiration results, shown as directed networks visualized in Cytoscape. Isolates are annotated by their phylogenetic order and order-specific rrn groups. Edge
width and color correspond to mean relative fold change of the growth of recipient isolate (target node) in the spent medium of influencer isolate (source node) as
compared with soil defined medium (n = 3). Red or blue represents increased or decreased growth, indicating positive or negative interaction, respectively.
Insignificant interactions (p > 0.05, one-way ANOVA with post hoc Dunnett’s test) are shown in dashed edges. Results of individual replicates and correlation
between the two interaction measures are shown in Supplementary Figure 4. Linear correlations between the predicted (Figure 3E) and measured significant
interaction strengths based on (C) final OD and (D) cumulative respiration. Error bars represent standard deviations (n = 3). Correlation results for each individual
recipient isolate are shown in Supplementary Figures 6,7.

that were identified to have significantly higher abundances
in samples than background were used for downstream
analysis (described in detail in the Section “Materials and
Methods”). We searched for features that were enriched in
each isolate’s spent medium by comparing feature peak heights
between spent medium and SDM control (Supplementary
Table 5). On average, 10.4% (±3.0%, standard deviation)
of features had significantly higher abundances in spent
medium than in SDM, indicating metabolite production
(Supplementary Figure 8). The percentage of features
with increased abundances did not significantly differ by
isolate rrn copy or taxonomic group (ANCOVA, p > 0.05;
Supplementary Figure 8).

After culturing a recipient isolate in the spent medium of
the influencer isolate, the resulting “double spent medium” was
compared with the initial spent medium to identify metabolites

significantly changed by the recipient isolate (Supplementary
Table 5). For the two pairs of isolates showing positive
interactions (Figure 4), 4 and 6 features displayed a pattern
of cross-feeding for the iso6-iso19 pair and iso18-iso19 pair,
respectively. Specifically, the relative abundance of these features
increased in the spent medium of M. rutilum (iso19) compared
with SDM, and then decreased after using this spent medium to
grow either C. efficiens (iso6) or M. gilvum (iso18). This suggests
the ability of these two isolates to consume iso19’s metabolic
secretion, which could have contributed to their increased
growth. Among all isolates, we found that on average 1.2%
(±0.7%, standard deviation) of features displayed a cross-feeding
pattern (Figure 5). Specifically, the average percentage of features
cross-fed by each recipient isolate was significantly affected by
both taxonomic group [F(1,4) = 74, p = 0.001] and its interaction
with rrn copy group [F(1,4) = 27, p = 0.006; ANCOVA].
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FIGURE 5 | Percentage of LC-MS features cross-fed by each recipient isolate. Significant differences denoted using letters (p < 0.05, one-way ANOVA with
post hoc Tukey HSD test). n = 7 for each recipient isolate under each ionization mode. Each data point represents the percentage of positive or negative features
depleted by a recipient isolate grown on the spent medium of an influencer (corresponding to different shapes listed in the legend). An ANCOVA revealed that
taxonomic group and its interaction with rrn copy group both had significant effects on the percentage of cross-feeding features depleted by the recipient isolate,
under both polarities as well as the average result (p < 0.05). Feature count results can be found in Supplementary Table 5.

Putative annotations for significant features were obtained
by comparing m/z and retention time to an in-house database
of compound standards. Tandem mass spectrometry (MS/MS)
fragmentation spectra were queried against a spectral library
using the Global Natural Products Social Molecular Networking
(GNPS) tool (Wang et al., 2016). Features with matching
m/z, retention time, and MS/MS spectra were annotated
(Supplementary Table 6). Relative fold changes were calculated
for these metabolites and visualized to show whether they were
depleted or produced by the influencer and recipient isolates
during the sequential growth experiments (Supplementary
Figures 9,10).

DISCUSSION

Genomic Signatures of Life-History
Strategies
We characterized the metabolic activities and interactions of
bacteria representing copiotrophic and oligotrophic life-history
strategies. Isolates were chosen based on three phylotypes that
were found to be ubiquitous and abundant in soils, exhibit
different responses to resource availability and disturbance, and

differ in rrn copy number. We used rrn copy number as a
proxy for bacterial strategies because copiotrophs (with traits
typical of zymogenous or r-selected strategists) often contain
higher rrn copy numbers, while oligotrophs (with traits typical
of autochthonous or K-selected strategists) often contain lower
rrn copy numbers (Fierer et al., 2007; Prosser et al., 2007). High
rrn copy number is positively correlated with growth rate (Roller
et al., 2016; Pold et al., 2020), and this relationship was evident
among the isolates studied here (Figure 3D). Bacteria adapted
for rapid growth in soil must produce ribosomes quickly to meet
demand for protein synthesis during the transient periods in soil
that support high growth rates. This rapid ramp up in ribosome
copies is promoted by having high rrn copy number (Polz and
Cordero, 2016; Roller et al., 2016).

Several genomic properties differed between high and low
rrn copy phylo-pairs. Genomes with low rrn copy number
tended to have higher coding density and GC content, and
smaller genomes that encoded fewer biosynthetic pathways
(Figure 1 and Supplementary Figure 2). The positive correlation
between genome size and rrn copy number has previously
been shown (Roller et al., 2016). The relationships between
rrn copy number and genome GC content and coding
density identified for the strains analyzed here have not
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previously been described. In marine oligotrophs, genome
streamlining corresponded with smaller genome size, higher
coding density, and lower GC content (Giovannoni et al.,
2014). Our results for the soil bacterial isolates studied
here are consistent with trends in genome size and coding
density, but not GC content, which might suggest differences
shaping the genomes of bacteria adapted to marine vs. soil
habitats. Still, these observations show that rrn copy number
is associated with broad changes in genome composition,
suggesting that this trait is correlated with fundamental adaptive
differences among strains.

Isolate rrn Copy Number Correlates With
Substrate Utilization
Strains from the high rrn group depleted a greater diversity
and amount of metabolites than low rrn strains (Figures 3A–
C), when grown in a chemically defined medium containing
a mixture of common soil metabolites (Figure 2). Previously,
the ability to use simple carbon substrates has been shown to
be a shallowly phylogenetically conserved trait (Martiny et al.,
2015). Positive correlations were observed between phylogenetic
distance and substrate use dissimilarity, indicating that more
closely related bacteria had more similar resource use profiles
(Schlatter et al., 2013; Dolan et al., 2017). Here, we found
substrate utilization patterns not only varied among taxonomic
groups, in agreement with previous findings, but also differed
between rrn copy groups. Bacteria with large genomes have
been shown to have a tendency to occupy a broader range
of soil habitats (Barberan et al., 2014) and considered to be
able to access a wider range of C substrates (Saifuddin et al.,
2019). Furthermore, copiotrophic bacteria with higher rrn copy
numbers have high numbers of transporter genes (Lauro et al.,
2009). In addition, bacteria found to be generalists had higher
rrn copy numbers and more metabolic genes than bacteria
found to be specialists (Dal Bello et al., 2021). Our experiments
show that rrn copy number was positively correlated with the
richness, abundance, and diversity of metabolites consumed
(Figure 3D), suggesting high rrn copy number associates more
with a generalist resource use style, while low rrn copy number
associates with a higher degree of specialization. However, these
results contrast with previous experiments using single substrate
profiling that have found oligotrophic bacteria to utilize a
higher number of organic substrates than copiotrophs (Upton
and Nedwell, 1989), as supported by theoretical prediction
(Button, 1994). These mixed results highlight the complexity
of comparing resource use capacity across the copiotroph–
oligotroph spectrum, which depends on factors including the
concentration of limiting nutrient and the dynamics of growth
(batch vs. steady state). Experiments performed in culture must
always be interpreted with care because the determinants of
fitness in culture might not represent well the determinants
of fitness in situ. Moreover, as a study of this nature cannot
capture the full range of bacterial genomic or ecophysiological
diversity, extrapolation of the results should be treated with
caution. Still, the evidence from our study fits within a long
line of evidence showing generalizable differences according to

rrn copy number and other genomic traits indicative of life-
history strategies.

Substrate Use Overlap Predicts
Interactions Dominated by Resource
Competition
We predicted that isolates from different rrn groups would
differ in their potential for resource competition since substrate
utilization correlated with rrn copy number. We estimated the
potential strength of competition by determining the extent
of overlap in isolate substrate use profiles (Figure 3E). Our
prediction was built on previous work using the number
of overlapping substrates to infer competition (Wilson and
Lindow, 1994; Kosina et al., 2018) and further considered
the varying degree of utilization to capture the differential
substrate preference by each isolate. We found that the predicted
competitive rank of each isolate was positively correlated with
substrate utilization and rrn copy number (Figure 3D).

The predicted competitive interactions correlated with
the measured interactions that were dominated by negative
interactions (Figure 4). Isolates from the high rrn group had
greater negative effects on others than isolates from the low rrn
group as predicted (Supplementary Figure 5). Previously using
a similar sequential growth approach, it was found that 75% of
the measured interactions were in qualitative agreement with the
sign of interaction coefficients estimated using generalized Lotka-
Volterra models (Venturelli et al., 2018). Here, our experiments
showed that 105 out of 108 significant interactions were negative,
in agreement with predictions based on overlap in substrate
utilization patterns (Figure 4). More quantitatively, the measured
interaction strengths were positively correlated with the predicted
competition strengths. These results suggest that resource
competition was a major force causing negative interactions
among the isolates tested under experimental conditions of
this study. By profiling spent medium metabolites during the
sequential growth experiment, we identified substrates that
were sequentially depleted by both isolates, providing evidence
for competition (Supplementary Figures 9,10). Previously,
prevalence of negative competitive interactions has also been
reported for gut microbiota (Biggs et al., 2017) and bacteria
isolated from tree-hole aquatic habitats (Foster and Bell, 2012).

The significant correlations between the measured and
predicted interaction outcomes also indicate that isolate
exometabolite profiling coupled with measure of substrate
use overlap can be a powerful tool for predicting pairwise
interactions, which can be used to infer behaviors of more
complex communities (Friedman et al., 2017; Venturelli
et al., 2018). Still, it is noteworthy that correlations were
stronger for some recipient isolates and weaker for others
(Supplementary Figures 6,7). This could be explained, in part,
if substrate use efficiency varies among substrates (Saifuddin
et al., 2019; Muscarella et al., 2020). Therefore, the same degree
of overlap for two substrates may not necessarily translate to
the same degree of growth inhibition for each organism. In our
prediction, we treated each substrate as equally important and
independent (Michalska-Smith et al., 2022). One future direction
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to improve prediction would be to develop weighting factors
to take into account the varying importance and uniqueness
of each metabolite to the specific bacteria concerned (Colwell
and Futuyma, 1971). However, the feasibility will depend on
improved biochemical knowledge of metabolite functions in
diverse bacteria.

Rare Positive Interactions Likely Caused
by Metabolic Cross-Feeding
Previous work using genome-scale metabolic modeling has
predicted that there are a diverse range of metabolic byproducts,
such as organic acids and carbohydrates, that can be secreted by
microorganisms and enable beneficial inter-species interactions
(Zelezniak et al., 2015; Pacheco et al., 2019). However, empirical
studies to validate such interactions are limited. Here, we
detected on average 10.4% of LC-MS features had increased
abundances after growing each isolate individually in SDM. We
had expected to see high rrn isolates to release more byproducts
since they are associated with fast but inefficient growth, which
might promote secretion of metabolic intermediates (Polz and
Cordero, 2016). However, we did not find the number of
released features significantly affected by rrn copy or taxonomic
group (Supplementary Figure 8). However, the number of
released features that were then consumed (cross-fed) by the
recipient isolate varied significantly with taxonomic group and
its interaction with rrn copy group (Figure 5). The two high
rrn Micrococcales isolates, Pseudarthrobacter chlorophenolicus
(iso1) and Arthrobacter sp. (iso2), appeared to consume higher
numbers of features released by other isolates, yet they did
not show significantly higher growth in spent media. Similar
trends were reported for pairwise interactions in gut microbiota,
where∼2% of metabolite comparisons indicated potential cross-
feeding but no net growth promotion was observed (Biggs
et al., 2017). This result could be because cross-feeding was
not sufficient to offset the growth reduction due to depletion
of other limiting resources in spent media or because the
benefits of cross-feeding were masked in batch culture grown on
artificial media.

The three positive interaction cases that we indeed observed
could be attributed to the exchange of secreted metabolites. The
positive interactions were unidirectional and the low rrn strain
M. rutilum (iso19) was the influencer. Both M. rutilum and
both recipient strains were members of the Corynebacteriales
group (Figure 4). This finding is consistent with prior predictions
using genome-scale metabolic models that unidirectional positive
interactions are more common than bidirectional positive
interactions (Freilich et al., 2011; Pacheco et al., 2019). Because
only a relatively limited number of features were annotated
using the untargeted metabolomics pipeline, the exact cross-
fed metabolites that could have contributed to these positive
interactions could not be identified at this time.

CONCLUSION

We found that substrate utilization and competition among
common soil bacteria varied with rrn copy number. Among the

isolates studied here, isolates with high rrn copy number tended
to grow faster, consume more substrates, and have a higher
potential for competitive interactions than isolates with low rrn
copy number. Overlap in substrate utilization patterns predicted
interactions that were dominated by negative competition, with
relatively rare positive interactions likely caused by cross-feeding
of metabolic byproducts. Coupling analysis of rrn copy number
with exometabolite profiling of individual isolates could aid
the design of synthetic microbial consortia and help explain
interaction patterns in complex natural communities. In the
longer term, the scientific exploration of relationships between
bacterial life-history strategies, genomic traits, and metabolic
activities can advance the understanding of microbial metabolic
control of soil C cycling.

MATERIALS AND METHODS

Isolate Selection and Genomic Analysis
We curated a collection of soil bacteria (n = 24, Supplementary
Table 1) that included at least three representatives for each
species group of copiotrophs (Arthrobacter and Bacillus) and
oligotrophs (Mycolicibacterium), as well as an equal number
of phylogenetically related isolates that had contrasting rrn
copy number (phylo-pair). Specifically, phylo-pairs were selected
by querying the IMG-ER portal (Markowitz et al., 2007) to
identify publicly available genomes classified to Micrococcales,
Corynebacteriales, and Bacillales that met the following criteria:
(1) fewer than 10 contigs and/or raw sequencing data available to
validate rrn copy number abundance, (2) from the same or closely
related family, (3) maximally contrasting rrn copy numbers
among closest relatives, (4) available in culture collections,
and (5) isolated from soil. If more than four genomes met
these criteria, those with the highest quality genome assembly
were selected. Genomes were downloaded from the NCBI
refseq genome database in January 2019. Twenty-two bacterial
strains were sourced from the Leibniz Institute DSMZ—German
Collection of Microorganisms and Cell Cultures, and two from
the Bacillus Genetic Stock Center and a researcher, with detailed
information summarized in Supplementary Table 1.

The rrn copy number was determined using two
complementary approaches, namely, (1) recovering all 16S
rRNA genes using barrnap (v. 0.4.21), using hidden Markov
model, then manually correcting for genes that were incorrectly
duplicated by errors in assembly, and (2) relative read depth
between the 16S rRNA gene and putative single copy genes
identified by BUSCO (v. 4.1.2) (Simão et al., 2015). The rrn
copy values obtained were comparable to those listed on the
IMG-ER, but manually validated. Auxotrophies were determined
for each representative genome and phylobin using “Genome-
Enabled Metabolic Models” (Henry et al., 2010) in KBase (Arkin
et al., 2018). The phylogeny of strains was determined from
a maximum-likelihood tree based on a multi-locus sequence
alignment (MLSA) using “Insert Set of Genomes into Species
Tree” (v. 2.1.10) in KBase.

1https://github.com/tseemann/barrnap
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Isolate Growth Measurement and
Exometabolomic Sampling
Soil defined media (SDM) was constructed as previously
described (Jenkins et al., 2017) with slight modifications. In
total, 89 common soil metabolites were added at equimolar
concentration (20 µM) and mixed with KH2PO4 (0.6 g L−1),
NH4Cl (1.5 g L−1), Wolfe’s vitamin and Wolfe’s mineral
solutions, each at 1X concentration (Supplementary Table 2).

Growth curves were obtained on a BioLector microbioreactor
(Beckman Coulter GmbH, Baesweiler, Germany) using 48-well
microtiter plates. Isolates were revived from glycerol stocks on
TSB plates and then colonies were transferred to SDM plates
(SDM with 1.5% Noble agar). Starter liquid cultures were created
by inoculating 3 ml liquid SDM with a single colony from SDM
plates into 5 ml clear culture tubes and cultured at 28◦C. Each
isolate was diluted from starter cultures to an OD at 600 nm
(OD600) of 0.02 in a final volume of 1.5 ml liquid SDM per
well. The plate was shaken at 800 rpm and incubated at 28◦C
with readings taken every 20 min. Growth curves were fit using
the R package growthcurver (v. 0.3.1) (Sprouffske and Wagner,
2016) to estimate doubling time, maximum growth rate, and
carrying capacity.

For exometabolomics, starter cultures and plates were
prepared similarly as for growth curves. In total, two plates
were used for exometabolomics. The following two sets of
uninoculated medium controls were included on each plate to
account for any non-biological metabolite degradation during the
incubation period: an early control collected at the first time point
(when fast-growing isolates were sampled) and a late control
collected at the last time point (when slow-growing isolates were
sampled). Each isolate and uninoculated medium control were
run in triplicate. Samples were collected for each isolate at the
estimated early stationary phase. At sampling, the entire volume
was collected for each well and centrifuged at 5,000 × g for
10 min. Supernatants were transferred to 1.5 ml tubes and stored
at−80◦C for LC-MS analysis (described in detail below).

To predict potential for resource competition, we calculated
the predicted interaction strength (PISri) of influencer strain
(i) to recipient strain (r) based on the directional overlap in
isolate substrate utilization profiles (MacArthur and Levins, 1967;
MacArthur, 1984):

PISri = −

∑
m pm,rpm,i∑

m p2
m,r

, (1)

Where pm,r and pm,i are the percentages of metabolite m
significantly depleted by strain r and i, respectively, when
individually grown in SDM containing 89 metabolites of
equimolar concentration. Negative sign denotes the predicted
interaction is negative as a result of competition.

The competitive rank of isolate r (Rr) was then estimated by
summing the predicted negative effects of all the other isolates on
the focal isolate r and subtracting the negative effects of the focal
isolate r on all the other isolates (Carrara et al., 2015):

Rr =
∑

i

(PISri − PISir), (2)

The bigger Rr is, the greater the potential does isolate r have
for competitive interactions with other isolates.

Sequential Growth Experiment
Spent media were prepared by growing each individual isolate
in fresh SDM for 48 h and then centrifuging at 5,000 × g for
10 min to pellet cells and collect supernatant. The supernatant
was filter sterilized using a 0.22 µm membrane and supplemented
with 2% (v/v) 50X SDM base solution (only containing KH2PO4,
NH4Cl, Wolfe’s vitamin and Wolfe’s mineral solutions without
metabolites) to replenish these other nutrients and prevent them
from being growth limiting factors. The resulting spent media
from the first isolate (influencer) were used to culture a second
isolate (recipient).

Starter cultures of recipient isolates in liquid SDM were
centrifuged, cell pellets resuspended in 1X SDM base solution to
an OD600 of 0.5, and diluted into the spent media of seven other
isolates to a final OD600 of 0.01 to start the sequential growth
experiment. Concentrated cultures were also diluted into SDM
that was similarly amended with 2% (v/v) 50X SDM base solution
to serve as controls for growth comparison. Uninoculated SDM
and uninoculated, filter-sterilized initial spent media were also
included as abiotic controls. Each isolate and uninoculated
control were prepared in triplicate. OD600 readings were taken
every 30 min with orbital mixing at 28◦C for 48 h using a Biotek
Synergy HT microplate reader (Biotek Instruments, Winooski,
VT, United States). Parallel plates were setup to measure respired
CO2 using the Microresp method (Campbell et al., 2003; Foster
and Bell, 2012). Briefly, a 96-well microplate containing cresol red
indicator gel was placed on top of a two-way rubber sealing mat
that connected each well to a deep-well plate containing samples
below. A metal clamp was used to hold the plates together and
ensure an even seal. This design allowed for the movement of
respired CO2 gas produced by each isolate to react with the
indicator gel. Cumulative CO2 respiration was estimated as the
difference between the initial and final absorbance at 570 nm
(A570) measured of the indicator plate after baseline correction
using uninoculated medium controls. At the end of growth,
cultures were centrifuged and supernatants were collected and
stored at−80◦C for LC-MS analysis.

Relative change in growth was calculated as the measured
interaction strength (MISri) of influencer strain (i) to recipient
strain (r):

MISri =
Growthr,i

Growthr, SDM
− 1, (3)

Where Growthr,i and Growthr,SDM represent the growth of
the recipient in the influencer’s spent medium or in SDM,
respectively. A negative or positive MISri indicates a negative
(e.g., competitive) or positive (e.g., facilitative) effect of the
influencer on the recipient, respectively. By the definition, MISri
is ≥ −1, with MISri = −1 when the recipient strain did not
grow at all in the influencer’s spent medium. Directed interaction
networks were visualized in Cytoscape (Shannon et al., 2003).
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Extraction and LC-MS Analysis
Exometabolomic samples were lyophilized overnight and
resuspended in 150 µl methanol containing internal standards
(Supplementary Table 7). The resuspended samples were
vortexed, sonicated in ice water bath for 15 min, centrifuged
at 10,000 × g for 5 min at 4◦C, supernatants filtered through
0.2 µm modified nylon membrane centrifugal filters, and filtrates
collected for analysis. Samples were analyzed using normal-phase
LC-MS using a HILIC-Z column (150 mm × 2.1 mm, 2.7 µm,
120Å, Agilent Technologies, Santa Clara, CA, United States)
on an Agilent 1290 Infinity UHPLC. MS data were collected
on a Thermo QExactive (Thermo Fisher Scientific, Waltham,
MA, United States) and MS/MS data collected using collisions
energies of 10–40 eV. Detailed instrument parameters are
described in Supplementary Table 7. Each sample was analyzed
in both positive and negative ionization modes. Sample injection
order was randomized, and an injection blank of methanol
only was run between each sample. Internal standards were
included in all samples during the extraction process, and
external standards were injected every 10 samples for quality
control purposes.

Metabolomics Data Analysis
Soil defined medium metabolites were identified through a
targeted analysis pipeline using Metabolite Atlas2 (Yao et al.,
2015) with extracted ion chromatograms and peak heights
obtained for each metabolite using in-house Python scripts.
Metabolite identifications were verified with authentic chemical
standards and validated based on three metrics (matching m/z,
retention time, and MS/MS fragmentation spectra). Data from
internal standards and quality control samples were analyzed
to ensure consistent peak heights and retention times. One-way
ANOVA with post hoc Dunnett’s test was conducted to compare
significant differences in metabolite peak heights between spent
and control media (n = 3; raw data in Supplementary Table 3).
For metabolite whose abundance did not differ in the spent
from control media (p > 0.05), relative fold change was 0. For
metabolite that had significantly different abundance (p < 0.05),
relative fold change was calculated by dividing its peak height
in isolate’s spent medium by peak height in the control and
subtracting 1. A negative or positive value indicates depletion or
production of that compound by the corresponding isolate.

Untargeted analysis of LC-MS data was performed similarly to
previously described (Brisson et al., 2021). MZmine (Katajamaa
et al., 2006; Pluskal et al., 2010) was used to detect features
corresponding to specific m/z and retention time values.
Samples were split into two sets and analyzed separately.
Initial untargeted analysis detected 4,760 and 3,443 features for
the two sets, respectively (Supplementary Table 4). Features
with higher abundances in samples than background were
identified by comparing feature peak heights in samples
with peak heights in the extraction controls using one-way
ANOVA with post hoc Dunnett’s test (n = 3). In total,
3,639 (2,063 positive and 1,576 negative) and 2,719 (1,579
positive and 1,140 negative) features were determined for

2https://github.com/biorack/metatlas

the two sets to have higher abundances in at least one
sample group than background (p < 0.05) and kept for
downstream analysis. Significant changes in feature abundances
between spent medium samples and corresponding medium
controls were examined similarly as described above in targeted
analysis. For features determined to be having significantly
different abundances in spent than in control media, putative
annotations were obtained by comparing m/z and retention
time of standards analyzed using the same LC-MS method on
the same instrument in our laboratory. MS/MS spectra were
queried against the Berkeley Lab spectral library using GNPS
(Wang et al., 2016).
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